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Abstract. This article revolves around the total perimeter functional, one particular version of the perime-

ter of a shape Ω contained in a fixed computational domain D measuring the total area of its boundary ∂Ω,

as opposed to its relative perimeter, which only takes into account the regions of ∂Ω strictly inside D. We
construct and analyze approximate versions of the total perimeter which make sense for general “density

functions” u, as generalized characteristic functions of shapes. Their use in the context of density-based

topology optimization is particularly convenient insofar as they do not involve the gradient of the optimized
function u. Two different constructions are proposed: while the first one involves the convolution of the

function u with a smooth mollifier, the second one is based on the resolution of an elliptic boundary-value

problem featuring Robin boundary conditions. The “consistency” of these approximations with the original
notion of total perimeter is appraised from various points of view. At first, we prove the pointwise conver-

gence of our approximate functionals, then the convergence of their derivatives, as the level of smoothing
tends to 0, when the considered density function u is the characteristic function of a “regular enough”

shape Ω ⊂ D. Then, we focus on the Γ-convergence of the second type of approximate total perimeter

functional, that based on elliptic regularization. Several numerical examples are eventually presented in
two and three space dimensions to validate our theoretical findings and demonstrate the efficiency of the

proposed functionals in the context of structural optimization.
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1. Introduction

The general idea of optimizing “shapes” has ubiquitous applications in science, ranging from aeronauti-
cal and mechanical engineering [25, 56] to image processing [23], including more recently biology [31] and
computational chemistry [35], to name a few disciplines.

A model shape optimization problem reads as follows:

min
Ω⊂D

J(Ω) + `P (Ω).

Here, the optimized design Ω is a domain in Rd (d = 2, 3); as often, it is contained in a fixed “hold-all”
domain D ⊂ Rd, which serves as computational domain in numerical applications. The objective criterion
J(Ω) measures the physical performance of the shape Ω, and P (Ω) is a constraint – enforced by a fixed
penalization of J(Ω) to set ideas – which is for instance related to its geometric features.

Among such geometric constraint functionals, the perimeter Per(Ω), measuring the length of the contour
∂Ω of Ω in 2d or the area of the surface ∂Ω in 3d, has received a particular attention. From the theoretical
point of view, including a perimeter constraint into a shape optimization problem is a well-known means to
overcome the homogenization phenomenon, and thereby to ensure the well-posedness of the problem [10, 46].
In numerical practice, perimeter constraints tend to prevent the emergence of sharp features, thus promoting
designs with “smooth” boundaries, see e.g. [64] about this point and for a more general discussion about
common sources of numerical instabilities in shape and topology optimization and possible remedies.

Before proceeding, let us stress that when the considered shapes Ω are subsets of a fixed domain D, the
terminology “perimeter” actually encompasses two subtly different notions, which are illustrated in Fig. 1:

• The relative perimeter PerR(Ω) of a shape Ω ⊂ D is defined by:

(1.1) PerR(Ω) =

∫
∂Ω∩D

ds;

the term “relative” reflects the fact that PerR(Ω) only takes into account the part of the boundary
∂Ω lying strictly inside the “hold-all’ domain D.

• The total perimeter PerT (Ω) of Ω ⊂ D reads:

(1.2) PerT (Ω) =

∫
∂Ω

ds,

so that PerT (Ω) takes into account the way ∂Ω intersects ∂D.

Obviously, when D stands for the whole ambient space Rd, the above two notions coincide with the more
familiar perimeter of a subset Ω ⊂ Rd:

Per(Ω) =

∫
∂Ω

ds.

Despite their intuitive definition and their “simple” mathematical formulations, perimeter functionals
raise interesting challenges depending on the elected numerical framework for optimal design. Let us briefly
describe a few of them, which are frequently encountered in the literature.
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Figure 1. The relative perimeter PerR(Ω) of the set Ω ⊂ D is the length of the yellow

curves, while its total perimeter PerT (Ω) is the sum of the lengths of the yellow and red
curves.

(1) In shape optimization problems where, as in the above model example, the optimized design is a
domain Ω ⊂ D, the numerical treatment of perimeter constraints naturally brings into play the shape
derivatives of the functionals Ω 7→ PerR(Ω) or Ω 7→ PerT (Ω). These are expressed in terms of the
mean curvature κ of ∂Ω, which is difficult to evaluate precisely, see e.g. §3.3.2 in [42] for a discussion
about this issue.

(2) In the same framework, the topological derivative of PerR(Ω) or PerT (Ω), measuring the effect of the
nucleation of a tiny hole inside Ω, is also uneasy to handle. Indeed, the sensitivity of the perimeter
functions is of lower order in terms of the size of the vanishing hole, when compared with that most
“usual” functionals of the domain; see for instance [44, 58].

(3) In the relaxed setting of topology optimization, where the design is accounted for by a density
function u : D → [0, 1] defined on the fixed domain D, a consistent counterpart to the perimeter

functionals PerR(Ω) or PerT (Ω) has to be found, which makes sense for such density functions u
(and not only on characteristic functions χΩ of “true” shapes Ω ⊂ D), and enjoys “nice” algorithmic
properties.

The latter task of devising suitable approximate perimeter functionals, defined for general density functions
u : D → [0, 1] has been the focus of many investigations in the literature, in the particular instances where
the bounding box D is the whole ambient space Rd, or where D is a strict subset of Rd and the version of
the perimeter at hand is PerR(Ω); we sketch an overview of the existing literature about these subjects in
Section 2.3 below.

On the contrary, very little attention has been paid to the total perimeter PerT (Ω), to the best of our
knowledge. It turns out that this perimeter functional is rarely used in numerical practice; often, its relative
counterpart is tacitly retained, as in the practice of the level set method for shape optimization [7]. This is
actually quite surprising, since in a fair number of applications, the total perimeter appears more natural
than its relative counterpart: the boundary of the “hold-all” domain D has to be taken into account in the
evaluation of the perimeter of the shape Ω when it has a “physical meaning”. This is the case, for instance,
in situations involving contact mechanics, where at least one part of ∂D is in contact with an external device;
see [50] about this physical setting and [51] for examples of related shape optimization problems.

The present article is a contribution to the mathematical and numerical approximation of the total
perimeter functional PerT (Ω) in density-based topology optimization frameworks. More precisely, we aim
to construct approximate total perimeter functionals Pε(u) with “nice” algorithmic properties, and which

are “consistent” with PerT (Ω) as the small parameter ε → 0. These are defined for a general density
function u : D → [0, 1] and they involve a smoothing of the latter, whose magnitude is controlled by
the “small” parameter ε. Two such constructions are proposed: on the one hand, the smoothing of u is
realized by convolution with a smooth mollifier, and on the other hand, it is based on the regularizing
effect of an elliptic Partial Differential Equation (PDE) supplemented with Robin boundary conditions. The
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adequate and consistent characters of our approximate perimeter functionals will be given precise meanings
in Section 2.3 below, where our main results are described in more technical details.

This article is organized as follows. In Section 2, we present the shape optimization problems of interest
in this article, in an informal way. We then introduce density-based reformulations of such problems, and
we overview the contributions from the literature devoted to the perimeter functional in this context, before
describing ours. In Section 3, we recall some necessary background material about functions with bounded
variations and sets with finite perimeter, and then introduce our approximate total perimeter functionals.
The next Section 4 discusses the quality of these approximations in terms of their pointwise convergence
and of the convergence of their derivatives in the particular case where the considered density u is the
characteristic function χΩ of a smooth shape Ω. Section 5 then deals with the Γ-convergence of the PDE-
based approximate total perimeter functional. In Section 6, we slip into the context of numerical shape and
topology optimization: several numerical examples are presented to appraise the main points of our study.
In Section 7, some conclusions and perspectives arising from our study are outlined. The article ends with
a technical appendix.

2. Shape and topology optimization under perimeter constraints

This section introduces the shape and topology optimization setting which serves as a motivation and guide
throughout the paper. After introducing informally shape optimization problems and recalling basic related
facts in Section 2.1, density-based reformulations of such problems are broached in Section 2.2. The available
methods from the literature for dealing with perimeter functionals in the context of density-based topology
optimization are then summarized in Section 2.3, where the main contributions of the present article are
described.

2.1. Classical stakes about shape optimization

Let us consider a model shape optimization problem of the form:

(2.1) min
Ω⊂D

J(Ω) + `P (Ω).

In the above formulation,

• The shape Ω is sought as a subset of a fixed computational domain D in Rd (d = 2 or 3).
• The objective function J(Ω) brings into play the physical or the mechanical behavior of the optimized

shape Ω (as described by e.g. the heat equation, the linearized elasticity system, etc.). We are not too
specific for the moment about the precise definition of J(Ω), and we shall present several instances
of such in Section 6.4.1.

• The functional P (Ω) stands for either of the two perimeter functionals PerR(Ω), PerT (Ω) introduced
in the previous section.

Admittedly, there are multiple variants of (2.1), featuring for instance P (Ω) as a constraint (instead of a
mere penalization of the objective function J(Ω)), or bringing into play additional constraints on Ω (e.g. on
its volume). Shape optimization problems of this kind will be studied numerically in Section 6, but for the
simplicity of the exposition, we stick to the simple formulation (2.1) for the moment.

Remark 2.1. The penalization of J(Ω) by the perimeter functional in (2.1) is a well-known stratagem to
enforce the existence of an optimal shape, at least when particular instances of the objective function J(Ω)
are considered, see e.g. [10] when J(Ω) is the compliance functional, and the work [37] dedicated to spectral
functionals.

Most numerical methods for problems of the form (2.1) rely on the derivatives of the objective and
constraint functions with respect to the domain. This notion may be defined in a variety of frameworks,
and we retain Hadamard’s boundary variation method, giving rise to the concept of shape derivative; see
for instance [9, 46, 57] and [58] about the alternative notion of topological derivative. Briefly, and omitting
for simplicity the requirement that the considered shapes Ω should be contained inside D, variations of a
bounded, Lipschitz domain Ω ⊂ Rd are considered under the form:

(2.2) Ωθ := (Id + θ)(Ω), θ ∈W 1,∞(Rd,Rd), ||θ||W 1,∞(Rd,Rd) < 1.
4



One function of the domain F (Ω) is then said to be shape differentiable at Ω if the underlying mapping
θ 7→ F (Ωθ), from W 1,∞(Rd,Rd) into R, is Fréchet differentiable at θ = 0. The corresponding derivative
F ′(Ω)(θ) is the shape derivative of F (Ω) at Ω, and the following expansion holds:

F (Ωθ) = F (Ω) + F ′(Ω)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd,Rd)

θ→0−−−→ 0.

From the numerical vantage, shape and topology optimization algorithms can be based on shape deriva-
tives, using for instance mesh deformation algorithms as in [8, 59], or the level set method as in [7, 61, 66]
for the numerical representation of the shape and its evolution; see [6] for a recent overview.

Let us conclude this section by recalling the following classical result about the shape differentiability of
perimeter functionals (see e.g. [46], §5.4.2):

Proposition 2.1. Let Ω be a bounded domain of class C3. The mapping θ 7→ Per(Ωθ) from C2(Rd,Rd) ∩
W 1,∞(Rd,Rd) into R is Fréchet differentiable at θ = 0, with shape derivative:

∀θ ∈ C2(Rd,Rd) ∩W 1,∞(Rd,Rd), Per′(Ω)(θ) =

∫
∂Ω

κ θ · n ds,

where κ : ∂Ω→ R is the mean curvature of ∂Ω (see Appendix A.1).

Remark 2.2. Similar results hold for the relative and total perimeter functionals, except that the considered
deformations θ in the practice of Hadamard’s method (see (2.2)) should satisfy θ ·n = 0 on the boundary ∂D
of the computational domain.

2.2. Density-based reformulation of shape optimization problems

Optimal design problems of the form (2.1) pose difficulties of various natures. From the mathematical
viewpoint, the existence of an optimal shape Ω is often difficult to guarantee; in addition, the expression
of the optimality conditions for (2.1) requires the technical calculation of shape or topological derivatives,
as the building blocks of optimality conditions, see e.g. [9, 46] about these points. From the numerical
viewpoint, the implementation of efficient shape optimization algorithms is far from straightforward [6, 63].

These challenges legitimate the popularity of density-based reformulations of (2.1). In a nutshell, the
considered set of designs is extended from true “black-and-white” shapes Ω ⊂ D (or equivalently their
characteristic functions χΩ, taking values 1 in Ω and 0 in D \Ω) to more general density functions u : D →
[0, 1], which are allowed to take intermediate “grayscale” values between 0 and 1.

The problem (2.1) is recast as:

(2.3) min
u∈L∞(D,[0,1])

J(u) + `P (u).

Here, J(u) and P (u) stand for “suitable” extensions of the objective and perimeter functions J(Ω) and P (Ω)
in (2.1) to density functions u, that is, J(u) = J(Ω) and P (u) = P (Ω) when u = χΩ is the characteristic
function of a shape Ω ⊂ D. The formulation (2.3) certainly presents a number of advantages over (2.1);
in particular, it is much simpler to handle numerically: for instance, algorithmic strategies based on the
derivatives of the mappings u 7→ J(u) and u 7→ P (u) are easy to carry out.

This question of how to conveniently extend an objective function J(Ω) accounting for the “physical
performance” of Ω (that is, involving the solution to a partial differential equation posed on Ω such as the
heat equation or the linear elasticity system) to accommodate density functions has been extensively studied
in the literature. Without entering into details, let us solely mention that the homogenization theory is
often invoked [4] to this end, or simplified, heuristic versions are used, such as the famous Solid Isotropic
Material with Penalization (SIMP) method in structural mechanics [25], the so-called “porosity method” in
fluid mechanics [26], etc; see also our previous works [5, 16, 19] in this direction, where approximate versions
J(u) of typical functionals J(Ω) of the domain are constructed which are “consistent” with the shape and
topological derivatives of the latter.
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2.3. Perimeter functionals in density-based topology optimization: existing works and contri-
butions of the present article

A great deal of work has been devoted to the relative perimeter functional PerR(Ω) and its extensions to the
context of density functions. One natural mathematical setting features functions u ∈ BV (D) with bounded
variations inside the computational domain D, see Section 3.1 below for a brief reminder about this notion.
The natural density-based counterpart of PerR(Ω) then reads:

(2.4) PR(u) :=

∫
D

|Du| = |Du|(D),

where |Du|(D) is the total variation of u ∈ BV (D). Unfortunately, this neat mathematical framework is
difficult to exploit from the numerical vantage, since functions u ∈ BV (D) generally present jumps, which
are difficult to capture. This drawback has aroused interest for appropriate, smoothed versions Fε(u) of the
(extended) relative perimeter PR(u), the perhaps most famous of which being the Cahn-Hilliard functional,
defined for u ∈ L1(D) by:

(2.5) Fε(u) =


∫
D

(
ε|∇u|2+

1

ε
W (u)

)
dx if u ∈ H1(D),

+∞ otherwise.

Here, the function R 3 s 7→ W (s) ∈ R is a potential with two wells in s = 0 and s = 1, satisfying suitable
growth conditions. The functional Fε(u) essentially assumes H1(D) functions and ε > 0 is a “small”
parameter tuning the level of smoothing. Intuitively, a minimizer u of Fε(u) is expected to show a good
compromise between showing “not too steep” variations (which are penalized by the gradient term) while
avoiding to take values “too different” from 0 and 1 (those being penalized by the potential W (u)). It was
proved by Modica and Mortola [55, 54] that Fε Γ-converges to the functional F (u) defined by

F (u) =

{
cWP

R(u) if u ∈ BV (D, {0, 1}),
+∞ otherwise,

where cW is a real-valued constant which explicitly depends on the potential W . We refer to Section 5.1
below for a short reminder of the notion of Γ-convergence; see also [2] for an enlightning discussion, and [30]
for different instances of the Modica-Mortola approximation.

The approximate relative perimeter functional (2.5) (or variants of it) has been a popular means to
formulate constraints on the length of codimension 1 subsets in density-based optimal design problems. Let
us mention a few such applications:

• In image segmentation, the objects composing an image, supplied as a grayscale intensity function
I : D → [0, 1], can be identified by minimizing the Mumford-Shah functional, defined over functions
u ∈ BV (D, [0, 1]). The latter is a weighted sum of a proximity term between u and I and the
measure of the jump set Su of the optimized function; see [24] for an overview. The so-called
Ambrosio-Tortorelli functional approximates this jump part by a modified version of (2.5) [14, 15].

• A quite similar approach is used in [28] in the context of an optimal repartition problem of a solid
phase, made of an elastic material, a liquid phase and void. These three phases are described by a
single “phase-field” function u ∈ BV (D), whose values are imposed to be close to −1, 0, or 1 by the
presence of a three-well potential in the minimized energy. Furthermore, the length of the interface
between each phase is penalized in a manner reminiscent to the aforementioned Modica-Mortola
procedure.

• The functional Fε(u) in (2.5) also makes it possible to approximate the gradient flow of the perimeter
functional – the mean curvature flow – by the gradient flow of the minimization of u 7→ Fε(u) – the
Allen-Cahn equation. A degenerate case of this last equation leads to the Bence-Merriman-Osher
algorithm, also referred to as “threshold dynamics”. In a nutshell, a shape Ω is updated by alternating
convolutions of the characteristic function of Ω with a kernel (for instance, the fundamental solution
to the heat equation) with thresholdings of the resulting function. We refer to [52] for the seminal
article about threshold dynamics, to [39] for an extension to the multi-phase context and to e.g. [32]
and references therein for more details on these approaches.
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The use of the approximate relative perimeter functional (2.5) is certainly more convenient than that of
the exact formula (2.4) from a practical viewpoint. Yet, a number of numerical difficulties persist, mainly
because the defining formula (2.5) involves the gradient of the optimized function u. As a consequence,
(2.5) only makes sense when u belongs to H1(D), and so its use in optimal design prevents u from being
a characteristic function; instead, u will inevitably present intermediate “grayscale” values between 0 and
1. Moreover, the derivative of u 7→ Fε(u), which is the key ingredient of most first-order optimization
algorithm for (2.3) (where P (u) is replaced by Fε(u)), involves second-order derivatives of u. Hence, a high-
order discretization has to be used for u to ensure the accuracy of the computation of this derivative, or a
sophisticated semi-implicit scheme has to be used to update u, as in [28].

In order to circumvent these concerns, elaborating on ideas present in [3, 53] (see also [39] in the multi-
phase context), an alternative approximation of the relative perimeter PR(u) was proposed in [21]:

(2.6) F̃ε(u) =
1

ε

∫
D

(1− LNeu
ε u)u dx,

where LNeu
ε u is the unique solution vε ∈ H1(D) to the PDE

(2.7)

{ −ε2∆vε + vε = u in D,
∂vε
∂n = 0 on ∂D.

Using the jargon of topology optimization, the optimized design u is filtered thanks to the regularizing
effect of the elliptic operator (2.7); see [27] for a theoretical justification and [34] for a related numerical

investigation. The analysis in [21] reveals that F̃ε Γ-converges in L∞(D, [0, 1]) (when the latter is equipped
with the L1(D) distance) to the following multiple of the extended relative perimeter:

F̃ (u) :=

{
1
2 |Du|(D) if u ∈ BV (D, {0, 1}),

+∞ otherwise.

The above contributions are dedicated to the relative perimeter PerR(Ω) of a domain Ω, or its extension
(2.4) to density functions u. As we have mentioned, in sharp contrast with this abundant literature, very few

contributions have been dealing with the total perimeter functional PerT (Ω), to the best of our knowledge.
The latter is readily extended to the density-based topology optimization setting via the following formula:

(2.8) PT (u) :=

∫
D

|Dũ|, u ∈ BV (D),

where ũ stands for the extension of u by 0 outside D. Understandably enough, this extended function suffers
from the same drawbacks as its relative counterpart in (2.4).

The main goal of the present work is precisely to construct, analyze and put into practical use suitable
approximate versions of (2.8). More precisely, we introduce approximate versions of the total perimeter
PT (u) whose common structure resembles very much that of (2.6):

(2.9) Pε(u) =
1

ε

∫
D

(1− Lεũ)u dx.

In the above definition, Lε is a regularizing operator, about which two versions are proposed:

• One of them, Lconv
ε u = ηε ∗ u is based on the convolution of u with a smooth mollifier ηε;

• The second one, LRob
ε , resembles much the operator in (2.6), except that the homogeneous Neumann

boundary condition in (2.7) is replaced by a Robin boundary condition: LRob
ε u is now the unique

solution vε ∈ H1(D) to the boundary-value problem:{ −ε2∆vε + vε = u in D,

ε∂vε∂n + vε = 0 on ∂D.

We denote by P conv
ε (u) (resp. PRob

ε (u)) the instance of (2.9) corresponding to the choice of the operator
Lconv
ε (resp. LRob

ε ). These constructions echo to our previous contributions [5, 16, 19], where density-based
approximate topology optimization problems were introduced, showing “consistent” optimality conditions
with those of the original shape optimization problem.

