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Abstract

This paper focuses on the non-intrusive reduced basis (NIRB) method called the two grids method. It is used
for the simulation of parametric partial differential equations to reduce the associated computational costs of a
High-Fidelity code when such problems must be solved for a large number of parameter values or provide a
solution in “real time”.

As other reduced basis approaches, the “offline step” relies on the High-Fidelity method with a fine enough
grid. On the contrary, the non-intrusiveness of the original two grids method is based on the use, in the “online
step”, of the same method with a much coarser grid, which considerably reduces the cost of this step.

We extend here this idea by further reducing the “online step” and further simplify the High-Fidelity method.
As an example of application we consider a classical fluid problem, the 2D Backward Facing Step (BFS). We
simplify the model by i) truncating the outflow part of the channel at extreme and ii) using a coarse uniform
mesh instead of refining it at the re-entrant corner, both choices that contradict what is required to get a high
fidelity representation of the flow. To accomplish this, we create two reduced bases and a deterministic process
that allows us to pass from one to the other.

Several numerical simulations illustrate the ability of this new approach.

1 Introduction

Reduced Basis Methods (RBM) are widely used to approximate the solutions of parameter-dependent problems
for a large number of parameter values within a parameter space. The latter enables the definition of the so-
lutions manifold, which contains the solutions for all parameters within the parameter space. RBM are based
on the assumption that the solutions manifold has a small Kolmogorov N-width [32]. In other words, they take
advantage of the fact that the solutions for a wide range of parameters share similar physical behaviors, so that
only a few well-chosen solutions are sufficient to approximate well any element of the solution manifold by linear
combination. These carefully selected elements are known as snapshots. They are exploited to construct a reduced
space that must be close to the solution manifold. Then for a new parameter, the associated solution may be
approached very quickly but accurately by projecting it onto this space.

Several RBM exist [38, 27, 30, 2, 40, 8]. They usually take advantage of a procedure decomposition into two
steps, one “offline” and one “online”. The snapshots are computed using a High-Fidelity (HF) code during the
offline portion. Any classical method, such as the Finite Element Method (FEM) or Finite Volume schemes (FVM),
may be used in this code. Then, during the online part, a reduced problem is solved.

The ability to modify the HF code is frequently required for an efficient implementation of these methods.
Yet, if the code has been purchased, as it is frequently the case in industry, this may be impossible. This is why
we focus on the two grids method, which is a Non-Intrusive Reduced Basis (NIRB) algorithm [11, 9, 12, 22] (see
also different NIRB methods from the two-grid algorithm [8, 18, 2]). Indeed, it does not require any change to
the HF code and instead employs it solely as a “black-box” solver. We refer to [24, 36] for another approach of
non-intrusiveness based on the learning of reduced operators through neural network framework.
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universite.fr) & Institut Universitaire de France

1



1.1 Reminders on the classical NIRB two-grid method

Let Ω be a bounded domain in R
d, with d ≤ 3 and a smooth enough boundary ∂Ω, and consider a parametric

problem P on Ω. Here, we consider time-independent problems (see [23] for parabolic equations). Let µ represent
a parameter of P chosen in a given set G and u(µ) the associated solution. The manifold of all solutions is defined
as

S = {u(µ), µ ∈ G}.

Thanks to numerous HF solutions of P already computed for various parameter values, we want to approximate
quickly the solution for a new parameter µ̃ ∈ G.
In what follows, we consider a FEM HF code to approximate any solution in S .
The particularity of the two-grid method is to be based on two FEM meshes:

• one fine mesh Th, with which the HF snapshots during the offline part are generated,

• one coarse mesh TH , where the problem solution is computed online with the new parameter µ̃ ∈ G.

The latter is what makes the method so efficient. Because it is based on a coarse FEM approximation, the NIRB
solution computation for the new parameter µ̃ is very inexpensive and thus allows to recover the full efficiency
of the classical RBM. The approximation is then improved in a very brief runtime by projection and rectification
onto the reduced space using a Reduced Basis (RB) of this space created independently during the offline part.
The FEM HF solutions calculated on Th are denoted by uh(µ), while the FEM solution approximations computed
on the coarse mesh TH are denoted by uH(µ).
The offline-online decomposition of this method is as follows:

• “Offline step”
The offline part can be thought as a learning procedure and allows us to construct the reduced space. All
expensive parts of the algorithm are performed during this step.

