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Abstract

We present an immersed boundary method to simulate the creeping motion of a solid
in a fluid thanks to the Stokes equation and a FEM element strategy called φ-FEM using
the description of the solid with a level-set function. One of the advantages of our method
is the use of standard finite element spaces and classical integration tools. We obtain the
optimal convergence of the method theoretically and numerically.

1 Introduction

The main goal of the present article is to demonstrate that the recently proposed φ-FEM method-
ology [12, 11, 10] is suitable for numerical simulation of incompressible viscous fluid flow past
moving rigid bodies. This approach allows us to use simple (Cartesian) computational meshes,
not evolving in time and not fitted to the moving rigid bodies, while achieving the optimal accu-
racy with classical finite element (FE) spaces of any order and performing the usual numerical
integration on the whole mesh cells and facets, allowing for the use of standard FEM libraries for
the implementation. We consider here only the creeping motion regime (zero Reynolds number),
neglecting all the inertial terms in the equation governing both the fluid and the rigid bodies.

Numerical simulations of flows around moving rigid or elastic structures using immobile simple
grids is a popular approach in, for instance, biomechanics, starting from the work of Peskin [22].
Different approaches have emerged since then, such as the Immersed Boundary method [18, 21],
the Fictitious Domain method [15, 16], the penalty approximation [2], etc. All these classical
methods suffer from poor accuracy due to the necessity to approximate the singularities near
the fluid-solid interfaces which arise as the artefact of extending the fluid velocity field inside
the solid domain. More recently, several optimally convergent fictitious domain-type methods
have been proposed for the Stokes equations, which can also be used to simulate the fluid-solid
motions. We cite in particular [8, 20, 17] following the CutFEM paradigm, and [1, 14] following
the X-FEM paradigm. The common feature of all these methods is that they discretize the
variational formulation of the Stokes equation on the physical fluid domain Ω using the FE
spaces defined on the background mesh occupying a domain Ωh, slightly larger than Ω. On
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the one hand, this permits to avoid a non-smooth extension of the solution outside its natural
domain and to retrieve the optimal accuracy of the employed finite elements. On the other hand,
this introduces the integrals on the cut cells into the FE scheme, i.e. the numerical integration
should be performed on the portions of mesh cells, cut by the fluid-solid interface, making the
methods difficult to implement.

The φ-FEM approach, which is the subject of the present paper, aims at combining the
advantages of both classical Immersed Boundary/Fictitious Domain methods, and more recent
CutFEM/X-FEM. Similarly to the former, φ-FEM does not need non-standard numerical inte-
gration on the cut cells; similarly to the latter, φ-FEM achieves the optimal accuracy of the finite
elements employed. The general procedure of φ-FEM can be summarized as follows:

• Supposing that the physical domain Ω is given by a level set function Ω = {φ < 0} and
that it is embedded into a simple background mesh, introduce the active computational
mesh Th by getting rid of the mesh cells lying completely outside Ω. The active mesh thus
occupies a domain Ωh ⊃ Ω, cf. Fig. 1, as in CutFEM/X-FEM.

• Extend the governing equations from Ω to Ωh and write down a formal variational formu-
lation on Ωh without taking into account the boundary conditions on Γ (the relevant part
of the boundary of Ω).

• Impose the boundary conditions on Γ using an appropriate ansatz or some additional
variables, explicitly involving the level set φ which provides the link to the actual boundary.
For instance, the homogeneous Dirichlet boundary conditions (u = 0 on Γ) can be imposed
by the ansatz u = φw thus reformulating the problem in terms of the new unknown w.

• Add appropriate stabilization, typically combining the ghost penalty [7] with a least square
imposition of the governing equation on the mesh cells intersected by Γ, to guarantee
coerciveness/stability on the discrete level.

This program has been successfully carried out for elliptic scalar PDEs with Dirichlet boundary
conditions in [12] and for Neumann boundary conditions in [11]. Its feasibility is also demon-
strated in [10] for the linear elasticity with mixed boundary conditions including the cases of
internal interfaces between different materials or cracks, and for the heat equation. However,
the adaptation to the equations governing the fluid flow around the moving particles is not
straightforward. In particular, the following challenges are dealt with in the present article:

• The discrete inf-sup stability theory should be adapted to the case of a non-standard
variational formulation of the Stokes equations posed on Ωh rather than on Ω, and lacking
the saddle-point structure. We shall show that this is possible by adapting the ghost
penalty, which should be taken somewhat more complicated than in the case of scalar
elliptic equations [12]. We shall do it here for Taylor-Hood finite elements of any order,
but similar ideas should be also applicable to other classical inf-sup stable FE spaces.

• The motion equations for the solid particles involve the forces exerted on them by the
surrounding fluid. These are defined through the integrals of some functions of fluid velocity
and pressure on the particle boundary. However, the whole point of φ-FEM is to avoid
such integrals. Indeed, the particle boundary is not resolved by the mesh, and our goal
is to provide a method that necessitates the integration on the whole mesh cells or facets
only. The way out of this paradox, pursued in the present paper, lies in providing a weak
formulation of the governing equations, extended to Ωh, that incorporates in an appropriate
way the force balance equations, without stating them directly. This formulation is similar
in spirit but different from that in [16].

2



Figure 1: Left: an example of geometry for the fluid Ω with a solid S inside; Right: the non-
conforming active mesh Th on Ωh with its internal boundary Gh.

We note that the method of this article shares some similarities to the shifted boundary method
(SBM) proposed in [19] and analysed in [3] in the case of Stokes equations. In particular, SBM
also gives an optimal accurate solution (at least with the lowest order finite elements) without
introducing the integrals on the cut cells. It is however not evident how can one deal with the
computation of the forces on the particles in the SBM framework.

The paper is structured as follows. In the next section, we properly introduce the governing
equations, develop an appropriate weak formulation, discretize it (thus introducing our φ-FEM
scheme), and announce the main theorem about the convergence of the scheme. Section 3 is
devoted to the proof of this theorem. As a by-product, we also introduce a φ-FEM approach to
discretize the Stokes equations alone (on a fixed geometry) on a non-fitted mesh. The details
about this (comparatively simple) particular case are given in the Appendix. Finally, in section
4, we illustrate our theoretical results with numerical examples both for the Stokes equations and
for the fluid/rigid particle motion problem. φ-FEM is also compared there with a standard FEM
on fitted meshes, demonstrating the superiority of φ-FEM in terms of the accuracy achieved on
comparable meshes.

2 Construction of the φ-FEM scheme and main results

2.1 Governing equations

We consider the motion of a viscous incompressible fluid around a solid (rigid) particle in the
regime of creeping motion, i.e. neglecting all the inertial terms (for simplicity, we restrict our-
selves here to the case of one particle, the extension to multiple particles being straight-forward).
The particle is mobile and it moves under the action of the forces exerted by the surrounding fluid
and the external forces (gravity). Let the fluid occupy (at a given time t) the domain Ω ⊂ Rd
(d = 2 or 3), the particle occupy the domain S ⊂ Rd, and denote O = Ω∪S. Let Γw = ∂O be the
external boundary of the fluid domain (the immobile wall) where the fluid velocity is assumed
to vanish, Γ = ∂S be the fluid/solid interface, and assume that Γ does not touch Γw, so that ∂Ω
contains two disjoint components Γw and Γ. For simplicity, we assume that the only external
body force is gravitation with the constant acceleration g. Hence, the body force density in the
fluid is ρfg where ρf is the constant fluid density. Let ρs be the constant density of the solid.
Then, the resultant external force on the particle is mg where m = ρs|S| is the mass of the
particle, and the resultant moment of the external force with respect to the barycenter of the
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particle is 0. Denoting the constant fluid viscosity by ν, the equations governing the motion of
the fluid/particle system can be now given as:

−2ν divD(u) +∇p = ρfg, in Ω (1a)

div u = 0, in Ω (1b)

u = U + ψ × r, on Γ (1c)

u = 0, on Γw (1d)

−
∫

Γ

(2D(u)− pI)n+mg = 0 (1e)∫
Γ

(2D(u)− pI)n× r = 0 (1f)∫
Ω

p = 0 (1g)

Here, the unknowns are the fluid velocity u : Ω → Rd and the pressure p : Ω → R, the velocity
of the particle barycenter U ∈ Rd, and the angular velocity of the particle ψ ∈ Rd′ (d′ = 1 if
d = 2 and d′ = 3 if d = 3). In these equations, D(u) = 1

2 (∇u+∇uT ) denotes the strain tensor, r
denotes the vector from the barycenter of the solid S, and n denotes the unit normal on Γ looking
into the solid. Equations (1e)–(1f) come from the balance of forces exerted on the particle (the
force exerted by the fluid and the gravitational force).

From a numerical simulation perspective, it is natural to introduce an immobile computational
mesh on the immobile box O containing both the fluid and the particle. On the other hand,
the solid S will be moving with velocities U = U(t), ψ = ψ(t) at all-time t, thus permanently
changing the shape of the fluid domain Ω. It is therefore interesting to design numerical methods
for the system (1a)–(1g) that discretize u and p on a mesh non fitted to Ω.

2.2 A formal derivation of the appropriate weak formulation

Let T Oh be a regular simplicial mesh on O (the background mesh). Introduce the active compu-
tational mesh Th as a submesh of T Oh covering Ω. Let Ωh ⊃ Ω be the domain of Th and Gh the
part of the boundary of Ωh intersecting the solid, cf. Fig. 1 (the actual definition of Ωh is given in
(8), based on an approximation to the levelset φ, and may occasionally result in situations where
some tiny portions of Ω lie outside Ωh, but this does not influence the forthcoming derivation
of the FE scheme). Assume (on a formal level, just to derive the scheme) that u and p can be
extended from Ω to Ωh as solution to the Stokes equations so that

−2ν divD(u) +∇p = ρfg and div u = 0 in Ωh.