We then analyze thoroughly the mathematical properties of the functions Pε(u) defined by (2.9), as well
as the quality of the induced approximation of PT (u). Our main contributions can be summarized as follows:

7



(i) We first address the pointwise convergence of the functions Pε(u): when u = χΩ is the characteristic
function of a “smooth enough” shape Ω ⊂ D, we prove that both quantities P conv

ε (u) and PRob
ε (u)

converge (up to an explicit multiplicative constant) to the total perimeter PerT (Ω) as ε → 0, see
Sections 4.1 and 4.2. This result is generalized later in Section 5, where we show that, in the case of
the functional PRob

ε (u), the pointwise convergence of PRob
ε (u) to (a multiple of) PT (u) actually holds

when u is an arbitrary function in BV (D, {0, 1}).
(ii) We then consider in Section 4.3 the convergence of the “derivative” gu,ε of the mapping u 7→ Pε(u)

to the shape derivative of Ω 7→ Per(Ω) as ε → 0 in both cases where Lε = Lconv
ε and Lε = LRob

ε .
When u = χΩ is the characteristic function of a “smooth enough” shape Ω ⊂ D, we prove that gu,ε(x)
converges (up to a multiplicative constant) to the mean curvature κ(x) of Ω at all points x ∈ ∂Ω ∩D.
This convergence result is important in practice since it accounts for the convergence of the optimality
conditions attached to P conv

ε (u) and PRob
ε (u) to those corresponding to PerT (Ω), and also for the

consistency of the associated gradient flows.
(iii) Finally, we show in Section 5 that the PDE-based approximate total perimeter PRob

ε (u) Γ-converges
to (a multiple of) PT (u); this feature accounts for the behavior of the minimizers of PRob

ε (u) as ε→ 0,
or more generally for that of solutions to optimization problems involving PRob

ε (u) such as (2.3), see
Remark 5.2 for further comments about this point.

Last but not least, these results are illustrated in Section 6 by several numerical examples, ranging from
mere validation experiments to more concrete resolutions of shape and topology optimization problems.

3. The total and relative perimeter functionals and their approximations

In this section, we properly introduce our approximate total perimeter functionals. Since they are built in
the density-based setting introduced in Section 2.2, we first recall in Section 3.1 some basic material about
the chosen mathematical framework, namely that of functions with bounded variations and sets with finite
perimeter. Meanwhile, we set some notations used throughout the article. The approximate total perimeter
functionals are then formally presented in Section 3.2.

Thenceforth, D stands for a bounded “hold-all” domain of Rd (where d = 2, 3 in applications), with at
least Lipschitz regularity.

3.1. Preliminaries about geometric measure theory

Our main reference about the topics discussed in this section is [22]; see also [12].

3.1.1. Functions with bounded variations

Let us start with a definition.

Definition 3.1. A function u : D → R with bounded variations on D is a function u ∈ L1(D) whose
distributional gradient Du, defined by:

∀ϕ ∈ C1
c (D,Rd), 〈Du,ϕ〉 := −

∫
D

u divϕ dx,

is an Rd-valued Borel measure on D.
We denote by BV (D) the space of functions with bounded variations in D.

Note that, as in [12], Chap. 1, this definition implicitly assumes that the total variation of Du is bounded
when u ∈ BV (D), that is:

|Du|(D) =

∫
D

|Du| = sup
ϕ∈C1c (D,Rd)

||ϕ||
L∞(D)d

≤1

∫
D

u divϕ dx < +∞.

As a result of the last fact, the integral ∫
D

f ·Du

can be defined for all continuous and bounded function f ∈ C(D,Rd).
8



The quantity |Du|(D) (be it finite or infinite) is called the total variation of a function u ∈ L1(D); since
it writes as the supremum of a family of linear functionals, the mapping L1(D) 3 u 7→ |Du|(D) ∈ R ∪ {∞}
is lower semi-continuous.

The following proposition asserts that smooth functions are dense in the space BV (D), when an adapted
notion of convergence is considered on the latter space, see Th. 10.1.2 in [22].

Proposition 3.1. For any function u ∈ BV (D), there exists a sequence un ∈ C∞(D) converging to u for
the intermediate convergence, that is:

un
n→∞−−−−→ u strongly in L1(D), and

∫
D

|∇un| dx n→∞−−−−→
∫
D

|Du|.

Like functions in the Sobolev space H1(D), functions with bounded variations in D possess a trace on
the boundary ∂D:

Definition-Proposition 3.2. The usual restriction operator

C∞(D) 3 u 7−→ u|∂D∈ L1(∂D)

has a bounded extension to the space BV (D), which we refer to as the trace operator on BV (D).
Moreover, the mapping γ0 : BV (D) → L1(∂D) is continuous when BV (D) is equipped with the topology

of the intermediate convergence.

In this context, an adapted version of the Green’s formula holds for functions u ∈ BV (D), see [22], Th.
10.2.1:

Proposition 3.2. Let u be a function in BV (D); then for any function ϕ ∈ C1(D,Rd), it holds:

(3.1)

∫
D

ϕ ·Du = −
∫
D

u divϕ dx+

∫
∂D

γ0(u)ϕ · nD dHd−1.

Here and thenceforth, we denote by Ht the t-dimensional Hausdorff measure on Rd for any non negative
real number t ≥ 0. We recall thatHd−1 is simply the surface measure ds when it is restricted to the boundary
∂D, while Hd coincides with the Lebesgue measures Ld of Borel subsets of Rd. The vector field nD in (3.1)
(or simply n when the context is clear) is the unit normal vector to ∂D, pointing outward D.

Throughout the paper, we denote by ṽ the extension by 0 to Rd of a function v ∈ L1(D); the previous
identity then rewrites equivalently:

∀ϕ ∈ C1(D,Rd), −
∫
Rd
ũdivϕ dx = −

∫
D

udivϕ dx =

∫
D

ϕ ·Du−
∫
∂D

γ0(u)ϕ · n dHd−1,

and so we have the following identity between Rd-valued measures on Rd:

(3.2) Dũ = Du|D − γ0(u)nHd−1|∂D.

3.1.2. Approximate limits

Let E ⊂ Rd be a Borel subset, and let u : Rd → R be a measurable function.

Definition 3.3. The function u is said to have an E-approximate limit ` = ap lim
x→x0
x∈E

u(x) at some point

x0 ∈ Rd if and only if for every ε > 0, it holds:

(3.3)
Ld (Bρ(x0) ∩ E ∩ {|f − `| < ε})

Ld(Bρ(x0) ∩ E)

ρ→0−−−→ 1.

Here and throughout the text, {|f − `| < ε} is a shortcut for the set of points x ∈ Rd such that |f(x)−`| <
ε. Also, Bρ(x0) is the open ball with center x0 and radius ρ.

For x0 ∈ Rd and a given unit vector a in the unit sphere Sd−1 ⊂ Rd, we introduce the half-space oriented
by a:

πa(x0) =
{
x ∈ Rd, (x− x0) · a > 0

}
.
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Definition 3.4. One point x0 ∈ Rd is said to be a regular point of the measurable function u if there exists
a direction a ∈ Sd−1 such that the following two approximate limits exist:

(3.4) ua(x0) := ap lim
x→x0

x∈πa(x0)

u(x), and u−a(x0) := ap lim
x→x0

x∈π−a(x0)

u(x).

The following proposition sheds some light about the nature of regular points; see [22], Th. 10.3.1.

Definition-Proposition 3.5. Let x0 be a regular point of the measurable function u and let the direction
a ∈ Sd−1 be as in (3.4); two situations may occur:

• If ua(x0) = u−a(x0), then for any direction b ∈ Sd−1, the approximate limit ub(x0) exists and equals
ua(x0); x0 is said to be a point of approximate continuity of u;

• If ua(x0) 6= u−a(x0), then a is the unique vector (up to a sign) in Sd−1 such that u±a(x0) exist; x0

is said to be a jump point of u.

We denote by Su the jump set of u, i.e. the set of its jump points.

3.1.3. Sets with finite perimeter

In the following, we shall be interested in those functions in BV (D) which only take the values 0 and 1,
that is, the characteristic functions χE of Borel subsets E ⊂ D. Those sets E ⊂ D such that χE belongs to
BV (D, {0, 1}) are called subsets of D with finite (relative) perimeter.

The topological boundary ∂E of a set E with finite perimeter in D may be a quite singular object; see
for instance [45] §1.10. Two other notions of boundary are actually better suited for the study of such sets:

• The first one of them is the measure theoretical (or essential) boundary ∂ME, defined for a general
Borel set E ⊂ Rd, not necessarily contained in D, by:

∂ME =

{
x ∈ Rd, lim sup

ρ→0

Ld(Bρ(x) ∩ E)

Ld(Bρ(x))
> 0 and lim sup

ρ→0

Ld(Bρ(x) \ E)

Ld(Bρ(x))
> 0

}
⊂ ∂E.

• The second notion of importance is the jump set SχE ∩D of the characteristic function of E. In this
case, it coincides with the set of points x0 ∈ D where there exists a direction a ∈ Sd−1 such that:

(3.5) lim
ρ→0

Ld(Bρ(x0) ∩ π−a(x0) ∩ E)

Ld(Bρ(x0) ∩ π−a(x0))
= 1, and lim

ρ→0

Ld(Bρ(x0) ∩ πa(x0) ∩ E)

Ld(Bρ(x0) ∩ πa(x0))
= 0.

Finally, we list below a few useful properties of sets E with finite perimeter in D, see [22], Th. 10.3.2.

Proposition 3.3. Let E ⊂ D be a set with finite perimeter; then

• There exists a vector field ν(x) with values in Sd−1, the inner measure theoretic normal vector to E,
defined for Hd−1 almost every point x ∈ ∂ME, such that:

Dχ̃E = νHd−1|∂ME and DχE |D = νHd−1|(∂ME)∩D.

In particular, it holds:

|Dχ̃E | = Hd−1(∂ME) and |DχE | = Hd−1((∂ME) ∩D).

It follows from (3.2) that ν(x) coincides with −n(x) at points x ∈ ∂ME ∩ ∂D, where n is the unit
normal vector to ∂D pointing outward D.

• The jump set SχE ∩D coincides with ∂ME ∩D up to an Hd−1-negligible set. For x0 ∈ SχE ∩D, the
vector a in (3.5) then equals −ν(x0).

• Hd−1-almost every point in D is a regular point of χE.

3.1.4. Perimeter functionals in the setting of functions with bounded variations

Let us now consider the functional defined for a general function with bounded variations in Rd by:

(3.6) P (u) = |Du|(Rd), u ∈ BV (Rd),
and for u ∈ BV (D), let

(3.7)
PR(u) :=

∫
D

|Du|, and PT (u) :=

∫
Rd
|Dũ|

=

∫
D

|Du|+
∫
∂D

|γ0(u)|dHd−1.
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Note that we have used (3.2) in passing from the first to the second line of the above equality.
These functions are tailored in such a way that, if Ω is a bounded Lipschitz domain of Rd,

Per(Ω) = P (χΩ),

and if Ω is a bounded Lipschitz subset of D,

PerR(Ω) = PR(χΩ), and PerT (Ω) = PT (χΩ).

Hence, with a small abuse of language, these functions will still be referred to as the perimeter (resp. the
relative and total perimeter) of u.

3.2. Definition of the approximate perimeter functionals

We are now in position to introduce approximate versions Pε(u) of the total perimeter PT (u). Two different
constructions are presented, with competing assets and drawbacks. They have the common structure

(3.8) Pε : L∞(D, [0, 1])→ R, Pε(u) =
1

ε

∫
D

(1− Lεũ)u dx,

and when possible, we shall deal with them in a unified fashion. In the above, Lε : L∞(Rd, [0, 1]) →
L∞(D, [0, 1]) is a regularizing operator of the integral form

(3.9) Lεu(x) =

∫
Rd
Nε(x, y)u(y) dy, x ∈ D.

The kernel Nε(x, y) has the decomposition:

(3.10) Nε(x, y) =
1

εd
µ

(
x− y
ε

)
+Rε(x, y),

where

• the function µ ∈ L1(Rd) is radial, smooth on Rd \ {0}, and it has unit integral:∫
Rd
µ(x) dx = 1.

Besides, µ has (at most) a weak singularity near 0:

(3.11) ∃ ρ1 > 0, C > 0 s.t. ∀|y| < ρ1,

{
|µ(y)| ≤ C| log |y|| if d = 2,
|µ(y)| ≤ C|y|−1 if d = 3.

and it has fast decay at infinity:

(3.12) ∃ ρ2 > 0, C > 0 and α > 0 s.t. ∀|y| > ρ2, |µ(y)| ≤ Ce−α|y|.
• For any compact set K b D, the remainder Rε(x, y) satisfies

(3.13) sup
x∈K
||Rε(x, ·)||L∞(D) ≤ Ce−

α
ε ,

for some positive constants C and α depending on K.

We now discuss two possible definitions Lconv
ε and LRob

ε of the regularizing operator Lε, which induce via
(3.8) two different approximate total perimeter functions P conv

ε and PRob
ε .

3.2.1. Approximate perimeter functionals based on a mollifying kernel

Let η : Rd → R be a smooth mollifier, that is:

(3.14)

• η is of class C∞;
• η has compact support inside the unit ball B1(0);
• η has unit integral

∫
Rd η dx = 1;

• η has radial symmetry: there exists a smooth function η̂ : R→ R such that η(x) = η̂(|x|)
for x ∈ Rd.

For ε > 0, we set ηε(x) = 1
εd
η(xε ) and we introduce the convolution operator

(3.15) Lconv
ε : L1(Rd)→ L∞(Rd), Lconv

ε u(x) = (ηε ∗ u)(x) =

∫
Rd
η(y)u(x− εy) dy, a.e. x ∈ Rd.

11



Inspired from [17, 21], we now define the approximation P conv
ε (u) of the total perimeter PT (u) by:

∀u ∈ L1(Rd), P conv
ε (u) =

1

ε

∫
D

(1− Lconv
ε ũ)u dx.

Remark 3.1.

• A similar approximation could be worked out for the absolute perimeter functional P (u), but not for
the relative perimeter PR(u). Indeed, doing so would rely on a procedure to extend u from D to Rd
without creating “artificial” jumps across ∂D.

• We shall see that, despite its intuitive character, the convolution-based functional P conv
ε (u) is not so

easy to handle as the PDE-based counterpart presented in the next section, from both theoretical and
numerical viewpoints.

3.2.2. Approximate functionals using the regularizing effect of an elliptic partial differential equation

Our PDE-based approximation of the total perimeter PT (u) is based on the following operator: for a given
function u ∈ L∞(D, [0, 1]), let

(3.16) LRob
ε u = vε,

where vε ∈ H1(D) is the unique solution to the boundary value problem:

(3.17)

{ −ε2∆vε + vε = u in D,

ε∂vε∂n + vε = 0 on ∂D.

The approximate total perimeter PRob
ε (u) is defined by:

(3.18) PRob
ε (u) =

1

ε

∫
D

(1− vε)u dx.

At the moment, it is not obvious that the functional PRob
ε has the desired structure (3.8). To see this

more clearly, we rely on the integral representation of vε:

vε(x) =

∫
D

Nε(x, y)u(y) dy, for a.e. x ∈ D.

In the above formula, Nε(x, y) is the fundamental solution of the equation (3.17): for x ∈ D, y 7→ Nε(x, y)
satisfies { −ε2∆yNε(x, y) +Nε(x, y) = δy=x in D,

ε∂Nε∂ny
(x, y) +Nε(x, y) = 0 on ∂D,

where δy=x is the Dirac distribution at y = x.
The function Nε(x, y) can be expressed in terms of the fundamental solution Φε of the operator v 7→

−ε2∆v + v in the free space, which satisfies, for all x ∈ Rd,

−ε2∆yΦε(x, y) + Φε(x, y) = δy=x in the sense of distributions in Rd.

This function Φε has the analytic expression

(3.19) Φε(x, y) =
1

εd
Φ

(
x− y
ε

)
, where Φ(x) :=

1

(2π)
d
2

1

|x| d2−1
K d

2−1(|x|),

that is, Φ(x) is the fundamental solution of the operator v 7→ −∆v + v in the free space Rd, involving the
modified Bessel function of second kind Ka with parameter a ≥ 0, see e.g. [48] §2.3. The following lemma
collects useful estimates about Φ, see [1], §9.6.

Lemma 3.1. The function Φ : Rd \ {0} → R defined in (3.19) satisfies the following properties:

(i) Φ is of class C∞ on Rd \ {0}.
(ii) Φ is non negative, and

∫
Rd Φ(x) dx = 1.

(iii) (Estimates near 0) For m > 0, there exists a constant C > 0 depending on m such that

∀x ∈ Rd \ {0} , |x| < m,

{
Φ(x) ≤ C| log |x|| if d = 2,
Φ(x) ≤ C|x|−1 if d = 3.
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(iv) (Estimates of the derivative near 0) For m > 0, there exists a constant C > 0 depending on m such
that

∀x ∈ Rd \ {0} , |x| < m,


∣∣∣ ∂Φ
∂xi

(x)
∣∣∣ ≤ C|x|−1 if d = 2,∣∣∣ ∂Φ

∂xi
(x)
∣∣∣ ≤ C|x|−2 if d = 3,

i = 1, . . . , d.

(v) (Estimates at ∞) For M > 0 and a multi-index α ∈ Nd, there exist constants a > 0, C > 0 depending
on M and p such that

∀x ∈ Rd, |x| > M,

∣∣∣∣∂αΦ

∂xα
(x)

∣∣∣∣ ≤ Ce−a|x|.
The function Nε(x, y) can now be decomposed as:

Nε(x, y) = Φε(x, y) +Rε(x, y),

where for given x ∈ D, the remainder y 7→ Rε(x, y) satisfies:{ −ε2∆yRε(x, y) +Rε(x, y) = 0 in D,

ε∂Rε∂ny
(x, y) +Rε(x, y) = −ε∂Φε

∂ny
(x, y)− Φε(x, y) on ∂D.

It then follows from the structure (3.19) of the fundamental solution Φε, the decay of modified Bessel
functions at infinity (see (v) in Lemma 3.1) and classical elliptic estimates that for a given compact subset
K b D,

sup
x∈K
||Rε(x, ·)||L∞(D) ≤ Ce−

a
ε ,

for some positive constants a,C depending on K.

Remark 3.2. A similar approximate counterpart was proposed for the relative perimeter (3.7) in [21]:

(3.20) PNeu
ε (u) :=

1

ε

∫
D

(1− wε)u dx,

in which wε is the H1(D) solution to problem{ −ε2∆wε + wε = u in D,
∂wε
∂n = 0 on ∂D.

Let us emphasize the flexibility of the use of PDE-based regularizing operators Lε in the device of our gradient-
free perimeter functionals (3.8): an approximate version of the total perimeter is obtained from its relative
counterpart by simply changing boundary conditions in the defining boundary-value problem.

4. Pointwise convergence properties of the approximate total perimeter functionals
under a regularity assumption

We first discuss the convergence properties of the approximate functionals P conv
ε (u) and PRob

ε (u) towards
the total perimeter functional PT (u) in the particular case where u = χΩ is the characteristic function of a
domain Ω ⊂ D. Throughout this section, we proceed under the following hypotheses:

(4.1)

(i) The domain D is piecewise smooth.
(ii) The shape Ω ⊂ D is of the form Ω = D ∩ O where O ⊂ Rd is a Lipschitz, piecewise smooth

bounded domain. As a result, the boundary ∂Ω can be decomposed as:

∂Ω = Γ ∪ ΓD, where Γ := ∂Ω ∩D and ΓD := ∂D ∩ O,
(iii) For every point x ∈ ∂D ∩ ∂O, the boundaries of O and D are smooth at x and the normal

vectors nO(x) and nD(x) satisfy |nO(x) · nD(x)|< 1.

Roughly speaking, part (iii) of the above assumption means that the boundaries ∂O and ∂D are not exactly
parallel at the points where they intersect. In particular, Ω is Lipschitz regular, see Fig. 2 for an illustration.

We start in Section 4.1 by proving the pointwise convergence P conv
ε (u)→ PT (u) as ε→ 0 when u = χΩ is

the characteristic function of a domain Ω ⊂ D. Then, in Section 4.2, we deal with the pointwise convergence
of PRob

ε (u). Note that the results of this section will be retrieved in a more general context in Section 5.5;
yet, we believe that the calculations conducted in here are interesting per se, since they allow for a clearer
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Figure 2. Illustration of the assumptions (4.1) of Section 4: the region Γ = ∂Ω∩D of the
boundary of Ω is depicted in yellow, while the region ΓD = ∂D ∩ O is in red.

intuition of the convergence process. We finally examine in Section 4.3 the behavior of the derivatives of the
mappings u 7→ P conv

ε (u) and u 7→ PRob
ε (u) as ε→ 0.

4.1. Pointwise convergence of the convolution-based functional P conv
ε (u) towards PT (u)

Let us start with a technical lemma:

Lemma 4.1. Let η ∈ L1(Rd) be radial, i.e. there exists a function µ : R→ R such that η(x) = µ(|x|). The
following identity holds:

(4.2)

∫ ∞
0

tη(t) dt =
1

d− 1

∫
Rd−1

|ŷ|2η(ŷ, 0) dŷ,

where ŷ := (y1, . . . , yd−1) ∈ Rd−1 is the collection of the (d−1) first components of a point y = (y1, . . . , yd) ∈
Rd, and the function η : R→ R is defined by:

(4.3) η(t) :=

∫
Rd−1

η(ŷ, t) dŷ, for a.e. t ∈ R.

In the following, we denote by C(η) the common value of both sides of (4.2).

Proof. From the definition (4.3) of η, it holds:∫ ∞
0

tη(t) dt =

∫ ∞
0

∫
Rd−1

tη(y1, . . . , yd−1, t) dy1 . . . dyd−1 dt

=

∫ ∞
0

∫
Rd−1

tµ(
√
y2

1 + . . .+ y2
d−1 + t2) dy1 . . . dyd−1 dt

= ωd−1

∫ ∞
0

∫ ∞
0

trd−2µ(
√
r2 + t2) dr dt,

where we have operated a switch to polar coordinates in Rd−1 to pass from the second to the third line,
denoting by ωd−1 the surface of the unit sphere Sd−2 ⊂ Rd−1. Using the change of variables z =

√
r2 + t2 in
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the last integral in the above right-hand side, this rewrites in turn:∫ ∞
0

tη(t) dt = ωd−1

∫ ∞
0

∫ ∞
t

t(z2 − t2)
d
2−1µ(z)

zdz√
z2 − t2

dt

= ωd−1

∫ ∞
0

∫ ∞
t

tz(z2 − t2)
d−3

2 µ(z) dz dt.

