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(AFB170001 - CNRS IRL2807), Universidad de Chile, Santiago, Chile. Beauchef 851,

casilla 170-3 Santiago, Chile

Abstract

This work tackles the Open Pit planning problem in an optimal control frame-

work. We study the optimality conditions for the so-called continuous for-

mulation using Pontryagin’s Maximum Principle, and introduce a new, semi-

continuous formulation that can handle the optimization of a 2D mine profile.

Numerical simulations are provided for several test cases, including global opti-

mization for the 1D Final Open Pit, and first results for the 2D Sequential Open

Pit. Results indicate a good consistency between the different approaches, and

with the theoretical optimality conditions.
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1. Introduction

In long-term planning of mine operation, a common task consists in deter-

mining the profile of the total mass of material to be extracted from the site to

optimally design an opencast mine. This so-called Final Open Pit problem was

introduced in the early works Ref. [1, 2], with a more recent overview in Ref.5

[3].

The typical approach used to solve this problem is based on a discrete block

model of the site, each block having an associated extraction cost and profit
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value, based on topographical and geological data. Using a graph of block

precedence (i.e. order of extraction) allows to take into account slope constraints10

for the mine stability, and gives rise to large Integer Programming problems, see

for instance Ref. [4]. The dynamic programming approach was also investigated

in this framework, see e.g. Ref. [5]. Another approach presented in Ref. [6]

uses a PDE formulation for time labeling functions.

The present paper follows the continuous approach introduced in Ref. [7]15

with the reformulation of the Open Pit using a calculus of variation framework,

and then in [8] as an optimal control problem. The main contributions of the

present work include the analysis of the Final Open Pit with capacity, slope

and initial profile constraints, using Pontryagin’s Maximum Principle to extend

the results previously obtained in Ref. [8]. Then we introduce a new semi-20

continuous formulation that can handle the Sequential Open Pit problem (i.e.

optimization of the mine profile over a sequence of several time-frames) for a 2D

space domain. Finally, numerical simulations are provided for both the contin-

uous and semi-continuous approaches, including global optimization for the 1D

FOP case, and to our knowledge the first results for the 2D profile optimization25

as an optimal control problem. The outline of the paper is as follows. After the

introduction presenting context, Section II covers the SOP problem statement

with the continuous approach, and introduces the semi-continuous formulation.

Section III presents the FOP analysis using Pontryagin’s Maximum Principle

and in particular discusses the control structure in terms of bang, constrained30

and singular arcs. Section IV present the numerical simulations for three test

cases: 1D FOP, 1D SOP and 2D SOP, and is followed by the conclusions.

2. Problem statement

For a given spatial domain Ω, we consider a continuous function p : Ω→ R

called profile that delimits the shape of the mine pit. The aim is to determine35

the profile that maximizes the gain from the excavated soil, while respecting

some limits for the excavated capacity and maximal slope of the mine. We
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recall now the continuous approach for open pit planning, and introduce a new

semi-continuous approach that can handle the 2D profile case. Both of these

approaches lead to optimal control formulations of the problem.40

2.1. Continuous formulation

The key idea in the so-called continuous formulation, originally introduced

in [7], is to use the distance (position along the x-axis) as independent variable,

which allows to define the mine profile as a function of this new ’time’. Introduc-

ing a suitable dynamics for this function, with the associated control function,45

allows to formulate the open pit planning as an optimal control problem (OCP).

2.1.1. Final open pit planning problems (FOP)

For the 1-dimensional case, the domain Ω = [a, b] will correspond to the

independent variable or ’time’ of the optimal control problem. Consider the

state variables P, c : [a, b] → R+ for the depth profile of the pit and the exca-50

vated capacity of the mine. Let us also denote P0 ∈ C1 ≥ 0 the initial profile

corresponding to the natural shape of the ground. We set the state constraint

P (t) ≥ P0(t),∀t ∈ [a, b], and the boundary conditions P (a) = P0(a), P (b) =

P0(b). An additional final condition is that the total excavated capacity is lim-

ited, i.e. c(b) ≤ cmax.55

We also introduce κ : [a, b]×R→ R∗ such that κ(t, z) is the maximal pit slope

at position t and depth z. Instead of the original dynamics Ṗ = u, we choose to

use a normalized control u : [a, b] → [−1, 1] which is a bit simpler than having

the mixed state-control constraint |u(t)| ≤ κ(t, P (t)) for the maximal slope. As60

part of the soil characteristics, we also note G,E : [a, b] × R → R the densities

of gain and effort for excavating at a given position and depth. The optimal

control formulation of (FOP ) is then as follows:

3



(FOP )





max

∫ b

a

∫ P (t)

P0(t)

G(t, z)dzdt

Ṗ (t) = u(t)κ(t, P (t)) ∀t ∈ [a, b]

ċ(t) =

∫ P (t)

P0(t)

E(t, z)dz ∀t ∈ [a, b]

u(t) ∈ [−1, 1] ∀t ∈ [a, b]

P0(t)− P (t) ≤ 0 ∀t ∈ [a, b]

P (a) = P0(a), P (b) = P0(b)

c(a) = 0, c(b) ≤ cmax

Remark. In the following we take the basic effort function E = 1. The gain

function G is typically defined by interpolation over tabular data, and has to be65

integrated numerically along the depth z.

