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� -FEM: an optimally convergent and easily implementable
immersed boundary method for particulate 
ows and Stokes

equations*

Michel Duprez„,Vanessa Lleras…, Alexei Lozinski§

January 27, 2023

Abstract

We present an immersed boundary method to simulate the creeping motion of a rigid
particle in a 
uid described by the Stokes equations discretized thanks to a �nite element
strategy on un�tted meshes, called � -FEM, that uses the description of the solid with a level-
set function. One of the advantages of our method is the use of standard �nite element spaces
and classical integration tools, while maintaining the optimal convergence (theoretically in
the H 1 norm for the velocity and L 2 for pressure; numerically also in the L 2 norm for the
velocity).

1 Introduction

The main goal of the present article is to demonstrate that the recently proposed� -FEM method-
ology [12, 11, 10] is suitable for numerical simulation of incompressible viscous 
uid 
ow past
moving rigid bodies. This approach allows us to use simple (Cartesian) computational meshes,
not evolving in time and not �tted to the moving rigid bodies, while achieving the optimal accu-
racy with classical �nite element (FE) spaces of any order and performing the usual numerical
integration on the whole mesh cells and facets, allowing for the use of standard FEM libraries for
the implementation. We consider here only the creeping motion regime (zero Reynolds number),
neglecting all the inertial terms in the equation governing both the 
uid and the rigid bodies.

Numerical simulations of 
ows around moving rigid or elastic structures using immobile simple
grids is a popular approach in, for instance, biomechanics, starting from the work of Peskin [22].
Di�erent approaches have emerged since then, such as the Immersed Boundary method [18, 21],
the Fictitious Domain method [15, 16], the penalty approximation [2], etc. All these classical
methods su�er from poor accuracy due to the necessity to approximate the singularities near the

uid-solid interfaces which arise as the artifact of extending the 
uid velocity �eld inside the solid
domain. More recently, several optimally convergent �ctitious domain-type methods have been
proposed for the Stokes equations, which can also be used to simulate the 
uid-solid motions.

* This work was supported by the Agence Nationale de la Recherche, Project PhiFEM, under grant ANR-22-
CE46-0003-01.
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We cite in particular [8, 20, 17] following the CutFEM paradigm, and [1, 14] following the X-
FEM paradigm. The common feature of all these methods is that they discretize the variational
formulation of the Stokes equation on the physical 
uid domain 
 using the FE spaces de�ned
on the background mesh occupying a domain 
h , slightly larger than 
. On the one hand,
this permits to avoid a non-smooth extension of the solution outside its natural domain and to
retrieve the optimal accuracy of the employed �nite elements. On the other hand, this introduces
integrals on the cut cells into the FE scheme, i.e. the numerical integration should be performed
on the portions of mesh cells, cut by the 
uid-solid interface, making the methods di�cult to
implement.

The � -FEM approach, which is the subject of the present paper, aims at combining the
advantages of both classical Immersed Boundary/Fictitious Domain methods, and more recent
CutFEM/X-FEM. Similarly to the former, � -FEM does not need non-standard numerical inte-
gration on the cut cells; similarly to the latter, � -FEM achieves the optimal accuracy of the �nite
elements employed. The general procedure of� -FEM can be summarized as follows:

ˆ Supposing that the physical domain 
 is given by a level set function 
 = f � < 0g and
that it is embedded into a simple background mesh, introduce theactive computational
meshTh by getting rid of the mesh cells lying completely outside 
. The active mesh thus
occupies a domain 
h � 
, cf. Fig. 1, as in CutFEM/X-FEM.

ˆ Extend the governing equations from 
 to 
 h and write down a formal variational formu-
lation on 
 h without taking into account the boundary conditions on � (the relevant part
of the boundary of 
).

ˆ Impose the boundary conditions on � using an appropriate ansatz or some additional
variables, explicitly involving the level set � which provides the link to the actual boundary.
For instance, the homogeneous Dirichlet boundary conditions (u = 0 on �) can be imposed
by the ansatz u = �w thus reformulating the problem in terms of the new unknown w.

ˆ Add appropriate stabilization, typically combining the ghost penalty [7] with a least square
imposition of the governing equation on the mesh cells intersected by �, to guarantee
coerciveness/stability on the discrete level.

This program has been successfully carried out for elliptic scalar PDEs with Dirichlet boundary
conditions in [12] and for Neumann boundary conditions in [11]. Its feasibility is also demon-
strated in [10] for the linear elasticity with mixed boundary conditions including the cases of
internal interfaces between di�erent materials or cracks, and for the heat equation. However,
the adaptation to the equations governing the 
uid 
ow around the moving particles is not
straightforward. In particular, the following challenges are dealt with in the present article:

ˆ The discrete inf-sup stability theory should be adapted to the case of a non-standard
variational formulation of the Stokes equations posed on 
h rather than on 
, and lacking
the saddle-point structure. We shall show that this is possible by adapting the ghost
penalty, which should be taken slightly more complicated than in the case of scalar elliptic
equations [12]. We shall do it here for Taylor-Hood �nite elements of any order, but similar
ideas should be also applicable to other classical inf-sup stable FE spaces.

ˆ The motion equations for the solid particles involve the forces exerted on them by the
surrounding 
uid. These are de�ned through the integrals of some functions of 
uid velocity
and pressure on the particle boundary. However, the whole point of� -FEM is to avoid
such integrals. Indeed, the particle boundary is not resolved by the mesh, and our goal
is to provide a method that necessitates the integration on the whole mesh cells or facets
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Figure 1: Left: an example of geometry for the 
uid 
 with a solid S inside; Right: the non-
conforming active meshTh on 
 h with its internal boundary Gh .

only. The way out of this paradox, pursued in the present paper, lies in providing a weak
formulation of the governing equations, extended to 
h , that incorporates in an appropriate
way the force balance equations, without stating them directly. This formulation is similar
in spirit but di�erent from that in [16].

We note that the method of this article shares some similarities to the shifted boundary method
(SBM) proposed in [19] and analysed in [3] in the case of Stokes equations. In particular, SBM
also gives an optimal accurate solution (at least with the lowest order �nite elements) without
introducing integrals on the cut cells. It is however not evident how one can deal with the
computation of the forces on the particles in the SBM framework.

The paper is structured as follows. In the next section, we properly introduce the governing
equations, develop an appropriate weak formulation, discretize it (thus introducing our� -FEM
scheme), and announce the main theorem about the convergence of the scheme. Section 3 is
devoted to the proof of this theorem. As a by-product, we also introduce a� -FEM approach to
discretize the Stokes equations alone (on a �xed geometry) on a non-�tted mesh. The details
about this (comparatively simple) particular case are given in Appendix A. In section 4, we
illustrate our theoretical results with numerical examples both for the Stokes equations and
for the 
uid/rigid particle motion problem. � -FEM is also compared there with a standard
(non isoparametric) FEM on �tted meshes, demonstrating the superiority of � -FEM in terms
of the accuracy achieved on comparable meshes. We end up with the last section giving some
conclusions and perspectives.

Various notations for di�erent parts of geometry and triangulation appear throughout the
article. For readers' convenience, they are gathered in Appendix B.

2 Construction of the � -FEM scheme and main results

2.1 Governing equations

We consider the motion of a viscous incompressible 
uid around a solid (rigid) particle in the
regime of creeping motion, i.e. neglecting all the inertial terms (for simplicity, we restrict our-
selves here to the case of one particle, the extension to multiple particles being straight-forward).
The particle is mobile and it moves under the action of the forces exerted by the surrounding 
uid
and the external forces (gravity). Let the 
uid occupy (at a given time t) the domain 
 � Rd

3



(d = 2 or 3), the particle occupy the domain S � Rd, and denoteO = 
 [ �S. Let � w = @O be the
external boundary of the 
uid domain (the immobile wall) where the 
uid velocity is assumed
to vanish, � = @S be the 
uid/solid interface, and assume that � does not touch � w , so that @

contains two disjoint components � w and �. For simplicity, we assume that the only external
body force is gravitation with the constant acceleration g. Hence, the body force density in the

uid is � f g where � f is the constant 
uid density. Let � s be the constant density of the solid.
Then, the resultant external force on the particle is mg where m = � s jSj is the mass of the
particle, and the resultant moment of the external force with respect to the barycenter of the
particle is 0. Denoting the constant 
uid viscosity by � , the equations governing the motion of
the 
uid/particle system can be now given as:

� 2� div D(u) + r p = � f g; in 
 (1a)

div u = 0 ; in 
 (1b)

u = U +  � r; on � (1c)

u = 0 ; on � w (1d)
Z

�
(2�D (u) � pI )n = mg (1e)

Z

�
(2�D (u) � pI )n � r = 0 (1f)

Z



p = 0 (1g)

Here, the unknowns are the 
uid velocity u : 
 ! Rd and the pressurep : 
 ! R, the velocity
of the particle barycenter U 2 Rd, and the angular velocity of the particle  2 Rd0

(d0 = 1 if
d = 2 and d0 = 3 if d = 3). In these equations, D (u) = 1

2 (r u + r uT ) denotes the strain tensor,r
denotes the vector from the barycenter of the solidS, and n denotes the unit normal on � looking
into the solid. Equations (1e){(1f) come from the balance of forces exerted on the particle (the
force exerted by the 
uid and the gravitational force).

From a numerical simulation perspective, it is natural to introduce an immobile computational
mesh on the immobile boxO containing both the 
uid and the particle. On the other hand,
the solid S will be moving with velocities U = U(t),  =  (t) at all-time t, thus permanently
changing the shape of the 
uid domain 
. It is therefore interesting to design numerical methods
for the system (1a){(1g) that discretize u and p on a mesh non �tted to 
.

2.2 A formal derivation of the appropriate weak formulation

Let T O
h be a regular simplicial mesh onO (the background mesh). Assume that the solid and


uid domains are given by the level-set function � : S = f � > 0g and 
 = O\f � < 0g. Introduce
the active computational meshTh as a submesh ofT O

h covering 
, i.e. excluding the cells of T O
h

lying completely inside S. Let 
 h � 
 be the domain of Th and Gh be the component of@
 h ,
other than � w , and thus lying inside S, cf. Fig. 1.1

Assume (on a formal level, just to derive the scheme) thatu and p can be extended from 


1 In practice, the geometrical setting may be slightly more complicated. The rigorous theoretical de�nitions of

 h and Gh will be given in (8) and (9) and will be based on an approximation � h to the levelset � , rather than
on � itself. This may occasionally result in situations where some tiny portions of 
 lie outside 
 h so that Gh
slightly penetrates 
. These technical details are not important for the forthcoming formal derivation of the FE
scheme, while the rigorous proofs will be done assuming de�nitions (8) and (9). The actual implementation may
introduce yet more geometrical approximations, as mentioned in Remark 1, which are not covered by our theory.
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to 
 h as solution to the Stokes equations so that

� 2� div D(u) + r p = � f g and div u = 0 in 
 h :

Taking any su�ciently smooth test functions v and q on 
 h such that v = 0 on � w , an integration
by parts gives

2�
Z


 h

D(u) : D (v) �
Z


 h

pdiv v �
Z


 h

qdiv u �
Z

Gh

(2�D (u) � pI )n � v =
Z


 h

� f g � v: (2)