An application of the Fubini theorem now yields:∫ ∞
0

tη(t) dt = ωd−1

∫ ∞
0

zµ(z)

(∫ z

0

t(z2 − t2)
d−3

2 dt

)
dz

= ωd−1

∫ ∞
0

zµ(z)

[
− 1

d− 1
(z2 − t2)

d−1
2

]z
0

dz

=
ωd−1

d− 1

∫ ∞
0

zdµ(z) dz,

and so, using another polar change of variables in Rd−1:∫ ∞
0

tη(t) dt =
1

d− 1

∫
Rd−1

|ŷ|2η(ŷ, 0) dŷ,

which is the desired identity. �

It will be useful in the following to calculate the value C(Φ) of the constant attached via (4.2) to the
fundamental solution Φ of the operator v 7→ −∆v + v defined in (3.19).

Lemma 4.2. Let Φ be defined by (3.19); then C(Φ) = 1
2 .

Proof. As a consequence of Lemma 3.1, the function Φ is in L1(Rd), and it easily follows that

Φ(t) :=

∫
Rd−1

Φ(y1, ..., yd−1, t) dy1 . . . dyd−1

belongs to L1(R). In particular, the functions Φ and Φ are temperate distributions on Rd and R, respectively.
Moreover, the Fourier transform FΦ of Φ, defined by

∀ξ ∈ Rd, FΦ(ξ) =

∫
Rd

Φ(x)e−ix·ξ dx

is a continuous function on Rd, which is related to the one-dimensional Fourier transform FΦ of Φ via the
relation:

∀ω ∈ R, FΦ(0̂, ω) =

∫
R

(∫
Rd−1

Φ(x̂, xd)dx̂

)
e−ixdω dω

= FΦ(ω),

where, again, we have denoted by 0̂ the point (0, . . . , 0) ∈ Rd−1.
On a different note, taking the Fourier transform of the defining identity for Ψ:

−∆Φ + Φ = δ0 in the sense of distributions in Rd,

we obtain:

∀ξ̂ ∈ Rd−1, ω ∈ R, F(ξ̂, ω) =
1

1 + |ξ̂|2 + ω2
,

and so

(1 + ω2)FΦ(ω) = 1.

Taking the (one-dimensional) inverse Fourier transform of the previous relation, it follows that the function
Φ ∈ L1(R) satisfies the following ordinary differential equation in the sense of distributions on R:

−Φ
′′

+ Φ = δ0.

A direct resolution of the latter yields:

Φ(t) =
1

2
e−|t|.
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With this result at hand, we are now in position to calculate the constant C(Φ):

C(Φ) =

∫ ∞
0

tΦ(t) dt =
1

2

∫ ∞
0

te−t dt =
1

2
,

as desired. �

We now prove the main result of this subsection.

Proposition 4.1. Let D ⊂ Rd and Ω ⊂ D be two domains satisfying the assumptions (4.1); the following
convergence holds:

P conv
ε (χΩ)

ε→0−−−→ C(η) PerT (Ω).

where C(η) is the constant defined by (4.2).

Proof. For clarity, we limit ourselves to proving the proposition in the case where Ω b D is a smooth domain.
The full statement of Proposition 4.1 is obtained by applying the argument below to the each individual
smooth portion of ∂Ω.

The definition (3.8) and (3.15) of the approximate perimeter P conv
ε (χΩ) yields:

P conv
ε (χΩ) =

1

ε

∫
Rd
χΩ(x)

(
1−

∫
Rd
η(y)χΩ(x− εy) dy

)
dx

=
1

ε

∫
Rd

∫
Rd
η(y)χΩ(x)(1− χΩ(x− εy)) dx dy.

Since the function η has compact support inside the unit ball B1(0), the integrand η(y)χΩ(x)(1−χΩ(x−εy))
vanishes unless y ∈ B1(0) and x belongs to the tubular neighborhood {x ∈ Ω, d(x, ∂Ω) < ε}. Using the
coarea formula of Lemma A.1, the above expression then rewrites:

(4.4)

P conv
ε (χΩ) =

1

ε

∫
B1(0)

∫
{x∈Ω, d(x,∂Ω)<ε}

η(y)(1− χΩ(x− εy)) dx dy

=
1

ε

∫
B1(0)

∫
∂Ω

∫ 0

−ε

(
d−1∏
i=1

(1 + tκi(x))

)
η(y)(1− χΩ(x+ tn(x)− εy)) dt ds(x) dy

=

∫
∂Ω

∫ 0

−1

(
d−1∏
i=1

(1 + tεκi(x))

)(∫
B0(1)

η(y)(1− χΩ(x+ tεn(x)− εy)) dy

)
dt ds(x),

where κ1, ..., κd−1 are the principal curvatures of ∂Ω, see Appendix A.1.
For given x ∈ ∂Ω and t ∈ (−1, 0), we are now led to investigate the behavior of the quantity:

Iε :=

∫
B1(0)

η(y)(1− χΩ(x+ tεn(x)− εy)) dy

as ε→ 0. Without loss of generality, we assume that

(4.5) x = 0, and n(x) = ed,

where ed is the dth coordinate vector in Rd. Since Ω is smooth around x, there exists an open neighborhood
U of x in Rd and a smooth function f : Rd−1 → R such that Ω coincides with the subgraph of f around x,
that is:

Ω ∩ U = {(x1, ..., xd) ∈ U, xd < f(x1, ..., xd−1)} ;

see Appendix A.1. In order to calculate Iε, we approximate it by the following integral, defined for fixed
x ∈ ∂Ω, t ∈ (−1, 0):

Ĩε :=

∫
B1(0)

η(y)(1− χ(x+ tεn(x)− εy)) dy,

whose definition mimicks that of Iε except that χΩ is replaced by the characteristic function χ of the lower
half-space {x = (x1, ..., xd), xd < 0}. The error between both quantities is estimated as:

(4.6) |Iε − Ĩε| ≤
∫
B1(0)

η(y)|χΩ(x+ tεn(x)− εy)− χ(x+ tεn(x)− εy)| dy.
16



A simple calculation yields, for ε small enough and y ∈ B1(0),

(4.7) χ(x+ tεn(x)− εy) =

{
1 if yd > t,
0 otherwise,

and

χΩ(x+ tεn(x)− εy) =

{
1 if yd > t− 1

εf(−εy1, . . . ,−εyd−1),
0 otherwise.

Hence, it is easy to see that

|χΩ(x+ tεn(x)− εy)− χ(x+ tεn(x)− εy)| = 0

if yd < t− 1

ε
|f(−εy1, . . . ,−εyd−1)| or yd > t+

1

ε
|f(−εy1, . . . ,−εyd−1)|.

A rough estimate of (4.6) based on the Fubini theorem now implies:

|Iε − Ĩε| ≤ ||η||L∞(Rd)

∫
[−1,1]d−1

(∫ 1

−1

χ{t− 1
ε |f(−εy1,...,−εyd−1)|≤yd≤t+ 1

ε |f(−εy1,...,−εyd−1)|} dyd

)
dy1 . . . dyd−1.

Noting that f(0) = 0 and ∇f(0) = 0 because of (4.5), there exists a constant C > 0 such that:

∀(y1, . . . , yd−1) ∈ [−1, 1]d−1, |f(εy1, . . . , εyd−1)| ≤ Cε2,

and so:

(4.8) |Iε − Ĩε|→ 0 as ε→ 0.

We are now in position to calculate the limit of Iε. Using again (4.7) and the Fubini theorem, Ĩε reads:

Ĩε =

∫
B1(0)

η(y)χ{yd<t}(y) dy

=

∫ t

−1

η(yd) dyd,

where the function η is defined by (4.3). Therefore,

(4.9) lim
ε→0

Iε =

∫ t

−1

η(yd) dyd.

Collecting (4.4), (4.8) and (4.9), we obtain:

P conv
ε (χΩ)

ε→0−−−→
∫
∂Ω

∫ 0

−1

∫ t

−1

η(z) dz dt ds(x) =

(∫ 0

−1

∫ t

−1

η(z) dz dt

)
Per(Ω).

Eventually, an integration by parts yields the alternative expression for the constant involved in the above
convergence result: ∫ 0

−1

∫ t

−1

η(z) dz dt = −
∫ 0

−1

tη(t) dt =

∫ 1

0

tη(t) dt,

which is exactly the constant C(η) defined in (4.2). This terminates the proof. �

Remark 4.1. We do not know whether the statement of Proposition 4.1 extends to the more general case
where u = χE ∈ BV (D, {0, 1}) is the characteristic function of a set E with finite perimeter in D.

4.2. Pointwise convergence of the PDE-based functional PRob
ε (u)

In this section, we prove that, for a given domain Ω ⊂ D fulfilling (4.1), the approximate quantity PRob
ε (χΩ)

converges to PerT (Ω), up to a factor 1
2 . This conclusion will be improved in Section 5 (see notably The-

orem 5.2) by using completely different techniques. However, we believe that the following argument is
interesting in itself as it sheds light about why Robin (and not e.g. Dirichlet) boundary conditions are
somehow “natural” in the definition of our PDE-based approximate total perimeter functional.

Theorem 4.1. Let D ⊂ Rd and Ω ⊂ D be two domains satisfying (4.1); then PRob
ε (χΩ) converges to

1
2PerT (Ω) as ε→ 0.
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Remark 4.2. This result is the exact mirror of Proposition 4.1 in the present context where the regularizing
operator Lε is that LRob

ε defined in (3.16) in place of Lconv
ε . Indeed, the constant C(µ) associated via (4.2)

to the radial function µ involved in the decomposition (3.9) and (3.10) of the kernel of LRob
ε equals exactly 1

2
by virtue of Lemma 4.2.

Proof. Let us recall the expression of PRob
ε (χΩ) from Section 3.2.2:

PRob
ε (χΩ) =

1

ε

∫
D

(1− vε)χΩ dx,

where vε is the unique solution in H1(D) to the boundary-value problem

(4.10)

{ −ε2∆vε + vε = χΩ in D,

ε∂vε∂n + vε = 0 on ∂D.

The latter rewrites, under variational form:

(4.11) Search for vε ∈ H1(D) s.t. ∀w ∈ H1(D), aε(vε, w) =

∫
D

χΩw dx,

where aε(v, w) := ε2

∫
D

∇v · ∇w dx+ ε

∫
∂D

vw ds+

∫
D

vw dx.

A formal integration by parts in the above definition of PRob
ε (χΩ) yields:

(4.12) PRob
ε (χΩ) = −ε

∫
Ω

∆vε dx = −ε
∫
∂Ω

∂vε
∂n

dx.

A careful understanding of the behavior of vε near the boundary ∂Ω is thus the key ingredient in passing
to the limit in (4.12). As we shall see, grossly speaking, vε behaves like the characteristic function χΩ as
ε→ 0, near points x ∈ D lying “far” from ∂Ω as ε→ 0. On the contrary, the description of vε near ∂Ω will
involve boundary layer correctors.

For the sake of simplicity and without loss of generality, we limit ourselves with the case of two space
dimensions in the present proof. Let us recall that, according to our geometric assumption (4.1) whereby Ω
arises as the intersection of D with a piecewise smooth domain O ⊂ Rd, the boundary ∂Ω is decomposed as:

∂Ω = Γ ∪ ΓD, where Γ := ∂Ω ∩D, ΓD := ∂D ∩ O,
where the former region is the part of ∂Ω lying strictly inside D and the latter is the part of ∂Ω which is
included in ∂D, see again Fig. 2. Also, the intersection ∂O ∩ ∂D consists of finitely many points p1, ..., pN ,
and there exist positive constants c, δ such that:

(4.13) ∀i = 1, ..., N, ∀x ∈ ∂D ∩Bδ(pi), d(x, ∂O) ≥ c|x− pi|.
Our calculations proceed as in Chap.2 of [49], and the proof is decomposed into four steps.

Step 1: We analyze the difference zε := vε − χΩ from a formal point of view.
To achieve this, we first derive a variational characterization of zε. This function belongs to H1(Ω) and

H1(D \ Ω); it is discontinuous across Γ and its jump across this boundary reads, for x ∈ Γ:

(4.14) [zε](x) = 1, where [zε](x) := z+
ε (x)− z−ε (x)

is the difference between the one-sided limits z±ε (x) := limt→0± zε(x+ tn(x)). Likewise, the jump of the
normal derivative of zε across ∂Ω reads:

(4.15)

[
∂zε
∂n

]
(x) :=

∂z+
ε

∂n
(x)− ∂z−ε

∂n
(x) = 0, x ∈ Γ.

The function zε additionnally satisfies:

(4.16) ∀w ∈ H1(D), ε2

∫
D

∇zε · ∇w dx+

∫
D

zεw dx+ ε

∫
∂D

zεw ds = −ε
∫
∂D

χΩw ds.

As we have mentioned, we expect zε to be concentrated around the boundary ∂Ω and to show “fast” decay
away from the latter as ε→ 0. To verify this, let δ > 0 be the small thickness parameter as in the statement
of Proposition A.1, and let us take arbitrary test functions w with compact support inside D∩∂Ωδ in (4.16),
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where we recall the definition of the tubular neighborhood ∂Ωδ :=
{
x ∈ Rd, |dΩ(x)| < δ

}
. Applying the

coarea formula from Lemma A.1, we obtain:

(4.17)

∫
∂Ω

∫ δ

−δ
(1 + tκ(x))

(
ε2 ∂zε
∂n

∂w

∂n
+ ε2 ∂zε

∂τ

∂w

∂τ
+ zεw

)
(x+ tn(x)) dt ds(x) = 0.

In particular, we may select functions w of the form

∀x ∈ ∂Ω, t ∈ (−δ, δ), w(x+ tn(x)) = ζ(x)g

(
t

ε

)
,

where ζ ∈ C∞c (Γ) and g ∈ C∞c (−1, 1) are arbitrary. Doing so and using the change of variables t = εu in
(4.17), we obtain:∫

∂Ω

∫ ∞
−∞

(1 + εuκ(x))

(
ζ(x)

d

du
(zε(x+ εun(x))) g′(u)

+ ε2 ∂ζ

∂τ
(x)

∂zε
∂τ

(x+ εun(x))g(u) + zε(x+ εun(x))ζ(x)g(u)

)
du ds(x) = 0.

Neglecting the terms weighted by ε and ε2 in the above identity and using the fact that ζ ∈ C∞c (Γ)
and g ∈ C∞c (−1, 1) are arbitrary, we see that for any given point x ∈ Γ, the function on the real line
fx(u) := zε(x+ εun(x)) should satisfy:

−f ′′x (u) + fx(u) = 0 for u ∈ (−∞, 0) ∪ (0,∞),
fx(0+)− fx(0−) = 1,
f ′x(0+)− f ′x(0−) = 0,

fx(u) is bounded as u→ ±∞.
where we recall the jump relations (4.14) and (4.15). A direct resolution now yields:

fx(u) =

{
− 1

2e
u if t < 0,

1
2e
−u if t > 0.

This supplies our candidate as for the behavior of zε near the region Γ ⊂ ∂Ω:

zε(x) ≈
{
− 1

2e
dO(x)

ε if x ∈ Ω,
1
2e
− dO(x)

ε if x ∈ D \ Ω,

where dO is the signed distance function to O, see Appendix A.2 about this notion, and notably Proposi-
tion A.1.

Using similar considerations, we expect that:

zε(x) ≈ −1

2
e
dD(x)

ε near ΓD, and zε(x) ≈ 0 near ∂D \ O.

Step 2: Definition of the boundary layer correctors. Let us denote by ∂Oδ :=
{
x ∈ Rd, d(x, ∂O) < δ

}
the

tubular neighborhood of ∂O with width 2δ (and likewise for ∂Dδ), where δ > 0 is chosen as in the statement
of Proposition A.1. Let ϕ,ψ : R→ R be two smooth cut-off functions with the following properties:{

ϕ(t) = 1 if |t| < δ
2 ,

ϕ(t) = 0 if |t| > δ,
and

{
ψ(t) = 1 if t < −δ,
ψ(t) = 0 if t > δ.

Following the analysis in Step 1, we introduce profile functions rΩ and rD, accounting for the local behavior
of the difference (vε − χΩ) in the neighborhoods of Γ and ΓD, respectively:

(4.18) ∀x ∈ D, rΩ(x) =

{
− 1

2e
dO(x)

ε if x ∈ Ω,
1
2e
− dO(x)

ε if x /∈ Ω,
and rD(x) = −1

2
e
dD(x)

ε .

The corrector function rε : D → R is eventually defined by:

(4.19) rε = ϕ(dO)rΩ + ϕ(dD)ψ

(
dO
ε

)
rD;
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that is, rε coincide with rΩ near Γ and with rD near ΓD, outside neighborhoods of the junctions points of
∂O ∩ ∂D with diameter of order ε.

We aim to prove that vε behaves likes χΩ + rε as ε→ 0, i.e. we estimate the residual

sε := vε − χΩ − rε,
in a way yet to be specified. To achieve this, let us observe that sε ∈ H1(D) since both functions vε and
rε + χΩ do, by construction of rε. A simple calculation based on Lemma A.1 yields the following estimates
about rΩ and rD:

(4.20) ||rΩ||L2(∂Oδ)≤ Cε1/2, ||∇rΩ||L2(∂Oδ)2 ≤ Cε−1/2, and ||rD||L2(∂Dδ)≤ Cε1/2;

here and until the end of the proof C stands for a positive constant which does not depend on ε.
Moreover, it follows from assumption (4.13) that, for i = 1, ..., N , the following estimate holds:

(4.21) ||rΩ||L2(∂D∩Bδ(pi))≤ Cε1/2.

Step 3: Estimate of the function sε. For an arbitrary test function w ∈ H1(D), we calculate:

(4.22)

aε(sε, w) = aε(vε, w)− aε(χΩ + rε, w)

= −ε2

∫
D

∇(rε + χΩ) · ∇w dx− ε
∫
∂D

(χΩ + rε)w ds−
∫
D

rεw dx

=: −I1
ε (w)− I2

ε (w),

where we have used the variational formulation (4.11) to pass from the first line to the second one, and we
have defined:

I1
ε (w) = ε2

∫
D\∂Ω

∇ (ϕ(dO)rΩ) · ∇w dx+ ε

∫
∂D

ϕ(dO)rΩw ds+

∫
D

ϕ(dO)rΩw dx,

and

I2
ε (w) = ε2

∫
D

∇
(
ϕ(dD)ψ

(
dO
ε

)
rD

)
· ∇w dx+ ε

∫
∂D

ϕ(dD)ψ

(
dO
ε

)
rDw ds

+

∫
D

ϕ(dD)ψ

(
dO
ε

)
rDw dx+ ε

∫
∂D

χΩw ds.

Grossly speaking, the contribution I1
ε (w) appraises how well the corrector rΩ accounts for the harmonic

behavior of (vε−χΩ) inside Ω and the jump of this function across Γ. The contribution I2
ε (w) measures how

well rD represents the Robin boundary condition fulfilled by (vε − χΩ) on ΓD.

We proceed to estimate each term separately. Throughout the proof, we denote by qε(w) a remainder term,
possibly changing from one line to the next, which satisfies the estimate:

|qε(w)|≤ C
(
ε2||∇w||L2(D)2+ε3/2||w||L2(∂D)+ε||w||L2(D)

)
.

At first, the definition of I1
ε (w) rewrites:

(4.23) I1
ε (w) = ε2

∫
D

rΩ∇(ϕ(dO)) · ∇w dx+ ε2

∫
D\∂Ω

ϕ(dO)∇rΩ · ∇w dx

+ ε

∫
∂D

ϕ(dO)rΩw ds+

∫
D

ϕ(dO)rΩw dx.

Using (4.20), the first integral in the above right-hand side is estimated as:∣∣∣∣ε2

∫
D

rΩ∇(ϕ(dO)) · ∇w dx

∣∣∣∣ ≤ Cε2||rΩ||L2(∂Oδ∩D)||∇w||L2(D)2

≤ Cε5/2||∇w||L2(D)2 .

Likewise, relying on the estimate (4.21), we prove that:∣∣∣∣ε ∫
∂D

ϕ(dO)rΩw ds

∣∣∣∣ ≤ Cε3/2||w||L2(∂D).
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As far as the remaining two terms in (4.23) are concerned, an integration by parts yields:

(4.24) ε2

∫
D

ϕ(dO)∇rΩ · ∇w dx+

∫
D

ϕ(dO)rΩw dx = −ε2

∫
Γ

ϕ(dO)

[
∂rΩ

∂n

]
w ds

+ ε2

∫
∂D

ϕ(dO)
∂rΩ

∂n
w ds− ε2

∫
D

w∇(ϕ(dO)) · ∇rΩ dx+

∫
D

ϕ(dO)(−ε2∆rΩ + rΩ)w dx.

From the definition (4.18) of rΩ, the first integral in the above right-hand side vanishes. Moreover, using
again (4.20) and (4.21), the second and third integrals are estimated as:

(4.25)

∣∣∣∣ε2

∫
∂D

ϕ(dO)
∂rΩ

∂n
w ds− ε2

∫
D

w∇(ϕ(dO)) · ∇rΩ dx

∣∣∣∣ ≤ C (ε3/2||w||L2(D)+ε
3/2||w||L2(∂D)

)
.

We now consider the last integral in the right-hand side of (4.24). Recalling the expression (A.3) of the
Laplace operator in the local basis (τ, n) attached to the tubular neighborhood ∂Oδ

∆rΩ =
∂2rΩ

∂τ2
+
∂2rΩ

∂n2
+

κ

1 + κdO

∂rΩ

∂n
,

a simple calculation based on the explicit expression (4.18) of rΩ and the properties of the signed distance
function recalled in Appendix A.2 yields:

(4.26) − ε2∆rΩ(x) + rΩ(x) =

{ −ε
2

κ(x)
1+dO(x)κ(x)e

dO(x)

ε if x ∈ ∂Ωδ ∩ Ω,

−ε
2

κ(x)
1+dO(x)κ(x)e

− dO(x)

ε if x ∈ ∂Ωδ \ Ω.