2.1.2. Sequential open pit planning (SOP)

We introduce now an extended version of (FOP ), in which we want to sched-

ule an extraction program over N consecutive time-frames. This case is quite

relevant in mine planning since mining companies divide the digging process70

into periods for operational purposes. We extend the notations of (FOP ) to

the multi-frame framework, and note Pi the mine profile at time-frame i, with

the associated control ui, while ci is the excavated capacity during time-frame

i. Each mine profile has to be deeper than the previous one, i.e. the constraint

P ≥ P0 from (FOP ) is generalized as Pi ≥ Pi−1, i = 1 . . . N . The capacity limit75

cimax is now enforced at each individual time-frame. Finally, the objective func-

tion now takes into account a depreciation rate α > 0 over time, with the gains

for the more distant time-frames being valued less than for the more immediate

time-frames. This new optimal control problem reads as follows
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(SOP )





max

N∑

i=1

∫ b

a

∫ Pi(t)

Pi−1(t)

G(t, z)

(1 + α)t−1
dzdt

Ṗi(t) = uiκ(t, Pi(t)) ∀t ∈ [a, b], i = 1, . . . , N

ċi =

∫ Pi(t)

Pi−1(t)

E(t, z)dz ∀t ∈ [a, b], i = 1, . . . , N

ui(t) ∈ [−1, 1], ∀t ∈ [a, b], i = 1, . . . , N

Pi−1(t)− Pi(t) ≤ 0 ∀t ∈ [a, b], i = 1, . . . , N

Pi(a) = P0(a), Pi(b) = P0(b) i = 1, . . . , N

ci(a) = 0, ci(b) ≤ cimax i = 1, . . . , N

Remark. Note that (SOP ) with N = 1 corresponds to (FOP ). Numerically,80

the multi-process (SOP ) can be reformulated by duplicating the state and con-

trol variables (as well as the constraints) for each time-frame. Adding the proper

linking constraints between the final and initial conditions of the successive time-

frames, we obtain a single process version of (SOP ) that can be solved by stan-

dard methods. The overall problem dimension, however, is higher, therefore85

computationally expensive methods such as global optimization may be able to

handle (FOP ) but not (SOP ), see section 4.

Remark. For the discrete (block) formulation, it is known (see for instance

Ref. [9] and [10]) that each profile (or ’pit’) which is solution of (SOP ) is not

deeper than the optimal pit of (FOP ) with the same parameters and infinite90

capacity. A similar result has been obtained for the continuous framework in

Ref. [7].

2.2. Semi continuous formulation for SOP

The main limitation of the continuous approach is that using the indepen-

dent variable to represent the position in space makes it difficult to handle the95

2D profile case, both in terms of dynamics / controls and profile slopes. This is
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why we introduce a new approach called the semi-continuous formulation, based

on an explicit discretization of the space domain Ω. The mine profile is therefore

represented by a finite set of variables at the discretization nodes, as illustrated

in Figure 1. Control variables are defined as the excavation effort at each dis-100

cretization node. Slope constraints are modeled as state constraint linking each

node with their neighbors. The independent variable is here standard time,

expressed in time-frames such that the final time T is the total number of time-

frames. Since SOP is a multi-phase problem, one standard way to formulate it

is to normalize the time interval to [0, 1] and duplicate the variables for each105

time-frame. This approach yields another optimal control formulation of the

Sequential Open Pit problem, for which extension from 1D to 2D space domain

is rather straightforward, at the cost of an increase in overall problem dimension.

Notations. In the context of the semi-continuous approach, for functions110

of both space and time such as profile, controls and slopes, we will typically use

subscripts for the space discretization node in Ω, and exponents for the time-

frame of the multi-phase Sequential Open Pit. For instance, P ki will represent

the profile depth at node i and time-frame k, and P k := (P ki ), i = 0, . . . , N

refers to the mine profile at time-frame k. Similarly, Uki will denote the digging115

at node i and time-frame k, with Uk := (P ki ), i = 0, . . . , N corresponding to the

overall excavation effort over the domain Ω at time-frame k. We will also denote

by
∫ Pk+1

Pk the integral of a function between the two mine profiles at time-frames

k and k + 1; for 1D profiles this is a 2D integral along x and the depth z, and

a 3D integral along x, y, z for 2D profiles.120

2.2.1. One dimensional profile space domain

Discrete profile. We discretize the space domain Ω = [a, b] into N equal

intervals of length ∆x = b−a
N , with N + 1 discretization nodes (xi), and note

I = {0, . . . , N} the set of indices for the nodes. We define the state variables

for the profile nodes (Pi)i∈I as functions of time. We also introduce the control

variables at each node (Ui)i∈I ≥ 0, corresponding to the excavation effort, so
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xa b