1. We begin by defining a large enough training set of parameters

Gtrain := ∪
i∈{1,...,Ntrain}

µi.

Then, in order to generate the reduced space, we use a greedy technique that selects appropriate pa-
rameters (µi)i=1,...,N within Gtrain. As it is standard in RBM framework, at each greedy iteration, the
new RB parameter in Gtrain is chosen such that its associated solution is the poorest approached by
the former basis space. The algorithm 1 describes this greedy procedure. Note that another way for
generating the RB is to use the Snapshots POD [38, 42, 40, 34].

In algorithm 1, inexpensive a-posteriori error estimates may replace
∥∥∥uh(µ)− Pk−1(uh(µ))

∥∥∥
L2

and re-

duce its computational time [5, 35, 6, 44, 37].

In practice, the greedy algorithm is halted with a stopping criterion such as an error threshold or
a maximum number of basis functions that can be generated. At the end of the algorithm (as in
algorithm 1 above), the space XN

h := Span{Φh
1 , . . . , Φh

N} is thus provided with an orthonormal basis.

2. Then, in order to stabilize the approximation we can propose, as an option, a new basis set: we solve
the following eigenvalue problem:

Find (Ψh, λ) ∈ (XN
h , R) such that:

∀v ∈ XN
h ,

∫

Ω
∇Ψh · ∇v dx = λ

∫

Ω
Ψh · v dx, (1)

We get an increasing sequence of eigenvalues λi, and orthogonal eigenfunctions (Φh
i )i=1,··· ,N , orthog-

onalized both in L2(Ω) and H1(Ω) that we choose to normalize in L2(Ω). It is worth noting that the
Gram-Schmidt method of the traditional greedy algorithm 1 yields only an L2(Ω)-orthonormalized
RB. As a result, as detailed in [21], it stabilizes the NIRB approximation with respect to N. For the
sake of simplicity, we continue to name Φ this improved reduce basis i.e. we set Φh

k = Ψh
k .
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1: Input: tol, {uh(µ1), · · · , uh(µNtrain
) with µi ∈ Gtrain}.

2: Output: Reduced basis {Φh
1 , · · · , Φh

N}.
3: Choose µ1 = argmax

µ∈Gtrain

∥∥uh(µ)
∥∥

L2(Ω) ,

4: Set Φh
1 = uh(µ1)

‖uh(µ1)‖L2(Ω)

.

5: Set G1 = {µ1} and X1
h = span{Φh

1}.
6: for k = 2 to N do
7: µk = arg max

µ∈Gtrain\Gk−1

∥∥∥uh(µ)− Pk−1(uh(µ))
∥∥∥

L2(Ω)
,

8: with Pk−1(uh(µ)) :=
k−1

∑
i=1

(uh(µ), Φh
i ) Φh

i .

9: Compute Φ̃h
k = uh(µk)− Pk−1(uh(µk)) and set Φh

k =
Φ̃h

k∥∥∥∥Φ̃h
k

∥∥∥∥
L2(Ω)

.

10: Set Gk = Gk−1 ∪ {µk} and Xk
h = Xk−1

h ⊕ span{Φh
k}.

11: Stop when
∥∥∥uh(µ)− Pk−1(uh(µ))

∥∥∥
L2(Ω)

≤ tol, ∀µ ∈ Gtrain.

12: end for
Algorithm 1: Greedy algorithm

3. Finally, as a further option, in order to improve the NIRB two-grid approximation, we can now employ
a post-treatment step. We remark that the projection of the coarse FEM solution onto XN

h differs from
the projection of the HF snapshot uh(µk) computed in the offline stage for any parameter of the RB
space µk, k = 1, . . . , N. Thus, we resort to the “rectification post-processing”, as introduced in [11], to
improve the NIRB accuracy.
To this purpose, we create a rectification matrix denoted R. This matrix is constructed from the HF
snapshots {uh(µk)}k=1,...,N and coarse snapshots generated on TH with the same parameters µk as for
the fine ones.
For all i = 1, · · · , N, and for all µk ∈ Gtrain, we define the coarse coefficients as

Ak,i =
∫

Ω
uH(µk) · Φh

i dx, (2)

and the fine coefficients as

Bk,i =
∫

Ω
uh(µk) · Φh

i dx. (3)

Then, we compute the vectors

Ri = (ATA + δIN)
−1ATBi, i = 1, · · · , N, (4)

where IN refers to the identity matrix and δ is a regularization parameter.