Hence, we obtain:

(4.27)

∣∣∣∣∫
D

ϕ(dO)(−ε2∆rΩ + rΩ)w dx

∣∣∣∣ ≤ Cε3/2||w||L2(D).

Collecting (4.24), (4.25) and (4.27), we have proved that

∀w ∈ H1(D), |I1
ε (w)|≤ C

(
ε3/2||w||L2(D)+ε

3/2||w||L2(∂D)

)
,

and in particular

(4.28) |I1
ε (w)|≤ qε(w).

We now estimate the term I2
ε (w) for an arbitrary function w ∈ H1(D). This quantity rewrites:

(4.29)

I2
ε (w) = ε2

∫
D

rDψ

(
dO
ε

)
∇(ϕ(dD)) · ∇w dx+ ε2

∫
D

rDϕ(dD)∇
(
ψ

(
dO
ε

))
· ∇w dx

+ε2

∫
D

ϕ(dD)ψ

(
dO
ε

)
∇rD · ∇w dx+ ε

∫
∂D

ϕ(dD)ψ

(
dO
ε

)
rDw ds

+

∫
D

ϕ(dD)ψ

(
dO
ε

)
rDw ds+ ε

∫
∂D

χΩw ds.

The first integral in the above right-hand side is easily estimated thanks to (4.20):

(4.30)

∣∣∣∣ε2

∫
D

rDψ

(
dO
ε

)
∇(ϕ(dD)) · ∇w dx

∣∣∣∣ ≤ Cε2||rD||L2(∂Dδ)||∇w||L2(D)2 ,

≤ Cε5/2||∇w||L2(D)2 .

As for the second integral in the right-hand side of (4.29), we get similarly:

(4.31)

∣∣∣∣ε2

∫
D

rD ϕ(dD)∇
(
ψ

(
dO
ε

))
· ∇w dx

∣∣∣∣ ≤ Cε ∣∣∣∣∣∣∣∣rD∇ψ(dOε
)∣∣∣∣∣∣∣∣

L2(∂Dδ)2

||∇w||L2(D)2 .
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We now proceed to estimate∣∣∣∣∣∣∣∣rD∇ψ(dOε
)∣∣∣∣∣∣∣∣2

L2(∂Dδ)2

=

∫
∂Dδ

r2
D

∣∣∣∣∇ψ(dOε
)∣∣∣∣2 dx

≤ C

∫
∂Dδ∩∂Oδε

r2
D dx

≤ C

∫
∂D

∫ δ

0

e−
2t
ε χ{x∈∂D, d(x+tn(x),∂O)<δε} dt ds(x),

where we have used the coarea formula of Lemma A.1.
Taking advantage of (4.13), there exists a constant c > 0 such that:{

x ∈ ∂D, ∃t < δ, d(x+ tn(x), ∂O) < δε
}
⊂ ∂D ∩

(
N⋃
i=1

Bcε(pi)

)
,

and so: ∣∣∣∣∣∣∣∣rD∇ψ(dOε
)∣∣∣∣∣∣∣∣2

L2(∂Dδ)2

≤ C
N∑
i=1

∫
∂D∩Bcε(pi)

∫ δ

0

e−
2t
ε dt ds(x).

This entails:

(4.32)

∣∣∣∣∣∣∣∣rD∇ψ(dOε
)∣∣∣∣∣∣∣∣

L2(∂Dδ)2

≤ Cε,

and so, recalling (4.31):

(4.33)

∣∣∣∣ε2

∫
D

rDϕ(dD)∇
(
ψ

(
dO
ε

))
· ∇w dx

∣∣∣∣ ≤ Cε2||∇w||L2(D)2 .

When it comes to the third term in the right-hand side of (4.29), an integration by parts, followed by
estimates similar to those previously derived yields:

(4.34) ε2

∫
D

ϕ(dD)ψ

(
dO
ε

)
∇rD · ∇w dx = −ε2

∫
D

ϕ(dD)ψ

(
dO
ε

)
∆rD w dx

+ ε2

∫
∂D

ϕ(dD)ψ

(
dO
ε

)
∂rD
∂n

w ds+ qε(w).

Gathering (4.29), (4.30), (4.33) and (4.34), we obtain:

I2
ε (w) =

∫
D

ϕ(dD)ψ

(
dO
ε

)
(−ε2∆rD + rD)w dx+ ε

∫
∂D

ϕ(dD)ψ

(
dO
ε

)(
ε
∂rD
∂n

+ rD + χΩ

)
w ds+ qε(w).

Eventually, explicit calculations similar to (4.26), based on the definition (4.18) of rD yield:

(4.35) |I2
ε (w)|= qε(w).

Using the estimates (4.28) and (4.35) in (4.22), then taking w = sε as test function, it follows that:

(4.36) ε2||∇sε||2L2(D)2+ε||sε||2L2(∂D)+||sε||2L2(D)≤ C
(
ε2||∇sε||L2(D)2+ε3/2||sε||L2(∂D)+ε||sε||L2(D)

)
.

We now apply the Cauchy-Schwarz inequality with the following inner product over R3

∀a = (a1, a2, a3), b = (b1, b2, b3) ∈ R3, 〈a, b〉 = ε2a1b1 + εa2b2 + a3b3,

to obtain:

ε2||∇sε||2L2(D)2+ε||sε||2L2(∂D)+||sε||2L2(D)≤ C
(
ε2||∇sε||2L2(D)2+ε||sε||2L2(∂D)+||sε||2L2(D)

)1/2 (
ε2 + εε+ ε2

)1/2
,

and so:

(4.37) ε2||∇sε||2L2(D)2+ε||sε||2L2(∂D)+||sε||2L2(D)≤ Cε2.
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Step 4: Asymptotic analysis of the approximate perimeter PRob
ε (χΩ). Let us recall the alternative formula

(4.12) for PRob
ε (χΩ):

PRob
ε (χΩ) = −ε

∫
∂Ω

∂rε
∂n

ds− ε
∫
∂Ω

∂sε
∂n

ds.

A straightforward calculation based on the explicit expression (4.18) and (4.19) of the corrector rε reveals
that:

lim
ε→0

(
−ε
∫
∂Ω

∂rε
∂n

ds

)
= lim
ε→0

(
−ε
∫

Γ

∂rε
∂n

ds− ε
∫

ΓD

∂rε
∂n

ds

)
=

1

2
PerT (Ω).

Therefore, the conclusion of the theorem follows from the convergence:

(4.38) ε

∫
∂Ω

∂sε
∂n

ds
ε→0−−−→ 0,

which we now proceed to show.
To this end, let σε := ε∇sε ∈ L2(D)2; the following estimate is a direct consequence of (4.37):

(4.39) ||σε||L2(D)≤ Cε.
We now prove that ||divσε||L2(Ω)2≤ C. To achieve this, let us calculate:

−ε2∆sε = −ε2∆vε + ε2∆rε
= 1− vε + ε2∆rε
= −sε − (−ε2∆rε + rε),

in the sense of distributions in Ω. Therefore:

div(σε) =
sε
ε

+
1

ε

(
−ε2∆rε + rε

)
.

The first term in the above right-hand side is bounded in L2(Ω) owing to (4.37), and the second one is
also bounded in L2(Ω) as is immediately revealed by an explicit calculation based on the expression (4.18)
and (4.19) of the corrector rε.

Hence, σε is a bounded sequence in Hdiv(Ω), and so there exists a subsequence (still indexed by ε for
simplicity) and σ0 ∈ Hdiv(Ω) such that

σε
ε→0−−−→ σ0 weakly in L2(Ω), and div(σε)

ε→0−−−→ div(σ0) weakly in L2(Ω).

Because of (4.39), the weak limit σ0 is necessarily 0, so that along the same subsequence:

ε

∫
∂Ω

∂sε
∂n

ds
ε→0−−−→ 0.

By a classical argument relying on the uniqueness of the limit, the above convergence actually holds for
all the sequence ε (and not only along a subsequence). This shows (4.38), and terminates the proof of the
theorem. �

Remark 4.3. A similar result to Theorem 4.1 holds in the case of the approximate and exact relative
perimeter functionals (3.7) and (3.20), with the same line of proof.

4.3. Convergence of the derivative of the approximate perimeter functionals P conv
ε (u) and PRob

ε (u)

As we have mentioned, we intend to use P conv
ε (u) and PRob

ε (u) in topology optimization algorithms, as

generalized counterparts of the usual total perimeter PerT (Ω) of shapes Ω. Recalling the common structure
(3.8) of these functionals,

Pε : L∞(D, [0, 1])→ R, Pε(u) =
1

ε

∫
D

(1− Lεũ)u dx,

where Lε stands for either Lconv
ε in (3.15) or LRob

ε in (3.16), we have just proved the consistency of the values

of Pε(u) with those of PerT (Ω): when u = χΩ is the characteristic function of a shape Ω ⊂ D (satisfying

mild assumptions), the quantity Pε(χΩ) converges to C(µ)PerT (Ω) as ε → 0; see (3.10) and (4.2) for the
definition of the constant C(µ).
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As we shall see in more details in Section 6.4.1, a key quantity in the numerical treatment of density-based
topology optimization problems involving Pε(u) is the derivative of this functional. Its expression follows
from a standard calculation:

(4.40) ∀û ∈ L∞(D), P ′ε(u)(û) =

∫
D

gu,εû dx, where gu,ε(x) :=
1

ε
(1− 2(Lεũ)(x)),

where we have used the fact that the operators Lconv
ε and LRob

ε are self-adjoint with respect to the L2(Rd)
and L2(D) inner product, respectively.

In this section, we examine the consistency of the derivative P ′ε(u) of our approximate perimeter functionals

with the shape derivative PerT ′(Ω)(θ) (supplied by Proposition 2.1) of the exact total perimeter in the
particular case where u = χΩ is the characteristic function of a given domain Ω. Our main result reads as
follows.

Proposition 4.2. Let D ⊂ Rd and Ω ⊂ D be two bounded domains satisfying the assumption (4.1), and let
x ∈ ∂Ω ∩D be a point such that the boundary ∂Ω is smooth around x. Let

gχΩ,ε(x) :=
1

ε
(1− 2(Lεχ̃Ω)(x)),

where Lε is one of the regularizing operators (3.9) and (3.10). Then, the following convergence holds:

gχΩ,ε(x)
ε→0−−−→ C(µ)κ(x),

where κ(x) is the mean curvature of ∂Ω at x and C(µ) is the constant associated with the radial principal
part µ of Lε via (4.2).

Remark 4.4. This result expresses the quite intriguing fact that when u = χΩ is the characteristic function
of a smooth subdomain Ω ⊂ D satisfying (4.1), the derivative of the approximate perimeter Pε(u), which is
a quantity able to measure “topological changes” in the shape accounted for by the density u, is consistent
with the shape derivative of the exact perimeter functional, describing geometric variations of Ω.

Proof. Without loss of generality, we assume that the considered point x coincides with the origin 0, and
that the normal vector to ∂Ω at x is n(x) = ed. A simple calculation, based on the structure (3.9) of Lε,
yields:

gχΩ,ε(x) =
1

ε

(
1− 2

∫
Rd
µ(y)χΩ(x− εy) dy

)
− 2

ε

∫
Rd
χΩ(y)Rε(x, y) dy.

It follows from the decay estimate (3.13) that the second term in the above right-hand side vanishes as ε→ 0.
Then, a simple calculation based on the properties of the function µ in (3.10) yields:∫

{y∈Rd, yd>0}
µ(y) dy =

1

2
,

so that:

(4.41) gχΩ,ε(x) =
2

ε

∫
Rd
µ(y)(χ{yd>0}(y)− χΩ(x− εy)) dy + o(1).

Let us now introduce a local representation of Ω around x. As in Appendix A.1, there exists a real number
ρ > 0 and a smooth function f ∈ C∞(Rd−1) (which we assume to be defined on the whole space Rd−1 for
commodity) such that:

Ω ∩Bρ(0) = {y = (y1, . . . yd), yd < f(y1, ..., yd−1)} .
Our convention whereby x = 0 and the normal vector n(0) equals ed implies that:

(4.42) f(0) = 0, ∇ŷf(0) = 0, and ∇2
ŷf(0) = −II0,

where II0 is the second fundamental form of ∂Ω at 0. Hence, for ε small enough and y ∈ B ρ
ε
(0), it holds:

χΩ(x− εy) =

{
1 if yd > − 1

εf(−εy1, ...,−εyd−1),
0 if yd < − 1

εf(−εy1, ...,−εyd−1).
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Now taking advantage of the decay (3.12) of µ at infinity, it follows:

2

ε

∫
Rd
µ(y)χΩ(x− εy) dy =

2

ε

∫
B ρ
ε

(0)

µ(y)χΩ(x− εy) dy + o(1)

=
2

ε

∫
B ρ
ε

(0)

µ(y)χ{yd>− 1
ε f(−εy1,...,−εyd−1)} dy + o(1)

=
2

ε

∫
Rd
µ(y)χ{yd>− 1

ε f(−εy1,...,−εyd−1)} dy + o(1),

and (4.41) then becomes:

(4.43)

gχΩ,ε(x) =
2

ε

∫
Rd−1

(∫ ∞
0

µ(y) dyd −
∫ ∞
− 1
ε f(−εy1,...,−εyd−1)

µ(y) dyd

)
dy1 . . . dyd−1 + o(1),

=
2

ε

∫
Rd−1

(∫ b(ε)

0

µ(y) dyd

)
dy1 . . . dyd−1 + o(1),

where we have introduced the smooth function b(ε) := − 1
εf(−εy1, . . . ,−εyd−1), whose dependence on

y1, . . . , yd−1 is omitted for notational simplicity. In order to pass to the limit ε → 0 in the above ex-
pression, we first need to calculate the values b(0) and b′(0); to achieve this, a Taylor expansion at ε = 0
yields:

b(ε) = −1

ε

(
f(0)− ε∇ŷf(0) · ŷ +

ε2

2
∇2
ŷf(0)(ŷ, ŷ)

)
+ o(ε),

and using (4.42), we obtain:

b(ε) =
ε

2
II0(ŷ, ŷ) + o(ε).

We then infer that b(0) = 0 and b′(0) = 1
2 II0(ŷ, ŷ).

Now using the smoothness of the partial mapping yd 7→ µ(y1, . . . , yd−1, yd) for fixed ŷ = (y1, . . . , yd−1) 6= 0,
we obtain, for ŷ 6= 0:

lim
ε→0

1

ε

∫ b(ε)

0

µ(y) dyd = b′(0) µ(y1, ..., yd−1, b(0)).

The estimates (3.11) and (3.12) about µ then make it possible to apply the Lebesgue dominated convergence
theorem in (4.43), which results in:

lim
ε→0

gχΩ,ε(x) =

∫
Rd−1

µ(y1, . . . , yd−1, 0)II0(ŷ, ŷ) dy1 . . . dyd−1,

=

∫
Rd−1

µ(y1, . . . , yd−1, 0)

 d−1∑
i,j=1

II0,i,jyiyj

 dy1 . . . dyd−1,

= κ(x)

∫
Rd−1

µ(y1, . . . , yd−1, 0)y2
1 dy1 . . . dyd−1,

where we have denoted by II0,i,j the entries of the (d− 1)× (d− 1) matrix II0, and we have used the radial
character of µ, which implies that∫

Rd−1

µ(y1, . . . , yd−1, 0)yiyj dy1 . . . dyd−1 = 0 if i 6= j,

and that all the integrals ∫
Rd−1

µ(y1, . . . , yd−1, 0)y2
i dy1...dyd−1

share the same value for i = 1, ..., d− 1. We have also used the fact that κ(x) = tr (II0), see Appendix A.1.
Hence,

lim
ε→0

gχΩ,ε(x) =
1

(d− 1)
κ(x)

∫
Rd−1

|ŷ|2µ(y1, . . . , yd−1, 0) dy1 . . . dyd−1,

which termines the proof, owing to Lemma 4.1. �
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Remark 4.5. The above analysis stands only in the neighborhood of the points x ∈ ∂Ω ∩ D where the
boundary ∂Ω is smooth, and it seems difficult to extend to intersection points of the boundaries ∂Ω and ∂D.
The behavior of the approximate perimeter functional PRob

ε (u) near those intersection points as ε → 0 will
be better understood in the framework of Γ-convergence, as we shall see in the next Section 5.

5. Convergence properties of the PDE-based approximate perimeter functional PRob
ε (u)

In this section, we look at the approximation of the total perimeter PT (u) in (3.7) from another perspective,
namely, we investigate the Γ-convergence of the PDE-based functional PRob

ε (u) to its exact counterpart
PT (u), which indicates how the minimum value and the minimizers of PRob

ε (u) behave as ε→ 0.
We first recall in the next Section 5.1 some material about the notion of Γ-convergence, and we state

Theorem 5.2, which is the main result in this section. Technical preliminaries for the proof of this theorem
are discussed in Sections 5.2 and 5.3; Sections 5.4 and 5.5 are then devoted to the proof of the Γ-limsup
(resp. Γ-liminf) inequalities. Finally, we deal with the equi-coercivity of PRob

ε (u) in Section 5.6.

5.1. A brief reminder of Γ-convergence

For the convenience of the reader, we summarize in this section the basic ingredients of the Γ-convergence
theory, referring to [22], Chap. 12 and [29] for further details.

Let us start with a definition:

Definition 5.1. Let (X, d) be a metric space, Fε : X → R ∪ {∞} be a sequence of functions on X, and
F : X → R∪ {∞} be another such function. The sequence Fε is said to Γ-converge to F if for every x ∈ X,
the following two conditions hold at every point x ∈ X:

• (Γ-liminf inequality) For every sequence xε ∈ X such that d(xε, x)→ 0, it holds:

F (x) ≤ lim inf
ε→0

Fε(xε).

• (Γ-limsup inequality) There exists a sequence xε ∈ X with d(xε, x)→ 0 such that:

lim sup
ε→0

Fε(xε) ≤ F (x).

The relevance of the notion of Γ-convergence comes from the next theorem, according to which if (quasi-)
minimizers xε of a Γ-convergent sequence of functions Fε accumulate at some point x ∈ X, then x is a
minimizer of the Γ-limit F .

Theorem 5.1. Let (X, d) be a metric space, and let Fε → R ∪ {∞} be a sequence of functions which
Γ-converges to F → R ∪ {∞}. Then,

(i) Let xε ∈ X be a sequence of quasi-minimizers of Fε, i.e. there exists a sequence of positive real numbers
λε converging to 0 such that:

Fε(xε) ≤ inf
x∈X

Fε(x) + λε.

If the set {xε} is relatively compact, then every of its cluster points is a minimizer of F over X, and:

lim
ε→0

inf
x∈X

Fε(x) = inf
x∈X

F (x).

(ii) If G : X → R ∪ {∞} is a continuous function, then (G+ Fε) Γ-converges to (G+ F ).

An attached concept with utmost interest is that of equi-coercivity, which is precisely about the compact-
ness of sequences of (quasi-)minimizers of Fε assumed in the previous theorem.

Definition 5.2. Let (X, d) be a metric space; a sequence of functions Fε → R ∪ {∞} is said to be equi-
coercive if from every sequence xε ∈ X such that supε Fε(xε) < ∞, one can extract a subsequence εj such
that xεj converges to some element x∗ ∈ X.

With these notions at hand, we are in position to state the main result in this section:

Theorem 5.2. Let the metric space L∞(D, [0, 1]) be equipped with the distance induced by the L1(D) norm.
Then, it holds:
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(i) The functional sequence PRob
ε : L∞(D, [0, 1])→ R Γ-converges to the functional defined by:

∀u ∈ L∞(D, [0, 1]),

{
1
2P

T (u) if u ∈ BV (D, {0, 1}),
+∞ otherwise.

(ii) The functional sequence PRob
ε : L∞(D, [0, 1])→ R is equi-coercive.

The proof of Theorem 5.2 is developed in the next subsections.

Remark 5.1. A similar result was proved in [20] about the Γ-convergence of the functional PNeu
ε : L∞(D, [0, 1])→

R defined in (3.20) to the relative perimeter functional PR(u). As we shall see, the present analysis of the
functional PRob

ε (u) involves much more technicalities.

Remark 5.2. Theorems 5.1 and 5.2 exemplify why the notion of Γ-convergence is well-adapted to our
original purpose of approximating the total perimeter PT (u) by PRob

ε (u) in the context of a density-based
optimal design problem. Let us indeed consider the problem introduced in Section 2.2,

(5.1) min
u∈L∞(D,[0,1])

J(u) + `PT (u),

where J(u) is an objective function depending on the optimized density u and PT (u) is the total perimeter
functional. The approximate problem obtained by replacing PT (u) with 2PRob

ε (u) reads:

(5.2) min
u∈L∞(D,[0,1])

J(u) + 2`PRob
ε (u).

The Γ-convergence of PRob
ε (u) to 1

2P
T (u) then ensures that minimizers of (5.2) converge to minimizers of

(5.1), under suitable assumptions on J(u); see [21] for more details and examples about this point, in the
context of the relative perimeter functional.

5.2. Variational preliminaries about the approximate functional PRob
ε (u)

Our first task is to give a variational characterization of the approximate total perimeter PRob
ε ; this simply

relies on the variational formulation associated to (3.17) and on a duality argument. Throughout this section,
for a given function u ∈ L∞(D, [0, 1]), we denote by vε the unique solution in H1(D) to:

(5.3)

{ −ε2∆vε + vε = u in D,

ε∂vε∂n + vε = 0 on ∂D.