Assuming u = 0 on � w , this imposes already the boundary condition (1d) on �w , which we
suppose to �t to the mesh Th . On the contrary, this formulation does not take into account any
boundary conditions on �. In order to incorporate boundary conditions (1c) we make the ansatz

u = �w + � (U +  � r ) (3)

where � is the level-set for 
 so that � = 0 on �, and � is a su�ciently smooth function on
O such that � = 1 on the solid S and � = 0 on � w . This introduces the new vector valued
unknown w on 
 h that should vanish on � w (indeed w = 0 on � w implies u = 0 on � w thanks
to the choice of � ; in fact, the reason for � is to decouple the boundary conditions on � and � w

from one another).
The test functions v in (2) can be represented in the same way as the solution (3):

v = �s + � (V + ! � r ) (4)

for all vector-valued functions s on 
 h vanishing on � w , and V 2 Rd, ! 2 Rd0
. In particular,

the test functions of the form � (V + ! � r ) can be used to take into account the force balance
(1e{1f). To this end, we introduce Bh = 
 h n 
, i.e. the strip between � and Gh , and use the
divergence theorem onBh to transfer the boundary term in (2) from Gh to � where it can be
evaluated by (1e{1f):

Z

Gh

(2�D (u) � pI )n � � (V + ! � r ) =
Z

Gh

(2�D (u) � pI )n � (V + ! � r )

=
Z

�
(2�D (u) � pI )n � (V + ! � r ) +

Z

B h

div(2�D (u) � pI )n � (V + ! � r )

= mg � V �
Z

B h

� f g � � (V + ! � r ) = � � � (5)

(the unit normal n on Gh in the �rst line is exterior with respect to domain 
 h , whereasn on
� in the second line is the exterior unit normal with respect to domain 
, so that the exterior
normals with respect to Bh are n on Gh and � n on �). We now remark Bh = 
 h n (O n S) to
rewrite the above as

� � � = �
Z


 h

� f g � � (V + ! � r ) +
Z

O
� f g � � (V + ! � r ) �

Z

S
� f g � (V + ! � r ) + mg � V

= �
Z


 h

� f g � � (V + ! � r ) +
Z

O
� f g � � (V + ! � r ) +

�
1 �

� f

� s

�
mg � V: (6)

The last line is justi�ed by observing
R

S � sg � (V + ! � r ) = mg � V with � s being the constant
density of the solid. Indeed,

R
S � s = m and

R
S � sr = 0 since r = x � xb is the vector pointing

from the barycenter of the solid xb = 1
m

R
S � sx to the current position x.
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Substituting the ansatzes (3)-(4) for u and v into (2) and rewriting the boundary term using
(5)-(6) we arrive at the following formal variational formulation of our problem in terms of the
new unknownsw; U;  : �nd w : 
 h ! Rd vanishing on � w , U 2 Rd,  2 Rd0

, and p : 
 h ! R
such that

2�
Z


 h

D(�w + � (U +  � r )) : D (�s + � (V + ! � r )) �
Z

Gh

(2�D (�w + � (U +  � r )) � pI )n � �s

�
Z


 h

pdiv( �s + � (V + ! � r )) �
Z


 h

qdiv( �w + � (U +  � r ))

=
Z


 h

� f g � �s +
Z

O
� f g � � (V + ! � r ) +

�
1 �

� f

� s

�
mg � V (7)

for all s : 
 h ! Rd vanishing on � w , V 2 Rd, ! 2 Rd0
, and q : 
 h ! R. In addition, the pressure

p should satisfy the constraint (1g).
Note that the formulation above contains only the integrals on 
 h , Gh , O which can be easily

approximated by quadrature rules on meshesTh and T O
h . We can thus discretize using the usual

�nite elements for the trial and test functions.

2.3 The � -FEM scheme: discretization with Taylor-Hood �nite ele-
ments

We �x an integer k > 2 and introduce the approximations � h and � h to the levelset � and to
the cut-o� � , given by the standard nodal interpolation to the continuous FE spaces of degreek
on the meshT O

h . The active computational mesh Th , its domain 
 h and the internal boundary
component Gh are actually de�ned as follows, cf. Fig. 1,

Th = f T 2 T O
h : T \ f � h < 0g 6= ? g; 
 h := ( [ T 2T h T)o ; (8)

Gh = @
 h n � w = f E (boundary facets of Th ) such that � h � 0 on Eg: (9)

Moreover, we shall need the collections of the mesh cellsT �
h and facetsF �

h near the boundary
�, as illustrated in Fig. 2, to include the appropriate stabilization into the FE scheme. More
speci�cally, we introduce the submesh T �

h � T h and the corresponding subdomain 
�h � 

containing the mesh elements intersected by the approximate interface

� h = f � h = 0g;

i.e.
T �

h = f T 2 Th : T \ � h 6= ? g; 
 �
h :=

�
[ T 2T �

h
T

� o
: (10)

Finally, we set F �
h as the collection of the interior facets of the meshTh either cut by � h or

belonging to a cut mesh element

F �
h = f E (an internal facet of Th ) such that 9T 2 T �

h and E 2 @Tg:

Remark 1. The de�nitions of Th and T �
h above assume an idealized setting where one can check

the sign of � h at any point of any given mesh cellT . In practice, one would rather check this
sign only at the vertices of the mesh or, eventually, at some other well chosen points. In our
current implementation, we attribute the cells toTh or T �

h based on the sign of� (equivalently,
the sign of � h ) at the vertices only: in 2D, a triangle T 2 T O

h is selected to be inTh if � 6 0 on

6



Figure 2: Example of T �
h and F �

h with the geometry given in Fig. 1 (left).

at least one vertex ofT; a triangle T 2 Th is then selected to be inT �
h if � > 0 on at least one

vertex of T. This deviation from de�nitions (8)-(9) is not covered by our theory.
We also note that in more advanced applications of� -FEM, � h and � h may be given directly

on the discrete level, for instance by a discrete level-set equation. This possibility is however
outside of the scope of the present article. We suppose here that the shape of the particle is
su�ciently simple so that � and � are known analytically.

Introduce the FE spaces for velocity and pressure on the meshTh :

Vh =
�

vh 2 C( �
) d : vh jT 2 Pk (T)d 8T 2 Th ; vh = 0 on � w
	

and

M h =
�

qh 2 C( �
) : qh jT 2 Pk � 1(T) 8T 2 Th ;
Z



qh = 0

�
:

Remark 2. Note that the de�nition of the pressure space involves an integral on
 , which is
incompatible with our � -FEM framework since its whole point is to avoid integrals on
 and � .
In practice, we shall rather impose

R

 h

qh = 0 , introducing a mismatch in the additive pressure
constant (which, anyway, has no physical meaning) with respect to the exact solution satisfying
(1g). We prefer however to keep the unimplementable constraint in the de�nition above to avoid
some technical di�culties in theory. In practice, a special care will have to be taken in the
interpretation of the error in pressure. We shall return to this technical point in the numerical
results section.

The stabilized scheme inspired by (7) can be now written as: �ndwh 2 Vh , Uh 2 Rd;  h 2 Rd0
,
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ph 2 M h such that

2�
Z


 h

D(� h wh + � h (Uh +  h � r )) : D (� h sh + � h (Vh + ! h � r ))

�
Z

Gh

(2�D (� h (Uh +  h � r ) + � h wh ) � ph I )n � � h sh �
Z


 h

ph div( � h sh + � h (Vh + ! h � r ))

�
Z


 h

qh div( � h wh + � h (Uh +  h � r ))

+ � u Ju (� h (Uh +  h � r ) + � h wh ; � h (Vh + ! h � r ) + � h sh )

+ �h 2
X

T 2T �
h

Z

T
(� � �( � h wh + � h (Uh +  h � r )) + r ph ) � (� � �( � h sh + � h (Vh + ! h � r )) � r qh )

+ �
X

T 2T �
h

Z

T
div( � h wh + � h (Uh +  h � r )) div( � h sh + � h (Vh + ! h � r ))

=
Z


 h

� f g � � h sh +
Z

O
� f g � � h (Vh + ! h � r ) +

�
1 �

� f

� s

�
mg � Vh

+ �h 2
X

T 2T �
h

Z

T
� f g � (� � �( � h sh + � h (Vh + ! h � r )) � r qh ) (11)

for all sh 2 Vh , Vh 2 Rd; ! h 2 Rd0
, qh 2 M h .

Here Ju is the ghost penalties for the velocity, cf. [7]:

Ju (u; v) = h
X

E 2F �
h

Z

E
[@n u] � [@n v] + h3

X

E 2F �
h

Z

E

�
@2

n u
�

�
�
@2

n v
�

:

Note that, unlike [7, 8], we do not penalize the jumps of all the derivatives of the velocity; only
the derivatives of order up to 2 are included in Ju . There is no penalization on the pressure
either. This alleviation of the ghost penalty is possible thanks to the additional least-squares-
type stabilization (the terms multiplied by � ), cf. Lemmas 1 and 2. These least-squares terms
are also necessary in themselves to control the �ctitious extension of the solution outside 
,
cf. the proof of Lemma 9. Note that this extension is not present in CutFEM (this is indeed
the principal di�erence between CutFEM and � -FEM). We also mention that the version of the
ghost penalty in � -FEM for Poisson problem in [12] is even more reduced: only the jumps of
the �rst order derivatives are penalized there. The inclusion of the second order derivatives in
Ju in the present case of Stokes equations allows us to control both velocity and pressure in the
forthcoming proofs, cf. Lemma 1.

2.4 Assumptions on the mesh and main results

Prior to stating our main results on the numerical convergence of our method, we begin with
some geometrical assumptions on 
 and the functions� and � .

Assumption 1. The boundary � can be covered by open setsOi , i = 1 ; : : : ; I and one can
introduce on everyOi local coordinates� 1; : : : ; � d with � d = � such that all the partial derivatives
@� �=@x� and @� x=@�� up to order k + 1 are bounded by someC0 > 0. Thus, � is of classCk+1

on O.

Assumption 2. � 2 H k+1 (O), � = 1 on S, � = 0 on � w .

8



We continue with assumptions on the mesh. To this end, we introduce an extended band
of mesh elements near the boundary �, namely the submeshT � ;ext

h with T �
h � T � ;ext

h � T h by
adding to T �

h the cells which are neighbors and neighbors of neighbors of cells inT �
h .

Assumption 3. jr � j � m, jr � h j � m
2 on all the mesh cells inT � ;ext

h , j� j � mh on Th n T � ;ext
h ,

and jr � h j � M on 
 h with some m; M > 0.

Assumption 4. The approximate interfaceGh can be covered by element patchesf � k gk=1 ;:::;N �

having the following properties:

ˆ Each � k is composed of a mesh elementTk lying inside 
 and some elements cut by� ,
more precisely � k = Tk [ � �

k where Tk 2 Th , Tk � �
 , � �
k � T �

h , and � �
k contains at most

N mesh elements;

ˆ Each mesh element in a patch� k shares at least a facet with another mesh element in the
same patch. In particular, Tk shares a facetFk with an element in � �

k ;

ˆ T �
h = [ N �

k=1 � �
k ;

ˆ � k and � l are disjoint if k 6= l.

Assumption 5. Any mesh cellT 2 Th has at leastd facets not lying on � w .

Remark 3. Assumptions 1, 3, 4 are similar to those made in the previous� -FEM publications
[12, 11], which contain a more detailed discussion about them and some illustrations. In what
concerns the mesh, these assumptions are satis�ed if the mesh is su�ciently re�ned and� is
su�ciently smooth. In what concerning the level-set function � , we require essentially that it
behaves like the signed distance to� near � and it is bounded away from zero far from� ,
while remaining globally smooth. In general, one cannot thus take the signed distance to� as �
everywhere since it is guaranteed to be smooth only in a vicinity of� .

Remark 4. The last assumption 5 is usually required in the theoretical analysis of Taylor-Hood
elements for the Stokes equation in the geometrically conforming setting [13], although it can
be signi�cantly relaxed, at least in the 2D setting [5]. Note that this assumption only a�ects
the mesh near the outer wall� w , more particularly in the corners of O, which we treat in the
standard geometrically conforming manner anyway. It does not impose any further restriction
on the active meshTh near the interface � , where � -FEM is e�ectively employed.