• “Online step”
The online part of the algorithm is much faster than a fine HF FEM evaluation.

1. We solve the problem P on the coarse mesh TH with the new parameter µ̃ ∈ G we are interested in.

2. Finally, the approximation used in the two-grid method (with the rectification post-treatment step) is

R[uN
Hh](µ̃) :=

N

∑
i,j=1

Rij (uH(µ̃), Φh
j ) Φh

i , (5)

where (R)ij = Rij is the rectification matrix, given by (4).

3



1.2 Main contributions

The original version of the NIRB method still suffers from the cost of the online step which is certainly reduced
by the use of the coarse grid but may still represent a high cost.

To summarize our contributions, we propose and implement two new ideas to reduce the costs of the algo-
rithm’s online component.

• The first one relies on the truncation of the coarse computational domain and the use of a second reduced
basis set. The method is described in section 2 and illustrated in 2.3 with several numerical results on a
model problem which is a classical fluid problem that of the Backward-Facing Step, described in section
2.2.

• Then, we propose a new strategy for improving NIRB approximation accuracy when dealing with domain
singularities without increasing online stage computational times. This is the purpose of the section 3.1
where we present new results on the BFS problem.

2 Domain truncation

The underlying idea is to consider that, for a parameterized PDE, posed on a domain Ω, some main characteristics
of its solution depend little on the exact shape of the domain. Some specificities of the domain must of course be
respected (e.g. distinctive aspects of the boundary, corners, edges, or aspect ratios) but one can think of reducing
the domain (allowing to reduce the number of degrees of freedom of the discretization). If, having thus reduced
the size of the domain, the two solutions for the same parameters of the PDE can be associated in a bijective way,
one can approach the first one (called virtual solution on the reduced domain) to intuit the second one (called
real solution on the initial domain). We propose to learn how to go from the virtual solution to the real solution.
To allow this learning, we will look at the solutions under the contracted form of their writing in reduced space...
hence the appearance of a second reduced basis associated to the solutions on the reduced domain.

2.1 Description of the Non-Intrusive Reduced Basis tool with domain truncations

Let us consider a “truth” domain Ω ∈ R
d with d ≤ 3 employed for the simulation, adapted to the parameterized

problem.
We then introduce ω ⊂ Ω, a truncation of Ω, reduced with fictitious boundaries. The NIRB method with the
domain truncation involves two partitioned meshes:

• the classical fine mesh Th on Ω,

• and one coarse mesh TH on ω,

where h and H are the respective sizes of the meshes and h << H. The size h (resp. H) is defined as

h = max
K∈Mh

hK(resp. H = max
K∈MH

HK), (6)

where the diameter hK (or HK) of any element K in a mesh is equal to sup
x,y∈K

|x − y|.

Let µ̃ ∈ G be the new parameter we are interested in.

• The “offline” part of the algorithm is costly in time but only done once.

1. Point 1 of the classical NIRB two-grid method remains the same (see section 1.1 and algorithm 1). We

generate the RB (Φh
i )i=1,...,N1

from suitable parameters (µ1, . . . , µN1
) ∈ GN1

train and the reduced space

X
N1
h = span{Φh

1 , . . . , Φh
N1
}.

Taking inspiration from [10], where two POD RB are used to reduce the condition number of the recti-
fication matrix (4), we create another RB. We generate this new RB denoted (ΦH

i )i=1,...,N2
from several

parameters (µ′
1, . . . , µ′

N2
) ∈ GN2

train. It is constructed on the coarse mesh TH by repeating point 1 again

but with the coarse snapshots instead of the fine ones. We denote by XN2
H = span{ΦH

1 , . . . , ΦH
N2
} the
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new reduced space approaching the manifold of the coarse solutions on the truncated domain ω ⊂ Ω.

