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CONTINUOUS LAMBERTIAN SHAPE FROM SHADING: A PRIMAL-DUAL
ALGORITHM

Hamza Ennaji1, Noureddine Igbida1,* and Van Thanh Nguyen2

Abstract. The continuous Lambertian shape from shading is studied using a PDE approach in terms
of Hamilton–Jacobi equations. The latter will then be characterized by a maximization problem. In
this paper we show the convergence of discretization and propose to use the well-known Chambolle–
Pock primal-dual algorithm to solve numerically the shape from shading problem. The saddle-point
structure of the problem makes the Chambolle–Pock algorithm suitable to approximate solutions of
the discretized problems.
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1. Introduction

Shape from Shading (SfS) consists in reconstructing the 3𝐷 shape of an object from its given 2𝐷 image
brightness. The shape of a surface 𝑢(𝑥1, 𝑥2) is related to the image brightness I(𝑥1, 𝑥2) by the Horn image
irradiance equation [27]:

ℛ(n(𝑥1, 𝑥2)) = I(𝑥1, 𝑥2), (1.1)

where I(𝑥1, 𝑥2) is the brightness greylevel measured in the image at point (𝑥1, 𝑥2); ℛ(n(𝑥1, 𝑥2)) is the reflectance
map and n(𝑥1, 𝑥2) is the unit normal at point (𝑥1, 𝑥2, 𝑢(𝑥1, 𝑥2)) given by

n(𝑥1, 𝑥2) =
1√︀

1 + |∇𝑢(𝑥1, 𝑥2)|2
(−𝜕𝑥1𝑢(𝑥1, 𝑥2),−𝜕𝑥2𝑢(𝑥1, 𝑥2), 1).

In (1.1), the brightness function I(𝑥1, 𝑥2) is known since it is measured at each pixel of the brightness image.
The implicit unknown is the surface 𝑢(𝑥1, 𝑥2), which has to be reconstructed.

In the case where the 2𝐷 brightness image is obtained via a camera performing an orthographic projection of
a Lambertian surface with constant albedo equal to 1, that is, the brightness map I is equal to the cosine of the
angle between the normal vector n to the surface and the direction of the source of light, the maximal brightness
is equal to 1 and the minimal one is 0 (see e.g. [35]). In that case, if we suppose that the surface is illuminated by
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a simple distant light source of direction ℓ = (𝑤1, 𝑤2, 𝑤3) ∈ R3, one has ℛ(n(𝑥1, 𝑥2)) = n(𝑥1, 𝑥2) · (𝑤1, 𝑤2, 𝑤3)
and, by (1.1),

I
√︀

1 + |∇𝑢|2 + (∇𝑢,−1) · ℓ = 0. (1.2)

This equation falls into the scope of Hamilton–Jacobi (HJ) equations

𝐻(x,∇𝑢) = 0 in Ω, (1.3)

where the Hamiltonian 𝐻 is defined by 𝐻(x,p) = I
√︀

1 + |p|2 + (p,−1) · ℓ, Ω ⊂ R2 is the image domain and
x = (𝑥1, 𝑥2) is an image point. In particular, if the object is vertically enlightened, i.e. ℓ = (0, 0, 1), one obtains
the standard Eikonal equation

|∇𝑢(𝑥1, 𝑥2)| =

√︃
1

I2(𝑥1, 𝑥2)
− 1. (1.4)

As pointed out in [17] (see also [44]), there are three major families of numerical methods allowing the
resolution of the SfS problem. Namely, PDE methods (cf. [4, 9, 21,22,34,39–41,43]), optimization methods (cf.
[15, 16,29,40]) and approximating the image irradiance equation (cf. [26, 36,37]).

We are here interested in the study of the PDE formulation in terms of Hamilton–Jacobi equations (1.3).
The theory of viscosity solutions [13,14,33] provides a suitable framework to study equations of the form (1.3).
Applications of the viscosity theory to the SfS problem go back to the works of Lions et al. [34,41] and the work
of Prados et al. [39]. In addition, a lot of work was done to deal with more realistic and complicated models
(see e.g. [2, 12, 42] and the references therein). Several difficulties arise while dealing with the SfS problem,
namely compatibility of boundary conditions and the degeneracy of the Hamiltonian. It is well known that
for (1.3) coupled with the boundary condition 𝑢 = 𝑔 on 𝜕Ω, to admit a solution one needs to check that
𝑔(x)− 𝑔(y) ≤ 𝑑𝜎(y,x) for all x,y ∈ 𝜕Ω, where 𝑑𝜎 is the intrinsic distance associated to the Hamiltonian, which
will be defined later. In addition, imposing only boundary conditions is not sufficient to ensure the uniqueness
of solution to the Hamilton–Jacobi equations (1.3). It turns out that the set of degeneracy of the distance 𝑑𝜎,
called the Aubry set, plays the role of a uniqueness set for (1.3) (see e.g. [23]). In the case of Eikonal equation
(1.4), the Aubry set 𝒜 can be taken as the zero set [𝑘 = 0] of 𝑘 =

√︀
I−2 − 1. In other words, it corresponds

to the points with maximal intensity I, i.e. I(𝑥1, 𝑥2) = 1 so that the right hand side in (1.4) vanishes. Most
of the authors (cf. [7, 39, 41] for example) choose to regularize the equation to avoid these points. We will not
encounter this difficulty in our approach since we do not need to deal with the inverse of possibly vanishing
functions. We only need to perform projections onto Euclidean balls whose radii may be equal to zero. Recall
that the degeneracy of the Hamiltonian is intimately related to the so called concave/convex ambiguity [28,43]
where two different surfaces may have the same brightness I so that the reconstructed shape may be different
from the original one. In the present paper, as in [7,8], this can be tackled by looking for the maximal viscosity
subsolution.

In this paper, following our approach in [19], we will characterize the maximal viscosity subsolution of (1.3) in
terms of a concave maximization problem. We then associate it with a dual problem and exploit the saddle-point
structure to approximate the solution of (1.3) using the Chambolle–Pock (CP) algorithm. Our approach lies
between the PDE and optimization methods, since we start by characterizing the maximal viscosity subsolution
of the HJ equation thanks to the intrinsic metric of the Hamiltonian and we end up with an optimization
problem under gradient constraint. Moreover, the convergence of discretization is also studied in detail.

The paper is organized as follows. In Section 2, we start by recalling briefly some notions on HJ equations,
and we present the maximization problem following [19] as well as related duality results in continuous setting.
Section 3 is devoted to the discretization issue and the proof of convergence. We show how to apply the CP
algorithm and present some numerical results to illustrate our approach in Section 4.
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2. Maximization problem and duality in continuous setting

Notations

Throughout this paper, Ω is a bounded regular domain of R𝑁 (𝑁 = 2 in Sect. 4). We denote by 𝒟(Ω) the
space of functions 𝑢 ∈ 𝐶∞(Ω) with compact support in Ω, and 𝒟′(Ω) the space of distributions in Ω. We use
the standard notation for the Sobolev spaces

𝐻1(Ω) =
{︀
𝑢 ∈ 𝐿2(Ω) : ∇𝑢 ∈ 𝐿2(Ω)

}︀
,

and 𝐻1
0 (Ω) = 𝒟(Ω), the closure of 𝒟(Ω) in 𝐻1(Ω). Recall that there exists a unique linear and continuous

mapping 𝛾0 : 𝐻1(Ω) → 𝐿2(𝜕Ω) such that 𝛾0(𝑢) = 𝑢|𝜕Ω for all 𝑢 ∈ 𝐻1(Ω) ∩ 𝐶(Ω). We define 𝐻1/2(𝜕Ω) =
𝛾0(𝐻1(Ω)) and 𝐻−1/2(𝜕Ω) its dual. We recall the space

𝐻div(Ω) =
{︀
𝜑 ∈ 𝐿2(Ω)𝑁 : div(𝜑) ∈ 𝐿2(Ω)

}︀
.