Let us now state our main results:

Theorem 1. Suppose that Assumptions 1{5 hold true and the meshTh is quasi-uniform. Let
(u; U;  ; p ) 2 H k+1 (
) d � Rd � Rd0

� H k (
) be the solution to (1a)-(1g) and (wh ; Uh ;  h ; ph ) 2
Vh � Rd � Rd0

� M h be the solution to (11). Denoting

uh := � h (Uh +  h � r ) + � h wh

it holds for h � h0

ju � uh j1;
 \ 
 h +
1
�

kp � ph k0;
 \ 
 h � Chk (kukk+1 ;
 +
1
�

kpkk; 
 ) (12)

and
jU � Uh j + j �  h j � Chk (kukk+1 ;
 +

1
�

kpkk; 
 ) (13)
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with some C > 0 and h0 > 0 depending on the parametersC0, m, M , N in Assumptions 1{5,
on the maximum of the derivatives of� and � of order up to k + 1 , on the mesh regularity, and
on the polynomial degreek, but independent ofh, f , and u.

Moreover, supposing
 � 
 h

ku � uh k0;
 � Chk+1 =2(kukk+1 ;
 +
1
�

kpkk; 
 ) (14)

with a constant C > 0 of the same type as above.

Remark 5. The numerical results in Section 4 suggest that the convergence order for the particle
velocity error and that for the L 2-error of the 
uid velocity is k + 1 . This suggests that both
estimates (13) and (14) are not sharp. This is similar to our previous studies [12] and [11], in
what concerns theL 2-error.

3 Proofs

From now on, we put the viscosity of the 
uid to � = 1 to simplify the formulas. The general
case can be easily recovered by dividing the governing equations by� and rede�ning p

� as p. We
shall also tacitly suppose that Assumptions 1{5 holds true.

This section is organized as follows: we start with some technical lemmas in Sections 3.1 and
3.2, essentially adapting the corresponding results from [12]. Note however that the interpolation
error bound in Section 3.2 is sharper than its counterpart in [12]; it is now optimal with respect
to the Sobolev norm expected from the interpolated function. The proofs of Taylor-Hood inf-sup
stability, the generalized coercivity of the bilinear form and �nally the a priori error estimates
are then given, respectively, in Sections 3.3, 3.4 and 3.5, thus establishing Theorem 1.

3.1 Some technical lemmas.

Lemmas 1, 2, and 4 are adaptions of, respectively, Lemmas 3.2, 3.3, and 3.4-3.5 from [12]. Lemma
3 is a version of the well known Korn inequality stating the uniformity of the constant in this
inequality for a family of h-dependent domains 
h . All these results, most notably Lemma 2,
are necessary to prove the inf-sup stability of our scheme.

Lemma 1. Let T be a triangle/tetrahedron, E one of its sides, v a vector-valued polynomial
function on T, q a scalar-valued polynomial function onT such that

v =
@v
@n

=
@2v
@n2

= 0 on E (15)

and
� � v + r q = 0 and div v = 0 on T: (16)

Then v = 0 and q = const on T.

Proof. We shall give the proof only in the two dimensional setting, the generalization to the
case d = 3 being straightforward. Without loss of generality, we can choose the Cartesian
coordinates (x; y) such that the edge E lies on the x-axis. We shall denote the components of
the vector-valued function v by (v1; v2).

Let us write, for k 2 f 1; 2g,

vk =
X

i;j � 0

vk
ij x i yj and q =

X

i;j � 0

qij x i yj :
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We will prove by strong induction on m that

vk
ij = 0 8k 2 f 1; 2g; i � 0; j 2 f 0; :::; mg: (Sm )

Using (15), it holds X

i � 0

vk
i 0x i =

X

i � 0

vk
i 1x i =

X

i � 0

vk
i 2x i = 0

for all x and k 2 f 1; 2g. Hencevk
i 0 = vk

i 1 = vk
i 2 = 0 for all i � 0, k 2 f 1; 2g and we obtain (S2).

Assume that for a given m � 2, (Sm ) holds true. Thanks to (16), one has

� (i + 2)( i + 1) v1
( i +2) j � (j + 2)( j + 1) v1

i ( j +2) + ( i + 1) q( i +1) j = 0 ; (17)

� (i + 2)( i + 1) v2
( i +2) j � (j + 2)( j + 1) v2

i ( j +2) + ( j + 1) qi ( j +1) = 0 (18)

and
(i + 1) v1

( i +1) j + ( j + 1) v2
i ( j +1) = 0 : (19)

From (17) and (18), for each i; j

(i + 2) v1
( i +2)( j +1) +

(j + 3)( j + 2)
i + 1

v1
i ( j +3) =

(i + 3)( i + 2)
j + 1

v2
( i +3) j + ( j + 2) v2

( i +1)( j +2) :

The last equality for j = m � 2 combined with (Sm ) implies that

v1
i (m +1) = 0 8i � 0:

Relation (19) for j = m and (Sm ) gives

v2
i (m +1) = 0 8i � 0;

which leads to (Sm +1 ). Thus v = 0. This also implies r q = 0 on T thanks to (16).

Lemma 2. For any � > 0 and any integerss; r � 1 there exists0 < � < 1 depending only on
the mesh regularity ands; r such that for any continuous vector-valuedPs FE function vh on Th

and any continuous scalarPr FE function qh it holds

kD(vh )k2
0;
 �

h
+ (1 � � )h2jqh j21;
 �

h
� � kD (vh )k2

0;
 h

+ �

0

@h2k � � vh + r qh k2
0;
 �

h
+ k div vh k2

0;
 �
h

+
X

E 2F �
h

(hk[@n vh ]k2
0;E + h3k[@2

n vh ]k2
0;E )

1

A : (20)

Proof. Thanks to Assumption 4, the boundary � can be covered by patchesf � k gk=1 ;:::;N � . Take
� > 0 and set

� := max
� k ;v h ;qh

F (� k ; vh ; qh ); (21)

where

F (� k ; vh ; qh ) =
kD(vh )k2

0;� �
k
+ h2jqh j21;� �

k
� �G (� k ; vh ; qh )

kD(vh )k2
0;� k

+ h2jqh j21;� �
k

with

G(� k ; vh ; qh ) = h2k � � vh + r qh k2
0;� �

k
+ k div vh k2

0;� �
k

+ h k[@n vh ]k2
F k

+ h3



 �

@2
n vh

� 

 2

F k
:
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The maximum in (21) is taken over all the continuous vector-valuedPs FE functions vh on � k , all
the continuous scalarPr FE functions qh on � �

k , such that the denominator in the expression for
F does not vanish, and over all the possible con�gurations of patches �k satisfying Assumption
4. The notation F k stands for the set of mesh facets inside the patch �k which includes thus Fk

separating Tk from � �
k and the other facets inside � �

k . The norm k � kF k should be understood
as (

P
F 2F k

k � k2
F )1=2.

Since the maximized functionF is invariant with respect to the transformation x 7! 1
h x, vh 7!

1
h vh , qh 7! qh , we can assume thath = 1 in (21). Furthermore F (� k ; vh ; qh ) = F (� k ; �v h ; �q h )
for any � 6= 0. Hence the maximum (21) is attained since it can be taken over all admissible
patches with h = 1 and all vh ; qh such that kD(vh )k2

0;� k
+ h2jqh j21;� �

k
= 1, forming the unit sphere

in the �nite dimensional space of all (vh ; qh ) factored by rigid body motions on � k and constants
on � �

k .
Clearly � 6 1. Let us prove by contradiction that � < 1. Assume that � = 1. Consider the

patch � k (with h = 1) and vh , qh with kD(vh )k2
0;� k

+ jqh j21;� �
k

= 1 on which the maximum (21)
is attained. Then,

kD(vh )k2
0;T k

+ �G (� k ; vh ; qh ) = 0 ;

since � k = Tk [ � �
k . We deduce that vh = @vh

@n = @2 vh
@n2 = 0 on all the facets in F k and

� � vh + r qh = 0, div( vh ) = 0 on all T 2 � �
k . Moreover, vh is a rigid body motion on Tk . Let

vrbm
h be the rigid body motion velocity on Rd coinciding with vh on Tk . Thanks to Lemma 1

applied to vh � vrbm
h and to qh on the cells in � �

k starting from the cell adjacent in � �
k to Tk ,

we havevh = vrbm
h on � k and qh = const on � �

k (recall that qh is continuous). We have thus
reached a contradiction with the assumptionskD(vh )k2

0;� k
+ jqh j21;� �

k
= 1 and � = 1.

This proves that there exists � < 1 such that

kD(vh )k2
0;� �

k
+ (1 � � )h2jqh j21;� �

k
� � kD (vh )k2

0;� k

+ �
�

h2k � � vh + r qh k2
0;� �

k
+ k div vh k2

0;� �
k

+ h k[@n vh ]k2
F k

+ h3



 �

@2
n vh

� 

 2

F k

�

on all the patches � k and for all vh ; qh . Summing this over all � k gives (20).

Lemma 3. For any v 2 H 1(
) d vanishing on � w

jvj1;
 h � CkD(v)k0;
 h : (22)

Proof. Sincev = 0 on � ! , we have the following Korn inequality

jvj1;
 � CkD(v)k0;
 (23)

with a constant C > 0 depending only on the shape of 
, cf. [9, Theorem 6.3-4]. This implies

jvj1;
 i
h

� CkD(v)k0;
 h ; (24)

where 
 i
h denotes the mesh cells inside 
. Now, for any pair of mesh cellsT; T0 sharing a facet

E , we can prove
jvj1;T � CkD(v)k0;T + Cjvj1;T 0 (25)

with a constant C independent ofh. Indeed, combining the Korn inequalities (23) and the trace
theorem on the reference element leads tojvj1;T � CkD(v)k0;T + Cjvj1=2;E . Employing again
the trace inequality jvj1=2;E � Cjvj1;T 0 (see [6, Lemma 7.5.26 ]) leads to (25).
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Let 
 i; 1
h be 
 i

h plus the cells which are not in 
 i
h but have a neighbor in 
 i

h . For any such
cell T , we take T0 as its neighbor in 
 i

h , apply the estimate above and sum which gives

jvj1;
 i; 1
h n
 i

h
� CkD(v)k0;
 i; 1

h n
 i
h

+ Cjvj1;
 i
h
;

hence, using (24),
jvj1;
 i; 1

h
� CkD(v)k0;
 h :

Let 
 i; 2
h be 
 i; 1

h plus the cells which are not in 
 i; 1
h but have a neighbor in 
 i; 1

h . We have similar
to above

jvj1;
 i; 2
h

� CkD(v)k0;
 h

and so on. After a �nite number of steps, sayk, we arrive at 
 i;k
h = 
 h . And

jvj1;
 h = jvj1;
 i;k
h

� CkD(v)k0;
 h :

Lemma 4. For any sh 2 Vh and any Vh 2 Rd; ! h 2 Rd0
,

k� h sh k0;
 �
h

+

0

@
X

F 2F �
h

hk� h sh k2
0;F

1

A

1=2

+
p

hk� h sh k0;G h � ChkD(� h sh + � h (Vh + ! h � r ))k0;
 h

and
jVh j + j! h j 6 Ck� h sh + � h (Vh + ! h � r )k1;
 h : (26)

Proof. Take any sh 2 Vh ; Vh 2 Rd; ! h 2 Rd0
and denotevh = � h sh + � h (Vh + ! h � r ). By [12,