N intervals for Ω

z

∫ P2

P1

P0

P1

P2

x
y

z

N ×M intervals for Ω

Figure 1: 1D / 2D Space discretization of the mine profile

that the profile variables follow the simple dynamics

Ṗi(t) = Ui(t) , ∀i ∈ I , ∀t ∈ [0, T ]. (1)

Gain. The gain realized during time-frame k is the integral of G between the

current profile P k and the previous P k−1. Taking into account the depreciation

rate α introduced in 2.1.2, the overall gain to be maximized is

T∑

k=1

∫ Pk

Pk−1

G(x, z)

(1 + α)tk−1
dxdz. (2)

The computation of this objective is detailed in Appendix A.

Slope. We denote Ski the slope at node i and time-frame k, which is a

function of time. The maximal slope condition writes as

−1 ≤ Ski (t)

κ
(
xi, P ki (t)

) ≤ 1 , ∀i ∈ I , ∀k = 0 . . . T , ∀t ∈ [0, 1] (3)

In the 1D case we will use the simple slope formula

Ski = (P ki − P ki−1)/∆x (4)

and the slope limits are state constraints.

125
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Capacity. The excavation effort at each time-frame k corresponds to the

integral of the effort E between the two consecutive profiles P k−1 and P k, and

the capacity limit writes as

∫ Pk

Pk−1

E(x, z)dxdz ≤ Ck, ∀k = 1, . . . , T. (5)

The computation of this integral is detailed in Appendix A.

Initial profile. This is now a standard initial condition of the form

P 0
i (0) = p0(xi) , ∀i ∈ I. (6)

We obtain the following multi-phase problem (SOP )1D
SC with Fig. 2 illus-

trating the profile discretization in the 1D case, with N = 7 and T = 2. Im-

plementation details regarding the approximation of the various integrals are130

presented in Appendix A

(SOP )1D
SC





max

T∑

k=1

∫ Pk

Pk−1

G

(1 + α)k−1

Ṗ ki (t) = Uki (t) , i ∈ I , k = 1, . . . , T , t ∈ [0, 1]

−1 ≤ Sk
i (t)

κ(xi,Pk
i (t)
≤ 1 , i ∈ I , k = 1, . . . , T , t ∈ [0, 1]

∫ Pk

Pk−1

E(x, z)dxdz ≤ Ck , k = 1, . . . , T

P 0
i (0) = p0(xi) , i ∈ I

Remark. Setting T = 1 corresponds to the Final Open Pit problem with a

single time-frame.

Remark. The boundary condition P|∂Ω = 0 is in practice built in directly in

the problem formulation by eliminating the profile and control variables at the135

nodes corresponding to the boundary of the space domain.
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Ωa b

N intervals

P 0

P 1

P 2

Xi

P k
i

P k−1
i

P k
i+1

Uk
i

Sk
i

Figure 2: Illustration of the 1D profile model discretized w.r.t. space and time as a set of Pk
i

state variables with i = 0, . . . , N profile nodes and k = 0, . . . , T time-frames. Controls Uk
i are

the depths excavated from the previous time-frame at each node. Slopes Sk
i between neighbor

nodes must be smaller than the local maximal slopes i.e. κ(Xi, P
k
i ).

Remark. Moreover, the constraint that each profile must be deeper than the

previous one, which was a state constraint in the continuous formulation, is

now simply enforced by the conditions Ui ≥ 0.

Remark. The step size ∆x for the discretization of Ω in the semi-continuous140

approach can be seen as the analogue of the time step ∆t for the continuous

approach, which uses distance as independent variable.

2.2.2. Two dimensional profile space domain

For the two dimensional case, the extraction domain considered is Ω =

[a, b]× [c, d]. Generalizing the 1D case, we discretize [a, b] and [c, d] into N and145
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M intervals of length ∆x = b−a
N and ∆y = d−c

M respectively, and obtain a grid

with (N + 1)× (M + 1) nodes. Noting J = {0, . . . ,M}, we introduce the state

variables (functions of time) (Pi,j)i,j∈I×J representing the mine depth at each

node (xi, yj) := (a + i∆x, c + j∆y). The mine profile at time-frame k is now

a surface represented by the set of points P k := (P ki,j(0)). We introduce the150

(N + 1)× (M + 1) non-negative controls Uki,j ≥ 0 , i, j ∈ I × J , with the same

dynamics Ṗ ki,j = Uki,j .