There exists a continuous trace operator 𝛾𝜈 : 𝐻div(Ω) → 𝐻−1/2(𝜕Ω) such that 𝛾𝜈(𝜑) = 𝜑·𝜈 for any 𝜑 ∈ 𝒟(Ω)𝑁 ,
where 𝜈 is outward unit field normal to 𝜕Ω. This being said, we have thanks to Gauss’s Theorem

⟨𝛾0(𝑢), 𝛾𝜈(𝜑)⟩𝐻1/2,𝐻−1/2 =
∫︁

Ω

𝜑 · ∇𝑢d𝑥 +
∫︁

Ω

𝑢div(𝜑)d𝑥 for all 𝑢 ∈ 𝐻1(Ω),𝜑 ∈ 𝐻div(Ω).

Finally, we denote by ℳ𝑏(Ω)𝑁 the space of R𝑁 -valued finite Radon measures on Ω.
For the rest of this section we recall the metric character of HJ equations, and introduce duality results,

which will be useful to the proof of convergence of discretization in Section 3.

2.1. Metric character of HJ equations

Let 𝐻 : Ω × R𝑁 → R be a continuous Hamiltonian satisfying the three following assumptions, for x ∈
Ω, 𝑍(x) := {p ∈ R𝑁 : 𝐻(x,p) ≤ 0},

(H1) coercivity: 𝑍(x) is compact;
(H2) convexity: 𝑍(x) is convex;
(H3) 𝐻(x, 0) ≤ 0, i.e. 0 ∈ 𝑍(x).

We consider the following HJ equation

𝐻(x,∇𝑢) = 0, x ∈ Ω. (2.1)

A continuous function 𝑢 : Ω → R is said to be a viscosity subsolution (respectively supersolution) of (2.1) if
𝐻(x,∇𝜑(x)) ≤ 0 (respectively 𝐻(x,∇𝜑(x)) ≥ 0) for any x ∈ Ω and any 𝐶1 function 𝜑 such that 𝑢 − 𝜑 has
a strict local maximizer (respectively minimizer) at x. Finally, 𝑢 is a viscosity solution of (2.1) if it is both a
subsolution and a supersolution. We denote by 𝒮−𝐻(Ω) (respectively 𝒮+

𝐻(Ω)) the family of viscosity subsolutions
(respectively supersolutions) of (2.1).

For x ∈ Ω, we define the support function of the 0-sublevel set 𝑍(x) by

𝜎(x,q) := sup q · 𝑍(x) = sup{q · p | p ∈ 𝑍(x)} for q ∈ R𝑁 . (2.2)

The assumptions (H1)–(H3) ensure that 𝜎 is a possibly degenerate Finsler metric, i.e., 𝜎 is a continuous
nonnegative function in Ω×R𝑁 , convex and positively homogeneous with respect to the second variable q. Due
to the assumption (H3), 𝜎(x,q) can possibly be equal to 0 for q ̸= 0, which leads to the degeneracy and its
dual 𝜎*, as defined below, may take the value +∞. Here, the dual 𝜎* (also called polar) is defined by

𝜎*(x,p) := sup
q
{p · q | 𝜎(x,q) ≤ 1}. (2.3)
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Let us define the intrinsic distance by

𝑑𝜎(x,y) := inf
𝜁∈Lip([0,1];Ω)
𝜁(0)=x,𝜁(1)=y

∫︁ 1

0

𝜎(𝜁(𝑡), 𝜁(𝑡))d𝑡, (2.4)

which is a quasi-distance, i.e. satisfying 𝑑𝜎(x,x) = 0 and the triangular inequality, but not necessarily symmetric.
We summarize some basic characterizations of subsolutions in terms of the intrinsic distance 𝑑𝜎.

Proposition 2.1 ([19,23,30]).

(1) Compatibility condition: 𝑣 ∈ 𝒮−𝐻(Ω) if and only if 𝑣(x)− 𝑣(y) ≤ 𝑑𝜎(y,x) for any x,y ∈ Ω.
(2) We have

𝑢(x)− 𝑢(y) ≤ 𝑑𝜎(y,x) ⇐⇒ 𝜎*(x,∇𝑢) ≤ 1 a.e. in Ω.

2.2. A maximization problem and duality

Given a closed subset 𝐷 ⊂ Ω (typically 𝐷 = 𝜕Ω or 𝐷 = {x} for some x ∈ Ω), we consider the following HJ
equation {︃

𝐻(x,∇𝑢) = 0 in Ω ∖𝐷

𝑢 = 𝑔 on 𝐷
(2.5)

where 𝑔 : 𝐷 → R is a continuous function satisfying the compatibility condition

𝑔(x)− 𝑔(y) ≤ 𝑑𝜎(y,x) for any x,y ∈ 𝐷. (2.6)

Thanks to Proposition 2.1, the following result allows us to approach the SfS problem via a maximization
problem.

Theorem 2.2 ([19]). The unique maximal viscosity subsolution of the problem (2.5) can be recovered via the
following maximization problem

(M) := max
𝑢∈𝑊 1,∞(Ω)

{︂∫︁
Ω

𝑢(x)dx, 𝜎*(x,∇𝑢(x)) ≤ 1 and 𝑢 = 𝑔 on 𝐷

}︂
. (2.7)

This problem can be linked to the following dual problem. For simplicity, we will state it for the case 𝐷 = 𝜕Ω
(which is essentially the case for the numerical examples in Sect. 4.3).

Theorem 2.3. Under the assumptions (H1)–(H3) we have

max
𝑢∈𝑊 1,∞(Ω)

{︂∫︁
Ω

𝑢(x)dx, 𝜎*(x,∇𝑢(x)) ≤ 1 and 𝑢 = 𝑔 on 𝜕Ω
}︂

= inf
𝜑∈𝐿2(Ω)𝑁

{︂∫︁
Ω

𝜎(x,𝜑(x))dx− ⟨𝑔,𝜑 · 𝜈⟩𝐻1/2,𝐻−1/2 : −div(𝜑) = 1 in 𝒟′(Ω)
}︂

:= (OF).
(2.8)

Proof. To prove the duality between (M) and (OF) in Theorem 2.3, we use a perturbation technique as follows.
Define on 𝐿2(Ω)𝑁 the following functional

𝐸(p) := − sup
{︂∫︁

Ω

𝑢(x)dx : 𝑢 ∈ Lip(Ω), 𝜎*(x,∇𝑢(x)− p(x)) ≤ 1, 𝑢 = 𝑔 on 𝜕Ω
}︂

.