The coarse solutions are represented by the coarse RB well (respectively the fine solutions with the
fine RB). The number of necessary basis functions N1 and N2 may be chosen thanks to a small a priori
given treshold (tol in algorithm 1). Note than point 2 of the classical NIRB two-grid method may be
applied for both RB to obtain H1 orthogonalized functions.

2. We deal with two kinds of coefficients:

– the fine ones, which correspond to the L2(Ω)-inner product of the fine snapshots with the fine RB
on the whole domain Ω,

– and the coarse coefficients, which are the L2(ω)-inner product of the coarse snapshots with the
coarse RB on the subdomain ω.

In analogy with the two-grid rectification post-treatment, we introduce a rectification matrix T which
allows us to go from the new coarse coefficients to the fine ones.
For all i = 1, · · · , N2, and for all µk ∈ Gtrain, we define these new coarse coefficients as

Ck,i =
∫

ω
uH(µk) · ΦH

i dx, (7)

and the fine coefficients are defined by (3) with N = N1.

The aim of this processing stage is to seek Ti minimizing‖CTi − Bi‖
2. The solution of this minimiza-

tion problem with a regularization parameter [41] are the rectification vectors:

Ti = (CTC + λIN2
)−1CTBi, ∀i = 1, · · · , N1, (8)

where λ is the regularization parameter.

• The “online” step is then performed on the coarse mesh TH , which is much less expensive than an HF
computation. The online part is even less computationally expensive than the usual NIRB online algorithm
because the coarse mesh is computed on ω ⊂ Ω and no interpolation is required to compute the coarse
coefficients (7). The coarse solution coefficient is then corrected using the matrix T before being projected
onto the fine RB.

Thus, it consists in:

1. solving the parameterized problem with the FEM solver on the coarse mesh TH for the new parameter
µ̃ ∈ G.

2. setting the new NIRB approximation as

T[uN
Hh ](µ) =

N1

∑
i=1

N2

∑
j=1

Tij (uH(µ̃), ΦH
j )L2(ω) Φh

i . (9)

2.2 A problem model: the 2D Backward Facing Step (BFS)

We consider the 2D Backward Facing Step (BFS) with steady Navier-Stokes. It simulates a fluid flowing through
a channel with a descending stair and constitutes an important test for numerical simulations in fluid mechanics.
It has been widely studied [16, 28, 15, 33, 19].

The flow is laminar and incompressible in our case, and the channel domain Ω∞ is assumed to be infinite,
with upper and lower walls. To cope with this infinite domain in simulations, we introduce artificial boundaries
and use Neumann boundary conditions on the channel’s exit border and Dirichlet conditions at the entrance.
Thus let us consider as our spatial domain Ω ⊂ Ω∞, the channel used for the simulations. The length of the
channel to simulate the flow is chosen such that we observe
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• a Poiseuille flow and a maximum velocity at the upstream of the channel,

• a vortex at the concave corner behind the step,

• and a Poiseuille flow at the backstream of the channel.

The artificial boundaries must not be too close, so as to not interfere with the modeling, and not too far, to avoid
too expensive calculations. The conditions on these artificial boundaries result from the modeling phase.

The channel Ω, which is already a truncation of the infinite channel Ω∞, is described by Ω = (0, L1]× (H1 −
H0, H1) ∪ (L1, L)× (0, H1) as shown in Figure 1.

H0Γin

L1

L

H1 Γout

X

Y

Z

Figure 1: The flow channel

Therefore, we consider the following parameter-dependent problem P as our model problem:
Find the velocity of the fluid u ∈ H1(Ω)2 and the pressure p ∈ L2(Ω), solutions of the steady Navier-Stokes
equation 




u.∇u − ν∆u +∇p = 0 on Ω,

∇.u = 0 on Ω,

u(x) =




4
H2

0

(
H1 − x2

)(
x2 − H1 + H0

)

0


 on Γin,

ν∂nu|Γ − pn = 0 on Γout,

u(x) = 0, on ∂Ω\(Γout ∪ Γin),

(10)

where x = (x1, x2) ∈ Ω, u = (u1, u2), and ν = 1
Re , Re being the Reynolds number. The solution of this problem is

uniquely defined by the data [ν, H0, L1, H1, L]. We consider

µ := Re ∈ G = [30, 300]

as the problem variable parameter. Note that, for Re > 300, there is no stable steady solution with the geometric
data we consider H0 = 0.5, H1 = 1, and L1 = 1.