Lemma 5.1. For any u ∈ L∞(D, [0, 1]), PRob
ε (u) admits the following expression as an infimum:

(5.4) PRob
ε (u) = inf

v∈H1(D)

{∫
D

(
ε|∇v|2+

1

ε
v2 +

1

ε
u(1− 2v)

)
dx+

∫
∂D

v2 ds

}
,

where the infimum is uniquely attained at v = vε. Alternatively, PRob
ε (u) rewrites as a supremum:

(5.5) PRob
ε (u) = sup

σ∈Hdiv(D)

σ·n∈L2(∂D)

{
1

ε

∫
D

(
u− (u+ εdivσ)2 − |σ|2

)
dx−

∫
∂D

(σ · n)2 ds

}
,

where the supremum is uniquely attained at σ = ε∇vε.

Proof. The variational formulation for (5.3) reads:

∀v ∈ H1(D), ε2

∫
D

∇vε · ∇v dx+ ε

∫
∂D

vεv ds+

∫
D

vεv dx =

∫
D

uv dx.

As a consequence of the standard Lax-Milgram theory, it holds:

−1

2

∫
D

uvε dx = inf
v∈H1(D)

{
1

2

(∫
D

(ε2|∇v|2+v2) dx+ ε

∫
∂D

v2 ds

)
−
∫
D

uv dx

}
,

where vε is the unique minimum point in the above right-hand side. Combining this expression with the
definition (3.18) of PRob

ε (u), we immediately obtain (5.4).
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In order to obtain (5.5), we use a duality argument, which is more systematically described in [47]. The
latter relies on a simple algebraic identity, taking place in a Hilbert space (H, 〈·, ·〉H), involving an invertible,
positive operator A : H → H:

For all v ∈ H, 1

2
〈Av, v〉H = sup

σ∈H

(
〈σ, x〉H −

1

2
〈A−1σ, σ〉H

)
,

where the supremum is uniquely attained at σ = A−1v.
Thence, it easily follows from the previously established identity (5.4) that:

(5.6) PRob
ε (u) = inf

v∈H1(D)
sup

σ∈L2(D)d, w∈L2(D),

z∈L2(∂D)

I(v, σ, w, z),

where

(5.7) I(v, σ, w, z) := 2

∫
D

σ · ∇v dx+ 2

∫
D

wv dx+ 2

∫
∂D

zv ds+
1

ε

∫
D

u(1− 2v) dx

− 1

ε

∫
D

|σ|2 dx− ε
∫
D

w2 dx−
∫
∂D

z2 ds.

In addition, the min-max problem (5.6) has exactly one saddle point, namely (v, σ, w, z) = (vε, ε∇vε, 1
εvε, vε);

hence, the min and max in (5.6) can be interchanged. We then arrive at:

PRob
ε (u) = sup

σ∈L2(D)d, w∈L2(D),

z∈L2(∂D)

inf
v∈H1(D)

I(v, σ, w, z).

Now, for given (σ,w, z) ∈ L2(D)d × L2(D) × L2(∂D), the infimum value infv∈H1(D) I(v, σ, w, z) in (5.7)
equals −∞, unless it holds:

(5.8) ∀v ∈ H1(D), 2

∫
D

σ · ∇v dx+ 2

∫
D

wv dx+ 2

∫
∂D

zv ds− 2

ε

∫
D

uv dx = 0.

Indeed, if (5.8) is not satisfied, there exists a function v0 ∈ H1(D) such that the left-hand side of the above
identity is positive, and so:

inf
v∈H1(D)

I(v, σ, w, z) ≤ lim
λ→+∞

I(−λv0, σ, w, z) = −∞.

The condition (5.8) imposes in turn that

−divσ =
1

ε
u− w, and σ · n = −z.

Finally, for any (σ,w, z) ∈ L2(D)d × L2(D)× L2(∂D) satisfying these relations, a simple calculation yields:

inf
v∈H1(D)

I(v, σ, w, z) =
1

ε

∫
D

(
u− (u+ εdivσ)2 − |σ|2

)
dx−

∫
∂D

(σ · n)2 ds,

which leads to the desired result (5.5). �

5.3. Study of an auxiliary function

In this section, we consider a given function u ∈ L∞(D, [0, 1]), as well as its extension ũ by 0 to Rd. In the
forthcoming derivations, we shall encounter on several occasions the function wε := ũ ∗ Φε, where we recall
that

Φε(x) =
1

εd
Φ
(x
ε

)
, and Φ is the fundamental solution of u 7→ −∆u+ u in Rd,

see (3.19). By definition, wε is the unique solution in H1(Rd) to the following equation:

(5.9) − ε2∆wε + wε = ũ in Rd.
In this section, we aim to analyze the precise asymptotic behavior of wε as ε → 0, and we start with a few
remarks.

Lemma 5.2. For u ∈ L∞(D, [0, 1]), let wε := ũ ∗ Φε. Then,

(i) For all ε > 0, the function wε belongs to H2(Rd).
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(ii) The sequence wε converges to ũ strongly in L1(Rd).
(iii) The following estimates hold:

0 ≤ wε(x) ≤ 1 for a.e. x ∈ Rd, and ||ε∇wε||L∞(Rd) ≤
1

2
.

Proof. Proof of (i): Since ũ ∈ L2(Rd), this point is a simple consequence of the classical elliptic regularity
theory, see for instance [33], §9.6.

Proof of (ii): Since Φ has unit integral (see Lemma 3.1), it holds for almost every point x ∈ Rd,

wε(x)− ũ(x) =

∫
Rd

Φ(y)(ũ(x− εy)− ũ(x)) dy,

and so

||wε − ũ||L1(Rd) ≤
∫
Rd

∫
Rd

Φ(y) |ũ(x− εy)− ũ(x)| dy dx.

For an arbitrary real number ρ > 0, we may estimate:∫
Rd

(∫
Rd\Bρ(0)

Φ(y) |ũ(x− εy)− ũ(x)| dy

)
dx =

∫
Rd\Bρ(0)

Φ(y)

(∫
Rd
|ũ(x− εy)− ũ(x)| dx

)
dy

≤ 2||u||L1(D)

∫
Rd\Bρ(0)

Φ(y) dy,

and it follows from the decay of Φ at infinity (see again Lemma 3.1) that, for given δ > 0, there exists ρ > 0
such that for every ε > 0: ∫

Rd

(∫
Rd\Bρ(0)

Φ(y) |ũ(x− εy)− ũ(x)| dy

)
dx ≤ δ.

Therefore, using the Cauchy-Schwarz inequality and considering the behavior of Φ in the neighborhood of 0
recalled in Lemma 3.1, it follows:

||wε − ũ||L1(Rd) ≤
∫
Rd

(∫
Bρ(0)

Φ(y) |ũ(x− εy)− ũ(x)| dy

)
dx+ δ

≤ C

∫
Rd

(∫
Bρ(0)

|ũ(x− εy)− ũ(x)|2 dy

) 1
2

dx+ δ,

for a constant C > 0 which may depend on δ and ρ, but which is independent of ε. Since ũ takes values in
[0, 1], this entails:

||wε − ũ||L1(Rd) ≤ C
∫
Rd

(
1

εd

∫
Bερ(0)

|ũ(x− z)− ũ(x)| dz

) 1
2

dx+ δ.

It follows from the Lebesgue differentiation theorem and the Lebesgue dominated convergence theorem that
the integral in the above right-hand side converges to 0 as ε→ 0. In particular, for ε sufficiently small, it is
smaller than δ, and then:

||wε − ũ||L1(Rd) ≤ 2δ.

Since δ is arbitrary, this reveals that wε → ũ strongly in L1(Rd).

Proof of (iii): This fact follows from quite precise estimates about the fundamental solution Φε. Since the
proof has already been tackled in the 2d case in [20] (see Proposition 2.7 in there), and since it is similar,
albeit more involved in the 3d case, we only focus on the latter, which is new to the best of our knowledge.

To this end, let us first recall the explicit expressions of the modified Bessel function of the second kind
K 1

2
(r) and the fundamental solution Φ(x) in 3d (see [1] §9.6.23):

(5.10) K 1
2
(r) =

√
π

2

e−r√
r
, r > 0, and Φ(x) =

1

4π|x|e
−|x|, x ∈ Rd \ {0} .
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A simple change of variables in the definition of wε now yields:

wε(x) =

∫
Rd

Φ(z)ũ(x− εy) dy,

and the first part of the statement then follows from the simple calculation:

wε(x) =
1

4π

∫
R3

e−|y|

|y| ũ(x− εy) dy

≤ 1

4π

∫
R3

e−y

|y| dy

=
1

4π

∫ ∞
0

∫ π

0

∫ 2π

0

e−r

r
r2 sinϕ dθdϕdr

=
1

2

∫ ∞
0

∫ π

0

re−r sinϕdϕdr

= 1,

where we have introduced the spherical coordinates (r, θ, ϕ) centered at 0 in passing from the second line to
the third one.

Now let x ∈ R3 be given, and let ν ∈ R3 be an arbitrary unit vector. Since the function Φ(z) is radial,
we obtain from the definition of wε and a change of variables that:

ε∇wε(x) · ν =

∫
R3

(∇Φ(y) · ν) ũ(x− εy) dy = ε∇wε(x) · e1,

where e1 is the first coordinate vector of Rd. We now estimate this last quantity:

(5.11)
ε∇wε(x) · ν =

∫
R3

∂Φ

∂x1
(y) ũ(x− εy) dy

≤
∫
R3

max

(
∂Φ

∂x1
(y), 0

)
dy.

Using the expression of the gradient in the spherical coordinates and the explicit expression (5.10), we obtain:

∂Φ

∂x1
= −r + 1

4πr2
e−r sinϕ cos θ,

and then:∫
R3

max

(
∂Φ

∂x1
(y), 0

)
dy =

1

4π

∫ ∞
0

∫ 2π

0

∫ π

0

max

(
0,−r + 1

r2
e−r sinϕ cos θ

)
r2 sinϕ dϕdθdr

= − 1

4π

∫ ∞
0

∫ 3π
2

π
2

∫ π

0

(r + 1)e−r sin2 ϕ cos θ dϕdθdr

=
1

2
.

Hence, we have proved that:

∀x ∈ R3, ∀ν ∈ S2, ε∇wε(x) · ν ≤ 1

2
,

which leads to the desired conclusion. �

It is quite natural to try and approximate the solution vε to our boundary-value problem (5.3) by the
function wε. Indeed, the latter satisfies −ε2∆wε + wε = u inside D. The purpose of the next lemma is to
show that, as ε → 0, wε is “close” to fulfilling the Robin boundary condition of vε in (5.3): ε∂wε∂n + wε ≈ 0
as ε → 0. This fact may be understood as a geometric measure theory counterpart of the derivation of the
boundary layer profile rD in the proof of Theorem 4.1.

Let us start with a lemma.

Lemma 5.3. Let f ∈ L∞(Rd), and let x0 ∈ Rd be a regular point of f . Let a ∈ Sd−1 be a unit vector such that
both approximate limits fa(x0) and f−a(x0) exist, with fa(x0) = 0. Then the function wε = f ∗Φε ∈ H1(Rd)
satisfies:

lim
ε→0

(
ε∇wε(x0) · a+ wε(x0)

)
= 0.
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Remark 5.3. Despite its quite technical proof, the above result is fairly intuitive: roughly speaking, if the
function f jumps from some value α′ = f−a(x) to 0 across the hyperplane with normal vector a, the smoothed
approximation wε should take a value close to 1

2α
′ on this hyperplane, and it should have a normal derivative

behaving as −α′2ε .

Proof. The definition of wε immediately implies that:

ε∇wε(x0) · a+ wε(x0) =

∫
Rd

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
f(y) dy.

We now fix ρ > 0 and δ > 0. Then,

ε∇wε(x0) · a+ wε(x0) =

∫
Bρ(x0)

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
f(y) dy + r1,

where the remainder r1 is defined by:

(5.12) r1 =

∫
Rd\Bρ(x0)

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
f(y) dy.

Denoting by

α := fa(x0) = 0, and α′ := f−a(x0),

we further decompose:

ε∇wε(x0) · a+ wε(x0) =

∫
Bρ(x0)∩πa(x0)∩{|f−α|<δ}

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
f(y) dy

+

∫
Bρ(x0)∩π−a(x0)∩{|f−α′|<δ}

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
f(y) dy + r1 + r2 + r′2,

where we have set

(5.13) r2 =

∫
Bρ(x0)∩πa(x0)∩{|f−α|≥δ}

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
f(y) dy,

and

r′2 =

∫
Bρ(x0)∩π−a(x0)∩{|f−α′|≥δ}

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
f(y) dy.

Let us now introduce the functions r(y) = f(y)− α and r′(y) = f(y)− α′. Then,

ε∇wε(x0) · a+ wε(x0) =

∫
Bρ(x0)∩πa(x0)∩{|r|<δ}

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
α dy

+

∫
Bρ(x0)∩π−a(x0)∩{|r′|<δ}

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
α′ dy + r1 + r2 + r′2 + r3 + r′3,

where

(5.14) r3 :=

∫
Bρ(x0)∩πa(x0)∩{|r|<δ}

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
r(y) dy,

and

r′3 :=

∫
Bρ(x0)∩π−a(x0)∩{|r′|<δ}

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
r′(y) dy.

Finally, since α = 0, we arrive at the following expression:

(5.15) ε∇wε(x0) · a+wε(x0) =

∫
π−a(x0)

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
α′ dy+ r1 + r2 + r′2 + r3 + r′3 + r′4,

with

(5.16) r′4 = −
∫
π−a(x0)\(Bρ(x0)∩{|r′|<δ})

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
α′ dy.

We now proceed to estimate each term in the right-hand side of (5.15).
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Calculation of the integral
∫
π−a(x0)

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
α′ dy. Let us define

Ha :=
{
x ∈ Rd, x · a > 0

}
, and for t ≥ 0, Ha,t :=

{
x ∈ Rd, x · a = t

}
.

Then a change of variables and the Fubini theorem yield:

(5.17)

∫
π−a(x0)

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
α′ dy = α′

∫
Ha

(
∇Φ(z) · a+ Φ(z)

)
dz,

= α′
∫ ∞

0

∫
Ha,t

(
∇Φ(y) · a+ Φ(y)

)
dy dt.

Let us now define the function ψa : (0,∞)→ R by:

ψa(t) =

∫
Ha,t

Φ(y) dy.

Because Φ(z) depends only on the radial part |z| of z, the function ψa is independent of the vector a. In
particular, ψa(t) = ψed(t), where ed is the dth coordinate vector.

On a different note, we may calculate the derivative of ψa by considering the expression

ψa(t+ h)− ψa(t)

h
=

1

h

(∫
Ha,t+h

Φ(y) dy −
∫
Ha,t

Φ(y) dy

)
.

Changing variables in the first integral in the above right-hand side and using the Lebesgue dominated
convergence theorem, we obtain:

∀t > 0, ψ′a(t) =

∫
Ha,t

∇Φ(y) · a dy.

Based on these ingredients, (5.17) rewrites:∫
π−a(x0)

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
α′ dy = α′

∫ ∞
0

(ψ′a(t) + ψa(t)) dt.

As in the statement of Lemma 4.1, for a given point x = (x1, ..., xd), we use the shorthand x̂ = (x1, ..., xd−1) ∈
Rd−1. We also denote by Fx̂ (resp. Ft) the partial Fourier transform in Rd−1 (resp. in R) with respect to
the d− 1 first variables (resp. to the last one). Since ψa(t) = ψed(t), it holds:

ψa(t) = (Fx̂Φ)(0, t), t > 0.

Therefore, taking the partial Fourier transform Ft in both sides, we obtain:

Ftψa(ω) = Ft ◦ Fx̂Φ(0, ω) = FΦ(0, ω).

On the other hand, since −∆Φ + Φ = δ in the sense of distributions in Rd, the Fourier transform of Φ reads

FΦ(ξ̂, ω) = 1

1+|ξ̂|2+ω2
, and so

Ftψa(ω) =
1

1 + ω2
.

The Fourier inversion formula then yields:

ψa(t) = e−|t|.

In particular, for t > 0, we have ψ′a(t) + ψa(t) = 0, which implies that:∫
π−a(x0)

(
ε∇Φε(x0 − y) · a+ Φε(x0 − y)

)
α′ dy = 0.

We now proceed to estimate the remainders r1, r2, r
′
2, r3, r

′
3, r
′
4 featured in the formula (5.15) in terms of δ.

This task demands a careful choice of the radius ρ of the ball Bρ(x0) in their definitions and we start by
introducing two functions which prove useful in this perspective.

Recalling that δ > 0 is fixed, we first define the function θ : [0,∞)→ R by:
(5.18)

θ(ρ) := max

{
sup

0≤r≤ρ

Ld(Br(x0) ∩ πa(x0) ∩ {|f − α| ≥ δ})
Ld(Br(x0) ∩ πa(x0))

, sup
0≤r≤ρ

Ld(Br(x0) ∩ π−a(x0) ∩ {|f − α′| ≥ δ})
Ld(Br(x0) ∩ π−a(x0))

}
,
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where we recall that Ld(E) denotes the Lebesgue measure of a Borel subset E ⊂ Rd. By construction, θ
is a non decreasing function from [0,∞) into itself; it is also lower semi-continuous, as a consequence of
the elementary Lemma 5.4, whose statement is postponed to the end of this proof for clarity. Finally, the
definition (3.3) of approximate limit readily implies that limρ→0 θ(ρ) = 0.

We next introduce the function ζ : [0,∞)→ R defined for ε ≥ 0 by:

ζ(ε) := sup
{
ρ ≥ 0, ρ(ρ+ θ(ρ)

1
2d ) ≤ ε

}
.

Since θ(ρ) is lower semi-continuous and the function ρ → ρ(ρ + θ(ρ)
1
2d ) tends to infinity as ρ → ∞, it is

easy to see that this supremum is attained. The function ζ : (0,∞)→ (0,∞) is non decreasing and satisfies
ζ(ε) > 0, and limε→0 ζ(ε) = 0; indeed, it holds:{

ρ ≥ 0, ρ(ρ+ θ(ρ)
1
2d ) ≤ ε

}
⊂
{
ρ ≥ 0, ρ2 ≤ ε

}
,

and so

ζ(ε) ≤ sup
{
ρ ≥ 0, ρ2 ≤ ε

}
≤ √ε.

On a different note, the change of variables ρ = εt yields:

ζ(ε) := ε sup
{
t ≥ 0, t(εt+ θ(εt)

1
2d ) ≤ 1

}
.

Since for any real number M > 0, one has:

lim
ε→0

M(εM + θ(εM)
1
2d ) = 0,

it follows that for any M > 0, there exists ε0 such that ζ(ε)
ε ≥ M for ε ≤ ε0, which means exactly that

limε→0
ζ(ε)
ε = +∞. To summarize, we have proved that the function ζ(ε) satisfies the following properties:

(5.19) lim
ε→0

ζ(ε) = 0, lim
ε→0

ζ(ε)

ε
= +∞, and ζ(ε)(ζ(ε) + θ(ζ(ε))

1
2d ) ≤ ε.

We now select ρ = ζ(ε) as for the radius of the ball Bρ(x0).

Estimate of the remainder r1. A change of variables in the definition (5.12) yields:

r1 =

∫
Rd\B ρ

ε
(0)

(
∇Φ(y) · a+ Φ(y)

)
f(x0 − εy) dy.

Since f ∈ L∞(Rd), ζ(ε)
ε → ∞ and because of the exponential decay of the fundamental solution Φ(r) as

r →∞ (see Lemma 3.1), it follows that r1 → 0 as ε→ 0.

Estimate of the remainder r2. Likewise, a change of variables in (5.13) yields:

r2 =

∫
Rd

(
∇Φ(y) · a+ Φ(y)

)
f(x0 − εy)χBρ(x0)∩πa(x0)∩{|f−α|≥δ}(x0 − εy) dy.

Considering the behavior of Φ and its derivative near 0 and∞ (see Lemma 3.1) and the fact that f ∈ L∞(Rd),
a simple application of Hölder’s inequality yields:

|r2| ≤ C
(∫

Rd
χBρ(x0)∩πa(x0)∩{|f−α|≥δ}(x0 − εy) dy

) 1
q

,

for some q > 2. Here and until the rest of the proof, C stands for a constant which depends on f but not on
δ and ε. We now estimate this last integral as:∫

Rd
χBρ(x0)∩πa(x0)∩{|f−α|≥δ}(x0 − εy) dy =

1

εd

∫
Rd
χBρ(x0)∩πa(x0)∩{|f−α|≥δ}(y) dy

=
1

εd
Ld(Bρ(x0) ∩ πa(x0) ∩ {|f − α| ≥ δ})

≤ C
ζ(ε)d

εd
θ(ζ(ε))

≤ C
εd

ζ(ε)d
;
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where we have used the definition (5.18) of θ from the second to the third line, as well as (5.19) to achieve
the last line. Using again (5.19), we see that r2 → 0, as desired.

Estimate of the remainder r′2. One obtains r′2 → 0 as ε→ 0 by using exactly the same arguments as in the
case of r2.

Estimate of the remainder r3. From the definition (5.14), we obviously have:

|r3| ≤ δ
∫
Bρ(x0)∩πa(x0)∩{|r|<δ}

|ε∇Φε(x0 − y) · a+ Φε(x0 − y)| dy,

and so, using a change of variables together with the fact that Φ and∇Φ are integrable on Rd (see Lemma 3.1):

|r3| ≤ δ
∫
B ζ(ε)

ε

(0)

|∇Φ(z)) · a+ Φ(z)| dz ≤ Cδ.

Estimate of the remainder r′3. By the same token, there exists a constant C > 0 which does not depend on
δ and ε such that:

|r′3| ≤ Cδ.