Then, one can check that 𝐸 is convex and lower semicontinuous. To compute 𝐸* we start by observing that
since 𝑢 = 𝑔 on 𝜕Ω, we can assume thanks to trace lifting Theorem (see e.g. [6], Thm. III.2.22) that 𝑔 = 𝛾0(𝑤)
for some 𝑤 in 𝐻1(Ω), and 𝑢 = 𝜉 + 𝑤 with 𝜉 ∈ 𝐻1

0 (Ω) ∩ 𝑊 1,∞(Ω), where 𝛾0 : 𝐻1(Ω) → 𝐿2(𝜕Ω) is the trace
operator on 𝐻1(Ω).
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We then have for any 𝜑 ∈ 𝐿2(Ω)𝑁 :

𝐸*(𝜑) = sup
p∈𝐿2(Ω)𝑁

∫︁
Ω

𝜑(x) · p(x) dx− 𝐸(p)

= sup
p∈𝐿2(Ω)𝑁 ,𝜉∈𝐻1

0 (Ω)

{︂∫︁
Ω

𝜑(x) · p(x) dx +
∫︁

Ω

𝜉(x)dx +
∫︁

Ω

𝑤(x)dx : 𝜎*(x,∇(𝜉 + 𝑤)− p) ≤ 1
}︂

.

Set q = ∇(𝜉 + 𝑤)− p we get p = ∇(𝜉 + 𝑤)− q, we then have

𝐸*(𝜑) = sup
q∈𝐿2(Ω)𝑁 ,𝜉∈𝐻1

0 (Ω)

{︂∫︁
Ω

𝜑 · (∇(𝜉 + 𝑤)− q)dx +
∫︁

Ω

𝜉dx +
∫︁

Ω

𝑤dx : 𝜎*(x,q(x)) ≤ 1
}︂

= sup
𝜉∈𝐻1

0 (Ω)

q∈𝐿2(Ω)𝑁 , 𝜎*(x,q(x))≤1

{︂∫︁
Ω

𝜑 · ∇𝜉dx +
∫︁

Ω

𝜉dx +
∫︁

Ω

𝜑 · ∇𝑤dx +
∫︁

Ω

𝑤dx−
∫︁

Ω

𝜑 · qdx
}︂

.

The last quantity is finite if we impose that
∫︀
Ω
𝜑 · ∇𝜉dx +

∫︀
Ω

𝜉dx = 0 for all 𝜉 ∈ 𝐻1
0 (Ω), which means that

−div(−𝜑) = 1 and consequently 𝜑 ∈ 𝐻div(Ω). Thus the normal trace of 𝜑 is well-defined and 𝜑·𝜈 ∈ 𝐻−1/2(𝜕Ω).
Taking 𝜇 = −𝜑 · 𝜈, then −div(−𝜑) = 1− 𝜇 in 𝒟′(R𝑁 ) and therefore, for such a 𝜑, integrating by parts we get

𝐸*(−𝜑) = sup
q∈𝐿2(Ω)𝑁

{︂∫︁
Ω

𝜑 · q dx : 𝜎*(x,q(x)) ≤ 1
}︂

+ ⟨𝑤, 𝜇⟩𝐻1/2,𝐻−1/2

=
∫︁

Ω

𝜎(x,𝜑)dx− ⟨𝑔,𝜑 · 𝜈⟩𝐻1/2,𝐻−1/2 .

(2.9)

Finally,
max (M) = −𝐸(0) = −𝐸**(0) = − sup

𝜑∈𝐿2(Ω)𝑁

−𝐸*(−𝜑) = inf
𝜑∈𝐿2(Ω)𝑁

𝐸*(−𝜑) = inf (OF),

as desired. �

Remark 2.4. Notice here that the proof remains to be true also for the general maximization problem

max
𝑢∈𝑊 1,∞(Ω)

{︂∫︁
Ω

𝑢(x) 𝜌(x)dx, 𝜎*(x,∇𝑢(x)) ≤ 1 and 𝑢 = 𝑔 on 𝜕Ω
}︂

,

where 𝜌 ∈ 𝐿2(Ω). See that dealing with this duality, the trace of the dual variable 𝜑 on the boundary plays an
important role in the dual problem. For the context of general Radon measure 𝜌, one can see the paper [19]. In
this case one needs to deal with technical functional space 𝒟ℳ𝑝(Ω) (space of vector fields 𝜑 ∈ 𝐿𝑝(Ω)𝑁 whose
divergence are bounded measures). On such a space, one can give a sense to 𝜑 · 𝜈, the normal trace of 𝜑 on 𝜕Ω
(cf. [19]). For a different duality approach with free Radon measure boundary trace one can see the paper [20].

Remark 2.5. The so-called Aubry set, denoted by 𝒜, is defined as the set where the quasi-distance 𝑑𝜎 degen-
erates, i.e. it fails to be equivalent to the Euclidean one. More precisely, the Aubry set consists of points 𝑥 ∈ Ω
such that there exists cycles (𝜁𝑛)𝑛 ∈ Lip([0, 1]; Ω) with 𝜁𝑛(0) = x and 𝜁𝑛(1) = y, with positive Euclidean length,
i.e. 𝑙(𝜁𝑛) > 𝛿 > 0 for some 𝛿 > 0 and

inf
𝑛

{︂∫︁ 1

0

𝜎(𝜁𝑛(𝑡), 𝜁𝑛(𝑡))d𝑡

}︂
= 0.

Prescribing a boundary value on 𝜕Ω does not guarantee the uniqueness of viscosity solutions to (2.1) unless
if 𝒜 = ∅. The Aubry set 𝒜 appears then to be a uniqueness set for (2.1) (see [23] for details).
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Figure 1. An object and its occluding boundary.

As a typical example, for the case of the vertical light ℓ = (0, 0, 1) and 𝑢 = 0 on 𝜕Ω, the orthographic SfS
problem amounts to solve the following Eikonal equation{︂ |∇𝑢| = 𝑘 in Ω

𝑢 = 0 on 𝜕Ω
(2.10)

where 𝑘(x) =
√︁

I−2(x)− 1. In this case, the duality in Theorem 2.3 reads as

max
𝑢∈𝑊 1,∞(Ω)

{︂∫︁
Ω

𝑢dx : |∇𝑢| ≤ 𝑘, 𝑢 = 0 on 𝜕Ω
}︂

= inf
𝜑∈𝐿2(Ω)𝑁

{︂∫︁
Ω

𝑘(x)|𝜑|dx : −div(𝜑) = 1 in 𝒟′(Ω)
}︂

. (2.11)

The Aubry set 𝒜 can then be taken as the zero set [𝑘 = 0] of 𝑘 =
√︀

I−2 − 1, which corresponds to the points
with maximal intensity I, i.e. I(x) = 1 so that 𝑘(x) vanishes. As we will see in the next section, dealing with
nonempty Aubry set does not represent an obstacle in our approach. Contrary to the works (e.g. [7, 39, 41])
where the authors approximate the degenerate HJ equation via non-degenerate one (typically, by considering
(2.10) with 𝑘𝜖 = max(𝑘, 𝜖) for 𝜖 > 0), the only step where we deal with degeneracy points is the projection onto
a ball of radius 𝑘, which may be equal to zero.

Remark 2.6 (Boundary conditions). It is well known that a natural choice for boundary conditions is the
Dirichlet boundary condition. As pointed out in [17], the images we will consider in this paper contain an
occluding boundary (see Fig. 1) which will be taken as the boundary 𝜕Ω. Particularly, assuming that the object
is placed on a flat table suggests taking 𝑢 = 0 on 𝜕Ω or more generally, if the height 𝑔 of the surface on which
is placed is known one can take 𝑢 = 𝑔 on 𝜕Ω.

3. Discretization

In this section we focus on the the discretized (finite-dimensional) problems associated with the problems
(M) and (OF).