Lemma 3.4]

k� h sh k0;
 �
h

6 Chj� h sh j1;
 �
h

6 Ch(jvh j1;
 �
h

+ j� h (Vh + ! h � r )j1;
 �
h
)

6 Ch(jvh j1;
 �
h

+ k� h k1;
 �
h
(jVh j + j! h j)) : (27)

By equivalence of norms
jVh j + j! h j 6 CkVh + ! h � r k0;� : (28)

Denote by B �
h the band between � and � h . Applying the divergence theorem to the vector �eld

jVh + ! h � r j2r � and noting that the normal on � (resp. � h ) is given by � r �
jr � j (resp. � r � h

jr � h j )
gives

Z

�
jVh + ! h � r j2jr � j 6

Z

� h

jVh + ! h � r j2
jr � � r � h j

jr � h j
+

�
�
�
�
�

Z

B �
h

div
�
jVh + ! h � r j2r �

�
�
�
�
�
�

We now note that jr � j (resp. jr � h j and � h ) are both positive and bounded away from 0 on �
(resp. on � h ) uniformly in h for h small enough, and the measure ofB �

h is of order hk+1 . The
inequality above implies thus

kVh + ! h � r k2
0;� � C(k� h (Vh + ! h � r )k2

0;� h
+ hk+1 (jVh j + j! h j)2):

Combining this with (28) gives, for h small enough

jVh j + j! h j 6 Ck� h (Vh + ! h � r )k0;� h = Ckvh k0;� h

and, by the trace inequality, jVh j + j! h j 6 Ckvh k1;
 h , i.e. (26). Substituting this into (27) and
combining with the Korn inequality (22) yields the announced estimate for k� h sh k0;
 �

h
since

k� h k1;
 �
h

is bounded uniformly in h. The remaining part of the estimate follows by trace inverse
inequalities as in [12, Lemma 3.5].

13



3.2 Interpolation by �nite elements multiplied with the level set

We recall �rst a Hardy-type inequality, cf. [12].

Lemma 5. For any integer s 2 [0; k] and any u 2 H s+1 (
 h ) vanishing on � , it holds










u
�










s; 
 h

�

Ckuks+1 ;
 h with C > 0 depending only on the constants in Assumption 1 and ons.

This allows us to prove the following bound for interpolation by the products of �nite elements
with � h .

Lemma 6. Let t be an integer1 6 t 6 k +1 . For any v 2 H t (
 h )d \ H 1
0 (
) there existswh 2 Vh

s.t.
kv � � h wh ks; 
 h 6 Cht � skvkt; 
 h ; s = 0 ; 1 (29)

with C > 0 depending only ont; s, the constants in Assumptions 1{3, and the mesh regularity.

Proof. Let v 2 H t (
 h )d, v = 0 on �, and set w = v=� . Thanks to Lemma 5, w 2 H t � 1(
 h )d and
kwkt � 1;
 h

� Ckvkt; 
 h . Consider wh = I c
h w, where I c

h is a Scott-Zhang interpolation operator.
For any T 2 Th , let ! T denote the patch of mesh cells adjacent toT (not necessarily all the
adjacent cells) regrouping the cells a�ected by the construction ofI c

h w on T, so that I c
h w on T

depends onw only through its restriction to ! T . The Scott-Zhang interpolation operator can be
constructed so that ! T � T � ;ext

h for all T 2 T � ;ext
h , and ! T � T h n T � ;ext

h for all T 2 Th n T � ;ext
h .

In what follows, we assume that the operatorI c
h enjoys this property together with the usual

interpolation error estimates see for instance [6].
Our �rst goal is to prove (29) for s = 0. Taking any T 2 Th . Recall that � is supposed to be

of class (at least)C t so that k� � � h k1 ;T 6 Cht . Hence,

kv � � h wh k0;T = k�w � � h wh k0;T (30)

6 k� k1 ;T kw � wh k0;T + k� � � h k1 ;T kwh k0;T

6 k� k1 ;T kw � wh k0;T + Cht kwk0;! T :

To continue this proof, we distinguish two cases: the cellsT 2 T � ;ext
h close to � h and the

remaining cells, which are at the distance of at least orderh from � h .

(i) Consider T 2 T � ;ext
h . We have k� k1 ;T 6 Ch on these cells since they are at the distance

� h from �. Noting that kw� wh k0;T 6 Cht � 1jwjt � 1;! T by the usual interpolation estimate,
we derive from (30)

kv � � h wh k0;T 6 Cht (jwjt � 1;! T + kwk0;! T ) : (31)

(ii) Now consider T 2 Th n T � ;ext
h . We note that � does not vanish on! T for such T (recall

that ! T � T h n T � ;ext
h ), so that w 2 H t (! T ) and, by (30) and the usual approximation

estimates,
kv � � h wh k0;T 6 Cht (k� k1 ;T jwjt;! T + kwk0;! T ) : (32)

In order to bound jwjt;! T here, we recall the Leibniz rule valid for any multi-index � 2 Nd

@� v = @� (�w ) =
X

� 2 Nd

� 6 �

C �
� (@� � ) (@� � � w)
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with binomial coe�cients C �
� depending only on the multi-indices � and � (this formula

can be easily proven by induction on the length of� ) � 6 � means8i = 1 ; : : : ; d; � i 6 � i .
If � 6= 0, this can be rewritten, by separating the term with � = 0 (note that C0

� = 1) and
dividing by � , as

@� w =
1
�

@� v �
X

� 2 Nd

� 6 �; � 6= 0

C �
�

@� �
�

@� � � w (33)

Applying (33) to w on ! T gives

jwjt;! T 6
1

min! T j� j
(jvjt;! T + Ckwkt � 1;! T ):

Hence, by (32),

kv � � h wh k0;T 6 Cht
�

k� k1 ;T

min! T j� j
(jvjt;! T + kwkt � 1;! T ) + kwk0;! T

�
: (34)

Recall that min ! T j� j > mh by Assumption 3. The distance between any point onT and
any point on ! T is at most 2h so that

k� k1 ;T

min! T j� j
= 1 +

maxT j� j � min! T j� j
min! T j� j

6 1 +
2Mh
mh

6 1 +
2M
m

with M denoting an upper bound onjr � j. Substituting this into (34) gives

kv � � h wh k0;T 6 Cht (jvjt;! T + kwkt � 1;! T ): (35)

Summing (31) over all the cellsT 2 T � ;ext
h and (35) over all the remaining cells of meshTh gives

kv � � h wh k0;
 h 6 Cht (jvjt; 
 h + kwkt � 1;
 h ) :

This yields (29) with s = 0 thanks to the estimate kwkt � 1;
 h 6 kvkt; 
 h given by Lemma 5.
Let us now prove (29) for s = 1. Introduce vh = I c

h v so that

jv � vh j1;
 h 6 Cht � 1jvjt; 
 h and kv � vh k0;
 h 6 Cht jvjt; 
 h :

Then, combining the already proven estimate (29) for s = 0, the inverse inequality, and the
interpolation estimates above, we obtain

jv � � h wh j1;
 h 6 jvh � � h wh j1;
 h + jv � vh j1;
 h

6
C
h

kvh � � h wh k0;
 h + jv � vh j1;
 h

6
C
h

kv � � h wh k0;
 h +
C
h

kv � vh k0;
 h + jv � vh j1;
 h

6 Cht � 1kvkt; 
 h :
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3.3 An adaptation of the Taylor-Hood inf-sup stability to � -FEM

In this section, we prove some velocity-pressure inf-sup conditions that will be used to establish
the generalized coercivity (inf-sup) for the full bilinear form in the next section. The proofs are
inspired by [17] and start from an auxiliary inf-sup condition of Lemma 7 with respect to an
h-dependent norm for the pressure. The �nal result in Lemma 8 is weaker than the usual inf-sup
since it does not provide the control of theL 2 norm of the pressure over the whole domain 
h .
It will be however su�cient for our purposes since the encumbering term � Ch2jph j21;
 �

h
will be

controlled by the stabilization present in the scheme, cf. Lemma 2 for this matter.

Lemma 7. There exists an h-independent constantC > 0 such that 8ph 2 M h , 9wh 2 Vh

satisfying

h2jph j21;
 h
� Ch2jph j21;
 �

h
6

Z


 h

r ph � (� h wh ) and j� h wh j1;
 h 6 Chjph j1;
 h : (36)

Proof. Let us introduce the submeshT i
h = Th n T �

h so that � h 6 0 on T 2 T i
h . Denote by Ei

h the
set of the edges of the meshT i

h including those shared withT �
h , but excluding those lying on � w .

For any edgeE 2 E i
h , let tE be the unit tangent vector to E (any of two, but �xed), xE be the

midpoint of E , ! (E ) be the set of the mesh cells sharingE, and  E be the piecewise quadratic
function such that  E (xE ) = 1 and  E vanishes at all the other edge midpoints and at all the
nodes ofTh . Moreover, de�ne for all E 2 E i

h ,

�� E =

8
<

:

� h; if E belongs to a cell fromT � ;ext
h ;

1
jE j

Z

E
� h ; otherwise.

Take any ph 2 M h and set wh 2 Vh as

wh =
X

E 2E i
h

h2

�� E
 E (tE � r ph )tE : (37)

We have indeedwh 2 Vh , since the pressure tangential derivativetE �r ph is a continuous piecewise
polynomial of degree6 k � 2 on ! (E ) and  E is a continuous piecewise polynomial of degree 2,
vanishing outside ! (E ). Note also that wh = 0 on � w sinceEi

h does not contain the edges lying
on � w .

Take any E 2 E i
h and any cell T 2 ! (E ) \ T i

h . We shall see that
Z

T

� h
�� E

 E jtE � r ph j2 � c
Z

T
jtE � r ph j2 : (38)

Here and elsewhere, the constantsc > 0 depend only on the polynomial degreek, the shape
regularity, and the parameters of Assumption 3. To prove (38), we set~� h = � h

�� E
and note that

~� h > 0 on T since� h 6 0 on T 2 T i
h . To derive further properties of ~� h from Assumption 3, we

consider 3 following cases with respect to the placement ofT and E in the mesh (we recall that
T 2 T i

h in any case andE is an edge belonging toT).

Case 1 T 2 T � ;ext
h . We have then �� E = � h so that

~� h > 0 and h
�
�
�r ~� h

�
�
� �

m
2

on T : (39)
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Case 2 T 62 T� ;ext
h , E is not shared with any cell from T � ;ext

h . Then �� h = � h (xE ) for some
point xE 2 E and we have for anyx 2 T

�� E

� h (x)
=

� h (xE )
� h (x)

= 1 +
� h (xE ) � � h (x)

� h (x)
= 1 +

r � h (c) � (xE � x)
� h (x)

� 1 +
Mh
mh

=
m + M

m

where c 2 T is a point on the segment connectingxE with x. This implies

~� h �
m

m + M
on T : (40)

Case 3 T 62 T� ;ext
h , E is shared with a cell from T � ;ext

h . Then �� E = � h and 1
jE j

R
E � h � � c1h

with some c1 > 0 depending only on the constants in Assumption 3 (since the distance
betweenE and � h , where � h vanishes, is of orderh and jr � h j is bounded away from 0 on
T � ;ext

h ). Combining this with the arguments of the previous case, we arrive at

~� h �
c1m

m + M
on T : (41)

Moreover, in all of the 3 cases above,

j ~� h j 6 C on T : (42)

with some C > 0 depending only on the constants in Assumption 3. In case 1, this follows from
the bound jr � h j � M and the fact that the maximal distance betweenT and � h is of order h.
In cases 2 and 3, (42) can be proven in the same way as (40) and (41).