Initial profile conditions are written as:

P 0
i,j(0) = p0(xi, yj) , i, j ∈ I × J. (7)

The objective and capacity limit are similar to the 1D case, except that the

integrals of G and E between two consecutive profiles are now in 3D instead of155

2D. The relevant implementation details are provided in Appendix A.

The main adjustment concerns the slope constraint: for each point Pi,j of

the profile we now choose to consider two slopes Si,j and Ti,j , in the x-axis and

y-axis directions respectively. Using the same basic forward finite differences as

in 1D, we obtain the two sets of slope constraints at time-frame k:

−1 ≤
P ki+1,j(t)− P ki,j(t)
κ
(
xi, yj , P ki,j(t)

)
∆x
≤ 1, ∀i = 0, . . . , N−1, j = 0, . . . ,M−1, ∀t ∈ [0, 1].

(8)

−1 ≤
P ki,j+1(t)− P ki,j(t)
κ
(
xi, yj , P ki,j(t)

)
∆y
≤ 1, ∀i = 0, . . . , N−1, j = 0, . . . ,M−1, ∀t ∈ [0, 1].

(9)

Note that more sophisticated choices could be used for the slopes, such as cen-

tered differences formulas or increasing the number of slopes considered at each

point. The formulation of (SOP )2D
SC is summarized below, with Fig. 3 illustrat-160

ing the profile discretization in the 2D case with N = 5 and M = 3.
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(SOP )2D
SC





max

T∑

k=1

∫ Pk

Pk−1

G

(1 + α)k−1

Ṗ ki,j(t) = Uki,j(t) ,∀(i, j) ∈ I × J , k = 1, . . . , T , t ∈ [0, 1]

−1 ≤ Sk
i,j(t)

κ(xi,yj ,Pk
i,j(t))

≤ 1 ,∀(i, j) ∈ I × J , k = 1, . . . , T , t ∈ [0, 1]

−1 ≤ Tk
i,j(t)

κ(xi,yj ,Pk
i,j(t))

≤ 1 ,∀(i, j) ∈ I × J , k = 1, . . . , T , t ∈ [0, 1]

∫ Pk

Pk−1

E(x, y, z)dxdydz ≤ Ck , k = 1, . . . , T

P 0
i,j(0) = p0(xi, yj) ,∀(i, j) ∈ I × J

Ω

x

y

0 N

M

P k
i,j P k

i+1,j

P k
i,j+1

Sk
i,j

T k
i,j Uk

i,j

Figure 3: Illustration of the 2D profile model with N = 5 and M = 3. View is from ’above’,

with the state variable Pk
i,j giving the profile depth at node (xi, yj) at time-frame k. Slopes

Sk
i,j , T

k
i,j with neighbors along the x-axis and y-axis must be smaller than the maximal allowed

slopes given by the function κ. The control Uk
i,j (along the z-axis) corresponds to the excavated

depth from the same profile node at the previous time-frame Pk−1
i,j .
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3. Analysis and optimality conditions for FOP

We study the final open pit problem in continuous formulation (FOP ) by

applying Pontryagin’s Maximum Principle (Ref. [11]), and look at the possible

control structure of optimal profiles.165

Optimality conditions for (SOP ) are not detailed here, and are more involved

in particular due to the state constraint P ≤ P0 being generalized over the

sequence of time-frames, i.e. Pi ≤ Pi−1, i = 1, . . . , N .

3.1. Applying Pontryagin’s Maximum Principle

Following the formulation in Ref. [12], we now state the PMP for (FOP ).

We denote y the state variables, p the associated costate variables, l the running

cost, f the dynamics and g the state constraint. In all the following we assume

the so-called normal case, i.e. the multiplier associated to the cost is nonzero

and can be normalized to 1. Let us define the pre-Hamiltonian, omitting the

argument t of functions u, y, p for clarity:

H(t, u, y, p) = l(t, u, y) + p · f(t, y, u) (10)

= −
∫ P (t)

P0(t)

G(t, z)dz + pPuκ(t, P ) + pc(P (t)− P0(t)) (11)

Noting the function of bounded variation µ ∈ BV (0, T ) the multiplier associated

with the state constraint, the adjoint equation writes as

−dP (t) = ∇yH(t, u, y, p)dt+∇yg(t, y)dµ(t) (12)

Then for any local optimum (ȳ, ū), there exists a non-trivial set of multipliers170

(p̄, µ̄) such that the following relations are satisfied:

i) Adjoint equation

dp̄P (t) =
(
G(t, P̄ )− p̄P (t)ū(t)κP (t, P̄ )− p̄c(t)

)
dt+ dµ̄(t) (13)

dp̄c(t) = 0 (14)

ii) Transversality conditions

p̄P (a), p̄P (b), p̄c(a) are free; p̄c(b) ≥ 0 with p̄c(b) = 0 if c̄(b) < cmax (15)

12



iii) Hamiltonian minimization

ū(t) ∈ argmin
w

H(t, w, ȳ(t), p̄(t)) a.e. on (a, b) (16)

iv) State constraint complementary relations

dµ̄(t) ≥ 0,

∫ b

a

(P0(t)− P̄ (x))dµ̄(t) = 0 and µ̄(b) = 0 (17)

i.e. µ̄ is an non-decreasing function and is constant when the state con-

straint is not active.