3.1. Discretization of the domain and operators

Let Ω ⊂ R𝑁 with 𝑁 = 2 in the case of an image, which can be taken as Ω = [0, 1]2. Following [10], we
discretize the domain Ω using a regular grid 𝑚 × 𝑛: {(𝑖ℎ, 𝑗ℎ) : 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} for a fixed ℎ > 0. We
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denote by 𝐷𝑑 = {(𝑖, 𝑗) : (𝑖ℎ, 𝑗ℎ) ∈ 𝐷} the indexes whose spatial positions belong to 𝐷 and by 𝑢𝑖,𝑗 the values of
𝑢 at (𝑖ℎ, 𝑗ℎ). The space 𝑋 = R𝑚×𝑛 is equipped with a scalar product and an associated norm as follows:

⟨𝑢, 𝑣⟩ = ℎ2
𝑚∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑢𝑖,𝑗𝑣𝑖,𝑗 and ‖𝑢‖ =
√︀
⟨𝑢, 𝑢⟩.

For 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛, we define the components of the discrete gradient operator via finite differences:

(∇ℎ𝑢)1𝑖,𝑗 =

{︃
𝑢𝑖+1,𝑗−𝑢𝑖,𝑗

ℎ if 𝑖 < 𝑚

0 if 𝑖 = 𝑚
, (∇ℎ𝑢)2𝑖,𝑗 =

{︃
𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

ℎ if 𝑗 < 𝑛

0 if 𝑗 = 𝑛.
(3.1)

Then the discrete gradient ∇ℎ : 𝑋 −→ 𝑌 = R𝑚×𝑛×2 given by (∇ℎ𝑢)𝑖,𝑗 =
(︁

(∇ℎ𝑢)1𝑖,𝑗 , (∇ℎ𝑢)2𝑖,𝑗
)︁

. Similar to the
continuous setting, we define a discrete divergence operator divℎ : 𝑌 → 𝑋, which is the minus of the adjoint of
∇ℎ, given by divℎ = −∇*ℎ. That is, ⟨−divℎ𝜑, 𝑢⟩𝑋 = ⟨𝜑,∇ℎ𝑢⟩𝑌 for any 𝜑 = (𝜑1, 𝜑2) ∈ 𝑌 and 𝑢 ∈ 𝑋. It follows
that div is explicitly given by (see e.g. [10])

(divℎ 𝜑)𝑖,𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜑1
𝑖,𝑗

ℎ if 𝑖 = 1

𝜑1
𝑖,𝑗−𝜑1

𝑖−1,𝑗

ℎ if 1 < 𝑖 < 𝑚

−𝜑1
𝑚−1,𝑗

ℎ if 𝑖 = 𝑚

+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜑2
𝑖,𝑗

ℎ if 𝑗 = 1

𝜑2
𝑖,𝑗−𝜑2

𝑖,𝑗−1
ℎ if 1 < 𝑗 < 𝑛

−𝜑2
𝑖,𝑛−1
ℎ if 𝑗 = 𝑛.

(3.2)

Proposition 3.1 ([10,11]). Under the above-mentioned definitions and notations, one has that

– The adjoint operator of ∇ℎ is ∇*ℎ = − divℎ .
– Its norm satisfies: ‖∇ℎ‖2 = ‖ divℎ ‖2 ≤ 8/ℎ2.

3.2. Discretization of the optimization problem

Based on the discrete gradient and divergence operators, we propose a discrete version of (M) as follows

(M)𝑑 : min
𝑢∈𝑋

𝑢𝑖,𝑗=𝑔𝑖,𝑗 ∀(𝑖,𝑗)∈𝐷𝑑

⎧⎨⎩−ℎ2
𝑚∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑢𝑖,𝑗 + I𝐵𝜎* (∇ℎ𝑢)

⎫⎬⎭ (3.3)

where 𝐵𝜎* := {𝑣 ∈ 𝑌 : 𝜎*(𝑖ℎ, 𝑗ℎ, 𝑣𝑖,𝑗) ≤ 1, ∀(𝑖, 𝑗)} the unit ball w.r.t. 𝜎*, and I𝐵𝜎* is the indicator function in
the sense of convex analysis, that is,

I𝐵𝜎* (𝑣) =

{︃
0 if 𝑣 ∈ 𝐵𝜎*

+∞ otherwise.

In other words, the discrete version (M)𝑑 can be written as

min
𝑢∈𝑋

ℱℎ(𝑢) + 𝒢ℎ(∇ℎ𝑢), (3.4)

where

ℱℎ(𝑢) =

{︃
−ℎ2

∑︀𝑚
𝑖=1

∑︀𝑛
𝑗=1 𝑢𝑖,𝑗 if 𝑢𝑖,𝑗 = 𝑔𝑖,𝑗 ∀(𝑖, 𝑗) ∈ 𝐷𝑑

+∞ otherwise
, and 𝒢ℎ = I𝐵𝜎* . (3.5)
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Let 𝑢* ∈ 𝑋*, we then have

ℱ*ℎ(𝑢*) = sup
𝑢∈𝑋

⟨𝑢, 𝑢*⟩𝑋 −ℱℎ(𝑢) = sup
𝑢∈𝑋

𝑢𝑖,𝑗=𝑔𝑖,𝑗 ∀(𝑖,𝑗)∈𝐷𝑑

ℎ2
𝑚∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑢𝑖,𝑗𝑢
*
𝑖,𝑗 + ℎ2

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑢𝑖,𝑗

= sup
𝑢∈𝑋

𝑢𝑖,𝑗=𝑔𝑖,𝑗 ∀(𝑖,𝑗)∈𝐷𝑑

ℎ2
𝑚∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑢𝑖,𝑗(𝑢*𝑖,𝑗 + 1)

=

{︃
ℎ2

∑︀
(𝑖,𝑗)∈𝐷𝑑

𝑔𝑖,𝑗

(︀
𝑢*𝑖,𝑗 + 1

)︀
if − 𝑢*𝑖,𝑗 = 1 for (𝑖, 𝑗) /∈ 𝐷𝑑

+∞ otherwise.

(3.6)

It follows that

ℱ*ℎ(divℎ𝜑) =

{︃
ℎ2

∑︀
(𝑖,𝑗)∈𝐷𝑑

𝑔𝑖,𝑗((divℎ𝜑)𝑖,𝑗 + 1) if (−divℎ𝜑)𝑖,𝑗 = 1 for (𝑖, 𝑗) /∈ 𝐷𝑑

+∞ otherwise.

On the other hand, we have for q = (𝑞1, 𝑞2) ∈ 𝑌 *

𝒢*ℎ(q) = sup
p=(𝑝1,𝑝2)∈𝑌

⟨p,q⟩𝑌 − 𝒢ℎ(p) = sup
p∈𝐵𝜎*

ℎ2
𝑚∑︁

𝑖=1

𝑛∑︁
𝑗=1

(︀
𝑝1

𝑖,𝑗𝑞
1
𝑖,𝑗 + 𝑝2

𝑖,𝑗𝑞
2
𝑖,𝑗

)︀
= ℎ2

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝜎
(︀
𝑖ℎ, 𝑗ℎ,q𝑖,𝑗

)︀
. (3.7)

Consequently, the corresponding discrete dual problem is given by

(OF)𝑑 : max
𝜑∈𝑌

{−ℱ*ℎ(divℎ𝜑)− 𝒢*ℎ(𝜑)}

= − min
𝜑∈𝑌

(−divℎ𝜑)𝑖,𝑗=1 for (𝑖,𝑗)/∈𝐷𝑑

ℎ2

⎧⎨⎩
𝑚∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝜎(𝑖ℎ, 𝑗ℎ,𝜑𝑖,𝑗) +
∑︁

(𝑖,𝑗)∈𝐷𝑑

𝑔𝑖,𝑗((divℎ𝜑)𝑖,𝑗 + 1)