Taking any sufficiently smooth test functions v and q on Ωh such that v = 0 on Γw, an integration
by parts gives

2ν

∫
Ωh

D(u) : D(v)−
∫

Ωh

p div v −
∫

Ωh

q div u−
∫
Gh

(2νD(u)− pI)n · v =

∫
Ωh

ρfg · v. (2)

Assuming u = 0 on Γw, this imposes already the boundary condition (1d) on Γw, which we
suppose to fit to the mesh Th. On the contrary, this formulation does not take into account any
boundary conditions on Γ. In order to incorporate boundary conditions (1c) we make the ansatz

u = φw + χ(U + ψ × r) (3)
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where φ is a level set function for the fluid domain Ω = {φ < 0}, and χ is a sufficiently smooth
function on O such that χ = 1 on the solid S and χ = 0 on Γw. This introduces the new vector
valued unknown w on Ωh that should vanish on Γw (indeed w = 0 on Γw implies u = 0 on Γw
thanks to the choice of χ; in fact, the reason for χ is to decouple the boundary conditions on Γ
and Γw from one another).

The test functions v in (2) can be represented in the same way as the solution (3):

v = φs+ χ(V + ω × r) (4)

for all vector-valued functions s on Ωh vanishing on Γw, and V ∈ Rd, ω ∈ Rd′ . In particular,
the test functions of the form χ(V + ω × r) can be used to take into account the force balance
(1e–1f). To this end, we introduce Bh = Ωh \ Ω, i.e. the strip between Γ and Gh, and use the
divergence theorem on Bh to transfer the boundary term in (2) from Gh to Γ where it can be
evaluated by (1e–1f):∫

Gh

(2νD(u)− pI)n · χ(V + ω × r) =

∫
Gh

(2νD(u)− pI)n · (V + ω × r)

=

∫
Γ

(2νD(u)− pI)n · (V + ω × r) +

∫
Bh

div(2νD(u)− pI)n · (V + ω × r)

= mg · V −
∫
Bh

ρfg · χ(V + ω × r) = · · · (5)

We now remark Bh = Ωh \ (O \ S) to rewrite the above as

· · · = −
∫

Ωh

ρfg · χ(V + ω × r) +

∫
O
ρfg · χ(V + ω × r)−

∫
S
ρfg · (V + ω × r) +mg · V

= −
∫

Ωh

ρfg · χ(V + ω × r) +

∫
O
ρfg · χ(V + ω × r) +

(
1− ρf

ρs

)
mg · V. (6)

The last line is justified by observing
∫
S ρsg · (V + ω × r) = mg · V with ρs being the constant

density of the solid.
Substituting the ansatzes (3)-(4) for u and v into (2) and rewriting the boundary term using

(5)-(6) we arrive at the following formal variational formulation of our problem in terms of the
new unknowns w, V, ψ: find w : Ωh → Rd vanishing on Γw, U ∈ Rd, ψ ∈ Rd′ , and p : Ωh → R
such that

2ν

∫
Ωh

D(φw+χ(U +ψ×r)) : D(φs+χ(V +ω×r))−
∫
Gh

(2νD(φw+χ(U +ψ×r))−pI)n ·φs

−
∫

Ωh

p div(φs+ χ(V + ω × r))−
∫

Ωh

q div(φw + χ(U + ψ × r))

=

∫
Ωh

ρfg · φs+

∫
O
ρfg · χ(V + ω × r) +

(
1− ρf

ρs

)
mg · V (7)

for all s : Ωh → Rd vanishing on Γw, V ∈ Rd, ω ∈ Rd′ , and q : Ωh → R. In addition, the pressure
p should satisfy the constraint (1g).

Note that the formulation above contains only the integrals on Ωh, Gh, O which can be easily
approximated by quadrature rules on meshes Th and T Oh . We can thus discretize using the usual
finite elements for the trial and test functions, and approximating φ, χ by piecewise polynomials.
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2.3 The φ-FEM scheme: discretization with Taylor-Hood finite ele-
ments

We fix an integer k > 2 and introduce the approximations φh and χh to the levelset φ and to
the cut-off χ, given by the standard nodal interpolation to the continuous FE spaces of degree k
on the mesh T Oh . The active mesh Th and its domain Ωh are actually defined as follows:

Th = {T ∈ T Oh : T ∩ {φh < 0} 6= ∅}, Ωh := (∪T∈ThT )
o

(8)

as illustrated in Fig. 1. We can now introduce the FE spaces for velocity and pressure on the
mesh Th:

Vh =
{
vh ∈ C(Ω̄)d : vh|T ∈ Pk(T )d ∀T ∈ Th, vh = 0 on Γw

}
and

Mh =

{
qh ∈ C(Ω̄) : qh|T ∈ Pk−1(T ) ∀T ∈ Th,

∫
Ω

qh = 0

}
.

Remark 1. Note that he definition of the pressure space involves an integral on Ω, which is
incompatible with our φ-FEM framework since its whole point is to avoid the integrals on Ω
and Γ. In practice, we shall rather impose

∫
Ωh
qh = 0, introducing a mismatch in the additive

pressure constant (which, any way, has no physical meaning) with respect to the exact solution
satisfying (1g). We prefer however to keep the unimplementable constraint in the definition above
to avoid some technical difficulties in theory. In practice, a special care will have to be taken in
the interpretation of the error in pressure. We shall return to this technical point in the numerical
results section.

Moreover, we shall need the collections of the mesh cells T Γ
h and facets FΓ

h near the boundary
Γ, as illustrated in Fig. 2, to include the appropriate stabilization into the FE scheme. More
specifically, we introduce the submesh T Γ

h ⊂ Th and the corresponding subdomain ΩΓ
h ⊂ Ω

containing the mesh elements intersected by the approximate boundary

Γh = {φh = 0},

i.e.

T Γ
h = {T ∈ Th : T ∩ Γh 6= ∅}, ΩΓ

h :=
(
∪T∈T Γ

h
T
)o

. (9)

Finally, we set FΓ
h as the collection of the interior facets of the mesh Th either cut by Γh or

belonging to a cut mesh element

FΓ
h = {E (an internal facet of Th) such that ∃T ∈ T Γ

h and E ∈ ∂T}.

The stabilized scheme inspired by (7) can be now written as: find wh ∈ Vh, Uh ∈ Rd, ψh ∈ Rd′ ,
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Figure 2: Example of T Γ
h and FΓ

h with the geometry given in Fig. 1 (left).

ph ∈Mh such that

2ν

∫
Ωh

D(φhwh + χh(Uh + ψh × r)) : D(φhsh + χh(Vh + ωh × r))

−
∫
Gh

(2νD(χh(Uh + ψh × r) + φhwh)− phI)n · φhsh −
∫

Ωh

ph div(φhsh + χh(Vh + ωh × r))

−
∫

Ωh

qh div(φhwh + χh(Uh + ψh × r))

+ σuJu(χh(Uh + ψh × r) + φhwh, χh(Vh + ωh × r) + φhsh)

+ σh2
∑
T∈T Γ

h

∫
T

(−ν∆(φhwh + χh(Uh + ψh × r)) +∇ph) · (−ν∆(φhsh + χh(Vh + ωh × r))−∇qh)

+ σ
∑
T∈T Γ

h

∫
T

div(φhwh + χh(Uh + ψh × r)) div(φhsh + χh(Vh + ωh × r))

=

∫
Ωh

ρfg · φhsh +

∫
O
ρfg · χh(Vh + ωh × r) +

(
1− ρf

ρs

)
mg · Vh

+ σh2
∑
T∈T Γ

h

∫
T

ρfg · (−ν∆(φhsh + χh(Vh + ωh × r))−∇qh) (10)

for all sh ∈ Vh, Vh ∈ Rd, ωh ∈ Rd′ , qh ∈Mh.
Here Ju is the ghost penalties for the velocity, cf. [7]:

Ju(u, v) = h
∑
E∈FΓ

h

∫
E

[∂nu] · [∂nv] + h3
∑
E∈FΓ

h

∫
E

[
∂2
nu
]
·
[
∂2
nv
]
.

Note that, unlike [7, 8], we do not penalize the jumps of all the derivatives of the velocity; only
the derivatives of order up to 2 are included in Ju. There is no penalization on the pressure
either. We recall however that the version of the ghost penalty in φ-FEM for Poisson problem in
[12] is even more reduced: only the jumps of the first order derivatives are penalized there. The
inclusion of the second order derivatives in Ju in the present case of Stokes equations allows us
to control both velocity and pressure in the forthcoming proofs, cf. Lemma 1.
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2.4 Assumptions on the mesh and mains results

We begin with some assumptions on regularity of the mesh and we then state our main results
on the numerical convergence of our method.

Assumption 1. The boundary Γ can be covered by open sets Oi, i = 1, . . . , I and one can
introduce on every Oi local coordinates ξ1, . . . , ξd with ξd = φ such that all the partial derivatives
∂αξ/∂xα and ∂αx/∂ξα up to order k+ 1 are bounded by some C0 > 0. Thus, φ is of class Ck+1

on O.

To formulate our next assumption, we introduce an extended band of mesh elements near
the boundary Γ, namely the submesh T Γ,ext

h with T Γ
h ⊂ T

Γ,ext
h ⊂ Th by adding to T Γ

h the cells
which are neighbors and neighbors of neighbors of cells in T Γ

h .

Assumption 2. |∇φ| ≥ m, |∇φh| ≥ m
2 on all the mesh cells in T Γ,ext

h , |φ| ≥ mh on Th \T Γ,ext
h ,

and |∇φh| ≤M on Ωh with some m,M > 0.

We will assume the following regularity on χ

Assumption 3. χ ∈ Hk+1(O), χ = 1 on S, χ = 0 on Γw.

Assumption 4. The approximate interface Gh can be covered by element patches {Πk}k=1,...,NΠ

having the following properties:

• Each Πk is composed of a mesh element Tk lying inside Ω and some elements cut by Γ,
more precisely Πk = Tk ∪ ΠΓ

k where Tk ∈ Th, Tk ⊂ Ω̄, ΠΓ
k ⊂ T Γ

h , and ΠΓ
k contains at most

N mesh elements;

• Each mesh element in a patch Πk shares at least a facet with another mesh element in the
same patch. In particular, Tk shares a facet Fk with an element in ΠΓ

k ;

• T Γ
h = ∪NΠ

k=1ΠΓ
k ;

• Πk and Πl are disjoint if k 6= l.

Assumption 5. Any mesh cell T ∈ Th has at least d facets not lying on Γw.

Remark 2. The last assumption is usually required in the theoretical analysis of Taylor-Hood
elements for the Stokes equation in the geometrically conforming setting [13], although it can
be significantly relaxed, at least in the 2D setting [5]. Note that this assumption only affects
the mesh near the outer wall Γw, more particularly in the corners of O, which we treat in the
standard geometrically conforming manner any way. It does not impose any further restriction
on the active mesh Th near the interface Γ, where φ-FEM is effectively employed.