2.3 Numerical results on the model problem

We have carried out numerical simulations for equations (10) in FreeFem++ (version 4.9) [25] with the Newton
algorithm for the numerical treatment of the nonlinear term, and classical Taylor-Hood finite elements P2 − P1.
The fine mesh size is equal to 0.03, and the coarse one to 0.21. We have used a finer mesh with a size equal to
0.016 as a surrogate for the solutions of reference in order to compute the errors accurately.

For the fine mesh Th, we have set the length of the channel (which does not change) to L = 5. Thus, in what
follows, L refers to the length of the subdomain ω. We recall that the Reynolds number Re ∈ G = [30, 300] is the
problem parameter, and the domain Ω is truncated according to L ∈ [1, 5] (remember that L ≤ L1 = 1). The size
of the coarse mesh H < 1 is such that H2 ≃ h. For instance, Figure 2 represents the two partitioned meshes with
L = 3 for the length of the coarse mesh.
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(a) Fine mesh on Ω, h = 0.03 (b) Coarse mesh on ω, H = 0.21

Figure 2: Fine and coarse meshes

When the Reynolds number increases, the recirculation after the step is expanded, as shown in Figure 3. Thus,
we also consider two subgroups of G:

G1 = [30, 150[ with G1,train = {30 + 15i, i = 0, . . . , 7}, (11)

G2 = [150, 300] with G2,train = {30 + 15i, i = 8, . . . , 18}, (12)

and G = [30, 300], Gtrain = G1,train ∪ G2,train,

from which we extract, with three greedy methods, three reduced bases of size N1 = 1, . . . , 8, N2 = 1, . . . , 11,
and N=1, . . . , 19.

Figure 3: Velocities (u1 and u2) for Reynolds=52 (left) and Reynolds=233 (right)

Then we have generated the FEM solutions of two new parameters in G: Re = 52 and Re = 233. The coarse
solutions for Re = 52 on the truncated subdomains with L = 1.2 and L = 3 are presented in Figure 4.

We have tried several values for the parameter L ∈ [1, 5]. In the following figures, we present the results
of the new NIRB algorithm in order to analyze its limits and observe the effects of domain truncations on the
phenomena. Our results diplay the H1 relative error

• between the ure f and the coarse and fine HF solutions,

• obtained by the classical NIRB algorithm of section 1.1, with the rectification postprocessing step (4), as
illustrated in Figure 5. With the classical NIRB (5), the error is given by

∥∥∥ure f (µ̃)− uN
Hh(µ̃)

∥∥∥
H1(Ω)∥∥∥ure f (µ̃)

∥∥∥
H1(Ω)

.
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Figure 4: Coarse velocities u1 (up), u2 (bottom), Re = 52 on the truncated domain with L = 3 (left), and with
L = 1.2 (right)

We find that the error between ure f (µ̃) and uh(µ̃) can be recovered if the new Reynolds parameter belongs
to the parameters group used for the RB generation. It requires 4 modes for an RB generated from the
group G, whereas 3 modes are sufficient for the parameter subgroups G1 and G2.

We present several tests with 3 different values for L:

• The first situation is with Ω = ω (no truncation). Figure 6 depicts the new NIRB error. With the group
G, only 3 and 4 modes are required to retrieve the fine solutions accuracy for Re = 52 and Re = 233,
respectively. With the subgroups G1 and G2 3 modes are sufficient in both cases. To make the presentation
of these results easier, we have first taken N1 = N2. This test provides more accurate results with the new
method (i.e. with (9)) than the classical rectified NIRB (i.e. with (5)) in the case of parameter extrapolation
(for example, Re = 52 with an RB generated from the subgroup G2). In fact, unlike the rectified classical
version, the error is almost recovered with Re = 52 (with 9 modes).

• Then, we have tested the new algorithm with L = 3. We get the same precision as with ω = Ω as shown in
Figure 7. However, if the new parameter does not belong to the RB subgroup range (G1 or G2), the error is
not recovered with Re = 52 and some instabilities are observed.