Estimate of the remainder r′4. A change of variables in the definition (5.16) leads to:

r′4 = −α′
∫
Rd

(
∇Φ(z) · a+ Φ(z)

)
(χπ−a(x0) − χπ−a(x0)∩Bρ(x0)∩{|r′|<δ})(x0 − εz) dz.

We then decompose r′4 as:

r′4 = −α′(I1 + I2),

where

I1 :=

∫
Rd

(
∇Φ(z) · a+ Φ(z)

)
(χπ−a(x0) − χπ−a(x0)∩Bρ(x0))(x0 − εz) dz,

and

I2 :=

∫
Rd

(
∇Φ(z) · a+ Φ(z)

)
(χπ−a(x0)∩Bρ(x0) − χπ−a(x0)∩Bρ(x0)∩{|r′|<δ})(x0 − εz) dz.

Now, on the one hand, using again Hölder’s inequality, we see that there exists q > 2 such that:

I2 ≤ C

(
1

εd

∫
Rd

∣∣(χπ−a(x0)∩Bρ(x0) − χπ−a(x0)∩Bρ(x0)∩{|r′|<δ})(y)
∣∣ dy

) 1
q

= C

(
1

εd

∫
Rd

∣∣χπ−a(x0)∩Bρ(x0)∩{|r′|≥δ}(y)
∣∣ dy

) 1
q

≤ C

(
1

εd
ζ(ε)dθ(ζ(ε))

) 1
q

;

it follows from (5.19) that I2 → 0 as ε→ 0.
On the other hand,(

χπ−a(x0) − χπ−a(x0)∩Bρ(x0)

)
(x0 − εz) =

(
χHa − χHa∩B ζ(ε)

ε

(0)

)
(z),

which converges to 0 as ε→ 0 for a.e. z ∈ Rd since ζ(ε)
ε →∞. This, together with the integrability of Φ and

∇Φ on Rd and the Lebesgue dominated convergence theorem, imply that I1 → 0. Hence, r′4 → 0 as ε→ 0.

Gathering all these ingredients, we have finally proved that:

lim sup
ε→0

|ε∇wε(x0) · a+ wε(x0)| ≤ Cδ;

since this holds fo arbitrary δ > 0, the desired result is proved. �

We now provide the missing link in the previous proof:
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Lemma 5.4. Let L : [0,∞)→ [0,∞) be a continuous function. Then the function m defined by

∀ρ ≥ 0, m(ρ) := sup
0≤r≤ρ

L(r)

is lower semi-continuous.

Proof. Let ρ ≥ 0 be arbitrary, and let ρn be any sequence of elements in [0,∞) such that limn→∞ ρn = ρ.
For any fixed point r0 < ρ, it holds, for n large enough r0 ≤ ρn, and so

L(r0) ≤ sup
0≤r≤ρn

L(r) = m(ρn).

Taking the liminf, we thus obtain:

L(r0) ≤ lim inf
n→∞

m(ρn),

and recalling that the sequence ρn → ρ is arbitrary, this results in

L(r0) ≤ lim inf
s→ρ

m(s),

Since 0 ≤ r0 < ρ is arbitrary, and since L is continuous, we actually end up with:

sup
0≤r≤ρ

L(r) ≤ lim inf
s→ρ

m(s),

that is:

m(ρ) ≤ lim inf
s→ρ

m(s),

whence the claim. �

Corollary 5.1. Let u ∈ BV (D, {0, 1}) and set wε = ũ ∗ Φε ∈ H2(D). Then,

(5.20) lim
ε→0

(
ε
∂wε
∂n

+ wε

)
(x) = 0, for Hd−1-a.e. x ∈ ∂D.

In particular, the following limit holds:

lim
ε→0

∫
∂D

(
ε
∂wε
∂n

+ wε

)
wε ds = 0.

Proof. Since the function ũ is in BV (Rd, {0, 1}), there exists a set Ω ⊂ D with finite perimeter such that
ũ = χΩ. We know from Proposition 3.3 that Hd−1 almost every point x0 ∈ Rd is a regular point of ũ. On a
different note, since D is a Lipschitz domain, the unit normal vector n to ∂D exists Hd−1-almost everywhere
on ∂D.

Let then x0 ∈ ∂D be a point where the latter two conditions hold and let a ∈ Sd−1 be a direction such
that the approximate limits fa(x) and f−a(x) exist. Two cases occur about x0, up to an Hd−1 negligible set:

• If x0 belongs to the measure theoretical boundary ∂MΩ of Ω, then x0 ∈ ∂MΩ \D, and so we may
take a = n, the unit normal vector to ∂D, see again Proposition 3.3. Obviously, the approximate
limit ũa(x0) equals 0, and Lemma 5.3 implies that

(
ε∂wε∂n + wε

)
(x0)→ 0.

• If x0 does not belong to ∂MΩ, it does not belong to the jump set of χΩ, and in particular, the
approximate limit ũa(x0) exists for all a ∈ Sd−1. Obviously, for a = n, it equals 0, and so, again(
ε∂wε∂n + wε

)
(x0)→ 0.

This proves (5.20).
The second statement of the lemma follows directly from this, the uniform bounds on wε in Lemma 5.2

and the Lebesgue dominated convergence theorem. �
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5.4. Proof of the Γ-limsup inequality

The following proposition implies that the Γ-limsup inequality in Definition 5.1 is satisfied by the sequence
PRob
ε (u), which is one part of the statement of Theorem 5.2.

Proposition 5.1. The functionals PRob
ε (u) and PT (u), respectively defined in (3.18) and (3.7), satisfy, for

any u ∈ BV (D, {0, 1}):
lim sup
ε→0

PRob
ε (u) ≤ 1

2
PT (u).

Proof. Let us first consider a function u ∈ H1(D, [0, 1]) ⊂ BV (D, [0, 1]). As in the previous developments,
we let ũ be the extension of u by 0 outside D, and wε = Φε ∗ ũ. The expression (5.4) of PRob

ε (u) as an
infimum immediately implies that:

PRob
ε (u) ≤

∫
D

(
ε|∇wε|2+

1

ε
w2
ε +

1

ε
u(1− 2wε)

)
dx+

∫
∂D

w2
ε ds.

Performing integration by parts in the right-hand side of the above identity and using the fact that −ε2∆wε+
wε = u in D, we obtain:

PRob
ε (u) ≤ 1

ε

∫
D

(1− wε)u dx+

∫
∂D

(
ε
∂wε
∂n

+ wε

)
wε ds.

Using the fact that u ∈ H1(D), the identity −ε2∆wε + wε = u in D and integration by parts in the first
integral in the above right-hand side, it follows that:

PRob
ε (u) ≤ 1

ε

∫
D

(1− u)u dx+

∫
D

ε∇wε · ∇u dx−
∫
∂D

ε
∂wε
∂n

u ds+

∫
∂D

(
ε
∂wε
∂n

+ wε

)
wε ds.

We now rely on the estimates of the function wε and its gradient contained in Lemma 5.2 above to find:

(5.21) PRob
ε (u) ≤ 1

ε

∫
D

(1− u)u dx+
1

2

∫
D

|∇u| dx+
1

2

∫
∂D

u ds+

∫
∂D

(
ε
∂wε
∂n

+ wε

)
wε ds.

We now wish to prove that the above inequality actually holds when u ∈ BV (D, [0, 1]), and to this end,
we rely on a density argument. Recalling the density of H1(D) in BV (D) for the intermediate convergence,
and the continuity of the trace mapping γ0 : BV (D)→ L1(∂D) when BV (D) is equipped with the topology
of the intermediate convergence (see Section 3.1.1), for any u ∈ BV (D, [0, 1]), there exists a sequence of
functions un ∈ H1(D) such that

un → u strongly in L1(D),

∫
D

|∇un| dx→
∫
D

|Du|, and γ0(un)→ γ0(u) strongly in L1(∂D).

The sequence of functions vn := max(0,min(un, 1)) then belongs to H1(D, [0, 1]) and it also satisfies:

∇vn = χ{0≤un≤1}∇un and γ0(vn) = max(0,min(1, γ0(un))),

see [46], §3.1.2. Hence,

(5.22) vn → u strongly in L1(D), lim sup
n→∞

∫
D

|∇vn| dx ≤
∫
D

|Du| and γ0(vn)→ γ0(u) strongly in L1(∂D).

Hence, we may apply the inequality (5.21) with u replaced by vn, leading to:

PRob
ε (vn) ≤ 1

ε

∫
D

(1− vn)vn dx+
1

2

∫
D

|∇vn| dx+
1

2

∫
∂D

vn ds+

∫
∂D

(
ε
∂(ṽn ∗ Φε)

∂n
+ (ṽn ∗ Φε)

)
(ṽn ∗ Φε) dx.

We now wish to pass to the limit n → 0 in the above identity. This is possible thanks to (5.22) and the
following facts:

• The mapping u 7→ PRob
ε (u) is continuous from L1(D) into R;

• Since vn and u take values in [0, 1], it holds:∣∣∣∣∫
D

v2
n dx−

∫
D

u2 dx

∣∣∣∣ ≤ 2

∫
D

|vn − u| dx n→∞−−−−→ 0.
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• Since the mapping L2(D) 3 u 7→ Φε ∗ ũ ∈ H2(D) is continuous, we have:∫
∂D

(
ε
∂(ṽn ∗ Φε)

∂n
+ (ṽn ∗ Φε)

)
(ṽn ∗ Φε) dx

n→∞−−−−→
∫
∂D

(
ε
∂wε
∂n

+ wε

)
wε ds.

Hence, (5.21) indeed holds when u ∈ BV (D, [0, 1]).
Eventually, when u ∈ BV (D, {0, 1}), this yields:

PRob
ε (u) ≤ 1

2

∫
D

|Du|+ 1

2

∫
∂D

γ0(u) ds+

∫
∂D

(
ε
∂wε
∂n

+ wε

)
wε ds.

Now using Corollary 5.1, we arrive at:

lim sup
ε→0

PRob
ε (u) ≤ 1

2

∫
D

|Du|+ 1

2

∫
∂D

γ0(u)ds =
1

2
PT (u),

which is the desired result. �

5.5. Proof of the Γ-liminf inequality

We eventually turn to the proof of the Γ-liminf inequality for the functional PRob
ε (u). The result of interest

reads as follows.

Proposition 5.2. Let u ∈ L∞(D, [0, 1]) and let uε be a sequence in L∞(D, [0, 1]) such that uε → u in
L1(D); then:

(5.23) lim inf
ε→0

PRob
ε (uε) ≥

{
1
2P

T (u) if u ∈ BV (D, {0, 1}),
+∞ otherwise.

Proof. Let us first observe that if u ∈ L∞(D, [0, 1]) does not belong to L∞(D, {0, 1}) – i.e if u takes values
different from 0 and 1 on a subset of D with positive Lebesgue measure – the expression (5.4) yields:

PRob
ε (uε) = inf

v∈H1(D)

{∫
D

(
ε|∇v|2+

1

ε
v2 +

1

ε
uε(1− 2v)

)
dx+

∫
∂D

v2 ds

}
= inf

v∈H1(D)

{∫
D

(
ε|∇v|2+

1

ε
(v − uε)2 +

1

ε
uε(1− uε)

)
dx+

∫
∂D

v2 ds

}
≥ 1

ε

∫
D

uε(1− uε) dx.

It readily follows that lim infε→0 P
Rob
ε (uε) = +∞. Hence, it is sufficient to prove the desired result

(5.23) when u ∈ L∞(D, {0, 1}), which we now consider.

The proof hinges on a localization and slicing argument, and we carefully follow the trail exposed in Chap.
15 of [29]. To this end, we first introduce a “localized” version of the approximate perimeter functional
PRob
ε (u) which emphasizes the spatial dependence of the defining integrals. For any open subset A ⊂ Rd

and u ∈ L∞(D, [0, 1]), let us define the quantity Fε(A, u) by:

Fε(A, u) = inf
v∈H1(D)

Gε(A, u, v),

where we have introduced, for any open subset A ⊂ Rd and functions u ∈ L∞(D, [0, 1]), v ∈ H1(D),

(5.24) Gε(A, u, v) :=

∫
D∩A

(
ε|∇v|2 +

1

ε
v2 +

1

ε
u(1− 2v)

)
dx+

∫
∂D∩A

v2 ds.

Our aim is to prove that:

F (A, u) ≥

 1
2

∫
A

|Dũ| if ũ ∈ BV (A, {0, 1}),
+∞ otherwise,

where we denote as usual by ũ the extension of u ∈ L∞(D, [0, 1]) by 0 outside D. In the above, F (A, u) is
defined as the Γ-liminf of the sequence of functions u 7→ Fε(A, u), that is,

∀u ∈ L∞(D, [0, 1]), F (A, u) := inf
{

lim inf
ε→0

Fε(A, uε), uε ∈ L∞(D, [0, 1]), uε → u in L1(D)
}
.
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Note that it is easily verified from the definition that for a given u ∈ L∞(D, [0, 1]), the mapping A 7→ F (A, u)
defined on open subsets of Rd is super additive with respect to reunions of open subsets of D with disjoint
compact closures, i.e.

(5.25) A ∩B = ∅ and A ∪B b Rd ⇒ F (A, u) + F (B, u) ≤ F (A ∪B, u).

We then express Gε(A, u, v) in terms of one-dimensional integrals for an arbitrary open subset A ⊂ Rd.
To this end, for an arbitrary direction ξ ∈ Sd−1, we denote by πξ the linear hyperplane orthogonal to ξ:

πξ :=
{
z ∈ Rd, ξ · z = 0

}
,

and for y ∈ πξ, we introduce the two sets:

Dξ,y = D ∩ {y + tξ, t ∈ R} , Aξ,y = A ∩ {y + tξ, t ∈ R} ,
whose characteristic functions satisfy:

χDξ,y (t) = χD(y + tξ), and χAξ,y (t) = χA(y + tξ).

For given u ∈ L∞(D, [0, 1]) and v ∈ H1(D), we decompose Gε(A, u, v) along the normal lines to πξ:

Gε(A, u, v) ≥
∫
πξ

Hε(A, u, v, y) dHd−1(y), where

Hε(A, u, v, y) =

∫
R

(
ε|∇v|2 +

1

ε
v2 +

1

ε
u(1− 2v)

)
(y + tξ) χD∩A(y + tξ) dt+

∫
R
v2(y + tξ)χ∂Dξ,y∩Aξ,y (t) dH0(t).

In order to deal with the first integral in the definition (5.24) of Gε(A, u, v), we have used the Fubini
theorem; the treatment of the second integral relies on the following technical lemma (remarking that
∂Dξ,y ⊂ ∂D ∩ {y + tξ, t ∈ R}), whose proof is postponed to the end of the present section.

Lemma 5.5. Let D ⊂ Rd be a bounded Lipschitz domain, and let g be a non negative function in L1(∂D).
For any direction ξ ∈ Sd−1, it holds:∫

∂D

g ds ≥
∫
πξ

(∫
∂D∩{y+tξ, t∈R}

g(t) dH0(t)

)
dHd−1(y).

Notice that, for given open subset A ⊂ Rd and functions u ∈ L∞(D, [0, 1]), v ∈ H1(D), the quantity
Hε(A, u, v, y) is well-defined for dHd−1 a.e. y ∈ πξ.
Step 1: We bound Hε(A, u, v, y) from below by a one-dimensional energy. Let A ⊂ Rd be an open subset
and fix ξ ∈ Sd−1 and y ∈ πξ. Let also u ∈ L∞(D, [0, 1]) and v ∈ H1(D) be given functions. We introduce
the functions of the real variable

vξ,y(t) = v(y + tξ), uξ,y(t) = ũ(y + tξ), t ∈ R;

which are well-defined for a.e. y ∈ πξ.
Noting that |v′ξ,y(t)| ≤ |∇v(y + tξ)|, it holds:

Hε(A, u, v, y) ≥
∫
Dξ,y∩Aξ,y

(
ε|v′ξ,y|2 +

1

ε
v2
ξ,y +

1

ε
uξ,y(1− 2vξ,y)

)
(t) dH1(t) +

∫
∂Dξ,y∩Aξ,y

v2
ξ,y(t) dH0(t).

Since D is a bounded and Lipschitz subset of Rd, Dξ,y is the reunion of a finite number of open bounded
intervals; for simplicity and without loss of generality, we assume that Dξ,y = {y + tξ, t ∈ (aξ,y, bξ,y)},
the general case being addressed by a simple variation of the arguments below. The latter inequality then
rewrites:

Hε(A, u, v, y) ≥
∫
Dξ,y∩Aξ,y

(
ε|v′ξ,y|2 +

1

ε
v2
ξ,y +

1

ε
uξ,y(1− 2vξ,y)

)
(t) dH1(t)

+ χAξ,y (aξ,y)v(aξ,y)2 + χAξ,y (bξ,y)v(bξ,y)2.

Now, for arbitrary real values a, b, an explicit computation yields:

inf
w∈H1(−∞,a)

w(a)=h

∫ a

−∞

(
ε|w′|2 +

1

ε
w2

)
dt = h2, and inf

w∈H1(b,∞)
w(b)=h

∫ ∞
b

(
ε|w′|2 +

1

ε
w2

)
dt = h2.
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Indeed, it is easily verified that the infimum in the former minimization problem is attained by w(t) = he
t−a
ε ,

and the infimum in the latter is attained by w(t) = he−
t−b
ε .

Since Dξ,y consists of a single open interval, taking any β > 0, it follows that:

Hε(A, u, v, y) ≥
∫
Dξ,y∩Aξ,y

(
ε|v′ξ,y|2 +

1

ε
v2
ξ,y +

1

ε
uξ,y(1− 2vξ,y)

)
(t) dH1(t)

+ χAξ,y (aξ,y) inf
w∈H1(−∞,aξ,y)

w(aξ,y)=vξ,y(aξ,y)

∫ aξ,y

aξ,y−β

(
ε|w′|2 +

1

ε
w2

)
χAξ,y dt

+ χAξ,y (bξ,y) inf
w∈H1(bξ,y,∞)

w(bξ,y)=vξ,y(bξ,y)

∫ bξ,y+β

bξ,y

(
ε|w′|2 +

1

ε
w2

)
χAξ,y dt,

which rewrites in turn:

Hε(A, u, v, y) ≥
∫ bξ,y

aξ,y

(
ε|v′ξ,y|2 +

1

ε
v2
ξ,y +

1

ε
uξ,y(1− 2vξ,y)

)
(y + tξ) χAξ,y (y + tξ) dt

+ inf
w∈H1(−∞,aξ,y)

w(aξ,y)=vξ,y(aξ,y)

∫ aξ,y

aξ,y−βχAξ,y (aξ,y)

(
ε|w′|2 +

1

ε
w2

)
χAξ,y dt

+ inf
w∈H1(bξ,y,∞)

w(bξ,y)=vξ,y(bξ,y)

∫ bξ,y+βχAξ,y (bξ,y)

bξ,y

(
ε|w′|2 +

1

ε
w2

)
χAξ,y dt.

Let us now denote

Ãξ,y := Aξ,y ∩
{
y + tξ, t ∈ (aξ,y − βχAξ,y (aξ,y), bξ,y + βχAξ,y (bξ,y))

}
.

Recalling from the definition that uξ,y = 0 on R \ (aξ,y, bξ,y), the above calculations allow to infer the
following lower bound of Hε(A, u, v, y):

Hε(A, u, v, y) ≥ inf
v∈H1(Ãξ,y)

∫
Ãξ,y

(
ε|v′|2 +

1

ε
v2 + uξ,y(1− 2v)

)
dH1,

Grossly speaking, we have here added a “thin skin” near the points of ∂D belonging to A.

Step 2: We analyze the behavior of the minimizer of the one-dimensional energy. Let now u ∈ L∞(D, {0, 1}),
and let uε be a sequence of functions in L∞(D, [0, 1]) converging to u strongly in L1(D). Again, we set, for
y ∈ πξ, t ∈ R,

uε,ξ,y(t) = uε(y + tξ), and uξ,y(t) = u(y + tξ).

Obviously, from the Fubini theorem, we have, for Hd−1 a.e. y ∈ πξ
(5.26) uε,ξ,y

ε→0−−−→ uξ,y strongly in L1(Ãξ,y).

From the Lax-Milgram theorem, there exists a unique solution vε,ξ,y ∈ H1(Ãξ,y) to the minimization problem

(5.27) inf
v∈H1(Ãξ,y)

∫
Ãξ,y

(
ε|v′|2 +

1

ε
v2 +

1

ε
uε,ξ,y(1− 2v)

)
dH1,

which is also the unique solution to the following variational problem:

(5.28) ∀w ∈ H1(Ãξ,y),

∫
Ãξ,y

(
ε2v′ε,ξ,yw

′ + vε,ξ,yw
)

dH1 =

∫
Ãξ,y

uε,ξ,yw dH1.

It follows from the maximum principle (see e.g. the proof of Th. 8.18 in [33]) that:

(5.29) 0 ≤ vε,ξ,y(t) ≤ 1 for a.e. t ∈ Ãξ,y.
Since in particular v = 1/2 is an admissible test function in the minimization problem (5.27), it holds:∫

Ãξ,y

(
ε|v′ε,ξ,y|2 +

1

ε
v2
ε,ξ,y +

1

ε
uε,ξ,y(1− 2vε,ξ,y)

)
dH1 ≤ 1

4ε
|Ãξ,y|,
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which rewrites, since uε,ξ,y only takes the values 0 and 1:

(5.30)

∫
Ãξ,y

(
ε2|v′ε,ξ,y|2 + (uε,ξ,y − vε,ξ,y)2

)
dH1 ≤ 1

4
|Ãξ,y|.

Combining the variational problem (5.28) with the estimate (5.30) yields:

∀w ∈ H1(Ãξ,y),

∫
Ãξ,y

(vε,ξ,y − uε,ξ,y)w dH1 ε→0−−−→ 0.