⎫⎬⎭.
(3.8)

In particular, for the case of Eikonal equations |∇𝑢(x)| = 𝑘(x), the primal-dual relations can be explicitly
written as

min
𝑢∈𝑋

𝑢𝑖,𝑗=𝑔𝑖,𝑗 ∀(𝑖,𝑗)∈𝐷𝑑

⎧⎨⎩−ℎ2
𝑚∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑢𝑖,𝑗 + I𝐵(0,𝑘𝑖,𝑗)(∇ℎ𝑢𝑖,𝑗)

⎫⎬⎭
= − min

𝜑∈𝑌
(−divℎ𝜑)𝑖,𝑗=1 for (𝑖,𝑗)/∈𝐷𝑑

ℎ2

⎧⎨⎩
𝑚∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑘𝑖,𝑗‖𝜑𝑖,𝑗‖+
∑︁

(𝑖,𝑗)∈𝐷𝑑

𝑔𝑖,𝑗((divℎ𝜑)𝑖,𝑗 + 1)

⎫⎬⎭,

(3.9)

where I𝐵(0,𝑘𝑖,𝑗) is the indicator function of the Euclidean ball with center 0 and radius 𝑘𝑖,𝑗 , the latter being the
value of 𝑘 at (𝑖ℎ, 𝑗ℎ).

To end this subsection, let us recall that a pair (𝑢,𝜑) ∈ 𝑋 × 𝑌 solves the primal and dual problems (M)𝑑

and (OF)𝑑 if and only if
divℎ(𝜑) ∈ 𝜕ℱℎ(𝑢) and 𝜑 ∈ 𝜕𝒢ℎ(∇ℎ𝑢), (3.10)

or equivalently, they satisfy the following system⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(div(𝜑))𝑖,𝑗 = 1 for (𝑖, 𝑗) ̸∈ 𝐷𝑑

𝜑𝑖,𝑗 · ∇ℎ𝑢𝑖,𝑗 = 𝜎
(︀
𝑖ℎ, 𝑗ℎ,𝜑𝑖,𝑗

)︀
for all (𝑖, 𝑗)

𝑢𝑖,𝑗 = 𝑔𝑖,𝑗 for every (𝑖, 𝑗) ∈ 𝐷𝑑.

(3.11)
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Figure 2. Sub-triangles.

3.3. The convergence of discretization

In this subsection, we will show a result on the convergence of discretization, i.e. where the solutions of
the discrete optimization and its discrete dual problem converge to the ones of the corresponding problems in
continuous setting. For technical reason (see Rems. 3.4, 3.5) we focus on the non-degenerate case; i.e. 𝐻(x, 0) < 0
for any x ∈ Ω, as well as to the case where 𝑔 ≡ 0.

First, let us describe how to interpolate elements of 𝑋 and 𝑌 . We know the values of 𝑢ℎ ∈ 𝑋 at the vertices
(𝑖, 𝑗), (𝑖, 𝑗 + 1), (𝑖 + 1, 𝑗 + 1), (𝑖 + 1, 𝑗) of a small square (see Fig. 2). We interpolate 𝑢ℎ ∈ 𝑋 by piecewise affine
functions on the sub-triangles, i.e. taking �̃�ℎ ∈ 𝐿2(Ω) as an affine function on the sub-triangles and coincides
with 𝑢ℎ on all the vertices. Then �̃�ℎ is a Lipschitz function and its gradient is, by the definition of �̃�ℎ, given by

∇�̃�ℎ(𝑥, 𝑦) =
(︂

𝑢ℎ(𝑖 + 1, 𝑗)− 𝑢ℎ(𝑖, 𝑗)
ℎ

,
𝑢ℎ(𝑖, 𝑗 + 1)− 𝑢ℎ(𝑖, 𝑗)

ℎ

)︂
(3.12)

on the sub-triangle of the vertices (𝑖, 𝑗), (𝑖, 𝑗 + 1), (𝑖 + 1, 𝑗); and

∇�̃�ℎ(𝑥, 𝑦) =
(︂

𝑢ℎ(𝑖 + 1, 𝑗 + 1)− 𝑢ℎ(𝑖, 𝑗 + 1)
ℎ

,
𝑢ℎ(𝑖 + 1, 𝑗 + 1)− 𝑢ℎ(𝑖 + 1, 𝑗)

ℎ

)︂
(3.13)

on the sub-triangle of the vertices (𝑖, 𝑗 + 1), (𝑖 + 1, 𝑗 + 1), (𝑖 + 1, 𝑗).
Let �̃�ℎ ∈ 𝐿2(Ω)2 be an interpolation of 𝜑ℎ ∈ 𝑌 such that

∫︀
Ω

𝜎(𝑥, �̃�ℎ)d𝑥 = ℎ2
∑︀𝑚

𝑖=1

∑︀𝑛
𝑗=1 𝜎(𝑖ℎ, 𝑗ℎ, (𝜑ℎ)𝑖,𝑗).

Proposition 3.2 (Convergence of discretization). Assume that the Finsler metric 𝜎 associated with the Hamil-
tonian 𝐻 is non-degenerate (i.e. 𝐻(x, 0) < 0,∀x ∈ Ω) and that 𝑔 = 0. Let 𝑢ℎ ∈ 𝑋 and 𝜑ℎ = (𝜑1

ℎ, 𝜑2
ℎ) ∈ 𝑌

be a pair of primal-dual solutions to the discrete optimization problem (M)𝑑 and its dual problem (3.8). Then
�̃�ℎ ⇒ 𝑢 and �̃�ℎ ⇀ 𝜑 weakly* in ℳ𝑏(Ω)𝑁 , as the step size ℎ → 0. Moreover, 𝑢 and 𝜑 are optimal solutions to
(M) and its dual problem, respectively, in the following sense

(OF) = min
𝜓∈ℳ𝑏(Ω)𝑁

{︂∫︁
Ω

𝜎

(︂
x,
𝜓

|𝜓|
(x)

)︂
d|𝜓|(x) : −div(𝜓) = 1 in 𝒟′(Ω)

}︂
=

∫︁
Ω

𝜎

(︂
x,
𝜑

|𝜑|
(x)

)︂
d|𝜑|(x) =

∫︁
Ω

𝑢(x)dx

= (M), (3.14)

where 𝜑
|𝜑| (x) is the density of 𝜑 with respect to |𝜑|, the total variation of 𝜑.
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Proof. Since 𝑢ℎ is feasible for the discrete optimization problem (M)𝑑, its discrete gradient ∇ℎ𝑢ℎ ∈ 𝐵𝜎* is

bounded for all small ℎ > 0. In other words, the sequences
{︁

𝑢ℎ(𝑖+1,𝑗)−𝑢ℎ(𝑖,𝑗)
ℎ

}︁
and

{︁
𝑢ℎ(𝑖,𝑗+1)−𝑢ℎ(𝑖,𝑗)

ℎ

}︁
are

bounded for ℎ > 0 and 𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑛. Following (3.12) and (3.13), the sequence {�̃�ℎ} is equi-Lipschitz.
Combining with the fact that 𝑢ℎ = 0 on 𝐷𝑑, by Ascoli–Arzela’s Theorem, up to a subsequence, �̃�ℎ converges
uniformly to some Lipschitz function 𝑢 on Ω as the step size ℎ → 0. By the optimality of 𝑢ℎ and 𝜑ℎ, we have

ℱℎ(𝑢ℎ) + 𝒢ℎ(∇ℎ𝑢ℎ) = −ℱ*ℎ(divℎ𝜑ℎ)− 𝒢*ℎ(𝜑ℎ).