Remark. The state constraint is of order 1 since the control appears in its

first time derivative ġ = −uκ. We refer the reader to, for instance, Ref. [12]175

for a more in-depth analysis of state constraints in the PMP framework, and

especially the so-called ”alternate adjoint” formulation.

3.2. Inactive case: bang/singular control

We start by studying the case when the state constraint is not active. Since

per (16) the optimal control minimizes the pre-Hamiltonian which is linear in

the control, solutions typically consist in a sequence of bang (saturated control)

and/or singular control arcs. We introduce the switching function whose

sign will determine the optimal control

ψ(t) := Hu(t) = pP (t)κ(t, P (t)) (18)

As κ has strictly positive values we obtain the control law:

ū(t) =





1 if pP (t) < 0

−1 if pP (t) > 0

us(t) if pP (t) = 0 over an interval

(19)

The value of the singular control us is traditionally determined from the fact

that ψ and all its time derivatives vanish over a singular arc.180

Over a singular arc, ψ vanishes and the first time derivative of the switching

function can be reduced to

ψ̇(t) = (G(t, P (t))− pc)κ(t, P (t)) (20)

13



and similarly, by plugging ψ̇(t) = 0 in the second derivative and recalling ṗc = 0,

we obtain

ψ̈(t) = (Gt(t, P (t)) + uκGP (t, P (t)))κ (21)

Solving ψ̈(t) = 0 for the singular control leads to

us(t) = − Gt(t, P (t))

κGP (t, P (t))
(22)

We can now derive the two following lemmas concerning singular arcs.

Lemma 1. A singular arc is not admissible when | Gt(t,P )
κGP (t,P ) | > 1, and in par-

ticular when GP (t, P ) = 0.

Proof. Immediate consequence of (22) and the control constraint u ∈ [−1, 1]

Lemma 2. Let P̄ be an optimal profile solution of (FOP), then, over a singular185

arc the curve (t, P̄ (t)) follows the geodesic of G. Moreover, when maximal ca-

pacity is not reached, singular arcs follow more specifically the geodesics of null

gain G = 0.

Proof. From (20), over a singular arc the equation ψ̇ = 0 indicates that the

derivative Ġ := Gt(t, P (t)) + ṖGP (t, P (t)) vanishes, therefore the mine profile190

will follow the geodesics of G. If the maximal capacity constraint is not active,

then the associated costate pc is zero (see (15)), and ψ̇ = 0 then gives G = 0.

These lemmas expand the analysis of singular arcs obtained in Ref. [8] with

calculus of variations techniques.

3.3. Active state constraint case195

Over a constrained arc, the control uc is such that the constraint remains

active, i.e. g = P0 − P = 0, leading to the expression

uc(t) =
Ṗ0(t)

κ(t, P (t))
(23)

Note that a constrained arc can only occur if the uc is admissible, i.e.

|Ṗ0(t)| ≤ κ(t, P (t)). This simply means that the initial profile must satisfy

the maximal slope constraint.
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3.4. Control structure summary

To summarize, the optimal profile, in terms of control structure, is a sequence200

of bang, singular and/or constrained arcs. Constrained arcs are where the

profile is the same as the initial one, meaning there was no further excavation

on these parts of the domain. Bang arcs correspond to the parts of the profile

where the slope reaches its maximal allowed value, i.e. the digging is as steep

as possible. Singular arcs, on the other hand, follow the geodesics of the gain205

function, meaning the gain is constant along these parts of the profile. Moreover,

if the capacity limit is not reached, then this geodesic is more specifically the one

of null gain, i.e. the digging stops where excavation is not profitable anymore.

Optimality conditions for the semi-continuous formulation are more

involved and remain to be investigated thoroughly. The main complications210

arise from the spatial discretization of the profile, leading to maximal slope limits

now being state constraints that involve adjacent nodes variables (including

controls).