Let us now state our main results:

Theorem 1. Suppose that Assumptions 1–5 hold true and the mesh Th is quasi-uniform. Let
(u, U, ψ, p) ∈ Hk+1(Ω)d × Rd × Rd′ ×Hk(Ω) be the solution to (1a)-(1g) and (wh, Uh, ψh, ph) ∈
Vh × Rd × Rd′ ×Mh be the solution to (10). Denoting

uh := χh(Uh + ψh × r) + φhwh

it holds for h ≤ h0

|u− uh|1,Ω∩Ωh
+ |p− ph|0,Ω∩Ωh

≤ Chk(‖u‖k+1,Ω + ‖p‖k,Ω) (11)
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and
|U − Uh|+ |ψ − ψh| ≤ Chk(‖u‖k+1,Ω + ‖p‖k,Ω) (12)

with some C > 0 and h0 > 0 depending on the parameters C0, m, M , N in Assumptions 1–5,
on the maximum of the derivatives of φ and χ of order up to k + 1, on the mesh regularity, and
on the polynomial degree k, but independent of h, f , and u.

Moreover, supposing Ω ⊂ Ωh

‖u− uh‖0,Ω ≤ Chk+1/2(‖u‖k+1,Ω + ‖p‖k,Ω) (13)

with a constant C > 0 of the same type as above.

Remark 3. The numerical results in Section 4 suggest that convergence order for the particle
velocity error and that for the L2-error of the fluid velocity is k + 1. This suggests that both
estimates (12) and (13) are not sharp. This is similar to our previous studies [12] and [11].

3 Proofs

From now on, we put the viscosity of the fluid to ν = 1 to simplify the formulas. We shall also
tacitly suppose that Assumptions 1–5 holds true.

This section is organized as follows: we start with some technical lemmas in Sections 3.1 and
3.2, essentially adapting the corresponding results from [12]. Note however that the interpolation
error bound in Section 3.2 is sharper than its counterpart in [12]; it is now optimal with respect
to the Sobolev norm expected from the interpolated function. This is followed by the proofs of
Taylor-Hood inf-sup stability, the generalized coercivity of the bilinear form and finally the a
priori error estimates, respectively, in Sections 3.3, 3.4 and 3.5, thus establishing Theorem 1.

3.1 Some technical lemmas.

Lemma 1. Let T be a triangle/tetrahedron, E one of its sides, v a vector-valued polynomial
function on T , q a scalar-valued polynomial function on T such that

v =
∂v

∂n
=
∂2v

∂n2
= 0 on E (14)

and
−∆v +∇q = 0 and div v = 0 on T. (15)

Then v = 0 and q = const on T .

The proof of this lemma is inspired from the corresponding lemma in Dirichlet φ-FEM paper.

Proof. We shall give the proof only in the two dimensional setting, the generalization to the
case d = 3 being straightforward. Without loss of generality, we can choose the Cartesian
coordinates (x, y) such that the edge E lies on the x-axis. We shall denote the components of
the vector-valued function v by (v1, v2).

Let us write, for k ∈ {1, 2},

vk =
∑
i,j≥0

vkijx
iyj and q =

∑
i,j≥0

qijx
iyj .

We will prove by strong induction on m that

vkij = 0 ∀k ∈ {1, 2}, i ≥ 0, j ∈ {0, ...,m}. (Sm)
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Using (14), it holds ∑
i≥0

vki0x
i =

∑
i≥0

vki1x
i =

∑
i≥0

vki2x
i = 0

for all x and k ∈ {1, 2}. Hence vki0 = vki1 = vki2 = 0 for all i ≥ 0, k ∈ {1, 2} and we obtain (S2).
Assume that for a given m ≥ 2, (Sm) holds true. Thanks to (15), one has

−(i+ 2)(i+ 1)v1
(i+2)j − (j + 2)(j + 1)v1

i(j+2) + (i+ 1)q(i+1)j = 0, (16)

−(i+ 2)(i+ 1)v2
(i+2)j − (j + 2)(j + 1)v2

i(j+2) + (j + 1)qi(j+1) = 0 (17)

and
(i+ 1)v1

(i+1)j + (j + 1)v2
i(j+1) = 0. (18)

From (16) and (17), for each i, j

(i+ 2)v1
(i+2)(j+1) +

(j + 3)(j + 2)

i+ 1
v1
i(j+3) =

(i+ 3)(i+ 2)

j + 1
v2

(i+3)j + (j + 2)v2
(i+1)(j+2).

The last equality for j = m− 2 combined with (Sm) implies that

v1
i(m+1) = 0 ∀i ≥ 0.

Relation (18) for j = m and (Sm) gives

v2
i(m+1) = 0 ∀i ≥ 0,

which leads to (Sm+1). Thus v = 0. This also implies ∇q = 0 on T thanks to (15).

Lemma 2. For any β > 0 and any integers s, r ≥ 1 there exists 0 < α < 1 depending only on
the mesh regularity and s, r such that for any continuous vector-valued Ps FE function vh on Th
and any continuous scalar Pr FE function qh it holds

‖D(vh)‖20,ΩΓ
h

+ (1− α)h2|qh|21,ΩΓ
h
≤ α‖D(vh)‖20,Ωh

+ β

h2‖ −∆vh +∇qh‖20,ΩΓ
h

+ ‖ div vh‖20,ΩΓ
h

+
∑
E∈FΓ

h

(h‖[∂nvh]‖20,E + h3‖[∂2
nvh]‖20,E)

 . (19)

Proof. Thanks to Assumption 4, the boundary Γ can be covered by elements patches {Πk}k=1,...,NΠ
.

Take β > 0 and set
α := max

Πk,vh,qh
F (Πk, vh, qh), (20)

where

F (Πk, vh, qh) =
‖D(vh)‖2

0,ΠΓ
k
+h2|qh|21,ΠΓ

k
− βG(Πk, vh, qh)

‖D(vh)‖20,Πk
+h2|qh|21,ΠΓ

k

with

G(Πk, vh, qh) = h2‖ −∆vh +∇qh‖20,ΠΓ
k

+ ‖ div vh‖20,ΠΓ
k

+ h ‖[∂nvh]‖2Fk
+ h3

∥∥[∂2
nvh
]∥∥2

Fk
.

The maximum in (20) is taken over all the continuous vector-valued Ps FE functions vh on Πk, all
the continuous scalar Pr FE functions qh on ΠΓ

k , such that the denominator in the expression for
F does not vanish, and over all the possible configurations of patches Πk satisfying Assumption
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4. The notation Fk stands for the set of mesh facets inside the patch Πk which includes thus Fk
separating Tk from ΠΓ

k and the other facets inside ΠΓ
k . The norm ‖ · ‖Fk

should be understood
as (

∑
F∈Fk

‖ · ‖2F )1/2.

Since the maximized function F is invariant with respect to the transformation x 7→ 1
hx, vh 7→

1
hvh, qh 7→ qh, we can assume that h = 1 in (20). Furthermore F (Πk, vh, qh) = F (Πk, λvh, λqh)
for any λ 6= 0. Hence the maximum (20) is attained since it can be taken over all admissible
patches with h = 1 and all vh, qh such that ‖D(vh)‖20,Πk

+h2|qh|21,ΠΓ
k

= 1, forming the unit sphere

in the finite dimensional space of all (vh, qh) factored by rigid body motions on Πk and constants
on ΠΓ

k .
Clearly α 6 1. Let us prove by contradiction that α < 1. Assume that α = 1. Consider the

patch Πk (with h = 1) and vh, qh with ‖D(vh)‖20,Πk
+|qh|21,ΠΓ

k
= 1 on which the maximum (20)

is attained. Then,
‖D(vh)‖20,Tk

+ βG(Πk, vh, qh) = 0,

since Πk = Tk ∪ ΠΓ
k . We deduce that vh = ∂vh

∂n = ∂2vh
∂n2 = 0 on all the facets in Fk and

−∆vh +∇qh = 0, div(vh) = 0 on all T ∈ ΠΓ
k . Moreover, vh is a rigid body motion on Tk. Let

vrbmh be the rigid body motion velocity on Rd coinciding with vh on Tk. Thanks to Lemma 1
applied to vh − vrbmh and to qh on the cells in ΠΓ

k starting from the cell adjacent in ΠΓ
k to Tk,

we have vh = vrbmh on Πk and qh = const on ΠΓ
k (recall that qh is continuous). We have thus

reached a contradiction with the assumptions ‖D(vh)‖20,Πk
+|qh|21,ΠΓ

k
= 1 and α = 1.

This proves that there exists α < 1 such that

‖D(vh)‖20,ΠΓ
k

+ (1− α)h2|qh|21,ΠΓ
k
≤ α‖D(vh)‖20,Πk

+ β
(
h2‖ −∆vh +∇qh‖20,ΠΓ

k
+ ‖div vh‖20,ΠΓ

k
+ h ‖[∂nvh]‖2Fk

+ h3
∥∥[∂2

nvh
]∥∥2

Fk

)
on all the patches Πk and for all vh, qh. Summing this over all Πk gives (19).

Lemma 3. For any v ∈ H1(Ω)d vanishing on Γw

|v|1,Ωh
≤ C‖D(v)‖0,Ωh

. (21)

Proof. Since v = 0 on Γω, we have the following Korn inequality

|v|1,Ω ≤ C‖D(v)‖0,Ω (22)

with a constant C > 0 depending only on the shape of Ω, cf. [9, Theorem 6.3-4]. This implies

|v|1,Ωi
h
≤ C‖D(v)‖0,Ωh

,

where Ωih regroups the mesh cells inside Ω. Now, for any pair of mesh cells T, T ′ sharing a facet
E, we can prove

|v|1,T ≤ C‖D(v)‖0,T + C|v|1,T ′ (23)

with a constant C independent of h. Indeed, combining the Korn inequalities (22) and the trace
theorem on the reference element leads to |v|1,T ≤ C‖D(v)‖0,T + C|v|1/2,E . Employing again
the trace inequality on T ′ leads to (23).

Let Ωi,1h be Ωih plus the cells which are not in Ωih but have a neighbor in Ωih. For any such cell
T , we take T ′ as its neighbor in Ωih, apply the estimate above, sum and compare with estimates
yet above. This gives

|v|1,Ωi,1
h
≤ C‖D(v)‖0,Ωh

.