More concretely,

ℎ2
𝑚∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑢𝑖,𝑗 = ℎ2
𝑚∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝜎(𝑖ℎ, 𝑗ℎ, (𝜑ℎ)𝑖,𝑗)

or equivalently ∫︁
Ω

�̃�ℎdx =
∫︁

Ω

𝜎
(︁
x, �̃�ℎ

)︁
dx.

Since 𝜎 is non-degenerate and �̃�ℎ is bounded, �̃�ℎ is also bounded in 𝐿1(Ω). Hence, �̃�ℎ ⇀ 𝜑 weakly* in ℳ𝑏(Ω)𝑁 .
Using the lower-semicontinuity of the integrand (see [3], Thm. 2.38), we deduce that∫︁

Ω

𝜎

(︂
x,
𝜑

|𝜑|
(x)

)︂
d|𝜑|(x) ≤ lim

ℎ→0

∫︁
Ω

𝜎
(︁
x, �̃�ℎ

)︁
dx = lim

ℎ→0

∫︁
Ω

�̃�ℎdx =
∫︁

Ω

𝑢dx. (3.15)

This implies that

(OF) = min
𝜓∈ℳ𝑏(Ω)𝑁

{︂∫︁
Ω

𝜎

(︂
x,
𝜓

|𝜓|

)︂
d|𝜓| : −div(𝜓) = 1 in 𝒟′(Ω)

}︂
≤

∫︁
Ω

𝜎

(︂
x,
𝜑

|𝜑|
(x)

)︂
d|𝜑|(x) ≤

∫︁
Ω

𝑢dx ≤ (M).

By the duality result in the continuous setting given in Section 2 (Thm. 2.3), we deduce the optimality of 𝑢 and
𝜑. �

Remark 3.3. In general we do not know if (OF) has a solution in 𝐿2(Ω)𝑁 , even if we do believe that this is
not true in general. We are convinced that the weak* convergence of �̃�ℎ in ℳ𝑏(Ω)𝑁 , as the step size ℎ → 0, is
optimal. For the special case where 𝜎 is given by the Euclidean norm, (OF) admits a solution in 𝐿2(Ω)𝑁 (see
e.g. [18]).

Remark 3.4. See that in the case where 𝜎 is a degenerate Finsler metric, even if the duality between (OF) and
(M) holds to be true and the dual problem (OF) still have a solution in ℳ𝑏(Ω)𝑁 , we loose the compactness of
�̃�ℎ. However, we still have the uniform convergence of �̃�ℎ to the optimal solution of the maximization problem
(M).

Remark 3.5. The convergence of �̃�ℎ, even in the non degenerate Finsler metric case, is more subtle. This is
connected to the weak* convergence of �̃�ℎ in ℳ𝑏(Ω)𝑁 , and the normal trace of Radon measure vectors valued
measure whose divergence is a bounded measures. In other words, it is not clear how to handle the convergence
of the boundary term

∑︀
(𝑖,𝑗)∈𝐷𝑑

𝑔𝑖,𝑗((divℎ𝜑)𝑖,𝑗 + 1) to the corresponding continuous one of the type ⟨𝑔,𝜑 · 𝜈⟩.

4. Numerical resolution

In this section we focus on the case where the light direction is vertical, i.e. ℓ = (0, 0, 1).
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4.1. Saddle-point structure

As we pointed out in Section 3, the discrete version (M)𝑑 of (M) given by (3.4) can be rewritten in an inf-sup
form as

inf
𝑢∈𝑋

sup
𝜑∈𝑌

ℱℎ(𝑢) + ⟨𝜑,∇ℎ𝑢⟩ − 𝒢*ℎ(𝜑) (4.1)

where ℱℎ and 𝒢ℎ are defined in (3.5). Both the functions ℱℎ and 𝒢ℎ are lower-semicontinuous, convex and they
are ”proximable”, i.e. we can compute their proximal operators:

Prox𝜏ℱℎ
(𝑢) = argmin

𝑣∈𝑋

1
2
‖𝑢− 𝑣‖2 + 𝜏ℱℎ(𝑣)

Prox𝜂𝒢ℎ
(𝜓) = argmin

𝜑∈𝑌

1
2
‖𝜓 − 𝜑‖2 + 𝜂𝒢ℎ(𝜑)

(4.2)

where 𝜏, 𝜂 > 0. Then the Chambolle–Pock algorithm [11] can be applied to (3.4).

Algorithm 1. Chambolle–Pock iterations.
1st step. Initialization: choose 𝜂, 𝜏 > 0, 𝜃 ∈ [0, 1], 𝑢0 and take 𝜑0 = ∇ℎ𝑢0, �̄�0 = 𝑢0.
2nd step. For 𝑘 ≤ Iter𝑚𝑎𝑥 do

𝜑𝑘+1 = Prox𝜂𝒢*
ℎ

(︁
𝜑𝑘 + 𝜂∇ℎ

(︁
�̄�𝑘
)︁)︁

;

𝑢𝑘+1 = Prox𝜏ℱℎ

(︁
𝑢𝑘 − 𝜏∇*ℎ

(︁
𝜑𝑘+1

)︁)︁
;

�̄�𝑘+1 = 𝑢𝑘+1 + 𝜃
(︁
𝑢𝑘+1 − 𝑢𝑘

)︁
.

It was shown in [11] that when 𝜃 = 1 and 𝜂𝜏‖∇ℎ‖2 < 1, the sequence {𝑢𝑘} converges to an optimal
solution of (3.4). Contrary to the augmented Lagrangian approach in [19] (see also [5, 30, 31]), the Chambolle–
Pock algorithm does not require to solve a Laplace equation at each iteration, we only need to perform some
algebraic operations, namely the multiplication by apply the gradient and the divergence in each iteration. The
Chambolle–Pock algorithm is easy to implement on Matlab which allows working on images easily contrary to
the augmented Lagrangian approach which was implemented using FreeFem++ to solve linear PDEs.

In order to compute Prox𝜂𝒢*ℎ we make use of the celebrated Moreau identity

𝜑 = Prox𝜂𝒢*ℎ(𝜑) + 𝜂Prox𝜂−1𝒢ℎ
(𝜑/𝜂), ∀𝜑 ∈ 𝑌. (4.3)

Moreover, Prox𝜂−1𝒢ℎ
is nothing but the projection onto 𝐵(0, 𝑘𝑖,𝑗). Indeed

Prox𝜂−1𝒢ℎ
(𝜓) = arg min

q∈𝑌

1
2
|q−𝜓|2 +

1
𝜂
𝒢ℎ(q)

= arg min
𝑞𝑖,𝑗∈𝐵(0,𝑘𝑖,𝑗)

1
2
|q−𝜓|2

= Proj𝐵(0,𝑘𝑖,𝑗)

(︀
𝜓𝑖,𝑗

)︀
. (4.4)

Consequently, (︀
Prox𝜂𝒢*ℎ(𝜓)

)︀
𝑖,𝑗

= 𝜓𝑖,𝑗 − 𝜂Proj𝐵(0,𝑘𝑖,𝑗)(𝜓𝑖,𝑗/𝜂).