4. Numerical simulations

We present now the numerical simulations that illustrate the continuous and215

semi-continuous formulations of the Open Pit problem. After a brief description

of the algorithms used for the global and local optimizations, we detail three test

cases. First is the 1D FOP with limited capacity, that we solve with the con-

tinuous (both global and local optimization) and semi-continuous formulation

(local optimization). The second example is the 1D SOP with limited capac-220

ity, for which we compare the results of both continuous and semi-continuous

formulations (both with local optimization). Finally, we present a test case for

the 2D SOP problem with the semi-continuous formulation. All simulations

were carried out on a standard laptop, with numerical settings for all methods

recalled in Table 1 p.17.225
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4.1. Numerical methods

4.1.1. Global optimization: FOP with continuous formulation

The Final Open Pit problem is low-dimensional, with only two state variables

(not counting the running cost) and one control variable. Therefore it makes

sense to try a global optimization method such as dynamic programming, or the230

so-called Hamilton-Jacobi-Bellman (HJB) approach. We use here the software

BocopHJB [13], and refer to for instance Ref. [14] for a detailed description

of the HJB method. In this approach the value function of a fully discretized

(time, state and control variables) version of the problem is computed, with the

global optimum then being reconstructed from this information.235

4.1.2. Local optimization: FOP and SOP with continuous and semi-continuous

formulations

Since the numerical cost of the global method is too high for the Sequential

Open Pit problem, we also use a local optimization method, namely the direct

transcription approach. This method approximates the original (OCP ) problem240

by a discretized reformulation as a nonlinear optimization problem (NLP ),

using a discretization of the time interval. We refer interested readers to for

instance Ref. [15] for a review of direct methods. We use here the software

Bocop [16], based on the solver Ipopt [17] with sparse derivative computed by

the automatic differentiation tool Cppad [18]. This local optimization method245

is also used for the semi-continuous formulation with explicit discretization of

the space domain.

4.1.3. Numerical settings

In Table 1 are the settings for the different numerical methods used in the

simulations.250

4.2. Final open pit (1D): global and local optimization

We start with the 1D FOP as first example, since it is the only one for

which all formulations, including global optimization, are available. We set a
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1D FOP (global) t : 123 steps; P : 50 steps, e : 210 steps; u : 100 steps

1D FOP/SOP (local) t : 123 steps; tol = 10−10; maxiter = 10000

1D SOP SC (local) t : T steps; N = 123 nodes; tol = 10−10;maxiter = 10000

2D SOP SC (local) t : T steps; 30× 10 nodes; tol = 10−6;maxiter = 10000

Table 1: Numerical settings for the continuous and semi continuous formulations

maximal capacity cmax = 20.000. The gain function G is interpolated from

values found in the Marvin block model of Minelib, a publicly available library255

of test problem instances for open pit mining problems (see [19]).

Remark. Solutions for the unlimited capacity case, with a different control

structure (i.e. singular arcs), are shown in Appendix B, with both constant and

variable maximal slope.

4.2.1. 1D FOP with global optimization for continuous approach260

The solution obtained by the global optimization is displayed in Figure 4. At

first glance, the control structure seems to be of the form Constrained-Bang-

Bang-Constrained. On both sides the constraint P = P0 is active, meaning

there is no additional digging from the initial profile. In the middle, digging

occurs with maximal slope, leading to the two bang arcs.265

Remark. The non zero control around x = 200 simply follows the existing

initial profile P0, and is part of the first constrained arc. See 4.2.2 for more

details.

Remark. It is worth noting that an estimate of the PMP costate can be derived

from the gradient of the value function computed by the global method, see for270

instance Refs. [20, 21]. In the present case however, the gradient turns out to

be quite noisy and of little practical use. This could be improved by increasing

the discretizations, although the increase in computational times would not be

competitive with respect to using a direct method.
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Figure 4: 1D profile with limited capacity - global optimization (HJB method)

4.2.2. 1D FOP with local optimization for continuous approach275

The solution from the local optimization is displayed in Figure 5 with the

optimal profile and control as well as the PMP costate check. This solution is

actually extremely close to the one in section 4.2.1, which indicates that the

direct method actually found the global optimum as well, with the benefit of a

more accurate solution. In particular, we can here clearly see that the first two280

arcs with nonzero control around x = 200 are not bang arcs since |u| < 1: they

are actually part of the first constrained arc and correspond to the region where

P0 varies, thus the control uc(t) = Ṗ0(t)
κ(t,P (t)) from (23) is not just zero.

Moreover, we can now check that the Constrained-Bang-Bang- Con-

strained control structure is consistent with the switching function and the285

path constraint. We observe a perfect match between the adjoint estimate from

the discretized problem and the recomputed PMP costate. Figure 5 shows the

value of the state constraint g = P0 − P and its associated multiplier dµ. We

retrieve dµ from the multiplier of the state constraint in the discretized problem

(the correspondence can be inferred from comparing the expression of the PMP290

Hamiltonian and the Lagrangian of the NLP problem). In accordance with (17),
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the multiplier dµ is positive, and null when the constraint is not active. We also

observe that the costate pP is continuous at the junctions between bang and

singular arcs, while the control is discontinuous.