• Finally, the last tests have been carried out with L = 1.2. Because the recirculation area behind the step is
cut, this case is much more complex. As a consequence, the results show more instabilities. The importance
of λ in the new rectification process (8) is highlighted in this test. Indeed, we compare results obtained with
λ = 0 in Figure 8a to those carried out with λ = 10−10 in Figure 8b. With this regularization parameter, all
the errors remain stable, demonstrating the ability of this new algorithm to retrieve accurate approxima-
tions even with highly truncated domains.

To highlight the influence of N1 and N2, we compare the error between uh(µ̃) and the new NIRB approxima-
tion with L = 1.2, L = 3 and L = 5. The errors between the fine solution and the new NIRB approximation are
given by ∥∥∥uh(µ̃)− T[uN

Hh ](µ̃)
∥∥∥

H1(Ω)∥∥uh(µ̃)
∥∥

H1(Ω)

. (13)

They are presented using heatmaps. Figure 9 presents the results with ω = Ω. Although there may be some
instabilities when the matrix CTC (8) is inverted, as we can see with N2 = 18 with λ = 0, the error reaches a

8



(a) Re = 52

(b) Re = 233

Figure 5: classical NIRB errors with the rectification postprocessing step
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Figure 6: FEM vs NIRB errors: between the reference solution and the NIRB approximations (classical algorithm
with rectification vs new NIRB algorithm with ω = Ω) compared to FEM projection errors (dotted lines), tests
with the new parameters Re = 52 (left) and Re = 233 (right) (λ = 0).

Figure 7: FEM vs NIRB errors: between the reference solution and the NIRB approximations (classical algorithm
with rectification vs new NIRB algorithm with ω ⊂ Ω) with L = 3 compared to FEM projection errors (dotted
lines), tests with the new parameters Re = 52 (left) and Re = 233 (right) (λ = 0).
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(a) λ = 0

(b) λ = 10−10

Figure 8: FEM vs NIRB errors: between the reference solution and the NIRB approximations (classical algorithm
with rectification vs new NIRB algorithm with ω ⊂ Ω) with L = 1.2 compared to FEM projection errors (dotted
lines), tests with λ = 0 (left) and λ = 10−10 (right).
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lower threshold than with the classical rectified NIRB approximation. As shown in Figure 10, the term λ set to
10−10 allows us to stabilize the errors. We remark in Figure 11 that with L = 3, the errors (13) remain smaller
than the obtained from the classical NIRB with rectification, with both Reynolds and still quite low when L = 1.2
(Figure 12 and Figure 13). Table 1 shows its great ability to reduce computational times.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
N2

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

N
1

   H1 relative error with the whole domain domain L=5

10−6

10−5

10−4

10−3

10−2

10−1

(a) Re = 52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
N2

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

N
1

   H1 relative error with the whole domain domain L=5

10−7

10−6

10−5

10−4

10−3

10−2

10−1

(b) Re = 233

Figure 9: Error of the new NIRB algorithm with ω = Ω (no truncation, L = 5)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
N2

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

N
1

   H1 relative error with the whole domain and with λ= 1e− 10

10−5

10−4

10−3

10−2

10−1

Figure 10: NIRB relative H1 errors with the new algorithm ω = Ω (L = 5), λ = 10−10, Re = 52.

We end this section with the new NIRB errors (for u1 and u2) and the new NIRB approximations with L = 3
and Re = 52, N1 = 7, N2 = 8 (Figure 14).

We present the FEM and NIRB runtimes in table 1.

3 NIRB with domain singularities

3.1 Adaptation of the new method to the problem

There are numerous studies on the behaviour of the solutions to elliptic PDE’s in domain with re-entrant corners
and domain singularities in the literature [7, 4, 46, 45, 31, 29, 13, 20]. The solution lacks regularity and thus,
classical uniform regular triangulations do not allow for an approximation with the optimal rate of convergence.