Inequality (38) can be now proven setting

c = min
T; ~� h ;qh

R
T

~� h  E q2
hR

T q2
h

(43)

where the minimum is taken over all the simplexesT permitted by the mesh regularity, all
the polynomials ~� h := � h

�� E
of degreek satisfying (42) and either of (39){(40){(41), and all the

polynomials qh := tE � r ph 6= 0 of degree k � 2. By homogeneity and rescaling, one can safely
assume that h = 1 and kqh k0;T = 1. The sets of possibleT, ~� h , qh are bounded and closed, so
that the minimum in (43) is indeed attained and c > 0. Indeed, either of (39){(40){(41) excludes
the possibility of ~� h vanishing everywhere onT. This concludes the proof of (38).

Thanks to (38), we have, setting 
 i
h = 
 h n 
 �

h and denoting by E(T) the set of edges of a
cell T excluding the edges on �w ,

Z


 i
h

� h wh � r ph =
X

E 2E i
h

h2
Z

! (E ) \ 
 i
h

� h
�� E

 E jtE � r ph j2 � c
X

T 2T i
h

X

E 2E (T )

h2
Z

T
jtE � r ph j2 :

Taking into account Assumption 5, we have by scaling and the equivalence of norms on allT 2 T i
h

X

E 2E (T )

Z

T
jtE � r ph j2 � cjph j21;T :

Hence, Z


 i
h

� h wh � r ph > ch2jph j21;
 i
h
: (44)
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Now, on a mesh cellT 2 T �
h having common edges with cells ofT i

h , de�nition (37) clearly
gives

�
�
�
�

Z

T
� h wh � r ph

�
�
�
� =

�
�
�
�
�
�

X

E 2E (T ) \E i
h

h
Z

T
� h  E jtE � r ph j2

�
�
�
�
�
�

6 Ch2jph j21;T

since � h is of order h on such cells. Combining this with (44) gives

ch2jph j21;
 h
6

Z


 h

� h wh � r ph �
Z


 �
h

� h wh � r ph + ch2jph j21;
 �
h

6
Z


 h

� h wh � r ph + Ch2jph j21;
 �
h
: (45)

We also have

j� h wh j21;
 h
=

Z


 h

j(r � h )wh + � h (r wh )j2

� C
X

T 2T h

X

E 2E (T ) \E i
h

h4
Z

T

�
jr � h j2

�� 2
E

jr ph j2 +
� 2

h
�� 2

E

jr  E j2jr ph j2 +
� 2

h
�� 2

E

jr 2ph j2
�

� C
X

T 2T h

h2
Z

T
jr ph j2 = Ch2jph j21;
 h

: (46)

We have used here the �nite element inverse estimates on� h ;  E , ph , and the uniform upper
bound (42) on j ~� h j = j � h j

j �� E j .
Rede�ning wh aswh =cwith the constant c from (45) shows (36) as a combination of (45) and

(46).

Lemma 8. There exists anh-independent constantC > 0 such that 8ph 2 M h 9sh 2 Vh

kph k2
0;
 h

� Ch2jph j21;
 �
h

�
Z


 h

r ph � (� h sh ) and j� h sh j1;
 h 6 Ckph k0;
 h : (47)

Proof. Taking ph 2 M h . By continuous velocity-pressure inf-sup (recall that
R


 ph = 0), there
exists v 2 H 1

0 (
) s.t.
div v = � ph on 
 ; and kvk1;
 6 Ckph k0;
 :

Let ~v 2 H 1(
 h ) be the extension ofv by 0 outside 
. Lemma 6 with t = 1 implies 9vh 2 Vh s.t.

k~v � � h vh k0;
 h 6 Chk~vk1;
 h 6 Chkph k0;
 h
and j� h vh j1;
 h 6 Ck~vk1;
 h 6 Ckph k0;
 h

:

Thus,

kph k2
0;
 = �

Z



ph div v =

Z



r ph � ~v =

Z


 h

r ph � (� h vh ) +
Z


 h

r ph � (~v � � h vh )

6
Z


 h

r ph � (� h vh ) + Chjph j1;
 h kph k0;
 h
: (48)

We have
kph k2

0;
 h
6 C1(kph k2

0;
 + h2jph j21;
 �
h
):
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This can be proven by an argument similar to that in Lemma 2: one can consider the maximum

of
kph k2

0; � k
kph k2

0;T k
+ h2 j ph j2

1; � �
k

taken over all the admissible patches �k , as in Assumption 4, and piecewise

polynomials ph , observe that this maximum is attained and takes the valueC1 > 0, and sum up
over all the patches covering 
 �

h .
We can thus pass from the norm on 
 to that on 
 h in (48):

kph k2
0;
 h

6 C1

Z


 h

r ph � (� h vh ) + Chjph j1;
 h kph k0;
 h + C1h2jph j21;
 �
h
:

Hence, by Young inequality,

1
2

kph k2
0;
 h

6 C1

Z


 h

r ph � (� h vh ) + C2h2jph j21;
 h
+ C1h2jph j21;
 �

h

6 C1

Z


 h

r ph � (� h vh ) + C2

Z


 h

r ph � (� h wh ) + Ch2jph j21;
 �
h

with wh given by Lemma 7. Thus,

1
2

kph k2
0;
 h

� Ch2jph j21;
 �
h

6
Z


 h

r ph � � h (C1vh + C2wh )

and
j� h (C1vh + C2wh )j1;
 h 6 Ckph k0;
 h

since j� h wh j1;
 h 6 Chjph j1;
 h 6 Ckph k0;
 h by inverse �nite element estimates.
Setting sh = 2( C1vh + C2wh ) proves (47).

3.4 The generalized coercivity (the inf-sup condition) for the bilinear
form.

To ease the forthcoming calculations, let us introduce the �nite element space of velocities com-
bining the rigid body motion on the approximate boundary and the contributions involving the
level set:

Vrbm
h = f � h (Vh + ! h � r ) + � h sh with sh 2 Vh ; Vh 2 Rd; ! h 2 Rd0

g: (49)

In the scheme (11), we shall now combine the test functionssh ; Vh ; ! h into vh 2 V rbm
h as in

the de�nition above. Similarly, we shall combine the trial functions wh ; Uh ;  h into uh 2 V rbm
h

setting uh = � h (Uh +  h � r ) + � h wh ). Scheme (11) can be then rewritten in the compact form:
�nd uh 2 V rbm

h and ph 2 M h such that

ch (uh ; ph ; vh ; qh ) = L h (vh ; qh ); 8vh 2 V rbm
h ; qh 2 M h ; (50)

where the bilinear form ch is given by

ch (uh ; ph ; vh ; qh ) = 2
Z


 h

D(uh ) : D (vh ) �
Z

Gh

(2D(uh ) � ph I )n � � h sh

�
Z


 h

qh div uh �
Z


 h

ph div vh

+ �h 2
X

T 2T �
h

Z

T
(� � uh + r ph ) � (� � vh � r qh ) + �

X

T 2T �
h

Z

T
(div uh )(div vh )

+ � u h
X

E 2F �
h

Z

E
[@n uh ] � [@n vh ] + � u h3

X

E 2F �
h

Z

E

�
@2

n uh
�

�
�
@2

n vh
�
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and the linear form L h is given by

L h (vh ; qh ) =
Z


 h

� f g � � h sh +
Z

O
� f g � � h (Vh + ! h � r ) +

�
1 �

� f

� s

�
mg � Vh

+ �h 2
X

T 2T �
h

Z

T
� f g � (� � vh � r qh ): (51)

In both expressions above,sh , Vh , and ! h are related to vh 2 V rbm
h as in (49).

Lemma 9. Introduce the norm on Vrbm
h � M h

9vh ; qh 9 h :=

0

@jvh j21;
 h
+ kqh k2

0;
 h
+ h2

X

T 2T �
h

k � � vh + r qh k2
0;T + Ju (vh ; vh )

1

A

1=2

:

The following inf-sup condition holds provided� and � u are su�ciently large:

8(uh ; ph ) 2 V rbm
h � M h 9(vh ; qh ) 2 V rbm

h � M h

such that
ch (uh ; ph ; vh ; qh )

9vh ; qh 9 h
> � 9 uh ; ph 9 h (52)

with a constant � > 0 depending only on the mesh regularity.

Proof. Let us take ph 2 M h and uh = � h (Uh +  h � r ) + � h wh 2 V rbm
h with wh 2 Vh , Uh 2 Rd

and  h 2 Rd0
.

Step 1: controlling the velocity. By choosing (uh ; ph ) as the trial function and ( uh ; � ph ) as
the test function in the bilinear form ch , we obtained:

ch (uh ; ph ; uh ; � ph ) = 2
Z


 h

jD (uh )j2 �
Z

Gh

(2D(uh ) � ph I )n � � h wh

+ � u h
X

E 2F �
h

Z

E
j[@n uh ]j2 + � u h3

X

E 2F �
h

Z

E

�
� � @2

n uh
� ��2

+ �h 2
X

T 2T �
h

Z

T
j � � uh + r ph j2 + �

X

T 2T �
h

Z

T
j div uh j2: (53)

Let ~Bh be the strip between � h = f � h = 0g and Gh , i.e. ~Bh = f � h > 0g \ 
 h . Since
� h wh = 0 on � h ,

Z

Gh

D(uh )n � � h wh =
Z

@~B h

D(uh )n � � h wh

=
X

T 2T �
h

Z

@( ~B h \ T )
D(uh )nT � � h wh �

X

T 2T �
h

X

E 2F cut
h (T )

Z

~B h \ E
D(uh )nT � � h wh ;

where T �
h is de�ned in (10), F cut

h (T) regroups the facets of a mesh elementT cut by � h , and
nT is the unit normal pointing outside of T on the boundary of a mesh cellT . Applying the
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divergence theorem to the integrals on@( ~Bh \ T) and regrouping the integrals on the facets gives
Z

Gh

D(uh )n � � h wh =
Z

~B h

D(uh ) : D (� h wh ) +
X

T 2T �
h

Z

~B h \ T
div D(uh ) � � h wh

�
X

E 2F �
h

Z

E \ ~B h

[D (uh )n] � � h wh

=
Z

~B h

jD (uh )j2 +
X

T 2T �
h

Z

~B h \ T
div D(uh ) � � h wh �

X

E 2F �
h

Z

E \ ~B h

[D (uh )n] � � h wh ;

sinceuh � � h wh is the velocity of a rigid motion on ~Bh .
Similarly (and simpler)

Z

Gh

ph n � � h wh =
Z

@~B h

ph n � � h wh =
Z

~B h

ph div uh +
Z

~B h

r ph � � h wh :

Substituting this into (53) and rewriting 2 div D(uh ) � r ph = � uh � r ph + r div uh on the
cells T 2 T �

h yields

ch (uh ; ph ; uh ; � ph ) = 2
Z


 h

jD (uh )j2 � 2
Z

~B h

jD (uh )j2 �
X

T 2T �
h

Z

~B h \ T
(� uh � r ph ) � � h wh

| {z }
Young with " 1

+ 2
X

F 2F �
h

Z

F \ ~B h

[D (uh )n] � � h wh

| {z }
Young with " 2

+
Z

~B h

ph div uh

| {z }
Young with " 3

�
X

T 2T �
h

Z

~B h \ T
(r div uh ) � � h wh

| {z }
Young with " 4

+ � u h
X

E 2F �
h

Z

E
j [@n uh ] j2 + � u h3

X

E 2F �
h

Z

E

�
� � @2

n uh
� ��2

+ �h 2
X

T 2T �
h

Z

T
j� uh � r ph j2 + �

X

T 2T �
h

Z

T
j div uh j2:

Several terms above are marked with \Young with " i " meaning that we are going to apply the
Young inequality with some weights "1; : : : ; "4 > 0 (multiplied by the appropriate powers of h)
to these terms. We recall that Lemma 4 implies

X

T 2T �
h

1
h2 k� h wh k2

~B h \ T � CkD(uh )k2
0;
 h

;
X

F 2F �
h

1
h

k� h wh k2
F \ ~B h

� CkD(uh )k2
0;
 h

;

which allows us to absorb the norms of� h wh into the �rst term with kD(uh )k0;
 h . We also use
the inverse inequality hkr div uh k0;
 �

h
� Ck div uh k0;
 �

h
. This yields

ch (uh ; ph ; uh ; � ph ) >
�

2 � C
"1 + "2 + "4

2

�
kD(uh )k2

0;
 h
� 2kD(uh )k2

0;
 �
h

�
"3

2
kph k0;
 �

h

+ h2
�

� �
1

2"1

� X

T 2T �
h

k� uh � r ph k2
0;T +

�
� �

1
2"3

�
C
"4

�
k div uh k2

0;
 �
h

+ h
�

� u �
1

2"2

� X

E 2F �
h

k [@n uh ] k2
0;E + � u h3

X

E 2F �
h




 �

@2
n uh

� 

 2

0;E
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Thanks to Lemma 2, this can be further bounded as

ch (uh ; ph ; uh ; � ph ) >
�

2(1 � � ) � C
"1 + "2 + "4

2

�
kD(uh )k2

0;
 h
+ 2(1 � � )h2jph j1;
 �

h

�
"3

2
kph k0;
 �

h
+ h2

�
� �

1
2"1

� 2�
� X

T 2T �
h

k� uh � r ph k2
0;T

+
�

� �
1

2"3
�

C
"4

� 2�
�

k div uh k2
0;
 �

h
+ h

�
� u �

1
2"2

� 2�
� X

E 2F �
h

k [@n uh ] k2
0;E

+ h3(� u � 2� )
X

E 2F �
h




 �

@2
n uh

� 

 2

0;E (54)

with some � > 0 and � 2 (0; 1).
Step 2: controlling the pressure. Let now sh 2 Vh be the function given by Lemma 8 and
set vp

h = � h sh . Noting that

�
Z


 h

ph div vp
h +

Z

Gh

ph n � vp
h =

Z


 h

r ph � vp
h > kph k2

0;
 h
� Ch2jph j21;
 �

h

we get

ch (uh ; ph ; vp
h ; 0) > kph k2

0;
 h
� Ch2jph j21;
 �

h
+ 2

Z


 h

D(uh ) : D (vp
h ) � 2

Z

Gh

D(uh )n � vp
h

+ �h 2
X

T 2T �
h

Z

T
(� uh � r ph ) � � vp

h + �
X

T 2T �
h

Z

T
(div uh )(div vp

h )

+ � u h
X

E 2F �
h

Z

E
[@n uh ] � [@n vp

h ] + � u h3
X

E 2F �
h

Z

E

�
@2

n uh
�

�
�
@2

n vp
h

�
:

Recalling that jvp
h j1;
 h 6 Ckph k0;
 h , remarking that kvp

h k0;G h � Cp
h

jvp
h j1;
 �

h
, and applying Young

and inverse inequalities allows us to conclude

ch (uh ; ph ; vp
h ; 0) >

1
2

kph k2
0;
 h

� Ch2jph j21;
 �
h

� CkD(uh )k2
0;
 h

� C

0

@� 2h2
X

T 2T �
h

k � � uh + r ph k2
0;T + � 2

X

T 2T �
h

k div uh k2
0;T

� 2
u h

X

E 2F �
h

k[@n uh ]k2
0;E + � 2

u h3
X

E 2F �
h




 �

@2
n uh

� 

 2

0;E

1

A : (55)
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Step 3: combining the estimates. Multiply (55) by � > 0 and add it to (54). This gives

ch (uh ; ph ; uh + �v p
h ; � ph ) >

�
2(1 � � ) � C

"1 + "2 + "4

2
� C�

�
kD(uh )k2

0;
 h

+
� � "3

2
kph k2

0;
 h
+ (2(1 � � ) � C� )h2jph j21;
 �

h

+ h2
�

� �
1

2"1
� 2� � C�� 2

� X

T 2T �
h

k� uh � r ph k2
0;T

+
�

� �
1

2"3
�

C
"4

� 2� � C�� 2
�

k div uh k2
0;
 �

h

+ h
�

� u �
1

2"2
� 2� � C�� 2

u

� X

E 2F �
h

k [@n uh ] k2
0;E + ( � u � 2� � C�� 2

u )h3
X

E 2F �
h




 �

@2
n uh

� 

 2

0;E :

Taking �; " 1; "2; "4 small enough,"3 = �= 2 and �; � u big enough, and recalling Korn inequality
(22), this amounts to

ch (uh ; ph ; wh + �v p
h ; � ph ) > c 9 uh ; ph 9 2

h

with some c > 0. We also have easily

9wh + �v p
h ; � ph 9 h 6 C 9 wh ; ph 9 h ;

hence the inf-sup estimate (52) withvh = uh + �v p
h , qh = � ph .

3.5 A priori error estimates.

In this section, we will prove Theorem 1 following the argumentation of [12], which is ameliorated
since we require only the optimal regularity H k+1 (
) d � H k (
) for the velocity-pressure pair
(u; p) given by (1a)-(1g).

Proof of the H 1 a priori error estimate (12): Let (u; p) 2 H k+1 (
) d � H k (
) with
u = U +  � r on � be the solution to the continuous problem (1a)-(1g) and (uh ; ph ) 2 V rbm

h �M h

with uh = � h wh + � h (Uh +  h � r ) be the solution to the discrete problem (11). Choose su�ciently
smooth extension ~u and ~p of u and p on 
 h such that ~u = u, ~p = p on 
, and

k~ukk+1 ;
 h 6 Ckukk+1 ;
 ; k~pkk; 
 h 6 Ckpkk; 
 :

Applying Lemma 6 to ~u � � (U +  � r ), which vanishes on � and on � w , we see that there exists
~wh 2 Vh such that

k~u � � (U +  � r ) � � h ~wh k1;
 h 6 Chk k~u � � (U +  � r )kk+1 ;
 h :

This allows us to introduce ~uh = � h ~wh + � h (U +  � r ) 2 V rbm
h satisfying

k~u � ~uh k1;
 h 6 k~u � � (U +  � r ) � � h ~wh k1;
 h + k(� � � h )(U +  � r )k1;
 h

6 Chk (k~ukk+1 ;
 h + k� kk+1 ;
 h (jUj + j j))

6 Chk k~ukk+1 ;
 h 6 Chk kukk+1 ;
 ; (56)

thanks to the standard interpolation of � 2 H k+1 (
 h ) and to the bounds jUj; j j � Ckuk1;


valid by the trace inequality (recall that u = U +  � r on �).
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Similarly, k~u � ~uh k0;
 h 6 Chk+1 kukk+1 ;
 . We de�ne moreover ~ph 2 M h by the standard FE
nodal interpolation ~ph = I h ~p such that

k~p � ~ph k0;
 h 6 Chk kpkk; 
 : (57)

Thanks to Lemma 9, 9(vh ; qh ) 2 V rbm
h � M h such that

9 ~uh � uh ; ~ph � ph 9 h � C
ch (~uh � uh ; ~ph � ph ; vh ; qh )

9vh ; qh 9 h
: (58)

We should now substitute (~u; ~p) into the form ch: To this end, we introduce the �ctitious right-
hand sides ~F and ~Q on 
 h so that

� 2 div D(~u) + r ~p = ~F and div ~u = ~Q in 
 h :

We observe then, taking anyvh = � h sh + � h (Vh + ! h � r ) 2 V rbm
h , qh 2 M h ,

2
Z


 h

D(~u) : D (vh ) �
Z


 h

~pdiv vh �
Z

Gh

(2D(~u) � ~pI )n � vh =
Z


 h

~F � vh

and, recalling Bh = 
 h n 
,

Z

Gh

(2D(~u) � ~pI )n � (Vh + ! h � r ) =
Z

�
(2D(~u) � pI )n � (Vh + ! h � r )

+
Z

B h

div(2D(~u) � ~pI )n � (Vh + ! h � r ) = mg � Vh �
Z

B h

~F � (Vh + ! h � r ):

Hence,

ch (~u; ~p; vh ; qh ) =
Z


 h

~F � vh �
Z

B h

~F � (Vh + ! h � r ) + mg � Vh �
Z


 h

qh div ~u

+ �h 2
X

T 2T �
h

Z

T

~F � (� � vh � r qh ) + �
Z


 �
h

(div ~u)(div vh ):

Also note that the RHS (51) of the scheme (50) can be rewritten as

L h (vh ; qh ) =
Z


 h

� f g � vh �
Z

B h

� f g � (Vh + ! h � r ) + mg � Vh

+ �h 2
X

T 2T �
h

Z

T
� f g � (� � vh � r qh )

This allows us to establish the following Galerkin orthogonality relation, valid for all vh 2 V rbm
h ,

qh 2 M h ,
ch (~u � uh ; ~p � ph ; vh ; qh ) = Rh (vh ; qh ); (59)

where

Rh (vh ; qh ) =
Z

B h

( ~F � � f g) � � h sh �
Z

B h

qh div ~u

+ �h 2
X

T 2T �
h

Z

T
( ~F � � f g) � (� � vh � r qh ) + �

Z


 �
h

(div ~u)(div vh ):
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The integrals of ~F � � f g and div ~u on 
 h have been rewritten as integrals onBh since both
~F � � f g and div ~u vanish on 
.

Combination of (58) and (59) entails

9 ~uh � uh ; ~ph � ph 9 h � C
ch (~uh � ~u; ~ph � ~p; vh ; qh ) + Rh (vh ; qh )

9vh ; qh 9 h
:

We can now use interpolation inequalities as in [12, Section 3.4]. In particular, the term withch

in the nominator of the fraction above is bounded byChk (kukk+1 ;
 + kpkk; 
 )9vh ; qh 9 h thanks
to (56){(57) and to the estimates of Lemma 4. To bound Rh (vh ; qh ) we recall that ~F � � f g and
div ~u vanish on 
. Thus, thanks to [12, Lemma 3.6]

k ~F � � f gk0;
 �
h

� Chk � 1k ~F � � f gkk � 1;
 �
h

� Chk � 1(kukk+1 ;
 + kpkk; 
 )

and
k div ~uk0;
 �

h
� Chk k div ~ukk; 
 �

h
� Chk kukk+1 ;
 : (60)

This, combined with the estimates of Lemma 4, in particular k� h sh k0;
 �
h

� Chjvh j1;
 �
h
, leads to

jRh (vh ; qh )j � Chk (kukk+1 ;
 + kpkk; 
 )9vh ; qh 9 h and

9 ~uh � uh ; ~ph � ph 9 h � Chk (kukk+1 ;
 + kpkk; 
 ) : (61)

Recalling again the interpolation estimates (56){(57), we obtain the error estimates foru and
p, announced by (12).