Since (vε,ξ,y − uε,ξ,y) is bounded in L2(Ãξ,y) because of (5.30), the density of H1(Ãξ,y) in L2(Ãξ,y) then
entails:

(5.31) ∀w ∈ L2(Ãξ,y),

∫
Ãξ,y

(vε,ξ,y − uε,ξ,y)w dH1 ε→0−−−→ 0.

Eventually, because of the bounds (5.29), we obtain:∫
Ãξ,y

|vε,ξ,y − uξ,y| dH1 =

∫
Ãξ,y

(vε,ξ,y − uξ,y)χ{uξ,y=0} dH1 +

∫
Ãξ,y

(uξ,y − vε,ξ,y)χ{uξ,y=1} dH1

=

∫
Ãξ,y

(vε,ξ,y − uε,ξ,y)χ{uξ,y=0} dH1 +

∫
Ãξ,y

(uε,ξ,y − vε,ξ,y)χ{uξ,y=1} dH1

+

∫
Ãξ,y

(uε,ξ,y − uξ,y)χ{uξ,y=0} dH1 +

∫
Ãξ,y

(uξ,y − uε,ξ,y)χ{uξ,y=1} dH1.

Using (5.31), the first two integrals in the above right-hand side tend to 0 as ε → 0, while the last two
integrals also tend to 0 because of (5.26). This proves that:

(5.32) vε,ξ,y
ε→0−−−→ uξ,y strongly in L1(Ãξ,y).

Step 3: We bound from below the minimum value of Hε(A, uε, v, y) as ε→ 0. We have just seen that for all
v ∈ H1(D),

Hε(A, uε, v, y) ≥
∫
Ãξ,y

(
ε|v′ε,ξ,y|2 +

1

ε
v2
ε,ξ,y +

1

ε
uε,ξ,y(1− 2vε,ξ,y)

)
dH1.

From the fact that

∀ 0 ≤ α ≤ 1, β ∈ R, β2 + α(1− 2β) ≥ β2 + min(0, 1− 2β) = min(β2, (β − 1)2) ≥ 0,

we infer that:

Hε(A, uε, v, y) ≥
∫
Ãξ,y

(
ε|v′ε,ξ,y|2 +

1

ε
min

(
v2
ε,ξ,y, (1− vε,ξ,y)2

))
dH1.

We now employ the so-called “Modica-Mortola” trick: from the elementary inequality

∀α, β ∈ R, α2 + β2 ≥ 2αβ,

we get:

Hε(A, uε, v, y) ≥
∫
Ãξ,y

2|v′ε,ξ,y|min (|vε,ξ,y|, |1− vε,ξ,y|) dH1.

Introducing the C1 function ψ : R→ R defined by:

ψ(r) =

∫ r

0

min(|t|, |1− t|) dt,

it follows:

Hε(A, uε, v, y) ≥
∫
Ãξ,y

2|v′ε,ξ,y|ψ′(vε,ξ,y) dH1 =

∫
Ãξ,y

2|(ψ ◦ vε,ξ,y)′| dH1,

where we have used the results in [46], §3.1.2 to calculate the derivative of the composite function ψ◦vε,ξ,y in

the context where ψ is of class C1 and vε,ξ,y is in H1(Ãξ,y). Let us set wε,ξ,y := ψ ◦vε,ξ,y and wξ,y := ψ ◦uξ,y;
introducing the total variation |Dwε,ξ,y| (see Section 3.1), this rewrites:

Hε(A, uε, v, y) ≥ 2|Dwε,ξ,y|(Ãξ,y).
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The conclusion (5.32) of the previous step immediately implies that wε,ξ,y → wξ,y strongly in L1(Ãξ,y) as

ε→ 0. The lower semi-continuity of the total variation of functions in L1(Ãξ,y) implies that:

lim inf
ε→0

inf
v∈H1(Ãξ,y)

Hε(A, uε, v, y) ≥ 2|Dwξ,y|(Ãξ,y).

Note that the right-hand side of the above inequality may be infinite; the meaning of the above inequality
is that the liminf in the left-hand side is also infinite in such a case.

Since uξ,y ∈ L∞(Ãξ,y, {0, 1}), we eventually observe that

wξ,y = ψ(1)uξ,y + ψ(0)(1− uξ,y) = (ψ(1)− ψ(0))uξ,y + ψ(0) =
1

4
uξ,y.

As a result:

lim inf
ε→0

inf
v∈H1(Ãξ,y)

Hε(A, uε, v, y) ≥ 1

2
|Duξ,y|(Ãξ,y) =

1

2
|Duξ,y|(Aξ,y),

where we have used the fact that |Duξ,y|(Aξ,y \ Ãξ,y) = 0 to obtain the last equality.

Step 4: We recover the multi-dimensional case from the one-dimensional result. To this end, let us recall
from the definitions that:

Fε(A, uε) ≥
∫
πξ

inf
v∈H1(Ãξ,y)

Hε(A, uε, v, y) dHd−1(y).

Using Fatou’s lemma yields:

lim inf
ε→0

Fε(A, uε) ≥
∫
πξ

lim inf
ε→0

inf
v∈H1(Ãξ,y)

Hε(A, uε, v, y) dHd−1(y).

Hence, using the result of Step 3:

(5.33) lim inf
ε→0

Fε(A, uε) ≥
1

2

∫
πξ

|Duξ,y|(Aξ,y) dHd−1(y).

We now rely on the following theorem about the characterization of functions with bounded variations by
their one-dimensional sections, see Remark 3.104 and Th. 3.107 in [12].

Theorem 5.3. Let A ⊂ Rd be an open subset and u ∈ L1(A). Then u belongs to BV (A) if and only if there
exists d linearly independent vectors ξ1, . . . , ξd ∈ Rd such that uξi,y ∈ BV (Aξi,y) for dHd−1 a.e. y ∈ πξi , and

∀i = 1, . . . , d,

∫
πξi

|Duξi,y|(Aξi,y) dHd−1 <∞.

Then, for any direction ξ ∈ Sd−1, it holds:∫
πξ

|Duξ,y|(Aξ,y) dHd−1 = |Du · ξ|(A).

Now, if u is not a function with bounded variations in A, the integrand in the right-hand side of (5.33)
takes an infinite value for a set of y ∈ πξ with positive Hd−1 Hausdorff measure, and we conclude that
F (A, u) is infinite.

We finally suppose that, on the contrary, ũ ∈ BV (A, {0, 1}), that is, the restriction of ũ to A is the
characteristic function of a subset E ⊂ A with finite perimeter. We then obtain:

lim inf
ε→0

Fε(A, uε) ≥
1

2

∫
A

|Dũ · ξ|

and since ξ is arbitrary:

lim inf
ε→0

Fε(A, uε) ≥
1

2
sup

ξ∈Sd−1

∫
A

|Dũ · ξ|,

in the sense that if the right-hand side in the above inequality is infinite, so is the left-hand side. It follows
that the Γ liminf function F (A, u) satisfies:

F (A, u) ≥ 1

2
sup

ξ∈Sd−1

∫
A

|Dũ · ξ|.
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Using Proposition 3.3 for the expression Dũ = νHd−1|∂ME , where ν(x) is the inner measure theoretic normal
vector to E, taking values in the unit sphere Sd−1, it follows:

F (A, u) ≥ 1

2
sup

ξ∈Sd−1

∫
∂ME∩A

|ν · ξ|dHd−1.

Since the mapping A 7→ F (A, u) is a super-additive function, it then follows from Lemma 15.2 in [29] that
the supremum and the integral sign may be interchanged in the above identity, so that:

F (A, u) ≥ 1

2

∫
∂ME∩A

sup
ξ∈Sd−1

|ν · ξ|dHd−1 =
1

2

∫
∂ME∩A

dHd−1.

Eventually, taking A = Rd yields the desired result.
�

We now provide the proof of the technical Lemma 5.5.

Proof of Lemma 5.5. Since ∂D is a compact and Lipschitz hypersurface in Rd, it is enough to prove that,
for any non negative function g ∈ L1(S), it holds

(5.34)

∫
S

g ds ≥
∫
πξ

(∫
S∩{y+tξ, t∈R}

g(t) dH0(t)

)
dHd−1(y),

in the case when S ⊂ Rd is a single parametrized piece of surface of the form S = f(U), where U is an open
subset of Rd−1 and f : U → Rd is a bounded and injective Lipschitz function.

In order to prove (5.34), let pξ : Rd → πξ be the orthogonal projection onto πξ; we introduce the Lipschitz
function φ = pξ ◦ f : U → πξ as well as g̃ = g ◦ f ∈ L1(U). Using the Lipschitz change of variables formula
yields (see e.g. [40], §3.3.3), we obtain:∫

U

g̃(x)J(φ)(x) dx =

∫
πξ

(∫
φ−1(y)

g̃(t) dH0(t)

)
dHd−1(y),

where the Jacobian determinant J(φ) is defined by

J(φ)(x) :=
√

det(∇φT (x)∇φ(x)), for a.e. x ∈ U.
Since φ = pξ ◦ f , it holds

∇φ(x) = ∇pξ∇f(x);

now using that ∇pξ is the matrix of an orthogonal projection, we obtain

J(φ)(x) =
√

det(∇f(x)T (∇pTξ ∇pξ)∇f(x)) ≤ J(f)(x),

where we have used the following elementary inequality, valid for any orthogonal projection matrix P ∈ Rd×d,
and any M ∈ Rd×(d−1):

det
(
MTPM

)
≤ det(MTM).

Hence, we obtain from the non negativity of g that∫
U

g(f(x))J(f)(x) dx ≥
∫
U

g̃(x)J(φ)(x) dx

=

∫
πξ

(∫
p−1
ξ (y)∩S

g(t) dH0(t)

)
dHd−1(y)

and so, using again the change of variables formula to transform the left-hand side of the above inequality,
it follows: ∫

S

g ds ≥
∫
πξ

(∫
S∩{y+tξ, t∈R}

g(t) dH0(t)

)
dHd−1(y),

which is the desired result. �
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The result of Proposition 5.2 applied with the constant sequence uε = u, together with Proposition 5.1 im-
mediately imply the following pointwise convergence of the functional PRob

ε (u); this result is a generalization
of Theorem 4.1 to the setting of functions with bounded variations.

Corollary 5.2. Let u ∈ L∞(D, [0, 1]); then the following convergence holds as ε→ 0:

PRob
ε (u) −→

{
1
2P

T (u) if u ∈ BV (D, {0, 1}),
+∞ otherwise.

5.6. Proof of the equi-coercivity of the functional sequence PRob
ε (u)

We finally turn to the missing part in the statement of Theorem 5.2, which corresponds to the following
result.

Proposition 5.3. The functional sequence PRob
ε (u) is equi-coercive: for any sequence uε ∈ L∞(D, [0, 1])

such that supε P
Rob
ε (uε) <∞, there exists a subsequence εj and an element u ∈ L∞(D, [0, 1]) such that:

(5.35) uεj
j→∞−−−→ u in L1(D).

Proof. This result is a straightforward consequence of the comparison between the functional PRob
ε (u) and

that PNeu
ε (u) defined in (3.20) as an approximation of the relative perimeter (3.7). The functional sequence

PNeu
ε (u) was extensively analyzed in our previous work [21]; in particular, Proposition 4.4 in there states

that PNeu
ε (u) is equi-coercive on L∞(D, [0, 1]), when the latter is equipped with the distance induced by the

L1(D) norm.
Hence, if uε ∈ L∞(D, [0, 1]) is a sequence of density functions such that supε P

Rob
ε (uε) < ∞, we obtain

from Lemma 5.1 that:

PRob
ε (uε) = inf

v∈H1(D)

{∫
D

(
ε|∇v|2+

1

ε
v2 +

1

ε
uε(1− 2v)

)
dx+

∫
∂D

v2 ds

}
≥ inf

v∈H1(D)

∫
D

(
ε|∇v|2+

1

ε
v2 +

1

ε
uε(1− 2v)

)
dx

= PNeu
ε (uε),

where the last equality follows from a similar argument to that of Lemma 5.1. Hence, supε P
Neu
ε (uε) < ∞

and the equi-coercivity of PNeu
ε (u) immediately leads to the desired conclusion (5.35). �

6. Numerical illustrations

In this section, we consider various situations to illustrate the numerical behavior of our approximate total
perimeter functionals, emphasizing on the PDE-based version PRob

ε (u). For the sake of comparison, the
same experiments are conducted by using the approximate relative perimeter functional PNeu

ε (u) devised in
the previous work of the first author [21], whose definition is recalled in Remark 3.2.

At first, in Section 6.1, we appraise the approximation of the total perimeter PerT (Ω) of a shape Ω ⊂ D by
the quantity PRob

ε (χΩ) as ε→ 0. In Section 6.2, we perform numerical comparisons between the derivative

of the functional PRob
ε (u) and the shape derivative of PerT (Ω). The subsequent discussions deal with

shape and topology optimization problems, properly speaking; in Section 6.3, we compare the influences of
the approximate total and relative perimeter functionals PRob

ε (u) and PNeu
ε (u) in the resolution of a simple

minimization problem of the perimeter of a shape under a volume constraint, and in Section 6.4, we illustrate
their use in the context of the optimization of an elastic structure.

Before proceeding, let us first set a few notations, which may differ slightly from those adopted previ-
ously in order to ease the present discussion. Throughout this section, D ⊂ Rd still stands for the fixed
computational domain, and our approximate perimeter functionals are of the form, for u ∈ L∞(D, [0, 1]),

(6.1) Pε(u) =
1

2

∫
D

pε dx, where pε :=
2

ε
(1− vε)u.
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Figure 3. Setting of the validation experiment conducted in Section 6.1; the mesh of the
hold-all domain D contains a mesh of the considered shape Ω as a submesh (in blue).

In the above, the function vε stands for one of the functions vNeu
ε or vRob

ε , which are the respective H1(D)
solutions to the equations:

(6.2)

{
−ε2∆vNeu

ε + vNeu
ε = u in D,

∂vNeu
ε

∂n = 0 on ∂D,
and

{
−ε2∆vRob

ε + vRob
ε = u in D,

ε
∂vRob
ε

∂n + vRob
ε = 0 on ∂D.

The corresponding integrands pε in (6.1) are denoted by pNeu
ε , pRob

ε , giving rise to the functionals PNeu
ε (u),

PRob
ε (u), as approximations of the relative and total perimeter functionals PR(u) and PT (u), respectively.

6.1. Numerical validation of the consistency of the approximate perimeter functionals

In this first experiment, we illustrate the results of Theorem 4.1 and Corollary 5.2 about the pointwise
convergence of PNeu

ε (u) and PRob
ε (u) to (half) the relative and total perimeter functionals PR(u) and PT (u).

More precisely, we aim to verify that when Ω ⊂ D is a shape satisfying (4.1), it holds:

PNeu
ε (χΩ)→ 1

2
PerR(Ω) and PRob

ε (χΩ)→ 1

2
PerT (Ω) as ε→ 0.

In two space dimensions, let the computational domain D be the rectangle D = [0, 2] × [0, 1] ⊂ R2 and
let Ω ⊂ D be the square [ 1

2 ,
3
2 ]× [0, 1], so that the boundaries ∂Ω and ∂D do intersect, as depicted in Fig. 3.

The computational domain D is equipped with a regular conforming triangular mesh T , whose edges have
average length h. The shape Ω is explicitly discretized in T , i.e. a mesh of Ω is available as a subset of the
triangles in T .

The respective solutions vNeu
ε , vRob

ε to (6.2) are calculated by the P1 finite element method; different mesh
sizes are used (h = 1/40, 1/80, 1/160), as well as different values of the small parameter ε, and we present
on Fig. 4 the resulting numerical values of PNeu

ε (χΩ) and PRob
ε (χΩ) for several values of h and the ratio ε

h .

Interestingly, in both experiments, the values of PNeu
ε (χΩ) and PRob

ε (χΩ) increase, converging to their

respective continuous counterparts 1
2PerR(Ω) and 1

2PerT (Ω) as ε gets small, but a certain relation has to be
observed between ε and the mesh size h for this to happen. Indeed, for “too small” values of the ratio ε/h,
that is, when the approximation parameter ε is “too small” when compared to the mesh size h, the targeted
quantities 1

2PerR(Ω) and 1
2PerT (Ω) are overestimated. This observation is in line with that made in our

previous work [21], in a similar framework; intuitively, it seems unreasonable to apply a degree of smoothing
via the problems (6.2), using a length scale ε which is much smaller than the mesh size. The choices ε/h = 4
and ε/h = 2 lead to stable and accurate approximations of the relative and total perimeters; throughout the
following, unless stated otherwise, we consistently select ε and h within these proportions.

The regularized characteristic functions vNeu
ε and vRob

ε involved in this experiment are represented in
Fig. 5 for different ratios ε/h, and the corresponding integrands pNeu

ε and pRob
ε are depicted in Fig. 6. As
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Figure 4. Convergence of the quantities (left) 2PNeu
ε (χΩ) and (right) 2PRob

ε (χΩ) to the

exact values of the relative and total perimeters PerR(Ω) and PerT (Ω) in the numerical
validation example of Section 6.1.

expected, these functions show a transition between the values 0 and 1 over a sharper and sharper interface
as ε→ 0, which represents a blurred version of ∂Ω ∩D in the former case, and of ∂Ω in the latter.

Figure 5. (Upper row) values of the regularized characteristic function vNeu
ε ; (lower row)

values of the regularized characteristic function vRob
ε in the validation example of Section 6.1.

6.2. Numerical validation of the derivative of the perimeter functional

We now turn to illustrate the consistency of the derivative PRob
ε

′
(u) of the approximate perimeter functional

PRob
ε (u) with respect to the shape derivative of the exact function PerT (Ω). More precisely, let us recall the

formula for PRob
ε

′
(u) obtained in Section 4.3:

(6.3) ∀û ∈ L∞(D), PRob
ε

′
(u)(û) =

∫
D

gu,εû dx, where gu,ε(x) :=
1

ε
(1− 2vRob

ε (x)).

In this section, the computational domain D is the unit two-dimensional square D = (0, 1)2, and Ω ⊂ D is
the disk Ω = {(x1, x2) ∈ D; x2

1 + x2
2 ≤ R2} with R = 0.25, so that Ω does not intersect the boundary ∂D,

see Fig. 7.
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Figure 6. (Upper row) Values of the integrand pNeu
ε of the approximate relative perimeter

functional PNeu
ε (u) in the validation experiment of Section 6.1; (lower row) values of the

integrand pRob
ε of the approximate total perimeter functional PRob

ε (u).

Figure 7. Setting of the numerical experiment conducted in Section 6.2. The shape Ω (in
blue) is not explicitly discretized in the mesh of D, but it is represented as the negative
subdomain of a “level set function”.

Letting u := χΩ, we aim to study the “derivative” gu,ε, and notably to verify the conclusion of Proposi-
tion 4.2 whereby

2gu,ε(x)
ε→0−−−→ κ(x), x ∈ ∂Ω ∩D.

A rather fine triangular mesh T of D is used in this experiment, with size h = 1/160. Contrary to the
study conducted in Section 6.1, in this experiment as in all the forthcoming ones, the shape Ω under scrutiny
is not explicitly discretized in T . Rather, Ω is defined as the negative subdomain of a so-called “level set
function” ψ : D → R, that is, a function such that

ψ(x) < 0 if x ∈ Ω,
ψ(x) = 0 if x ∈ ∂Ω,
ψ(x) > 0 if x ∈ D \ Ω,

x ∈ D.

In practice, ψ is discretized at the vertices of the mesh T , and the boundary-value problem (6.2) for vRob
ε is

solved by applying the finite element method with the mesh T of D, with a careful assembly of the right-
hand side in its finite element resolution. We refer to e.g. [60] about the general idea of handling implicit
geometries in numerical computations.
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6.2.1. Behavior of the field gu,ε inside Ω and D \ Ω̄

The graph of the derivative gu,ε on D is represented in Fig. 8 for different values of the ratio ε/h, and its
values on the line L := {x = (x1, x2) ∈ D, 0.5 ≤ x1 ≤ 1, x2 = 0.5} are depicted on Fig. 9.

We observe that the derivative takes negative values in Ω, positive values in D \Ω, and that its modulus
blows up as the ratio ε/h decreases.

Figure 8. Graph of the “derivative” gu,ε(x) of the perimeter functional PRob
ε (u) for several

values of the ratio ε/h = {32, 16, 8, 4, 2, 1} in the numerical experiment of Section 6.2.1. The
boundary ∂Ω is depicted in red.

Figure 9. Values of the derivative gu,ε(x) at points x on the horizontal line L = {x =
(x1, x2) ∈ D, 0.5 ≤ x1 ≤ 1, x2 = 0.5} in the situation of Section 6.2.1, for several values of
the mesh parameter h (see the inset in the leftmost picture).

6.2.2. Behavior of the field gu,ε on ∂Ω

We now focus on points x ∈ ∂Ω and we appraise the convergence of gu,ε(x) to (half) the mean curvature
κ(x) of ∂Ω as ε→ 0, recalling that in the present geometric situation κ(x) = 1/R for all x ∈ ∂Ω.

We evaluate this behavior in terms of the mean value mε and the variance σε of gu,ε over ∂Ω:

(6.4) mε :=
2

|∂Ω|

∫
∂Ω

gu,ε ds and σε :=
1

|∂Ω|

∫
∂Ω

(2gu,ε −mε)
2 ds,

where, again, the factor 2 is introduced out of consistency with the convergence result of Proposition 4.2. In
practice, gu,ε(x) is calculated at the vertices of the mesh T by a direct application of the formula (6.3). The
calculation of integral quantities involving the values of gu,ε on ∂Ω, as those in (6.4), then relies on linear
interpolation from these values.