Remark. In this particular case, the solution has no singular arcs, which is due295

to the capacity limit that prevents reaching the null gain region. The examples

with unlimited capacity in Appendix B and Appendix B.2 illustrate solutions

with singular arcs where the optimal profile follows the geodesic G = 0.
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Figure 5: 1D profile with limited capacity - local optimization (direct method) and optimality

conditions

4.2.3. 1D FOP with semi-continuous approach

We finally present the solution obtained for the same problem using the semi-300

continuous formulation with a single phase (i.e T = 1). As can be seen in Figure

6 and Table 2, the solution is similar to the global and local optimizations using

the continuous approach, with close values for the objective. CPU times are of

the same order of magnitude for the two local optimizations with continuous and

semi-continuous formulation, while global optimization is significantly slower305

(two orders).
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Figure 6: 1D profile, limited capacity - local optimization using semi-continuous formulation

Method Objective CPU

1D FOP Global optim. 10846 369s

1D FOP Local optim. 11093 3s

1D FOP SC Local optim. 11100 2s

Table 2: Solutions for the 1D FOP with limited capacity.

4.3. Sequential Open Pit (1D and 2D): local optimization

In this section we present solutions for the Sequential Open Pit. First we

solve a 1D example using both the continuous and semi-continuous formula-

tions. Then we show a solution for a more realistic 2D problem using the310

semi-continuous formulation. To our knowledge, this is the first attempt to

tackle the 2D case in an optimal control framework.

4.3.1. 1D SOP with continuous and semi-continuous approach

Continuous approach. We solve the 1D SOP problem for 12 time-frames,

with a constant function κ = 1 , a rate α = 0.1 and a maximal capacity315

cmax = 1e4 for each time-frame. The solution indicates that most of the exca-
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vation effort is concentrated in the high gain regions of the domain, which is

not surprising.

Semi continuous approach. We now solve the same SOP problem with the

semi-continuous formulation. Both approaches give similar solutions, as can be320

seen in Figure 7. The objective values showed in Table 3 are quite close with a

difference of 1.3%, while CPU times are in the same order of magnitude.

Method Objective CPU

Continuous 89939 31s

Semi-continuous 91153 43s

Table 3: Solutions for the 1D SOP problem.
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Figure 7: 1D SOP: continuous and semi-continuous formulations.

4.3.2. 2D SOP with semi continuous approach

For the 2D case we consider a domain Ω = [0, 1200] × [0, 400] and an ana-

lytical gain density function stated by

G(x, y, z) = 1000−
√

(x− 600)2 + (y − 200)2 + (z − 350)2 (24)
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that reaches its maximal value in (600, 200, 350) and which decreases radially

from this point. The initial profile used in this instance is showed in Figure 8.325
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Figure 8: Initial profile for the 2D SOP case

We set a discount factor α = 0.1 and solve the 2D SOP for different capacity

limits and number of time-frames, using a 30×10 discretization of Ω. Figures 9

and 10 illustrate the optimal sequence of 2D profile corresponding to cmax = 106

and 5·106 respectively, with T = 2, 3, 6 time-frames. Table 4 shows the objective

values and CPU times. Results are consistent overall, with solutions trying to330

reach the region of highest gain as fast as allowed by the slope and capacity

constraints. Increasing the capacity limit and / or the duration of the time

interval both yield better objective values, as expected. CPU times are still

reasonable, with the longest run at 139s.
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Figure 9: 2D profile optimization with limited capacity C = 1e6, for T = 2, 3 and 6 time-

frames.
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Figure 10: 2D profile optimization with limited capacity C = 5e6, for T = 2, 3 and 6 time-

frames.

Capacity limit: 106 Capacity limit : 5 · 106

Times-frames Objective CPU Objective CPU

T = 2 69954.88 11s 73089.311 53s

T = 3 100103.04 38s 104684.29 124s

T = 6 175132.64 31s 183583.57 139s

Table 4: 2D SOP: solutions from the semi-continuous formulation, for different time intervals

and capacity limit per time-frame.

5. Conclusions335

In the present work we focused on the Open Pit problem in an optimal

control framework. We extended some previous results on the optimality condi-

tions for the Final Open Pit, and introduced a new semi-continuous formulation

that handles the 2D profile sequential optimization. Numerical simulations are

provided for the continuous and semi-continuous approaches on several test340

cases. The 1D FOP case showed a good consistency between global and local

optimization for the continuous approach, as well as local optimization for semi-

continuous, and matched the optimality conditions from Pontryagin’s Principle.