Proof of the a priori error estimate (13) on the velocity of the solid: We have by
the construction of the interpolant ~uh = � h ~wh + � h (U +  � r ) and thanks to (26)

jU � Uh j + j �  h j 6 Ck� h ( ~wh � wh ) + � h (U � Uh + (  �  h ) � r )k1;
 h = Ck~uh � uh k1;
 h

which proves (13) thanks to (61).
Proof of the L 2 a priori error estimate (14): Let (v; q; V; ! ) 2 H 2(
) d � H 1(
) � Rd � Rd0

the solution to 8
>>>>>>>>><

>>>>>>>>>:

� 2 div D(v) + r q = u � uh ; in 
 ;
div v = 0 ; in 
 ;
v = V + ! � r; on � ;
v = 0 ; on � w ;R

� (2D(v) � qI )n = 0 ;
R

� (2D(v) � qI )n � r = 0 ;
R


 q = 0 :

An integration by parts gives

ku � uh k2
0;
 =

Z



(u � uh )( � 2 div D(v) + r q) (62)

= 2
Z



D(u � uh ) : D (v) �

Z



qdiv(u � uh ) �

Z



(p � ph ) div v:

+
Z

�
(( � h � � )wh + ( � h � � )(Uh + � h � r )) � (2D(v) � qI )n

Note that the boundary term
R

� u � (2D(v) � qI )n vanishes sinceu is a rigid body motion on �.
For the same reason,

R
� (�w h + � (Uh + � h � r ) � (2D(v) � qI )n vanishes.
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Let (~v; ~q) 2 H 2(
 h )d � H 1(
 h ) coincide with (v; q) on 
. They can be constructed by a
bounded extension operator inH 2 � H 1 so that

k~vk2;
 h + k~qk1;
 h 6 C(kvk2;
 + kqk1;
 ) 6 Cku � uh k0;
 : (63)

We now further rewrite (62) using Galerkin orthogonality (59) with the test functions vh =
� h sh + � h (Vh + ! h � r ) 2 V rbm

h and qh 2 M h and recalling Bh = 
 h n
,

ku � uh k2
0;


=
Z


 h

2D(~u � uh ) : D (~v � vh ) �
Z


 h

(~q � qh ) div(~u � uh ) �
Z


 h

(~p � ph ) div(~v � vh )
| {z }

I

�
� Z

B h

2D(~u � uh ) : D (~v) �
Z

B h

~qdiv(~u � uh ) �
Z

B h

(~p � ph ) div ~v
�

| {z }
II

+
Z

Gh

(2D(~u � uh ) � (~p � ph )I )n � � h sh

| {z }
III

(64)

� � u h
X

E 2F �
h

Z

E

�
@

@n
(~u � uh )

�
�
�

@vh
@n

�
� � u h3

X

E 2F �
h

Z

E

�
@2

@n2
(~u � uh )

�
�
�

@2vh

@n2

�

| {z }
IV

� �h 2
X

T 2T �
h

Z

T
� �(~u � uh ) + r (~p � ph )) � (� � vh � r qh )

| {z }
V

� �
X

T 2T �
h

Z

T
div(~u � uh ) div vh

| {z }
V I

+ Rh (vh ; qh )
| {z }

V II

+
Z

�
(( � h � � )wh + ( � h � � )(Uh + � h � r )) � (2D(v) � qI )n

| {z }
V III

We now take Vh = V; ! h = ! and set sh 2 Vh so that � h sh is an optimal interpolant of
v � � h (V + ! � r ), as guaranteed by Lemma 6. We also setqh = ~I h ~q using an appropriate
Cl�ement interpolation ~I h . We can now estimate all the terms of (64) using the already proven
estimate (61) and the interpolation estimates for ~v � vh and ~p � ph . This gives

ku � uh k2
0;
 � Chk+1 =2(kukk+1 ;
 + kpkk; 
 )(k~vk2;
 h + k~qk1;
 h ): (65)

In particular, term I is completely standard and gives in fact a contribution of the optimal order
hk+1 . Rather than go to the details of the tedious calculations leading to the bounds of the
remaining terms, we prefer here to refer to the similar arguments used in [12] to estimate the
terms in eq. (3.24). Indeed, the termsII � III in (64) can be treated as the termsII � III in
eq. (3.24) of [12]. TermsIV � V in (64) can be treated as termIV in eq. (3.24) of [12]. Terms
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V I in (64) is also similar to the latter (note, in particular, k div ~vk0;
 �
h

� Chkvk2;
 similarly to
(60)). Finally, term V II in (64) can be treated as termV in eq. (3.24) of [12]. As in [12], all these
terms result in the sub-optimal estimate of order O(hk+1 =2). The origin of this sub-optimality
lies in the lack of adjoint consistency in formulation (50): the adjoint discrete problem cannot
be interpreted as a consistent discretization of a meaningful continuous problem.

The only term in (64), which does not have a direct analogue in [12], is termV III . To bound
it, we apply Cauchy-Schwarz inequality together with the interpolation estimates on � � � h and
� � � h , recalling the hypotheses� 2 Ck+1 (
 h ) and � 2 H k+1 (
 h ):

jV III j 6 Chk+1 (kwh k0;� + jUh j + j� h j)(kD(v)k0;� + kqk0;� ) :

Then, to bound wh in L 2(�), we start by a trace inverse inequality kwh k0;� 6 Cp
h

kwh k0;
 h and

apply Hardy inequality of Lemma 5 to wh = �w h
� :

kwh k0;
 h 6 Ck�w h k1;
 h 6 C(k(� � � h )wh k1;
 h + k� h wh k1;
 h ) :

Noting that, by interpolation and inverse inequalities,

k(� � � h )wh k1;
 h 6 C(k� � � h kL 1 (
 h ) jwh j1;
 h + kr � � r � h kL 1 (
 h ) kwh k0;
 h ) 6 Chk kwh k0;
 h

we conclude
(1 � Chk )kwh k0;
 h 6 Ck� h wh k1;
 h

Hence, forh small enough,

jV III j 6 Chk+1
�

1
p

h
k� h wh k1;
 h + jUh j + j� h j

�
(kD (v)k0;� + kqk0;� ) :

Recalling that uh = � h wh + � h (Uh + � h � r ), we conclude by Lemma 4 thatk� h wh k1;
 h , jUh j,
j� h j can be all bounded bykuh k1;
 h . Applying the trace inequalities to v and q, we arrive at

jV III j 6 Chk+1 =2kuh k1;
 h (kvk2;
 + kqk1;
 ) :

Since we know that kuh k1;
 h is bounded by the norms ofu and p thanks to the already proven
error estimates for the velocity in H 1 norm, we conclude that term V III contributes to (65) in
the same manner as all the other terms.

Combining (65) with (63) proves (14).

4 Numerical tests

In this section, we present numerical results, �rst in the particular case of a �xed particle, i.e.
for the Stokes equations aone in a �xed domain (cf. Appendix A and the� -FEM scheme (72)),
and second in the case of the particulate 
ows (equations (1a)-(1g) and the� -FEM scheme (11)).
These schemes will be compared with standard FEM on �tted triangular meshes as on Fig. 3 left
(we do not introduce higher order approximations of the curvilinear boundary of the domain, as
would be the case in the isoparametric FEM for example). In the case of Stokes equations, the
error is measured with respect to a manufactured solution, while a reference solution obtained by
standard FEM on a �tted �ne mesh is used in the case of particulate 
ows. We have implemented
� -FEM in multiphenics [4]. The implementation scripts can be consulted on GitHub.2

2https://github.com/michelduprez/phi-FEM-particulate-flows-Stokes.git
or https://doi.org/10.5281/zenodo.6817135
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The 
uid/solid domain in both our test cases is O = (0 ; 1)2 � R2 and we take the particle S
as a disk of radiusR = 0 :21 centered at a point (0:5; 0:5). Then 
 = [0 ; 1]2nS. The geometry
is presented in Fig. 1 (left). In � -FEM, we use the following level-set function, well de�ned and
smooth for all (x; y) 2 R2,

� (x; y) = R2 � (x � 0:5)2 � (y � 0:5)2: (66)

We present only the results with the lowest order Taylor-Hood elements, i.e. settingk = 2
and thus using P2 elements for wh , � h , � h (the approximation � h for � is exact in this case).
The tests with elements of higher order would lead to essentially the same observations. The
stabilization parameters are set to� = � u = 20 (as in [12]).

4.1 Particular case of a �xed particle: Stokes equations

We start by Stokes equations (71) in the domain 
, as above, with the right-hand side such that
the exact solution is as follows, cf. [14],

u(x; y) = (cos( �x ) sin(�y ); � sin(�x ) cos(�y )) ;

p(x; y) = ( y � 0:5) cos(2�x ) + ( x � 0:5) sin(2�y );

taking � = 1.

Figure 3: Mesh used for the standard FEM formulation (left) and mesh used in the� -FEM
schemes (right).

We shall test the � -FEM scheme given by (72) in Appendix A and compare it with a standard
Taylor-Hood FEM on a �tted mesh. To this end, we introduce a quasi-uniform triangular mesh
T f it

h �tted to 
, in the sense that the boundary nodes of the mesh lie on � [ � w . The domain
occupied by this mesh, denoted by 
f ith , is a polygonal approximation of 
, since the interface
� is curvilinear and cannot be represented exactly by the straight edges. We introduce then the
FE spaces

Vf it;u D
h =

n
vh 2 C( �
 f it

h )d : vh jT 2 P2(T)d 8T 2 T f it
h ; vh = I h uD on � w \ � f it

h

o
(67)

M f it
h =

(

qh 2 C( �
 f it
h ) : qh jT 2 P1(T) 8T 2 T f it

h ;
Z


 f it
h

qh = 0

)

; (68)
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where � f it
h is the part of the boundary of 
 f it

h approximating �. A standard �tted Taylor-Hood
FEM can be written as: �nd ( uh ; ph ) 2 V f it;u D

h � M f it
h such that

Z


 f it
h

2D(uh ) : D (vh ) �
Z


 f it
h

ph div vh �
Z


 f it
h

qh div uh =
Z



fv h ; (69)

for all ( vh ; qh ) 2 V f it; 0
h � M f it

h .
Examples of meshes for the standard FEM formulation and the� -FEM scheme are given in

Fig. 3 (left) and (right), respectively. In Fig. 4, we report convergence results for the standard
�tted Taylor-Hood FEM (69) and for � -FEM (72) in the case of Stokes equations. We recover
the theoretical rates of convergence of� -FEM stated in Theorem 2: 2nd order in h for both the
H 1-error in velocity and the L 2-error in pressure. TheL 2-error in velocity is actually better than
theoretically predicted: it is of order 3 instead of theoretically expected 2.5. We observe thus
that � -FEM is fully optimal in practice: it demonstrates the same convergence rates in all the
aforementioned norms as the standard FEM would demonstrate in the ideal situation of a �tted
mesh on a convex polygonal domain. Actually, our setting is not ideal, 
 is neither convex,
not polygonal. It is thus not surprising that the standard Taylor-Hood FEM underperforms
(we recall that the mesh T f it

h is triangular with straight edges and no higher order geometrical
approximation is introduced there). Experimentally observed convergence rates for this scheme
are � 2 for the L 2-error in velocity, � 1:5 for the H 1-error in velocity, and slightly smaller than
2 for the L 2-error in pressure (the error in pressure is thus the only one for which the optimal
convergence order seems to be retained in practice). Moreover, all the errors on all the considered
meshes are systematically smaller for� -FEM than for the �tted FEM.