11



Let Ωi,2h be Ωi,1h plus the cells which are not in Ωi,1h but have a neighbor in Ωi,1h . We have similar
to above

|v|1,Ωi,2
h
≤ C‖D(v)‖0,Ωh

and so on. After a finite number of steps, say k, we arrive at Ωi,kh = Ωh. And

|v|1,Ωh
= |v|1,Ωi,k

h
≤ C‖D(v)‖0,Ωh

.

Lemma 4. For any sh ∈ Vh and any Vh ∈ Rd, ωh ∈ Rd′ ,

‖φhsh‖0,ΩΓ
h

+

 ∑
F∈FΓ

h

h‖φhsh‖20,F

1/2

+
√
h‖φhsh‖0,Gh

≤ Ch‖D(φhsh + χh(Vh + ωh × r))‖0,Ωh
.

Proof. Take any sh ∈ Vh, Vh ∈ Rd, ωh ∈ Rd′ and denote vh = φhsh + χh(Vh + ωh × r). By [12,
Lemma 3.4]

‖φhsh‖0,ΩΓ
h
6 Ch|φhsh|1,ΩΓ

h
6 Ch(|vh|1,ΩΓ

h
+ |χh(Vh + ωh × r)|1,ΩΓ

h
)

6 Ch(|vh|1,ΩΓ
h

+ ‖χh‖1,ΩΓ
h
(|Vh|+ |ωh|)). (24)

By equivalence of norms
|Vh|+ |ωh| 6 C‖Vh + ωh × r‖0,Γ. (25)

Denote by BΓ
h the band between Γ and Γh. Applying the divergence theorem to the vector field

|Vh + ωh × r|2∇φ and noting that the normal on Γ (resp. Γh) is given by ± ∇φ|∇φ| (resp. ± ∇φh

|∇φh| )
gives∫

Γ

|Vh + ωh × r|2|∇φ| 6
∫

Γh

|Vh + ωh × r|2
|∇φ · ∇φh|
|∇φh|

+

∣∣∣∣∣
∫
BΓ

h

div
(
|Vh + ωh × r|2∇φ

)∣∣∣∣∣
We now note that |∇φ| (resp. |∇φh| and χh) are both positive and bounded away from 0 on Γ
(resp. on Γh) uniformly in h for h small enough, and the measure of BΓ

h is of order hk+1. The
inequality above implies thus

‖Vh + ωh × r‖20,Γ ≤ C(‖χh(Vh + ωh × r)‖20,Γh
+ hk+1(|Vh|+ |ωh|)2).

Combining this with (25) gives, for h small enough

|Vh|+ |ωh| 6 C‖χh(Vh + ωh × r)‖0,Γh
= C‖vh‖0,Γh

and, by the trace inequality,
|Vh|+ |ωh| 6 C‖vh‖1,ΩΓ

h
.

Substituting this into (24) and combining with the Korn inequality (21) yields the announced
estimate for ‖φhsh‖0,ΩΓ

h
since ‖χh‖1,ΩΓ

h
is bounded uniformly in h. The remaining part of the

estimate follows by trace inverse inequalities as in [12, Lemma 3.5].
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3.2 Interpolation by finite elements multiplied with the level set

We recall first a Hardy-type inequality, cf. [12].

Lemma 5. For any integer s ∈ [0, k] and any u ∈ Hs+1(Ωh) vanishing on Γ, it holds

∥∥∥∥uφ
∥∥∥∥
s,Ωh

≤

C‖u‖s+1,Ωh
with C > 0 depending only on the constants in Assumption 1 and on s.

This allows us to prove the following bound for interpolation by the products of finite elements
with φh.

Lemma 6. Let t be an integer 1 6 t 6 k+1. For any v ∈ Ht(Ωh)d∩H1
0 (Ω) there exists wh ∈ Vh

s.t.
‖v − φhwh‖s,Ωh

6 Cht−s‖v‖t,Ωh
, s = 0, 1 (26)

with C > 0 depending only on t, s, the constants in Assumptions 1–2, and the mesh regularity.

Proof. Let v ∈ Ht(Ωh)d, v = 0 on Γ, and set w = v/φ. Thanks to Lemma 5, w ∈ Ht−1(Ωh)d and
‖w‖t−1,Ωh

≤ C‖v‖t,Ωh
. Consider wh = Ichw, where Ich is a Scott-Zhang interpolation operator.

For any T ∈ Th, let ωT denote the patch of mesh cells adjacent to T (not necessarily all the
adjacent cells) regrouping the cells affected by the construction of Ichw on T , so that Ichw on T
depends on w only though its restriction to ωT . The Scott-Zhang interpolation operator can be
constructed so that ωT ⊂ T Γ,ext

h for all T ∈ T Γ,ext
h , and ωT ⊂ Th \ T Γ,ext

h for all T ∈ Th \ T Γ,ext
h .

In what follows, we assume that the operator Ich enjoys this property together with the usual
interpolation error estimates see for instance [6].

Our first goal is to prove (26) for s = 0. Taking any T ∈ Th. Recall that φ is supposed to be
of class (at least) Ct so that ‖φ− φh‖∞,T 6 Cht. Hence,

‖v − φhwh‖0,T = ‖φw − φhwh‖0,T (27)

6 ‖φ‖∞,T ‖w − wh‖0,T + ‖φ− φh‖∞,T ‖wh‖0,T
6 ‖φ‖∞,T ‖w − wh‖0,T + Cht‖w‖0,ωT

.

To continue this proof, we distinguish two cases: the cells T ∈ T Γ,ext
h close to Γh and the

remaining cells, which are at the distance of at least order h from Γh.

(i) Consider T ∈ T Γ,ext
h . We have ‖φ‖∞,T 6 Ch on these cells since they are at the distance

∼ h from Γ. Noting that ‖w−wh‖0,T 6 Cht−1|w|t−1,ωT
by the usual interpolation estimate,

we derive from (27)

‖v − φhwh‖0,T 6 Cht (|w|t−1,ωT
+ ‖w‖0,ωT

) . (28)

(ii) Now consider T ∈ Th \ T Γ,ext
h . We note that φ does not vanish on ωT for such T (recall

that ωT ⊂ Th \ T Γ,ext
h ), so that w ∈ Ht(ωT ) and, by (27) and the usual approximation

estimates,
‖v − φhwh‖0,T 6 Cht (‖φ‖∞,T |w|t,ωT

+ ‖w‖0,ωT
) . (29)

In order to bound |w|t,ωT
here, we note the Leibniz formula valid for any multi-index

α ∈ Nd, α 6= 0

∂αw =
1

φ
∂αv −

∑
β ∈ Nd

β 6 α, β 6= 0

Cβα
∂βφ

φ
∂α−βw (30)
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where Cβα are the binomial coefficients depending only on the multi-indices α and β.

Applying (30) to w on ωT gives

|w|t,ωT
6

1

minωT
|φ|

(|v|t,ωT
+ C‖w‖t−1,ωT

).

Hence, by (29),

‖v − φhwh‖0,T 6 Cht
(
‖φ‖∞,T

minωT
|φ|

(|v|t,ωT
+ ‖w‖t−1,ωT

) + ‖w‖0,ωT

)
. (31)

Recall that minωT
|φ| > mh by Assumption 2. The distance between any point on T and

any point on ωT is at most 2h so that

‖φ‖∞,T
minωT

|φ|
= 1 +

maxT |φ| −minωT
|φ|

minωT
|φ|

6 1 +
2Mh

mh
6 1 +

2M

m

with M denoting an upper bound on |∇φ|. Substituting this into (31) gives

‖v − φhwh‖0,T 6 Cht(|v|t,ωT
+ ‖w‖t−1,ωT

). (32)

Summing (28) over all the cells T ∈ T Γ,ext
h and (32) over all the remaining cells of mesh Th gives

‖v − φhwh‖0,Ωh
6 Cht(|v|t,Ωh

+ ‖w‖t−1,Ωh
) .

This yields (26) with s = 0 thanks to the estimate ‖w‖t−1,Ωh
6 ‖v‖t,Ωh

given by Lemma 5.
Let us now prove (26) for s = 1. Introduce vh = Ichv so that

|v − vh|1,Ωh
6 Cht−1|v|t,Ωh

and ‖v − vh‖0,Ωh
6 Cht|v|t,Ωh

.

Then, combining the already proven estimate (26) for s = 0, the inverse inequality, and the
interpolation estimates above, we obtain

|v − φhwh|1,Ωh
6 |vh − φhwh|1,Ωh

+ |v − vh|1,Ωh

6
C

h
‖vh − φhwh‖0,Ωh

+ |v − vh|1,Ωh

6
C

h
‖v − φhwh‖0,Ωh

+
C

h
‖v − vh‖0,Ωh

+ |v − vh|1,Ωh

6 Cht−1‖v‖t,Ωh
.

3.3 An adaptation of the Taylor-Hood inf-sup stability to φ-FEM

In this section, we prove some Taylor-Hood inf-sup conditions which will be use to establish the
coercivity of our bilinear form in the next section. The proofs are inspired by [17].

Lemma 7. There exists an h-independent constant C > 0 such that ∀ph ∈ Mh, ∃wh ∈ Vh
satisfying

h2|ph|21,Ωh
− Ch2|ph|21,ΩΓ

h
6
∫

Ωh

∇ph · (φhwh) and |φhwh|1,Ωh
6 Ch|ph|1,Ωh

. (33)
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Proof. Let us introduce the submesh T ih = Th \T Γ
h and denote by E ih the set of the edges of mesh

T ih including those shared with T Γ
h , but excluding those lying on Γw. For any edge E ∈ E ih, let tE

be the unit tangent vector to E (any of two, but fixed), xE be the midpoint of E, ω(E) be the set
of the mesh cells sharing E, and ψE be the piecewise quadratic function such that ψE(xE) = 1
and ψE vanishes at all the other edge midpoints and at all the nodes of Th. Moreover, defined
for all E ∈ E ih,

φ̄E =

 −h, if E belongs to a cell from T Γ,ext
h ,

1

|E|

∫
E

φh, otherwise.