Then the 1D SOP case again indicated a good match for the continuous and

semi-continuous formulations. Finally we solved a 2D SOP test case, to our345

knowledge for the first time in an optimal control framework. Perspectives in

the continuation of the present work include solving a more complete 2D SOP

example using 3D interpolated data for the gain and maximal slope, as well

as studying the optimality conditions for the semi-continuous approach. The
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latter could prepare for the use of indirect shooting methods such as Hampath350

[22], especially since the local optimization method used here can provide the

knowledge of the optimal control structure and a costate approximation.
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Appendix A. Implementation details for the semi-continuous approach420

Time discretization. The Sequential Open Pit for the semi-continuous

approach described in 2.2 is a multi phase problem. Instead of duplicating the

variables for each time-frame, we use here in practice a more compact imple-

mentation, by using a time step ∆t of 1 time-frame, i.e. the time discretization

tk = 0 . . . T is the sequence of time-frames. This choice makes sense from the op-

erational point of view, since the sequential open pit planning precisely consists

in determining the optimal mine profile at each time-frame. It also simplifies
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a lot the computation of the integrals of the gain and effort functions between

two successive mine profiles. We choose an implicit Euler scheme for the time

discretization, which gives the trivial discrete dynamics

P k+1
i = P ki + Uk+1

i (A.1)

that easily gives the next / previous mine profile when needed in the computa-

tions.

Gain. An additional state variable g is added to represent the gain realized

along the time-frames, whose dynamics can be written as

ġ(tk) =
1

(1 + α)k−1

∫ Pk

Pk−1

G(x, z)dxdz, ∀k = 1, . . . , T (A.2)

The objective is then to maximize g(T ). For the 1D case, we approximate the

2-dimensional integral of G by trapezoidal rule over x then along z. In the 2D425

profile case, the 3D integral of G for the computation of the gain is approximated

using a 2D trapezoidal rule along (x, y) then a standard trapezoidal rule along

z.

Capacity. At each time-frame, the integral of the excavation effort over the

domain Ω can be approximated by

∫ Pk

Pk−1

E(x, z)dxdz ≈
N∑

i=0

∆x

(∫ Pk
i

Pk−1
i

E(xi, z)dz

)
(A.3)

Since E = 1 and from the discrete dynamics P ki = P k−1
i + Uki , we can use the

following formula ∫ Pk

Pk−1

E(x, z)dxdz ≈ ∆x

N−1∑

i=0

Uki . (A.4)

Similarly, for the 2D profile case, the excavation effort at time-frame k is ap-

proximated as

∫ Pk

Pk−1

E(x, y, z)dxdydz ≈ ∆x∆y

N−1∑

i=0

M−1∑

j=0

Uki,j . (A.5)
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Appendix B. Additional examples for the final open pit - continuous

formulation430

Appendix B.1. FOP with infinite capacity and constant slope

We show here the basic example with unconstrained capacity, namely cmax =

∞. Fig. B.11 shows the solution obtained by the global method, and Fig.B.12

shows the solution from the local method, and we observe that both solutions

match. With infinite capacity, the solution, as expected, digs as much as possible435

with respect to the maximal slope, until it reaches negative gain. This corre-

sponds to the observed Bang-Singular-Bang control structure (neglecting the

two very small constrained arcs P = P0 = 0 at the extremities). As stated in

Lemma 2, the singular arc in the middle follows the geodesic G = 0. The corre-

sponding control also matches the theoretical expression of the singular control440

(19), despite some oscillations at the junctions with the bang arcs.
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Figure B.11: 1D profile with infinite capacity - global optimization (HJB method)

28



0 500 1000

DISTANCE

0

50

100

150

200

250

300

350

400

450

500

D
E

P
T

H

GAIN MAP

FINAL PROFILE

INITIAL PROFILE

0 500 1000

DISTANCE

-1

-0.5

0

0.5

1

OPTIMAL CONTROL

SWITCH  / || ||

0 500 1000

DISTANCE

-20

0

20

40

MULTIPLIER FROM NLP

RECOMPUTED PMP COSTATE

500 550 600 650 700 750
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

CONTROL FROM SOLUTION

SINGULAR CONTROL FROM PMP

SWITCHING FUNCTION

Figure B.12: 1D profile with infinite capacity - local optimization (direct method) and con-

sistency with PMP optimality condition

Appendix B.2. FOP with infinite capacity and variable slope

Here we illustrate a case with a non-constant maximal slope κ. For this, we

consider following arbitrary κ function:

κ(x, z) =





0.5 x ∈ [0, 330)

1 x ∈ [390, 960)

5 x ∈ [960, 1230]

(B.1)

We chose a piece-wise constant function so that the assumption in section 3 is

satisfied almost everywhere. The solutions from the global and local optimiza-

tions are shown in Fig. B.13 and Fig. B.14 respectively. This time we obtain445

a control structure that includes all possible types of arcs: Bang-Singular-

Bang-Constrained. The main difference compared to the constant slope case

is that the optimal profile digs less ground on the right side region where the
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gain is negative, as a steeper slope is allowed there. As for the previous exam-

ples we observe that the singular control and costate from the solution closely450

match their formal expressions from the PMP.
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Figure B.13: 1D profile with infinite capacity and variable maximal slope - global optimization

(HJB method)
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Figure B.14: 1D profile with infinite capacity and variable maximal slope - local optimization

(direct method) with PMP optimality conditions
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