Let us now compute the proximal operator of ℱℎ. We have

Prox𝜏ℱℎ
(𝑢) = argmin

𝑣∈𝑋

1
2
‖𝑣 − 𝑢‖2 + 𝜏ℱℎ(𝑣) = argmin

𝑣=𝑔 on 𝐷𝑑

1
2
‖𝑣 − 𝑢‖2 − 𝜏ℎ2

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑣𝑖,𝑗 . (4.5)
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Writing the first-order optimality condition we get

(Prox𝜏ℱℎ
(𝑢))𝑖,𝑗 − 𝑢𝑖,𝑗 − 𝜏 = 0 ⇔ (Prox𝜏ℱℎ

(𝑢))𝑖,𝑗 = 𝑢𝑖,𝑗 + 𝜏, ∀𝑖 = 1, ...,𝑚, 𝑗 = 1, ..., 𝑛. (4.6)

So in practice, we update 𝑢𝑛+1 via the previous formula and we then set its values to 𝑔 on the Dirichlet
domain.

If the input image 𝑢 is of width 𝑚 and height 𝑛, we suppose that the reconstruction domain is Ω =
{1, · · · , 𝑚} × {1, · · · , 𝑛}. Since proximal parameters 𝜂 and 𝜏 are to be chose such that 𝜂𝜏 < 8

ℎ2 , taking ℎ = 1
allows fixing these parameters easily.

The details of the 2nd step in Algorithm 1 are then given by

– compute 𝜑𝑘+1:

�̄�
𝑘+1 = 𝜑𝑘 + 𝜂∇ℎ�̄�𝑘

𝜑𝑘+1
𝑖,𝑗 = �̄�

𝑘+1
𝑖,𝑗 − 𝜂Proj𝐵(0,𝑘𝑖,𝑗)

(︁
�̄�

𝑘+1
𝑖,𝑗 /𝜂

)︁
, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛;

(4.7)

– compute 𝑢𝑘+1:

𝑣𝑘+1 = 𝑢𝑘 + 𝜏divℎ

(︁
𝜑𝑘+1

)︁
𝑢𝑘+1

𝑖,𝑗 = 𝑣𝑘+1
𝑖,𝑗 + 𝜏, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛.

(4.8)

Remark 4.1. Another way to formulate the problem (M) (in the continuous setting) is to take

ℱ(𝑢) = −
∫︁

Ω

𝑢dx, and 𝒢(q, 𝑣) =

{︃
0 if |q| ≤ 𝑘 and 𝑣 = 𝑔 on 𝜕Ω
∞ otherwise,

for all 𝑢 ∈ 𝑊 1,∞(Ω), and (q, 𝑣) ∈ 𝐿∞(Ω)𝑁 × 𝐿2(𝜕Ω). In this case, the problem (M) can be rewritten as

inf
𝑢
ℱ(𝑢) + 𝒢(𝐾(𝑢))

where 𝐾 = (∇, 𝛾0), and 𝛾0 is the trace operator on the boundary. This being said, at the second step of the
Algorithm 1 we need to compute 𝛾*0 which turns requiring to solve a PDE. Indeed, we define

𝛾0 : 𝐻1(Ω) → 𝐿2(𝜕Ω)

through 𝛾0(𝑢) = 𝑢|𝜕Ω for every 𝑢 ∈ 𝐻1(Ω). By definition, for any (𝑢, 𝑣) ∈ 𝐻1(Ω)× 𝐿2(𝜕Ω)

⟨𝛾0𝑢, 𝑣⟩𝐿2(𝜕Ω) = ⟨𝑢, 𝛾*0𝑣⟩𝐻1(Ω).

This means that ∫︁
𝜕Ω

𝑢𝑣d𝑆 =
∫︁

Ω

𝑢(𝛾*0𝑣)dx +
∫︁

Ω

∇𝑢∇(𝛾*0𝑣)dx

for any 𝑢 ∈ 𝐻1(Ω). In other words 𝛾*0𝑣 solves the following PDE

−∆𝑧 + 𝑧 = 0 in Ω and 𝜕𝑛𝑧 = 𝑣 on 𝜕Ω.

Thus we opt for the first formulation in order to avoid additional costs to the computations.
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4.2. Optimality conditions and stopping criterion

As usual, we can check the optimality conditions (3.11) associated to (M)𝑑 and (OF)𝑑. Namely we check the
following conditions:

– Divergence error: ‖ − divℎ(𝜑)− 1‖2,
– Dual error: ‖𝜎(𝑥,𝜑)−∇ℎ𝑢 · 𝜑‖1,
– Lip error: sup𝑖,𝑗 𝜎*(𝑖ℎ, 𝑗ℎ,∇ℎ𝑢𝑖,𝑗),

for a large number of iterations (∼5000 iterations). Note that for vertical light direction, the support function 𝜎 is
easy to compute. More particularly, one has for every p ∈ R𝑁 , 𝜎(x,p) = 𝑘(x)|p| where |p| is the Euclidean norm
of p. Thus, for the Lip error, we can check the value sup𝑖,𝑗(‖∇ℎ𝑢𝑖,𝑗‖ − 𝑘𝑖,𝑗). We expect that Divergence error,
Dual error and Lip error to be close to zero. Then, we apply the algorithm until the difference between the
functional values of 𝑢𝑘 and 𝜑𝑘 is below a certain threshold 𝜖 = 5× 10−3 (see Tab. 1).

4.3. Numerical examples

We test for some commonly used images: Mozart and vase images taken from [44] and Basilica and vaso images
taken from [24,25]. In these cases, the shapes are reconstructed by solving the Eikonal equation |∇𝑢(x)| = 𝑘(x)
in 2D with 𝑔 ≡ 0, i.e. with homogeneous Dirichlet boundary condition 𝑢 = 0 on 𝜕Ω. More precisely, we load a
surface 𝑢(x) as 2𝐷-field using a depth map and we compute the normal vector to the surface (x, 𝑢(x)) to get

I(x) = n(x) · ℓ, with ℓ = (0, 0, 1).

That is
I(x) =

1√︀
‖∇ℎ𝑢(x)‖2 + 1

·

The algorithm was implemented in Matlab and executed on a 2, 3 GHz CPU running macOs Big Sur system.
The code was executed for 5000 iterations with 𝜏 = 0.001 and 𝜂 = 8/𝜏 for all the shapes.

Following the survey [17] the reconstructed shape for the vase (Fig. 3) is similar to the one obtained using
the minimization method proposed in [16]. As for the vaso shape (Fig. 5), the obtained shape is similar to the
one obtained using linear approximation of the reflectance function as in [37]. The error estimators we obtain
(see Tab. 2) are better.

The estimated shape for Mozart (Fig. 7) is better than the results presented in [44] and details (nose, mouth,
eyes) are clear. The estimated shape of the Basilica (Fig. 9) is a bit different from the one obtained using a
semi-Lagrangian scheme in [25], where in particular, additional information is supposed on the discontinuities of
the images to obtain a well-reconstructed shape. Let us stress that for all the figures only a Dirichlet boundary
condition 𝑢 ≡ 0 is imposed, which explains the flat roofs in our reconstructed Basilica compared to the one in
[25].