Taking any ph ∈Mh and set wh ∈ Vh as

wh =
∑
E∈Eih

h2

φ̄E
ψE(tE · ∇ph)tE . (34)

We have indeed wh ∈ Vh, since the pressure tangential derivative tE ·∇ph is a continuous piecewise
polynomial of degree 6 k− 1 on ω(E) and ψE is a continuous piecewise polynomial of degree 2,
vanishing outside ω(E). Note also that wh = 0 on Γw since E ih does not contain the edges lying
on Γw. It holds for any cell T ∈ ω(E) ∩ T ih∫

T

φh
φ̄E

ψE |tE · ∇ph|2 ≥ c
∫
T

|tE · ∇ph|2 . (35)

Here and elsewhere, the constants c > 0 depend only on the polynomial degree k, the shape
regularity, and the parameters of Assumption 2. This inequality can be proven by considering

min
T,φh,qh

∫
T
φh

φ̄E
ψEq

2
h∫

T
q2
h

taken over all the simplexes T permitted by the mesh regularity, polynomials φh satisfying the
restrictions of Assumption 2, and all the polynomials qh := tE · ∇ph of degree k − 2. By

homogeneity and rescaling, one can safely assume that diamT = 1 and
∥∥∥ φh

φ̄E

∥∥∥
0,T

= ‖qh‖0,T = 1.

Additional constraints on φh are imposed differently in the two cases: if T ∈ T Γ,ext
h , then

−φh ≥ 0 on T , and (after rescaling)
∣∣∣∇ φh

φ̄E

∣∣∣ ≥ m
2 ; if T 6∈ T Γ,ext

h , then again −φh ≥ 0 on T , and

maxT |φh|
minT |φh| = 1 + maxT |φh|−minT |φh|

minT |φh| ≤ 1 + M
m so that φh

φ̄E
is uniformly bounded away from 0. In

both cases, the set of possible φh is bounded and closed, so that the minimum above is indeed
attained and is positive.

Thanks to (35), we have, setting Ωih = Ωh \ ΩΓ
h and denoting by E(T ) the set of edges of a

cell T excluding the edges on Γw,∫
Ωi

h

φhwh · ∇ph =
∑
E∈Eih

h2

∫
ω(E)∩Ωi

h

φh
φ̄E

ψE |tE · ∇ph|2 ≥ c
∑
T∈T i

h

∑
E∈E(T )

h2

∫
T

|tE · ∇ph|2 .

Taking into account Assumption 5, we have by scaling and the equivalence of norms on all T ∈ T ih∑
E∈E(T )

∫
T

|tE · ∇ph|2 ≥ c|ph|21,T .

Hence, ∫
Ωi

h

φhwh · ∇ph > ch2|ph|21,Ωi
h
. (36)
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Now, on a mesh cell T ∈ T Γ
h having common edges with cells of T ih , definition (34) clearly

gives ∣∣∣∣∫
T

φhwh · ∇ph
∣∣∣∣ =

∣∣∣∣∣∣
∑

E∈E(T )∩Eih

h

∫
T

φhψE |tE · ∇ph|2
∣∣∣∣∣∣ 6 Ch2|ph|21,T

since φh is of order h on such cells. Combining this with (36) gives

ch2|ph|21,Ωh
6
∫

Ωh

φhwh · ∇ph −
∫

ΩΓ
h

φhwh · ∇ph + ch2|ph|21,ΩΓ
h

6
∫

Ωh

φhwh · ∇ph + Ch2|ph|21,ΩΓ
h
. (37)

We also have

|φhwh|21,Ωh
=

∫
Ωh

|(∇φh)wh + φh(∇wh)|2

≤ C
∑
T∈Th

∑
E∈E(T )∩Eih

h4

∫
T

(
|∇φh|2

φ̄2
E

|∇ph|2 +
φ2
h

φ̄2
E

|∇ψE |2|∇ph|2 +
φ2
h

φ̄2
E

|∇2ph|2
)

≤ C
∑
T∈Th

h2

∫
T

|∇ph|2 = Ch2|ph|21,Ωh
. (38)

We have used here the finite element inverse estimates on φh, ψE , p, and a uniform upper bound

on maxT |φh|
|φ̄E |

that can be established similarly to (35).

Redefining wh as wh/c with the constant c from (37) shows (33) as a combination of (37) and
(38).

Lemma 8. There exists an h-independent constant C > 0 such that ∀ph ∈Mh ∃sh ∈ Vh

‖ph‖20,Ωh
− Ch2|ph|21,ΩΓ

h
≤
∫

Ωh

∇ph · (φhsh) and |φhsh|1,Ωh
6 C‖ph‖0,Ωh

. (39)

Proof. Taking ph ∈ Mh. By continuous velocity-pressure inf-sup (recall that
∫

Ω
ph = 0), there

exists v ∈ H1
0 (Ω) s.t.

div v = −ph on Ω, and ‖v‖1,Ω 6 C‖ph‖0,Ω .

Let ṽ ∈ H1(Ωh) be the extension of v by 0 outside Ω. Lemma 6 with t = 1 implies ∃vh ∈ Vh s.t.

‖ṽ − φhvh‖0,Ωh
6 Ch‖ṽ‖1,Ωh

6 Ch‖ph‖0,Ω
h

and |φhvh|1,Ωh
6 C‖ṽ‖1,Ωh

6 C‖ph‖0,Ω
h
.

Thus,

‖ph‖20,Ω = −
∫

Ω

ph div v =

∫
Ω

∇ph · ṽ =

∫
Ωh

∇ph · (φhvh) +

∫
Ωh

∇ph · (ṽ − φhvh)

6
∫

Ωh

∇ph · (φhvh) + Ch|ph|1,Ωh
‖ph‖0,Ω

h
. (40)

By an argument similar to that used in the proof of Lemma 2, we have

‖ph‖20,Ωh
6 C1(‖ph‖20,Ω + h2|ph|21,ΩΓ

h
).
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We can thus pass from the norm on Ω to that on Ωh in (40):

‖ph‖20,Ωh
6 C1

∫
Ωh

∇ph · (φhvh) + Ch|ph|1,Ωh
‖ph‖0,Ωh

+ C1h
2|ph|21,ΩΓ

h
.

Hence, by Young inequality,

1

2
‖ph‖20,Ωh

6 C1

∫
Ωh

∇ph · (φhvh) + C2h
2|ph|21,Ωh

+ C1h
2|ph|21,ΩΓ

h

6 C1

∫
Ωh

∇ph · (φhvh) + C2

∫
Ωh

∇ph · (φhwh) + Ch2|ph|21,ΩΓ
h

with wh given by Lemma 7. Thus,

1

2
‖ph‖20,Ωh

−Ch2|ph|21,ΩΓ
h
6
∫

Ωh

∇ph·φh(C1vh+C2wh) and |φh(C1vh+C2wh)|1,Ωh
6 C‖ph‖0,Ω

h

since |φhwh|1,Ωh
6 Ch|ph|1,Ωh

6 C‖ph‖0,Ωh
by inverse finite element estimates.

Setting sh = 2(C1vh + C2wh) proves (39).

3.4 The generalized coercivity (the inf-sup condition) for the bilinear
form.

To ease the forthcoming calculations, let us introduce the finite element space of velocities com-
bining the rigid body motion on the approximate boundary and the contributions involving the
level set:

Vrbmh = {χh(Vh + ωh × r) + φhsh with sh ∈ Vh, Vh ∈ Rd, ωh ∈ Rd
′
}. (41)

In the scheme (10), we shall now combine the test functions sh, Vh, ωh into vh ∈ Vrbmh as in
the definition above. Similarly, we shall combine the trial functions wh, Uh, ψh into uh ∈ Vrbmh

setting uh = χh(Uh +ψh× r) + φhwh). Scheme (10) can be then rewritten in the compact form:
find uh ∈ Vrbmh and ph ∈Mh such that

ch(uh, ph; vh, qh) = Lh(vh, qh), ∀vh ∈ Vrbmh , qh ∈Mh , (42)

where the bilinear form ch is given by

ch(uh, ph; vh, qh) = 2

∫
Ωh

D(uh) : D(vh)−
∫
Gh

(2D(uh)− phI)n · φhsh

−
∫

Ωh

qh div uh −
∫

Ωh

ph div vh

+ σh2
∑
T∈T Γ

h

∫
T

(−∆uh +∇ph) · (−∆vh −∇qh) + σ
∑
T∈T Γ

h

∫
T

(div uh)(div vh)

+ σuh
∑
E∈FΓ

h

∫
E

[∂nuh] · [∂nvh] + σuh
3
∑
E∈FΓ

h

∫
E

[
∂2
nuh

]
·
[
∂2
nvh
]

and the linear form Lh is given by

Lh(vh, qh) =

∫
Ωh

ρfg · φhsh +

∫
O
ρfg · χh(Vh + ωh × r) +

(
1− ρf

ρs

)
mg · Vh

+ σh2
∑
T∈T Γ

h

∫
T

ρfg · (−∆vh −∇qh). (43)
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In both expressions above, sh, Vh, and ωh are related to vh ∈ Vrbmh as in (41).

Lemma 9. Introduce the norm on Vrbmh ×Mh

9vh, qh9h :=

|vh|21,Ωh
+ ‖qh‖20,Ωh

+ h2
∑
T∈T Γ

h

‖ −∆vh +∇qh‖20,T + Ju(vh, vh)

1/2

.

The following inf-sup condition holds

∀(uh, ph) ∈ Vrbmh ×Mh ∃(vh, qh) ∈ Vrbmh ×Mh

such that
ch(uh, ph; vh, qh)

9vh, qh9h
> θ 9 uh, ph9h (44)

with a constant θ > 0 depending only on the mesh regularity.