In the case of our numerical analysis in the previous section, because the channel has one re-entrant corner in
the BFS problem, it generates a local singularity on the FEM solution. It implies that the latter does not globally
lie in H2(Ω). In fact, the solution belongs to H1.54448(Ω) (see, e.g. [3]) . Thus, a standard FEM yields reduced
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Figure 11: Error of the new NIRB algorithm with ω ⊂ Ω λ = 0 and G: L = 3
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Figure 12: Error of the new NIRB algorithm for the new Reynolds number Re = 52 with G1: L = 3 and λ = 0
(left) and with L = 1.2 and λ = 10−10 (right)

Table 1: FEM runtimes min:sec

FEM high fidelity solver FEM coarse solution
00:43 00:01

NIRB Offline (N = 18) classical NIRB online
14:30 00:10

new NIRB offline (N1 = N2 = 18) new NIRB online

ω = Ω 14:52 00:10

L = 3 14:52 00:09

L = 1.2 14:50 00:09
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Figure 13: Error of the new NIRB algorithm for the new Reynolds number Re = 233 with G2: L = 3 and λ = 0
(left) and with L = 1.2and λ = 10−10 (right)

Figure 14: N1 = 7 and N2 = 8, L = 3, Re = 52 new NIRB error (left) and approximation (right)
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convergence rates and the following estimates hold for any µ ∈ G with an uniform mesh of size h :





∥∥u(µ)− uh(µ)
∥∥

H1(Ω) ≤ Ch0.54448
∥∥ f

∥∥
L2(Ω) ,∥∥u(µ)− uh(µ)

∥∥
L2(Ω)

≤ Ch1.08896
∥∥ f

∥∥
L2(Ω)

,

as observed in Figure 15 with the H1 semi-norm and the L2 error between the reference and the coarse meshes
with the Reynolds number Re = 52.

To better approach the solution of such problems and compensate the effects of singularities, most methods
rely on adaptive refinements in the vicinity of the singularities, which complicates the resolution of the discrete
system, which may not be desirable in the online phase of a NIRB method.

We propose here to follow the same paradigm as in the previous section based on the fair representation of
the coarse approximation in terms of its coefficients in a reduced basis that, by a learning appraoch, allows to
retrieve a fine and accurate solution.

The strategy is thus to build, in the first “offline” stage of the NIRB method, an accurate reduced basis relying
on an adapted mesh, to correctly capture the singularity and the recirculation zone near the domain reentrant
corner. Other methods can also be used. For instance, we may supplement the classical FE basis with singular
functions (xFEM) [17, 39]. Another approach employs boundary element methods [29]. We have used an adap-
tative mesh refinement strategy because they are widely used [1, 4]. They may be based on a-posteriori error
estimates [6, 43, 14].

Then we use a coarse uniform mesh “online” to compute an approximate solution (that suffers from the above
lack of optimal convergence) that is transformed in a reduced basis representation.

We summarize the offline/online strategy:

1. During the “offline” stage, the fine mesh is refined around the re-entrant corners in order to obtain accurate
results. Then the offline part of the classical NIRB two-grid with rectification (section 1.1) or its new version
with two RB and an appropriate domain truncation (section 2) is applied with this mesh.

2. Then, during the “online” part, the coarse approximation is computed on a uniform coarse mesh, and
projected and rectified onto the reduced space XN

h .

3.2 Numerical results

To summarize, in our tests (10), we have employed three meshes:

• a uniform coarse mesh for the coarse FEM approximation,

• a fine mesh refined around the re-entrant corner for the fine snapshots generation,

• and a highly refined mesh for the reference solution to represent the exact solution.

These refinements have been done in FreeFem++ with the “adaptmesh” function. It uses a variable metric/De-
launay automatic meshing algorithm [25, 26] (bamg software). With the refinement, the fine mesh size is now
defined as

h = min
K∈Mh

hK,

where the diameter hK of any element K in a mesh is equal to sup
x,y∈K

|x − y|, K ∈ Th. With this definition, the

reference mesh size is equal to 2.54× 10−5.

We have generated N1 = N2 = N = 6 snapshots (Re = 5+ 20i, i = 0, . . . , 5) and have tested the new algorithm
detailed in section 2 with the truncation parameter L = 3 (ω ⊂ Ω).