Before ending this section, let us give several error estimators to compare the true solution with the computed
one following [17]. For every known 𝑓 and computable 𝑓 , we define respectively the mean absolute deviation,
the root mean square and the maximal absolute deviation erros

|∆𝑓 |1 =
1
𝒩

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

⃒⃒⃒
𝑓𝑖,𝑗 − 𝑓𝑖,𝑗

⃒⃒⃒
, |∆𝑓 |2 =

⎡⎣ 1
𝒩

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

⃒⃒⃒
𝑓𝑖,𝑗 − 𝑓𝑖,𝑗

⃒⃒⃒2⎤⎦1/2

, |∆𝑓 |∞ = max
𝑖,𝑗

⃒⃒⃒
𝑓𝑖,𝑗 − 𝑓𝑖,𝑗

⃒⃒⃒
(4.9)

where 𝒩 is the number of grid points.
For the two vases shapes (Figs. 3–5), the error measures in Table 2 above are better than the ones presented

in [17]. As for the optimality conditions (see Figs. 4–6–8–10), we see that the values are getting close to zero
throughout the iterations. Yet, their order of magnitude is bigger than for the tests performed in [19]. We believe
that all the results of this section could be improved using some preconditioning techniques as in [38].
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Figure 3. Left to right: initial image, the reconstructed shape.

Figure 4. Optimality conditions for the vase. (A) Lip Error. (B) Dual Error. (C) Divergence
Error.

Figure 5. Left to right: initial image, the reconstructed shape.
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Table 1. The table presents the execution time and the number of iterations needed until the
difference between the functional values of 𝑢𝑘 and 𝜑𝑘 falls below tolerance 𝜖 = 5 × 10−3. We
observed that the choice of the parameter 𝜏 influences the error criterion as well as the allure of
the reconstructed shapes, especially the Basilica and Mozart. The most time consuming step of
the algorithm is indeed the computation of Prox𝜂𝒢*ℎ , and more precisely the projections onto
𝐵(0, 𝑘𝑖,𝑗) since the other steps consist in simple vectorial operations.

Shape Execution time in seconds Number of iterations

vase 2.98 s 1019
vaso 8.45 s 1047
Mozart 7.86 s 1051
Basilica 6.82 s 834

Table 2. Error measures on the different shapes.

|Δ𝑢|1 |Δ𝑢|2 |Δ𝑢|∞ |Δn|1 |Δn|2 |Δn|∞ |ΔI|1 |ΔI|2 |ΔI|∞
vase 1.54e-03 3.56e-03 2.24e-02 3.46e-06 8.05e-06 8.26e-05 1.39e-04 2.77e-04 2.48e-03
vaso 1.61e-02 3.75e-02 2.47e-01 1.36e-05 1.84e-04 1.54e-02 1.32e-03 5.61e-03 2.02e-01
Mozart 1.96e-02 3.65e-02 1.46e-01 9.06e-06 1.21e-04 1.08e-02 1.26e-03 2.73e-03 7.68e-02
Basilica 1.13e-02 2.51e-02 1.66e-01 5.46e-05 1.05e-03 6.32e-02 7.47e-04 4.17e-03 1.46e-01

Figure 6. Optimality conditions for the vaso. (A) Lip Error. (B) Dual Error. (C) Divergence
Error.

Remark 4.2. Define the so called primal-dual gap

G(𝑢,𝜑) := ℱℎ(𝑢) + 𝒢ℎ(∇ℎ𝑢) + ℱ*ℎ(div(𝜑)) + 𝒢*ℎ(𝜑). (4.10)

Since G(𝑢,𝜑) vanishes if and only if (𝑢,𝜑) is a saddle point, one can use the primal-dual gap to terminate the
iteration and check the optimality conditions by verifying that G(𝑢,𝜑) < 𝜖 for a given tolerance 𝜖. However,
this turns to be not useful in practice due to the presence of the indicator functions 𝒢ℎ and ℱ*ℎ .

Remark 4.3. The approach presented in this paper for the SfS problem is intimately related to some optimal
transport problems. Indeed, the duality result given by Theorem 2.3 says that the solution 𝑢 is in some sense
the Kantorovich potential for the mass transport problem between the Lebesgue measure 𝛼 = ℒ𝑁 Ω (the
restriction of Lebesgue measure to the domain Ω) and an unknown measure 𝛽 concentrated on 𝜕Ω which is
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Figure 7. Left to right: initial image, the reconstructed shape.

Figure 8. Optimality conditions for Mozart. (A) Lip Error. (B) Dual Error. (C) Divergence Error.

Figure 9. Left to right: initial image, the reconstructed shape.
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Figure 10. Optimality conditions for the Basilica. (A) Lip Error. (B) Dual Error. (C) Diver-
gence Error.

Figure 11. The optimal flow 𝜑 for the vase.

related to the trace of the optimal flow 𝜑 (see [20] for details). Recall that the flow field 𝜑 (see Fig. 11) describes
how the mass moves locally. In Figure 12 we see the evolution of the shape of the vase through iterations. This
is somehow related to the evolution of the initial shape of a sandpile by considering (at least formally) the limit
as 𝑡 →∞ in the differential inclusion

𝛼 ∈ 𝜕𝑡𝑢 + 𝜕I𝐵𝜎* (𝑢), (4.11)

with 𝛼 = ℒ𝑁 Ω and 𝜕I𝐵𝜎* is the 𝐿2-subdifferential of 𝐵𝜎* . The inclusion (4.11) can be discretized using a
minimizing movement scheme la Jordan-Kinderlehrer-Otto [32] with the 1-Wassertstein distance induced by
the metric 𝑑𝜎 in the spirit of [1]. These connections are worth being investigated in depth and may give rise to
many applications.

5. Conclusions, comments and extensions

In the present paper we proposed a primal-dual algorithm for a class of SfS problem taking advantage of
the variational formulation for HJ equations (cf. [19]). The approach adds to the different families of methods
and techniques developed to tackle this problem (see [4, 15, 21, 26, 29, 34, 36, 37, 39, 41]) and can be positioned
between the PDE and optimization methods treating the SfS problem. We believe that recovering the solution
of HJ equations via a maximization problem has several advantages amongst them by the fact that one can take
advantage of the recent advances in optimization methods, namely in primal-dual algorithms to get improved
results. In addition, this allows handling the so-called concave/convex ambiguity. Moreover, the strategy works
(at least theoretically) to oblique light direction as one needs to solve a PDE of the form{︂

𝐻(x,∇𝑢) = 0 in Ω
𝑢 = 0 on 𝜕Ω.

(5.1)
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Figure 12. Evolution of the vase shape during iterations. (A) 50 iterations. (B) 300 iterations.
(C) 700 iterations. (D) 1000 iterations.

Similarly, the maximal viscosity subsolution of (5.1) can be recovered via the following maximization problem

(M) : max
𝑢∈𝑊 1,∞(Ω)

{︂∫︁
Ω

𝑢dx : 𝜎*(x,∇𝑢) ≤ 1, 𝑢 = 0 on 𝜕Ω
}︂

. (5.2)

Note that in this case, the convergence of the discretization (see Prop. 3.2) remains true. The main difficulty
lies in the fact that computing Prox𝒢* in Algorithm 1 will require performing projections onto

𝑍(x) = {p ∈ R𝑁 : 𝐻(x,p) ≤ 0},

for every x ∈ Ω (see [19], Prop. 2.5) instead of Euclidean balls as it was the case of vertical light source. This can
be tedious for general convex set 𝑍(x). Let us stress that Neumann boundary conditions can also be considered.
Indeed, by analogy with the formulation in Remark 4.1, the same consideration suggest considering the problem
(M) by taking 𝐾 = (∇, 𝜕𝜈) with 𝜕𝜈 being the normal derivative. This being said, Algorithm 1 will require
computing the adjoint operator 𝐾*. We are planning to address these questions in future works.

Acknowledgements. The authors are grateful to the anonymous referees for carefully reading this paper and for the inter-
esting remarks and suggestions that helped to improve the manuscript. Research of Van Thanh NGUYEN is supported
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