Proof. Let us take ph ∈ Mh and uh = χh(Uh + ψh × r) + φhwh ∈ Vrbmh with wh ∈ Vh, Uh ∈ Rd

and ψh ∈ Rd′ .
Step 1: controlling the velocity. By choosing (uh, ph) as the trial function and (uh,−ph) as
the test function in the bilinear form ch, we obtained:

ch(uh, ph;uh,−ph) = 2

∫
Ωh

|D(uh)|2 −
∫
Gh

(2D(uh)− phI)n · φhwh

+ σuh
∑
E∈FΓ

h

∫
E

|[∂nuh]|2 + σuh
3
∑
E∈FΓ

h

∫
E

∣∣[∂2
nuh

]∣∣2
+ σh2

∑
T∈T Γ

h

∫
T

| −∆uh +∇ph|2 + σ
∑
T∈T Γ

h

∫
T

|div uh|2. (45)

Let B̃h be the strip between Γh = {φh = 0} and Gh, i.e. B̃h = {φh > 0} ∩ Ωh. Since
φhwh = 0 on Γh,∫

Gh

D(uh)n · φhwh =

∫
∂B̃h

D(uh)n · φhwh

=
∑
T∈T Γ

h

∫
∂(B̃h∩T )

D(uh)nT · φhwh −
∑
T∈T Γ

h

∑
E∈Fcut

h (T )

∫
B̃h∩E

D(uh)nT · φhwh,

where T Γ
h is defined in (9), Fcuth (T ) regroups the facets of a mesh element T cut by Γh, and nT is

the unit normal pointing outside of T on the boundary of a mesh cell T . Applying the divergence
theorem to the integrals on ∂(B̃h ∩ T ) and regrouping the integrals on the facets gives∫

Gh

D(uh)n · φhwh =

∫
B̃h

D(uh) : D(φhwh) +
∑
T∈T Γ

h

∫
B̃h∩T

divD(uh) · φhwh

−
∑
E∈FΓ

h

∫
E∩B̃h

[D(uh)n] · φhwh

=

∫
B̃h

|D(uh)|2 +
∑
T∈T Γ

h

∫
B̃h∩T

divD(uh) · φhwh −
∑
E∈FΓ

h

∫
E∩B̃h

[D(uh)n] · φhwh,
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since uh − φhwh is the velocity of a rigid motion on B̃h.
Similarly (and simpler)∫

Gh

phn · φhwh =

∫
∂B̃h

phn · φhwh =

∫
B̃h

ph div uh +

∫
B̃h

∇ph · φhwh.

Substituting this into (45) yields

ch(uh, ph;uh,−ph) = 2

∫
Ωh

|D(uh)|2− 2

∫
B̃h

|D(uh)|2−
∑
T∈T Γ

h

∫
B̃h∩T

(2 divD(uh)−∇ph) ·φhwh

+ 2
∑
F∈FΓ

h

∫
F∩B̃h

[D(uh)n] · φhwh +

∫
B̃h

ph div uh

+ σuh
∑
E∈FΓ

h

∫
E

[∂nuh]
2

+ σuh
3
∑
E∈FΓ

h

∫
E

∣∣[∂2
nuh

]∣∣2
+ σh2

∑
T∈T Γ

h

∫
T

|∆uh −∇ph|2 + σ
∑
T∈T Γ

h

∫
T

|div uh|2.

With several Young inequalities, the estimates of Lemma 4, and observing that

2 divD(uh)−∇ph = ∆uh −∇ph +∇ div uh

on any cell T , we arrive at

ch(uh, ph;uh,−ph) >

(
2− C ε1 + ε2 + ε3

2

)
‖D(uh)‖20,Ωh

− 2‖D(uh)‖20,ΩΓ
h
− ε3

2
‖ph‖0,ΩΓ

h

+ h2

(
σ − 1

2ε1

) ∑
T∈T Γ

h

‖∆uh −∇ph‖20,T +

(
σ − 1

2ε3

)
‖div uh‖20,ΩΓ

h

+ h

(
σu −

1

2ε2

) ∑
E∈FΓ

h

‖ [∂nuh] ‖20,E + σuh
3
∑
E∈FΓ

h

∥∥[∂2
nuh

]∥∥2

0,E

valid for any ε1, ε2, ε3 > 0. Thanks to Lemma 2, this can be further bounded as

ch(uh, ph;uh,−ph) >

(
2(1− α)− C ε1 + ε2 + ε3

2

)
‖D(uh)‖20,Ωh

+ 2(1− α)h2|ph|1,ΩΓ
h

− ε3

2
‖ph‖0,ΩΓ

h
+ h2

(
σ − 1

2ε1
− 2β

) ∑
T∈T Γ

h

‖∆uh −∇ph‖20,T

+

(
σ − 1

2ε3
− 2β

)
‖ div uh‖20,ΩΓ

h
+ h

(
σu −

1

2ε2
− 2β

) ∑
E∈FΓ

h

‖ [∂nuh] ‖20,E

+ h3(σu − 2β)
∑
E∈FΓ

h

∥∥[∂2
nuh

]∥∥2

0,E
(46)

with some β > 0 and α ∈ (0, 1).
Step 2: controlling the pressure. Let now sh ∈ Vh be the function given by Lemma 8 and
set vph = φhsh. Noting that

−
∫

Ωh

ph div vph +

∫
Gh

phn · vph =

∫
Ωh

∇ph · vph > ‖ph‖20,Ωh
− Ch2|ph|21,ΩΓ

h

19



we get

ch(uh, ph; vph, 0) > ‖ph‖20,Ωh
− Ch2|ph|21,ΩΓ

h
+ 2

∫
Ωh

D(uh) : D(vph)− 2

∫
Gh

D(uh)n · vph

+ σh2
∑
T∈T Γ

h

∫
T

(∆uh −∇ph) ·∆vph + σ
∑
T∈T Γ

h

∫
T

(div uh)(div vph)

+ σuh
∑
E∈FΓ

h

∫
E

[∂nuh] · [∂nvph] + σuh
3
∑
E∈FΓ

h

∫
E

[
∂2
nuh

]
·
[
∂2
nv

p
h

]
.

Recalling that |vph|1,Ωh
6 C‖ph‖0,Ωh

, remarking that ‖vph‖0,Gh
≤ C√

h
|vph|1,ΩΓ

h
, and applying Young

and inverse inequalities allows us to conclude

ch(uh, ph; vph, 0) >
1

2
‖ph‖20,Ωh

− Ch2|ph|21,ΩΓ
h
− C‖D(uh)‖20,Ωh

− C

σ2h2
∑
T∈T Γ

h

‖ −∆uh +∇ph‖20,T + σ2
∑
T∈T Γ

h

‖ div uh‖20,T

σ2
uh

∑
E∈FΓ

h

‖[∂nuh]‖20,E + σ2
uh

3
∑
E∈FΓ

h

∥∥[∂2
nuh

]∥∥2

0,E

 . (47)

Step 3: combining the estimates. Multiply (47) by λ > 0 and add it to (46). This gives

ch(uh, ph;uh + λvph,−ph) >

(
2(1− α)− C ε1 + ε2 + ε3

2
− Cλ

)
‖D(uh)‖20,Ωh

+
λ− ε3

2
‖ph‖20,Ωh

+ (2(1− α)− Cλ)h2|ph|21,ΩΓ
h

+ h2

(
σ − 1

2ε1
− 2β − Cλσ2

) ∑
T∈T Γ

h

‖∆uh −∇ph‖20,T +

(
σ − 1

2ε3
− 2β − Cλσ2

)
‖ div uh‖20,ΩΓ

h

+ h

(
σu −

1

2ε2
− 2β − Cλσ2

u

) ∑
E∈FΓ

h

‖ [∂nuh] ‖20,E + (σu − 2β − Cλσ2
u)h3

∑
E∈FΓ

h

∥∥[∂2
nuh

]∥∥2

0,E
.

Taking λ, ε1, ε2 small enough, ε3 = λ/2 and σ, σu big enough, and recalling Korn inequality (21),
this amounts to

ch(uh, ph;wh + λvph,−ph) > c 9 uh, ph92
h

with some c > 0. We also have easily

9wh + λvph,−ph9h 6 C 9 wh, ph9h,

hence the inf-sup estimate (44) with vh = uh + λvph, qh = −ph.

3.5 A priori error estimates.

In this section, we will prove Theorem 1 following the argumentation of [12], which is ameliorated
since we require only the optimal regularity Hk+1(Ω)d × Hk(Ω) for the velocity-pressure pair
(u, p) given by (1a)-(1g).
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Proof of the H1 a priori error estimate (11): Let (u, p) ∈ Hk+1(Ω)d × Hk(Ω) with
u = U+ψ×r on Γ be the solution to the continuous problem (1a)-(1g) and (uh, ph) ∈ Vrbmh ×Mh

with uh = φhwh+χh(Uh+ψh×r) be the solution to the discrete problem (10). Choose sufficiently
smooth extension ũ and p̃ of u and p on Ωh such that ũ = u, p̃ = p on Ω, and

‖ũ‖k+1,Ωh
6 C‖u‖k+1,Ω, ‖p̃‖k,Ωh

6 C‖p‖k,Ω.

Applying Lemma 6 to ũ−χ(U +ψ× r), which vanishes on Γ and on Γw, we see that there exists
w̃h ∈ Vh such that

‖ũ− χ(U + ψ × r)− φhw̃h‖1,Ωh
6 Chk‖ũ− χ(U + ψ × r)‖k+1,Ωh

.

This allows us to introduce ũh = φhw̃h + χh(U + ψ × r) ∈ Vrbmh satisfying

‖ũ− ũh‖1,Ωh
6 ‖ũ− χ(U + ψ × r)− φhw̃h‖1,Ωh

+ ‖(χ− χh)(U + ψ × r)‖1,Ωh

6 Chk(‖ũ‖k+1,Ωh
+ ‖χ‖k+1,Ωh

(|U |+ |ψ|))
6 Chk‖ũ‖k+1,Ωh

6 Chk‖u‖k+1,Ω, (48)

thanks to the standard interpolation of χ ∈ Hk+1(Ωh) and to the bounds |U |, |ψ| ≤ C‖u‖1,Ω
valid by the trace inequality (recall that u = U + ψ × r on Γ).

Similarly, ‖ũ− ũh‖0,Ωh
6 Chk+1‖u‖k+1,Ω. We define moreover p̃h ∈Mh by the standard FE

nodal interpolation p̃h = Ihp̃ such that

‖p̃− p̃h‖0,Ωh
6 Chk‖p‖k,Ω . (49)

Thanks to Lemma 9, ∃(vh, qh) ∈ Vrbmh ×Mh such that

9ũh − uh, p̃h − ph9h ≤ C
ch(ũh − uh, p̃h − ph; vh, qh)

9vh, qh9h
. (50)

We should now substitute (ũ, p̃) into the form ch. To this end, we introduce the fictitious right-
hand sides F̃ and Q̃ on Ωh so that

−2ν divD(ũ) +∇p̃ = F̃ and div ũ = Q̃ in Ωh.