Both quantities mε and σε are represented in Fig. 10 for several values of the ratio ε/h. As expected, the
mean value mε is approaching close values of the constant mean curvature κ of ∂Ω as ε/h decreases with a
small bias. Concurrently, the variance σε increases, which can be explained by the fact that the values of
gu,ε tend to −∞ (resp. +∞) at vertices of the mesh lying inside Ω (resp. inside D \Ω) in this regime, and so
large numerical errors occur when calculating the values of gu,ε on ∂Ω by interpolation. Roughly speaking,
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Figure 10. (Left) mean value mε over ∂Ω of the derivative 2gu,ε of the approximate perime-
ter functional PRob

ε (u); (right) variance σε over ∂Ω of this derivative in the example of
Section 6.2.2.

ε/h ≈ 4 seems to strike a fair compromise between a fair accuracy of the approximation of κ by gu,ε and a
reasonable level of oscillations of the latter quantity.

An interesting conclusion of this experiment is that the mean curvature of a shape Ω, which is in general
difficult to compute (see [41] for a discussion about this point), may be accurately approximated by the
quantity 2gu,ε.

6.3. Minimization of the perimeter under a volume constraint

In this section and the next, we appraise the numerical behavior of the approximate total perimeter functional
PRob
ε (u) in model shape and topology optimization contexts.

Let us consider the problem

(6.5)
min
Ω⊂D

Per(Ω)

s.t. Vol(Ω) = VT

where the (total or relative) perimeter Per(Ω) of the shape Ω is minimized under the constraint that its
volume Vol(Ω) :=

∫
Ω

dx match a target value VT . The density-based counterpart of this problem features
designs as density functions u ∈ L∞(D, [0, 1]); it reads:

(6.6)
min

u∈L∞(D,[0,1])
Pε(u)

s.t. Vol(u) = VT

where Pε(u) stands for either the approximate total perimeter PRob
ε (u) or the approximate relative perimeter

PNeu
ε (u), and with a small abuse of notation, we have denoted by Vol(u) =

∫
D
u dx the straightforward

extension of the volume functional to density functions.
In principle, the numerical resolution of (6.6) could be conducted thanks to a standard algorithm, such

as a projected gradient method. In this context, even though the optimized function u is a density, a priori
taking values between 0 and 1, the Γ-convergence result Theorem 5.2 (which in itself expresses a penalization
of intermediate densities) suggests that, as ε gets small, u will present less and less such intermediate regions.
This is indeed observed, and for brevity, we do not report on these simulations, referring to [21] for analogous
calculations and conclusions.

Rather, we treat the problem (6.6) with a fixed-point algorithm from the previous work [18] of the first
author, which only features “black-and-white” designs. This method is based on the first-order necessary
optimality conditions associated to (6.6). Recalling the expression (6.3) of the derivative of Pε(u), these
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optimality conditions read: if u ∈ L∞(D, [0, 1]) is a local solution to (6.6),

(6.7) Vol(u) = VT , and ∃λ ∈ R, s.t.


gu,ε(x) + λ > 0 if u(x) = 0,

gu,ε(x) + λ = 0 if 0 < u(x) < 1,

gu,ε(x) + λ < 0 if u(x) = 1,

x ∈ D.

If we restrict ourselves to considering characteristic functions of shapes u = χΩ ∈ L∞(D, {0, 1}), we are thus
led to search for a shape Ω ⊂ D such that:

(6.8) Vol(χΩ) = VT , and ∃λ ∈ R s.t.


gχΩ,ε(x) + λ < 0 if x ∈ Ω

gχΩ,ε(x) + λ = 0 if x ∈ ∂Ω

gχΩ,ε(x) + λ > 0 if x ∈ D \ Ω̄,

x ∈ D.

To carry out this program, we represent the shape Ω as the negative subdomain of a “level set” function
ψ : D → R:

(6.9)

 ψ(x) < 0 if x ∈ Ω
ψ(x) = 0 if x ∈ ∂Ω
ψ(x) > 0 if x ∈ D\Ω̄,

x ∈ D.

The first-order necessary conditions (6.8) are thus equivalent to the fact that the function (gχΩ,ε +λ) be one
level set function for Ω. They can be rewritten as:

(6.10) ‖ψ‖L2(D) = 1 and ψ =
gχΩ,ε + λ

‖gχΩ,ε + λ‖L2(D)

with Ω = {x ∈ D, ψ(x) < 0}.

Note that, in the above, since ψ and cψ define the same shape Ω via (6.9) for any constant c > 0, there is
no loss of generality in imposing that ψ have unit norm.

We rely on a fixed point algorithm with relaxation to enforce the optimality conditions (6.10). The
latter is summarized in Algorithm 1. Briefly, a sequence of level set functions ψn, and associated shapes
Ωn := {x ∈ D, ψn(x) < 0} is produced, which are updated via a linear interpolation scheme on the unit
sphere [62] (see the definition of the coefficients an and bn in Algorithm 1). The value λn of the Lagrange
multiplier ensuring that the volume constraint is satisfied is found by bisection at each iteration of the
process.

In practice, as was noted in the previous work [18], solving the problem (6.6) with Algorithm 1 for a small
value of the ratio ε/h may precipitate the optimization path in a local minimum with bad performance. To
circumvent this issue, we rely on a continuation strategy: starting from a fairly “large” value of ε/h, we solve
a sequence of problems (6.6), associated to decreasing values of this ratio. Each sub-problem is deemed to
reach convergence at the iteration n where the angle θn between the current level set function ψn and the
derivative gn satisfies θn < 1◦.

We solve the problem (6.6) in both situations where Pε(u) is the approximate relative perimeter PNeu
ε (u),

or the approximate total perimeter PRob
ε (u). The considered 2d physical setting is the following: the

computational domain D is the unit square (0, 1)2, which is discretized with a Cartesian mesh Q composed
of 10, 000 Q1 elements. In both cases, the volume target is set to VT = 0.4|D|; the initial guess Ω0 is the
total computational domain D minus a square hole so that Ω0 fulfills the volume constraint.

The evolution of the shape in the course of both experiments is presented in Fig. 11. When the relative
perimeter is minimized, the resulting design is a horizontal rectangle which sticks to the boundary of the
domain D, taking advantage of the fact that only the side of the rectangle lying strictly inside D will be
evaluated by the (approximate) relative perimeter. On the contrary, when the total perimeter is minimized,
the optimized shape is a disk which does not touch the boundary ∂D, in agreement with the classical
isoperimetric inequality.

The histories of the perimeter, volume and Lagrange multiplier associated to both experiments are re-
ported in Fig. 12. In particular, we observe that the approximate perimeter functionals PNeu

ε (χΩ) and
PRob
ε (χΩ) converge to their exact counterparts as the ratio ε/h decreases. The images of the second column

illustrate that minimizing the sequence of approximate perimeters PNeu
ε (χΩ) and PRob

ε (χΩ) for a decreasing
value of the ratio ε/h leads to a minimization of the exact perimeters 1

2P
R(Ω) and 1

2P
T (Ω).
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Algorithm 1 Fixed-point level set algorithm for the resolution of (6.6).

Initialization: Initial shape Ω0, initial associated level set function ψ0.
for n = 0, . . . , until convergence do

(1) Solve the equation (6.2) for vε with χΩn as the right-hand side by the finite element method.
(2) Calculate the derivative gχΩn ,ε

via (6.3).
(3) while τ > τstop do

(i) Calculate the new level set function ψn+1 and the new shape Ωn+1 as

ψn+1 = anψn + bngn, Ωn+1 = {x ∈ D, ψn+1(x) < 0} ,
where we have introduced

gn :=
gχΩn ,ε

+ λn

‖gχΩn ,ε
+ λn‖L2(D)

, an :=
sin ((1− τ)θn)

sin θn
,

bn :=
sin (τθn)

sin θn
, θn := arccos(ψn, gn)L2(D) ∈ [0, π],

and λn is obtained by bisection, so that Vol(χΩn+1) = VT .
(ii) if Pε(χΩn+1) < Pε(χΩn) then

break
(iii) else

τ ← 0.5 ∗ τ .
(iv) end if

(4) end while
end for
return Ωn, ψn

Figure 11. Several snapshots of the evolution of the design in the perimeter minimiza-
tion example under volume constraint considered in Section 6.3; (upper row) the relative
perimeter functional PNeu

ε is used; (lower row) the total perimeter functional PRob
ε is used.

6.4. Using the perimeter functional in structural optimization

We finally turn to the use of our perimeter approximations in the more realistic setting of shape and topology
optimization of elastic structures.

6.4.1. Shape and topology optimization of elastic structures

The optimized shape Ω ⊂ D stands for a linearly elastic structure, whose boundary is decomposed into three
disjoint regions ΓD, ΓN , Γ:

∂Ω = ΓD ∪ ΓN ∪ Γ.

The shape is attached on the part ΓD of its boundary and surface loads g ∈ H1(Rd)d are applied on ΓN . For
commodity, we assume that both regions are imposed by the context; they are non optimizable subsets of
the boundary ∂D of the computational domain. The only optimized part Γ of ∂Ω is traction-free; moreover,
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Figure 12. Evolution of the quantities involved in the (upper row) relative and (lower row)
total perimeter minimization problem under volume constraint of Section 6.3. The values of
the perimeter (normalized with that of the initial design), volume and Lagrange multiplier are

represented on the left column; the exact relative and total perimeters PerR(Ω) or PerT (Ω)
of the shape Ω are compared with the approximate values PNeu

ε (χΩ) and PRob
ε (χΩ) through

the iterations in the central column, and the algorithm parameters θ and ε/h are represented
on the right column.

body forces are omitted. In this context, the displacement of Ω is the unique solution uΩ ∈ H1(Ω)d to the
linearized elasticity system: 

−div(AΩe(uΩ)) = 0 in D,
uΩ = 0 on ΓD,

AΩe(uΩ)n = g on ΓN ,
AΩe(uΩ)n = 0 on Γ.

The constitutive tensor AΩ is constructed accorded to the so-called ersatz material approximation:

AΩ = (1− χΩ)ηA+ χΩA,

where A is an isotropic Hooke’s tensor with unit Young modulus and Poisson’s ratio ν = 0.3, and η � 1 is a
very small parameter (in practice we take η = 10−4), so that the phase D \Ω is made of a very soft material.

We consider the minimization problem

min
Ω⊂D

C(Ω) + αPer(Ω)

s.t. Vol(Ω) = VT .

where Per(Ω) stands for either the relative or the total perimeter of Ω, VT is a volume target, and C(Ω) is
the compliance of Ω, that is:

C(Ω) =

∫
D

AΩe (uΩ) : e (uΩ) dx =

∫
ΓN

g · uΩ ds.
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The density-based counterpart of this problem reads:

(6.11)
min

u∈L∞(D,[0,1])
C(u) + αPε(u)

s.t. Vol(u) = VT ,

where we have introduced a suitable relaxation C(u) of the compliance functional, devised in our previous
work [19] and further analyzed in [43]. Again, Pε(u) stands for either PNeu

ε (u) or PRob
ε (u).

The numerical resolution of this problem relies on the same continuation strategy as in the previous
Section 6.3 for the ratio ε/h, and a straightforward adaptation of Algorithm 1.

6.4.2. Optimization of a two-dimensional cantilever

We first consider the benchmark 2d cantilever test case. The computational domain D is a rectangle with
size 2× 1 and the clamping region of shapes ΓD is the left-hand side of ∂D. A unit vertical load g = (0,−1)
is applied on ΓN = {x = (x1, x2) ∈ D, x1 = 2, 0.4 ≤ x2 ≤ 0.6}. The domain is discretized with a
regular triangular mesh composed of 7200 P1 elements. The volume target is set to VT = 0.4|D| and the
initial design Ω0 is the solution of a standard compliance minimization problem under the volume constraint
Vol(Ω) = VT (corresponding to the version of (6.11) without perimeter penalization). When solving (6.11),
we normalize the compliance by replacing C(u) with C(u) := C(u)/C(χΩ0

).
We solve both instances of (6.11) featuring the approximate relative and total perimeter functionals, with

a value of the weight coefficient α = 0.1. The results are displayed in Fig. 13. In both cases, the small
features of the initial design are removed in the course of the process and admittedly, both optimized designs
look similar, except for the fact that the shape Ω obtained by using the total perimeter functional presents
more natural, “straight” members in the junction region with the boundary of the computational domain
D. This expected effect shows that it is actually more natural to rely on the total version of the perimeter
functional in such a context, so as to ensure that the boundary ∂D is “seen” as a part of the boundary of
shapes, and that the region ∂Ω ∩ ∂D is optimized as such.

Figure 13. Several iterations of the minimization of a weighted sum of the compliance and
the perimeter of a 2d cantilever under a volume constraint in Section 6.4.2. (Upper row)
the relative perimeter functional is used; (lower row) the total perimter functional is used.

6.4.3. Optimization of a 3d cantilever

We eventually deal with the three-dimensional counterpart of the example of the previous section. The
computational domain D is now a box with size 4×1×1; the region ΓD where shapes are clamped corresponds
to the left side of ∂D, and a unit vertical load g = (0, 0,−1) is applied on ΓN := {x = (x1, x2, x3) ∈ D, x1 =
4, 0.4 ≤ x2, x3 ≤ 0.6}.

We solve the minimization problem (6.11) with a volume target VT = 0.15|D| and α = 0.1. The initial
design Ω0 is that obtained for minimum compliance under the volume constraint Vol(Ω) = VT , i.e. we
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solve the instance of (6.11) where the perimeter functional is omitted. The resulting optimized shapes are
represented in Fig. 14.

Figure 14. Optimization of a weighted sum of the compliance and the perimeter of a 3d
cantilever under volume constraint in Section 6.4.3; (upper row) several views of the initial
guess and (middle row) corresponding views of the optimized shape obtained when using
the relative perimeter functional; (lower row) corresponding views of the optimized shape
obtained when using the total perimeter functional.

Obviously, the minimization of the compliance of Ω without any perimeter constraint tends to favor
plates and laminates as structural elements. In contrast, beams and bars naturally appear when a perimeter
penalization is incorporated into the problem. As expected, when compared with that obtained when using
the relative perimeter functional, the optimized design using the total perimeter functional shows a lesser
contact area with the boundary ∂D of the computational domain.

7. Conclusions and perspectives

The object at the place of honor in this article is the total perimeter PerT (Ω). This functional evaluates the
total measure of the boundary of a subset Ω contained in a fixed “hold-all” domain D ⊂ Rd, as opposed
to the relative perimeter PerR(Ω), which only takes into account the region ∂Ω ∩ D lying strictly inside

D. We have introduced and analyzed two approximate versions P conv
ε (u) and PRob

ε (u) of PerT (Ω), which
are in addition defined on general “density functions” u : D → [0, 1]. These prove particularly relevant in
density-based topology optimization frameworks, since their expressions do not involve the gradient of the
function u, but rather a “smoothing” of u (the degree of smoothing being controlled by the “small” parameter
ε). The “consistency” of the approximate formulas P conv

ε (u) and PRob
ε (u) with the original notion of total

perimeter as ε tends to 0 has been proved by considering their pointwise convergence, the convergence of
their derivatives, and their Γ-convergence. These features of our approximate total perimeter functionals
have been appraised by numerical simulations.

The present work opens the way to several natural directions for future research:

• It would be natural to try and extend the present study to the case of anisotropic perimeter func-
tionals, of the form ∫

∂Ω

ϕ(nΩ) ds
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where ϕ : Rd → R is a given function. Grossly speaking, these functionals are used to account for
growth models where some expansion directions are preferred, see e.g. [67]. Let us mention that
variants of the Modica-Mortola approximation have been proposed to deal with anisotropic perimeter
functionals [11, 65].

• The result of Proposition 4.2 suggests approximate versions of shape functionals involving the mean
curvature of ∂Ω, which would be of great numerical interest, since calculating curvatures, and even
worse, their derivatives, is well-known to be a difficult issue (again, see [41] for a related discussion).

• As we have mentioned, the total perimeter functional, or an approximate counterpart as those devised
in this article, finds a natural use in optimal design involving contact mechanics: the contact region
is often imposed by the context as a fixed subset of the boundary of the computational domain D.
However, this region should be counted as part of the boundary of the optimized structure Ω and
its area has to be taken into account in the evaluation of the perimeter of Ω.
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Appendix A. Technical facts

A.1. A wee bit of geometry

For the convenience of the reader, we recall in the present section a few basic facts from differential geometry,
referring to e.g. [38] for a more exhaustive treatment.

Throughout the article, we consider Lipschitz bounded domains (resp. domains of class Ck, k ≥ 1) Ω ⊂ Rd:
for any point x ∈ ∂Ω, up to rotating the canonical orthonormal frame, there exist an open neighborhood U
of x and a Lipschitz function (resp. a function of class Ck) f : Rd−1 → R such that:

(A.1) Ω ∩ U = {x = (x1, ..., xd) ∈ U, xd < f(x1, ..., xd−1)} ;

roughly speaking, Ω can be described as the subgraph of a (d − 1)-dimensional Lipschitz function, locally
around any point x ∈ ∂Ω. Likewise, letting the function φ : U → R be defined by φ(x) = xd−f(x1, ..., xd−1),
it holds:

x ∈ Ω ∩ U ⇔ φ(x) < 0.

When Ω is a bounded Lipschitz domain, the unit normal vector n to ∂Ω pointing outward Ω exists for
dHd−1 a.e. point x ∈ ∂Ω. If Ω is of class Ck, n is defined as a vector field of class Ck−1 on ∂Ω. In either
case, it is conveniently expressed in terms of the function f (or alternatively φ) if a local representation of
the form (A.1) is assumed:

n(x) =
∇φ(x)

|∇φ(x)| =
ed −∇f(x1, ..., xd−1)√
1 + |∇f(x1, ..., xd−1)|2

.

Let us now suppose Ω to be of class C2; if x is a point on ∂Ω and a local representation of ∂Ω of the form
(A.1) is assumed, the second fundamental form of ∂Ω at x is given by the matrix IIx defined by:

IIx = ∇
( ∇φ
|∇φ|

)
(x),

=
1

|∇φ(x)|∇
2φ(x)− ∇φ(x)

|∇φ(x)|3 ⊗ (∇2φ(x)∇φ(x)).

In the particular case where n(x) = ed, these formulas rewrite:

∇f(x) = 0, and IIx = −∇2f(x).

The eigenvalues κ1(x), . . . , κd−1(x) of the matrix IIx are the principal curvatures of the surface ∂Ω at x,
and the associated eigenvectors are tangent vectors to ∂Ω at x called the principal directions of ∂Ω at x.
Eventually, the mean curvature κ(x) of ∂Ω at x is the sum κ(x) := κ1(x) + . . .+ κd−1(x).
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A.2. A few words about the signed distance function

Let us start with a definition.

Definition A.1. Let Ω ⊂ Rd be a bounded Lipschitz domain.

• The signed distance function dΩ to Ω is defined by:

∀x ∈ Rd, dΩ(x) =


−d(x, ∂Ω) if x ∈ Ω,

0 if x ∈ ∂Ω,
d(x, ∂Ω) if x ∈ Rd \ Ω,

where

(A.2) d(x, ∂Ω) = min
y∈∂Ω

|x− y|

is the usual Euclidean distance from x to ∂Ω.
• For a given x ∈ Rd, any point y ∈ ∂Ω realizing the minimum in the definition (A.2) is called a

projection point of x onto ∂Ω. When there exists a unique such point, it is denoted by p∂Ω(x) and
called the projection of x onto ∂Ω.

The following proposition expresses the fact that, provided Ω is regular enough, there exists a tubular
neighborhood of ∂Ω whose points can be parametrized by their distance to ∂Ω; see [13] for a proof.

Proposition A.1. Let Ω ⊂ Rd be a domain of class Ck, k ≥ 2; there exists δ > 0 such that, introducing the
tubular neighborhood ∂Ωδ :=

{
x ∈ Rd, d(x, ∂Ω) < δ

}
, the mapping

F : (−δ, δ)× ∂Ω→ ∂Ωδ, F(t, y) = y + tn(y)

is a Ck−1 diffeomorphism with inverse:

∀x ∈ ∂Ωδ, F−1(x) = (dΩ(x), p∂Ω(x)).

In particular, the signed distance function is differentiable on ∂Ωδ, and it holds:

∀x ∈ ∂Ωδ, ∇dΩ(x) = n(p∂Ω(x)).

When Ω is at least of class C2, the above considerations allow to define natural extensions of the unit
normal vector n to ∂Ω pointing outward Ω, and of any tangential vector field τ : ∂Ω → Rd to the whole
tubular neighborhood ∂Ωδ via the formulas:

∀x ∈ ∂Ωδ, n(x) := n(p∂Ω(x)), and τ(x) = τ(p∂Ω(x)).

Eventually, let Ω ⊂ R2 be a 2d bounded domain of class C2. Let us denote by τ the unit tangential vector
field to ∂Ω, so that (τ(x), n(x)) defines a local orthonormal frame of the plane at any point x ∈ ∂Ω. For any
function f of class C2 on D, it holds

(A.3) ∆f =
∂2f

∂τ2
+
∂2f

∂n2
+

κ

1 + κdΩ

∂f

∂n
, on ∂Ωδ.

A.3. A version of the coarea formula

The following result was proved in [5] as an application of the coarea formula (see [36]).

Lemma A.1. Let D ⊂ Rd and Ω ⊂ D be a C2 bounded domain. Then for any function ϕ ∈ L1(D), it holds:

(A.4)

∫
D

ϕ(x) dx =

∫
∂Ω

(∫
ray∂Ω(y)∩D

ϕ(z)

d−1∏
i=1

(1 + dΩ(z)κi(y)) dH1(z)

)
ds(y),

where dΩ is the signed distance function to Ω, z denotes a point in the ray ray∂Ω(y) := {x ∈ D, p∂Ω(x) = y}
emerging from y ∈ ∂Ω and dH1(z) is the line integration along that ray.
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