Remark 6. As already noted in Remark 2, in � -FEM, it is impossible to impose
R


 ph = 0 .
In our implementation, we rather impose

R

 h

ph = 0 with the help of a Lagrange multiplier, i.e.
we add� h

R

 h

ph + � h
R


 h
qh (with � h ; � h 2 R) to the formulation. To compute the relative L 2-

error for the pressure, we should compareph with the exact pressure whose integral vanishes over

 h (recall that the pressure is physically de�ned up to an additive constant any way). We thus
introduce ~p = p � c
 h with c
 h = 1

j 
 h j

R

 h

p and compute the errors with respect to~p. Similarly,
in the case of standard �tted FEM, we impose

R

 f it

h
ph = 0 by a Lagrange multiplier and compute

the relative error against ~p = p � c
 f it
h

with c
 f it
h

= 1
j 
 f it

h j

R

 f it

h
p.
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Figure 4: Rates of convergence for the standard Taylor-Hood FEM scheme (69) and the� -FEM
scheme (72) in the case of Stokes equations. TheL 2 relative error of the velocity (left), the H 1

relative error of the velocity (middle) and the L 2 relative error of the pressure (right).
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4.2 Particulate 
ows

We now turn to the creeping particulate 
ow equations (1a)-(1g) in the same geometry as before.
The level-set � is again de�ned by (66). The vertical gravity is assumed to be equal to 10. The
density of the 
uid and the solid are equal to � f = 1 and � s = 2, respectively, and the viscosity
� = 1. We deduce that the mass of the solid is equal tom = � s � 2R2. For the cut-o� � , we
consider the radial polynomial of degree 5 on the interval (r 0; r 1) with r 0 = R and r 1 = 0 :45
such that � (r 0) = 1 and � 0(r 0) = � 00(r 0) = � (r 1) = � 0(r 1) = � 00(r 1) = 0 so that, setting � = 1
for r < R and � = 0 for r > R , the resulting � is two times di�erentiable and thus � 2 H 3(O)
as required by Assumption 2:

� (r ) =

8
><

>:

1; for r < r 0

1 + f ( r 0 ;r 1 )
( r 1 � r 0 )5 ; for r 0 < r < r 1

0; for r > r 1

where

f (r 0; r 1) = ( � 6r 5 + 15( r 0 + r 1)r 4 � 10(r 2
0 + 4 r 0r 1 + r 2

1)r 3 + 30r 0r 1(r 0 + r 1)r 2

� 30r 2
0r 2

1r + r 3
0(r 2

0 � 5r 1r 0 + 10r 2
1)) :

Let us introduce a Taylor-Hood scheme which will be compared with our� -FEM scheme. We
introduce �rst the �tting mesh T f it

h on domain 
 f it
h as in the preceding section, cf. Fig. 3 (left),

and adapt the Taylor-Hood FE space velocity space, cf. (67), as

Vf it
h =

n
vh 2 C( �
 f it

h )d : vh jT 2 P2(T)d 8T 2 T f it
h ; vh = 0 on � w

o
;

while keeping the pressure space (68) as before. Note that the velocity FE space does no longer
contain any restrictions on the boundary part � f it

h approximating �. We shall impose the bound-
ary conditions there with the help of Lagrange multipliers, introducing the space

� f it
h =

n
� h 2 C( �
 f it

h ) : � h jF 2 P2(F ) 8F 2 F f it
h

o
;

where F f it
h is the set of the boundary facets on �f ith . A �tted Taylor-Hood FE formulation is

then written as: �nd ( uh ; ph ; � h ; Uh ;  h ) 2 V f it
h � M f it

h � � f it
h � Rd � Rd0

such that

Z


 f it
h

2D(uh ) : D (vh ) �
Z


 f it
h

ph div vh �
Z


 f it
h

qh div uh

+
Z

� f it
h

� h � (vh � Vh � ! h � r ) +
Z

� f it
h

� h � (uh � Uh �  h � r ) =
Z


 f it
h

� f gvh + mg � Vh ; (70)

for all ( vh ; qh ; � h ; Vh ; ! h ) 2 V f it
h � M f it

h � � f it
h � Rd � Rd0

. We present in Fig. 5 the velocity
obtained with the standard Taylor-Hood FEM scheme (70). Such a velocity and the accompa-
nying pressure, computed on a very �ne �tted grid, will be used as the reference solution in the
subsequent numerical experiments and will be denoted asu; p in what follows.

A comparison between the standard Taylor-Hood FEM (70) and � -FEM (11) is presented
in Figs. 6 and 7 (we do not report the error in the particle rotation velocity whose exact value
is 0 and which is accurately predicted by all the schemes up to machine precision; this can be
attributed to the symmetry of our test case). Since the error is computed with respect to a
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Figure 5: Velocity obtained with the standard Taylor-Hood FEM scheme (70).

�ne reference solution solution living on a �ne �tted mesh, the numerical solution computed by
either (70) or (11) should be projected to this �ne mesh in order to compute the errors. This is
re
ected in the legends of the convergence curves: 
f ine stands for the �ne �tted approximation
there. Similarly to Remark 6, we impose the pressure mean by a Lagrange multiplier in both
schemes, and adjust the additive constants properly when computing the errors in pressure.

The conclusions are essentially the same as in the previous test case (Stokes equations alone):
� -FEM exhibits optimal convergence rates, while the �tted standard FEM is suboptimal (with
the exception of the L 2 error in pressure). It seems again that our theoretical estimates for the
L 2-error of the 
uid velocity is not sharp: the experimental convergence rate isk + 1 rather
than k + 1

2 . The same observation can be made about the particle velocity: the experimental
convergence rate isk + 1 rather than theoretically predicted k.
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Figure 6: Rates of convergence for the standard Taylor-Hood FEM scheme (70) and the� -FEM
scheme (11) in the case of particulate 
ows. TheL 2 relative error of the velocity (left) and the
H 1 relative error of the velocity (right).

5 Conclusions and perspectives

The main goal of the � -FEM approach is to avoid the non standard quadrature on the cut mesh
cells inherent to CutFEM. Some of the attractive features of � -FEM are:

ˆ � -FEM is readily available for �nite elements of any order (without the need of any addi-
tional higher order approximation of the geometry).
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Figure 7: Rates of convergence for the standard Taylor-Hood FEM scheme (69) and the� -FEM
scheme (72) in the case of particulate 
ows. TheL 2 relative error of the pressure (left) and
relative error of the displacement of the solid (right).

ˆ (corollary of the previous point) � -FEM outperforms the standard �tted FEM on polygonal
meshes if the order of piecewise polynomials is> 1 (unless one implements more compli-
cated versions of FEM in order to treat properly the curvilinear boundary, such as the
isoparametric FEM).

ˆ � -FEM uses standard FE spaces and is based on a variational formulation of the problem,
so that it can be easily implemented in existing general-purpose FEM libraries, provided
they allow one to compute the jumps on selected facets and the second derivatives on
selected cells.

To counter-balance the last point, we should mention that the variational formulation at the base
of � -FEM can be rather complicated. Typically, it contains more terms than a �tted FEM or
a CutFEM scheme for the same problem. The implementation, although straightforward, may
thus require some extra programming e�orts. As a reward, one easily gets a good description
of the geometry which may result in smaller computing times than those for standard FEM, as
highlighted in [10].

In the present article we have adapted� -FEM to the Stokes equations and to the combination
of the Stokes equations with the motion of a rigid particle inside the 
uid, providing a �rst brick
in future applications of this technology to 
uid structure interaction problems.

Of course, there remains a lot of open questions. To conclude, we list some of those (not
necessarily related to the particular case of Stokes equations or 
ows with particles) and envisage
potential solutions:

ˆ Theoretical suboptimality of � -FEM in the L 2-norm. However, all the numerical exper-
iments show the optimal convergence in this norm, which gives us hope that a sharper
theoretical estimate could be found.

ˆ A mismatch between the theoretical construction of the active meshTh and its practical
implementation, cf. Remark 1. The theoretical construction of Th is crucial for the current
proof of coercivity, cf. Lemma 9. An alternative proof should be found.

ˆ A practical construction of the levelset function, which should satisfy some assumptions
summarized in Remark 3. In the present article, � was given analytically, but in more
realistic applications one will have to construct an appropriate � h on the discrete level
directly. A good candidate, in the vicinity of � would be the signed distance to �, for
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which there exist e�cient libraries, but it will remain to extend it in a smooth way (again
directly on the discrete level) far from �. As an alternative, we note that in other versions
of � -FEM, � h may be required only on mesh cells near �, cf. [11, 10].

ˆ The current construction of stabilization in � -FEM relies heavily on the linearity of the
governing equations. Indeed, the terms with prefactor� in (11) reproduce the governing
equations for both trial and test functions. If the equations are non-linear, one cannot
do this since the formulation should remain linear in the test functions. Thus, going
from Stokes to Navier-Stokes, for example, is not straightforward. Various options of
linearization of the stabilization terms should be yet tested numerically and theoretically.

A � -FEM for Stokes equations in a �xed domain

In this section, we propose a� -FEM scheme for the simpler case of a �xed solid in the 
uid. The
governing equations are the non-homogeneous Stokes equations given by

8
<

:

� 2 div(D (u)) + r p = f; in 
 ;
div u = 0 ; in 
 ;
u = uD ; on � [ � w :

(71)

Assume that uD and f are de�ned in the whole discrete domain 
 h . Inspired by the � -FEM
scheme for particulate 
ow given in (11), we can derive the following � -FEM scheme for the
non-homogeneous Stokes equations (71): �ndwh 2 Vh , ph 2 M h satisfying

Z


 h

2D(uD + � h wh ) : D (� h sh ) �
Z

Gh

(2D(uD + � h wh ) � ph I )n � � h sh (72)

�
Z


 h

ph div( � h sh ) �
Z


 h

qh div(uD + � h wh ) + � u Ju (uD + � h wh ; � h sh )

+ �h 2
X

T 2T �
h

Z

T
(� �( uD + � h wh ) + r ph ) � (� �( � h sh ) � r qh )

+ �
X

T 2T �
h

Z

T
div(uD + � h wh ) div( � h vh )

=
Z


 h

f � h sh + �h 2
X

T 2T �
h

Z

T
f (� �( uD + � h sh ) � r qh );

for all sh 2 Vh , qh 2 M h .
We now state our second main result for the Stokes equations:

Theorem 2. Suppose that Assumptions 1, 3, 4 and 5 hold true, the meshTh is quasi-uniform.
Let (u; p) 2 H k+1 (
) d � H k (
) be the solution to (71) and (wh ; ph ) 2 Vh � M h be the solution
to (72). Denoting uh := � h wh , it holds

ju � uh j1;
 \ 
 h +
1
�

jp � ph j0;
 \ 
 h � Chk (kukk+1 ;
 +
1
�

kpkk; 
 )

with a constant C > 0 depending on theC0, m, M in Assumptions 1, 4, on the maximum of the
derivatives of � , on the mesh regularity, and on the polynomial degreek, but independent ofh,
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f , and u.
Moreover, supposing
 � 
 h

ku � uh k0;
 � Chk+1 =2(kukk+1 ;
 +
1
�

kpkk; 
 )

with a constant C > 0 of the same type.

The proof of Theorem 2 can be adapted from the proof of Theorem 1. It is even more simple.

B A glossary of geometrical notations.

� h the approximate interface: � h = f � h = 0g
Th the active mesh: Th = f T 2 T O

h : T \ f � h < 0g 6= ? g
T �

h intersection of Th with � h T �
h = f T 2 Th : T \ � h 6= ? g

T � ;ext
h T �

h and the cells which are neighbors and neighbors of neighbors of cells
of T �

h in Th

T i
h Th n T �

h
F �

h F �
h = f E (an internal facet of Th ) such that 9T 2 T �

h and E 2 @Tg:
Gh the internal component of @
 h , corresponding to the interface �: Gh = @
 h n � w

Bh the strip between � and Gh : Bh = 
 h n 

B �

h the strip between � and � h
~Bh the strip between � h = f � h = 0g and Gh : ~Bh = f � h > 0g \ 
 h

We also recall that the domain occupied by the active meshTh is denoted by 
 h , i.e. 
 h :=
([ T 2T h T)o. The same convention is applied to the submeshesT �

h and T i
h , giving respectively 
 �

h
and 
 i

h .
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