We have experimented four fine meshes with a refinement in the vicinity of the re-entrant corner, as in
Figure 17a. We have then used a uniform coarse mesh of size H ≃ 0.32 and then an even coarser uniform coarse
mesh of size H ≃ 0.70 as in Figure 16a. We compare in table 2 the classical NIRB approximation (with the
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Figure 15: Display of the convergence in H1 (left) and L2 (right) of the discrete solution error computed on
different uniform grids

rectification post-treatment) with the new approach (Ω = ω and ω ⊂ Ω). The three NIRB methods recover the
fine (refined) mesh accuracy (note that the original NIRB method benefits from the rectification step, indeed,
without it, the inaccuracy resulting from the use of a coarse uniform mesh would prevent to recover the fine
accuracy).

Table 2: relative errors with the semi H1-norm, refined meshes N1 = N2 = N = 6 with λ = 0

NIRB with H = 0.320156 NIRB with H = 0.707107

h FEM
with
the fine
refined
mesh

NIRB +
Rectifi-
cation

New
NIRB
ω = Ω

New
NIRB
with
L = 3
(ω ⊂ Ω)

NIRB +
Rectifi-
cation

New
NIRB
ω = Ω

New
NIRB
with
L = 3
(ω ⊂ Ω)

1.99E−4 1.93E−3 1.93E−3 1.93E−3 1.93E−3 1.93E−3 1.93E−3 1.95E−3

1.79E−4 1.70E−3 1.71E−3 1.71E−3 1.71E−3 1.71E−3 1.71E−4 1.73E−3

1.02E−4 9.72E−4 9.73E−4 9.73E−4 9.74E−4 9.74E−4 9.74E−4 9.81E−4

5.09E−5 5.39E−4 5.42E−4 5.42E−4 5.42E−4 5.43E−4 5.42E−4 5.42E−4

These results are thus promising and illustrate the relevance of this approach.

3.2.1 Time execution (min,sec)

We present the FEM and NIRB runtimes with the meshes as in table 16 for the fine mesh and table 17 for the
coarse one, in table 3.

Table 3: FEM runtimes min:sec

FEM HF solver FEM coarse solution H = 0.32
01:24 00:01

NIRB Offline (N = 6) NIRB online
08:34 00:16
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(a) Coarse uniform mesh (H = 0.1414) (b) FEM coarse approximation (Magnitude)

Figure 16: FEM coarse mesh and solution

(a) Example of fine refined mesh (h = 0.00010187) (b) FEM fine approximation (Magnitude)

Figure 17: FEM fine mesh and solution

4 Conclusion

We have presented in this paper a new NIRB approach based

• on the construction of two reduced basis: one from some fine and accurate approximation of the solution
manifold and one from a coarse approximation,

• and on a truncation of the spatial domain for the coarse approximation.

This new method allows us to use a much coarser mesh during the online stage of the two-grid algorithm, com-
pared to the original method. Indeed, the truncation of the coarse mesh allows to further reduce its complexity.
This is what makes this approach so efficient in time. Yet, its size and the domain truncations must be physically
acceptable so that there still exist a bijection between the coarse approximations and the associated fine and
accurate ones. From the reduced basis coarse components we recover the components of the solution in the fine
reduced basis through a deterministic processing stage.

We have applied this new process to the well-known 2D BFS, and obtained the same accuracy than the one
given by the fine solutions, while using several truncations.

In the original NIRB two-grid algorithm, the coarse solution needs to be interpolated onto the fine mesh in
order to compute the L2-projection onto the reduced space XN

h . Note that the interpolating matrix can be com-
puted during the offline stage but is nevertheless complex. Here with this new algorithm, no interpolation is
needed, and in particular, the L2-inner product between the coarse solution and the coarse RB is performed on
the coarse mesh only.

We even closely consider the effect of the HF simulation involving a mesh refinement to further deal with the
singularity of the BFS domain (section 3.1). We numerically show that both the NIRB approaches (original NIRB
with rectification and the new tool) allow us to recover the fine FEM accuracy, despite the fact that the coarse
approximation is using a uniform (coarse) mesh as observed in table 3.
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We believe that this new method may be successfully applied to a wide variety of problems, with complex
domains having large number of degrees of freedom, and therefore the computational times will be significantly
reduced with a truncated domain.
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Série I, Mathématique, 339-9:667–672, 2004.
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