We observe then, taking any vh = φhsh + χh(Vh + ωh × r) ∈ Vrbmh , qh ∈Mh,

2

∫
Ωh

D(ũ) : D(vh)−
∫

Ωh

p̃ div vh −
∫
Gh

(2D(ũ)− p̃I)n · vh =

∫
Ωh

F̃ · vh

and, recalling Bh = Ωh \ Ω,∫
Gh

(2D(ũ)− p̃I)n · (Vh + ωh × r) =

∫
Γ

(2D(ũ)− pI)n · (Vh + ωh × r)

+

∫
Bh

div(2D(ũ)− p̃I)n · (Vh + ωh × r) = mg · Vh −
∫
Bh

F̃ · (Vh + ωh × r).

Hence,

ch(ũ, p̃; vh, qh) =

∫
Ωh

F̃ · vh −
∫
Bh

F̃ · (Vh + ωh × r) +mg · Vh −
∫

Ωh

qh div ũ

+ σh2
∑
T∈T Γ

h

∫
T

F̃ · (−∆vh −∇qh) + σ

∫
ΩΓ

h

(div ũ)(div vh).
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Also note that the RHS (43) of the scheme (42) can be rewritten as

Lh(vh, qh) =

∫
Ωh

ρfg · vh −
∫
Bh

ρfg · (Vh + ωh × r) +mg · Vh

+ σh2
∑
T∈T Γ

h

∫
T

ρfg · (−∆vh −∇qh)

This allows us to establish the following Galerkin orthogonality relation, valid for all vh ∈ Vrbmh ,
qh ∈Mh,

ch(ũ− uh, p̃− ph; vh, qh) = Rh(vh, qh), (51)

where

Rh(vh, qh) =

∫
Bh

(F̃ − ρfg) · φhsh −
∫
Bh

qh div ũ

+ σh2
∑
T∈T Γ

h

∫
T

(F̃ − ρfg) · (−∆vh −∇qh) + σ

∫
ΩΓ

h

(div ũ)(div vh).

The integrals of F̃ − ρfg and div ũ on Ωh have been rewritten as integrals on Bh since both

F̃ − ρfg and div ũ vanish on Ω.
Combination of (50) and (51) entails

9ũh − uh, p̃h − ph9h ≤ C
ch(ũh − ũ, p̃h − p̃; vh, qh) +Rh(vh, qh)

9vh, qh9h
.

We can now use interpolation inequalities as in [12, Section 3.4]. In particular, the term with ch
in the nominator of the fraction above is bounded by Chk(‖u‖k+1,Ω + ‖p‖k,Ω)9vh, qh9h thanks

to (48)–(49) and to the estimates of Lemma 4. To bound Rh(vh, qh) we recall that F̃ − ρfg and
div ũ vanish on Ω. Thus, thanks to [12, Lemma 3.6]

‖F̃ − ρfg‖0,ΩΓ
h
≤ Chk−1‖F̃ − ρfg‖k−1,ΩΓ

h
≤ Chk−1(‖u‖k+1,Ω + ‖p‖k,Ω)

and
‖ div ũ‖0,ΩΓ

h
≤ Chk‖ div ũ‖k,ΩΓ

h
≤ Chk‖u‖k+1,Ω. (52)

This, combined with the estimates of Lemma 4, in particular ‖φhsh‖0,ΩΓ
h
≤ Ch|vh|1,ΩΓ

h
, leads

to |Rh(vh, qh)| ≤ Chk(‖u‖k+1,Ω + ‖p‖k,Ω)9vh, qh9h. Recalling again the interpolation estimates
(48)–(49), we obtain

9ũ− uh, p̃− ph9h ≤ Chk(‖u‖k+1,Ω + ‖p‖k,Ω) (53)

giving the error estimates for u and p, announced by (11).
Proof of the a priori error estimate (12) on the velocity of the solid: Let us now

estimate the error for the translation and the rotation of the solid. Thanks to the equivalence of
norms, and recalling χ = 1 on Γ,

|U − Uh|+ |ψ − ψh| 6 C‖U − Uh + (ψ − ψh)× r‖0,Γ
6 C‖χ(U + ψ × r)− χh(Uh + ψh × r)‖0,Γ + C‖(χ− χh)(Uh + ψh × r)‖0,Γ

6 C‖u− uh‖0,Γ + C‖(φ− φh)wh‖0,Γ + C‖χ− χh‖0,Γ(|Uh|+ |ψh|)
≤ Chk(‖u‖k+1,Ω + ‖p‖k,Ω + ‖χ‖k+1,Ω(|Uh|+ |ψh|))
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with the last estimate valid by the trace inequality, the already established H1-error estimate
for u, an interpolation estimate for χ− χh and φ− φh and the Hardy inequality. Incorporating
‖χ‖k+1,Ω into the constant C, we deduce

(1− Chk)(|U − Uh|+ |ψ − ψh|) 6 Chk(‖u‖k+1,Ω + ‖p‖k,Ω + |U |+ |ψ|)

which proves (12) for h small enough since |U |+ |ψ| ≤ ‖u‖1,Ω by the trace inequality.

Proof of the L2 a priori error estimate (13): Let (v, q, V, ω) ∈ H2(Ω)d×H1(Ω)×Rd×Rd′

the solution to 

−2 divD(v) +∇q = u− uh, in Ω,
div v = 0, in Ω,
v = V + ω × r, on Γ,
v = 0, on Γw,∫

Γ
(2D(v)− qI)n = 0,∫

Γ
(2D(v)− qI)n× r = 0,∫

Ω
q = 0.

An integration by parts gives

‖u− uh‖20,Ω =

∫
Ω

(u− uh)(−2 divD(v) +∇q) (54)

= 2

∫
Ω

D(u− uh) : D(v)−
∫

Ω

q div(u− uh)−
∫

Ω

(p− ph) div v.

Note that the boundary term
∫

Γ
(u − uh) · (2D(v) − qI)n vanishes since u − uh is a rigid body

motion on Γ.
Let (ṽ, q̃) ∈ H2(Ωh)d × H1(Ωh) coincide with (v, q) on Ω. They can be constructed by a

bounded extension operator in H2 ×H1 so that

‖ṽ‖2,Ωh
+ ‖q̃‖1,Ωh

6 C(‖v‖2,Ω + ‖q‖1,Ω) 6 C‖u− uh‖0,Ω. (55)

We now further rewrite (54) using Galerkin orthogonality (51) with the test functions vh =
φhsh + χh(Vh + ωh × r) ∈ Vrbmh and qh ∈Mh and recalling Bh = Ωh\Ω,

‖u− uh‖20,Ω

=

∫
Ωh

2D(ũ− uh) : D(ṽ − vh)−
∫

Ωh

(q̃ − qh) div(ũ− uh)−
∫

Ωh

(p̃− ph) div(ṽ − vh)︸ ︷︷ ︸
I

−
(∫

Bh

2D(ũ− uh) : D(ṽ)−
∫
Bh

q̃ div(ũ− uh)−
∫
Bh

(p̃− ph) div ṽ

)
︸ ︷︷ ︸

II

+

∫
Gh

(2D(ũ− uh)− (p̃− ph)I)n · φhsh︸ ︷︷ ︸
III

(56)
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−σuh
∑
E∈FΓ

h

∫
E

[
∂

∂n
(ũ− uh)

]
·
[
∂vh
∂n

]
− σuh3

∑
E∈FΓ

h

∫
E

[
∂2

∂n2
(ũ− uh)

]
·
[
∂2vh
∂n2

]
︸ ︷︷ ︸

IV

− σh2
∑
T∈T Γ

h

∫
T

−∆(ũ− uh) +∇(p̃− ph)) · (−∆vh −∇qh)

︸ ︷︷ ︸
V

− σ
∑
T∈T Γ

h

∫
T

div(ũ− uh) div vh

︸ ︷︷ ︸
V I

+Rh(vh, qh)︸ ︷︷ ︸
V II

.

We now take Vh = V, ωh = ω and set sh ∈ Vh so that φhsh is an optimal interpolant of
v − χh(V + ω × r), as guaranteed by Lemma 6. We also set qh = Ĩhq̃ using an appropriate
Clément interpolation Ĩh. We can now estimate all the terms of (56) using the already proven
estimate (53) and the interpolation estimates for ṽ − vh and p̃− ph . This gives

‖u− uh‖20,Ω ≤ Chk+1/2(‖u‖k+1,Ω + ‖p‖k,Ω)(‖ṽ‖2,Ωh
+ ‖q̃‖1,Ωh

). (57)

Rather than go to the details of the tedious calculations leading to this estimate, we prefer here
to refer to the similar arguments used in [12] to estimate the terms in eq. (3.24). Indeed, the
terms I − III in (56) can be treated as the terms I − III in eq. (3.24) of [12]. Terms IV − V
in (56) can be treated as term IV in eq. (3.24) of [12]. Terms V I in (56) is also similar to the
latter (note, in particular, ‖ div ṽ‖0,ΩΓ

h
≤ Ch‖v‖2,Ω similarly to (52)). Finally, term V II in (56)

can be treated as term V in eq. (3.24) of [12].
Combining (57) with (55) proves (13).

4 Numerical tests

In this section, we present numerical results, first in the particular case of a fixed particle, i.e. the
Stokes equations alone (see the Appendix and the φ-FEM scheme (63)), and second in the case
of the particulate flows (equations (1a)-(1g) and the φ-FEM scheme (10)). These schemes will
be compared with a standard FE schemes on fitted meshes. In the case of Stokes equations, the
error is measured with respect to a manufactured solution, while a reference solution obtained by
standard FEM on a fitted fine mesh is used in the case of particulate flows. We have implemented
φ-FEM in multiphenics [4]. The implementation scripts can be consulted on GitHub.1

The fluid/solid domain in our both test cases is O = (0, 1)2 ⊂ R2 and we consider for the
solid S a disk centered in (0.5, 0.5) and of radius R = 0.21. Then Ω = [0, 1]2\S. The geometry
is presented in Fig. 1 (left).

4.1 Particular case of a fixed particle: Stokes equations

We start by Stokes equations (62) in the domain Ω, as above, with the right-hand side such that
the exact solution is as follows, cf. [14],

uexact(x, y) = (cos(πx) sin(πy),− sin(πx) cos(πy)),

pexact(x, y) = (y − 0.5) cos(2πx) + (x− 0.5) sin(2πy).

1https://github.com/michelduprez/phi-FEM-particulate-flows-Stokes.git
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We shall test the φ-FEM scheme given by (63) in the Appendix. The level-set of the solid is
defined for each (x, y) ∈ R2 by

φ(x, y) = R2 − (x− 0.5)2 − (y − 0.5)2. (58)

Figure 3: Mesh used for the standard FEM formulation (left) and mesh used in the φ-FEM
schemes (right).

This will be compared with a standard Taylor-Hood scheme on a fitted mesh constructed as
follows. We define first the Taylor-Hood FE space on a triangular mesh T fith fitted to Ω. The

domain occupied by this mesh, denoted by Ωfith , is an approximation of Ω, since the interface Γ
is curvilinear and cannot be represented exactly by the straight edges. We fix an integer k > 2
and introduce the FE spaces

Vfit,uD

h =
{
vh ∈ C(Ω̄fith )d : vh|T ∈ Pk(T )d ∀T ∈ T fith , vh = IhuD on Γw ∩ Γ

}
and

Mfit
h =

{
qh ∈ C(Ω̄fith ) : qh|T ∈ Pk−1(T ) ∀T ∈ T fith ,

∫
Ωfit

h

qh = 0

}
. (59)

A standard Taylor-Hood finite element formulation for meshes fitting the boundary of the domain
can be written as: find (uh, ph) ∈ Vfit,uD

h ×Mfit
h such that∫

Ωfit
h

2D(uh) : D(vh)−
∫

Ωfit
h

ph div vh −
∫

Ωfit
h

qh div uh =

∫
Ω

fvh, (60)

for all (vh, qh) ∈ Vfit,0h ×Mfit
h .

Remark 4. As said in Remark 1, it is impossible to impose that the integral of the discrete
pressures ph zero on Ω, so we look for a discrete pressure ph zero integral on the discrete domain
Ωh, i.e.

∫
Ωh
ph = 0 (see Definition (59) of Mfit

h ). For this, we will use Lagrange multipliers.

To compute the relative error on the L2 norm of the pressure we will subtract the integral on the
discrete domain Ωh of the real pressure pexact to itself, i.e.(∫

Ωh
(ph − pexact −

∫
Ωh
pexact)

2
)1/2

(∫
Ωh
p2
exact

)1/2
.
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Examples of meshes for the standard FEM formulation and the φ-FEM scheme are given in
Fig. 3 (left) and (right), respectively. In Fig. 4, we present some results of convergence for the
standard Taylor-Hood FEM scheme (60) and for the φ-FEM scheme (63) in the case of Stokes
equations. We recover the theoretical rates of convergence for the φ-FEM scheme stated in
Theorem 2 and they are better than the standard FEM scheme.
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Figure 4: Rates of convergence for the standard Taylor-Hood FEM scheme (60) and the φ-FEM
scheme (63) in the case of Stokes equations. The L2 relative error of the velocity (left), the H1

relative error of the velocity (middle) and the L2 relative error of the pressure (right).

4.2 Particulate flows

We now turn to the creeping particulate flow equations (1a)-(1g). The vertical gravity is assumed
to be equal to 10. The density of the fluid and the solid are equal to ρf = 1 and ρs = 2,
respectively. We deduce that the mass of the solid is equal to m = ρsπ

2R2. The level-set of the
solid is again defined by (58). For the cut-off χ, we consider the radial polynomial of degree 5
on the interval (r0, r1) with r0 = R and r1 = 0.45 such that χ(r0) = 1 and χ′(r0) = χ′′(r0) =
χ(r1) = χ′(r1) = χ′′(r1) = 0, that is,

χ(r) =


1, for r < r0

1 + f(r0,r1)
(r1−r0)5 , for r0 < r < r1

0, for r > r1

where

f(r0, r1) = (−6r5 + 15(r0 + r1)r4 − 10(r2
0 + 4r0r1 + r2

1)r3 + 30r0r1(r0 + r1)r2

− 30r2
0r

2
1r + r3

0(r2
0 − 5r1r0 + 10r2

1)).

Let us introduce a Taylor-Hood scheme which will be compared with our φ-FEM scheme.
The boundary conditions on the solid are imposed thanks to Lagrange multipliers. We define
first the Taylor-Hood FE space on meshes fitting the domain. For a mesh Ωfith of Ω fitting its

boundary with T fith the set of its cells, we fix an integer k > 2 and introduce the FE spaces

Vfith =
{
vh ∈ C(Ω̄fith )d : vh|T ∈ Pk(T )d ∀T ∈ T fith , vh = 0 on Γw

}
,

Mfit
h =

{
qh ∈ C(Ω̄fith ) : qh|T ∈ Pk−1(T ) ∀T ∈ T fith ,

∫
Ωfit

h

qh = 0

}
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and
Λfith =

{
µh ∈ C(Ω̄fith ) : µh|F ∈ Pk−1(F ) ∀F ∈ Ffith

}
,

where Ffith is the set of the external facet on the solid. A standard Taylor-Hood finite el-
ement formulation for meshes fitting the boundary of the domain can be written as: find
(uh, ph, λh, Uh, ψh) ∈ Vfith ×Mfit

h × Λfith × Rd × Rd′ such that∫
Ωfit

h

2D(uh) : D(vh)−
∫

Ωfit
h

ph div vh −
∫

Γfit
h

(2D(uh)− phI)n · vh −
∫

Ωfit
h

qh div uh

+

∫
Γfit
h

λh(vh − Vh − ωh × r) +

∫
Γfit
h

µh(uh − Uh − ψh × r) =

∫
Ω

fvh, (61)

for all (vh, qh, µh, Vh, ωh) ∈ Vfith ×Mfit
h × Λfith × Rd × Rd′ .

Remark 5. As for the Stokes equations, we look for a discrete pressure of zero integral on the
discrete domain i.e.

∫
Ωh
ph = 0 thanks to Lagrange multipliers and, the relative error on the L2

norm of the pressure is computed as follows(∫
Ω̃h

(p̃− ph −
∫

Ω̃h
ph)2

)1/2

(∫
Ω̃h
p̃2
)1/2

,

where Ω̃h is the fine discrete space and and p̃ the fine solution defined on Ω̃h which are used to
compute the error.

We present in Fig. 5 the velocity obtained with the standard Taylor-Hood FEM scheme (61).
Again we give some examples of meshes for the standard FEM formulation and the φ-FEM
scheme are given in Fig. 3 (left) and (right), respectively.

Figure 5: Velocity obtained with the standard Taylor-Hood FEM scheme (61).

In Figures 6 and 7, we give some results of convergence for the standard Taylor-Hood FEM
scheme (61) and for the φ-FEM scheme (10) (we do not compute the relative error of the rotation
since the real rotation is equal to 0). The degree of polynomial is k = 2 for wh, φh, χh in both
schemes. Moreover the approximation is exact for φ in this case. The stabilization parameters
are σ = σu = 20 (as in [12]). The error is computed by a comparison with a fine solution of the
standard FEM scheme. We observe that we recover the theoretical convergence rates established
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for φ-FEM for the velocity (in H1 norm) and the pressure (in L2 norm), while it seems that our
theoretical estimates for the L2-error of the fluid velocity and that of the particle velocity are
not sharp.

Remark 6. As observed in [12], better numerical results can be obtained if φ is interpolated in
a FE space with a higher polynomial degree than the solution. This phenomenon is not studied
here since the approximation of φ by P2 FE is already exact.
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Figure 6: Rates of convergence for the standard Taylor-Hood FEM scheme (61) and the φ-FEM
scheme (10) in the case of particulate flows. The L2 relative error of the velocity (left) and the
H1 relative error of the velocity (right).
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Figure 7: Rates of convergence for the standard Taylor-Hood FEM scheme (60) and the φ-FEM
scheme (63) in the case of particulate flows. The L2 relative error of the pressure (left) and
relative error of the displacement of the solid (right).

A The particular case of a fixed particle : Stokes equation

In this section, we propose a φ-FEM scheme for the simpler case of a fixed solid in the fluid. The
governing equations are the non-homogeneous Stokes equations given by −2 div(D(u)) +∇p = f, in Ω,

div u = 0, in Ω,
u = uD, on Γ ∪ Γw.

(62)
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Assume that uD and f are defined in the whole discrete domain Ωh. Inspired by the φ-FEM
scheme for particulate flow given in (10), we can derive the following φ-FEM scheme for the
non-homogeneous Stokes equations (62): find wh ∈ Vh, ph ∈Mh satisfying∫

Ωh

2D(uD + φhwh) : D(φhsh)−
∫
Gh

(2D(uD + φhwh)− phI)n · φhsh (63)

−
∫

Ωh

ph div(φhsh)−
∫

Ωh

qh div(uD + φhwh) + σuJu(uD + φhwh, φhsh)

+σh2
∑
T∈T Γ

h

∫
T

(−∆(uD + φhwh) +∇ph) · (−∆(φhsh)−∇qh)

+σ
∑
T∈T Γ

h

∫
T

div(uD + φhwh) div(φhvh)

=

∫
Ωh

fφhsh + σh2
∑
T∈T Γ

h

∫
T

f(−∆(uD + φhsh)−∇qh),

for all sh ∈ Vh, qh ∈Mh.
We now state our second main result for the Stokes equations:

Theorem 2. Suppose that Assumptions 1, 2, 4 and 5 hold true, the mesh Th is quasi-uniform.
Let (u, p) ∈ Hk+1(Ω)d ×Hk(Ω) be the solution to (62) and (wh, ph) ∈ Vh ×Mh be the solution
to (63). Denoting uh := φhwh, it holds

|u− uh|1,Ω∩Ωh
+ |p− ph|0,Ω∩Ωh

≤ Chk(‖u‖k+1,Ω + ‖p‖k,Ω)

with a constant C > 0 depending on the C0, m, M in Assumptions 1, 4, on the maximum of the
derivatives of φ, on the mesh regularity, and on the polynomial degree k, but independent of h,
f , and u.
Moreover, supposing Ω ⊂ Ωh

‖u− uh‖0,Ω ≤ Chk+1(‖u‖k+1,Ω + ‖p‖k,Ω)

with a constant C > 0 of the same type.

The proof of Theorem 2 can be adapted from the proof of Theorem 1. It is even more simple.
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