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We study the dynamics of the quasi-one-dimensional Ising-Heisenberg antiferromagnet BaCo2V2O8 under
a transverse magnetic field. Combining inelastic neutron scattering experiments and theoretical analyses by
field theories and numerical simulations, we mainly elucidate the structure of the spin excitation spectrum
in the high-field phase, appearing above the quantum phase transition point μ0Hc ≈ 10 T. We find that it is
characterized by collective solitonic excitations superimposed on a continuum. These solitons are strongly
bound in pairs due to the effective staggered field induced by the nondiagonal g tensor of the compound and
are topologically different from the fractionalized spinons in the weak-field region. The dynamical susceptibility
numerically calculated with the infinite time-evolving block decimation method shows an excellent agreement
with the measured spectra, which enables us to identify the dispersion branches with elementary excitations. The
lowest-energy dispersion has an incommensurate nature and has a local minimum at an irrational wave number
due to the applied transverse field.

DOI: 10.1103/PhysRevResearch.3.043227

I. INTRODUCTION

Intensive efforts are currently being made to investi-
gate materials exhibiting prominent quantum effects. In this
context, magnetic systems of low dimensionality make unde-
niable contributions with a host of different phases exhibiting
strong quantum effects such as Bose-Einstein condensation
[1,2] spin solids and spin liquid phases [3,4] with exotic
excitations [5,6].

In the simplest case of a spin-1/2 Heisenberg chain with
antiferromagnetic interactions, the ground state is strongly
entangled, lacks long-range order, and hosts fractionalized ex-
citations called spinons [7]. Those peculiar excitations, quite
different from classical spin waves, possess a topological na-
ture, can be understood as domain walls that disrupt the Néel
order, and can be observed as a continuum in inelastic neutron
scattering measurements. Such physics has been realized and
probed in many different experimental realizations ranging
from chains to ladders, e.g., in the quantum Heisenberg spin
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chains KCuF3 and CuSO4 • 5D2O [8,9] or the quantum spin
ladder (C5H12N)2CuBr4 [10].

Systems with relatively small exchange constants provide
a new avenue to study this physics, since applying a magnetic
field becomes an efficient control parameter, very similar in
spirit to a voltage gate for itinerant systems [11], chang-
ing the position and even the nature of the excitation and
pushing the system through quantum phase transitions. In
anisotropic one-dimensional (1D) magnets, for instance, ap-
plying a uniform magnetic field along the Ising axis closes
the gap to the lowest excitations in a way consistent with
a Pokrovsky-Talapov transition [12] and leads to an incom-
mensurate phase [13–15] with Tomonaga-Luttinger liquid
(TLL) spin dynamics [16–18]. For a field perpendicular to
the Ising axis, one-dimensional magnetic systems undergo a
quantum phase transition belonging to the well-known Ising
universality class [19]. Few experimental realizations of the
one-dimensional Ising model in a transverse field have been
realized so far, e.g., in the ferromagnetic spin-chain compound
CoNb2O6 [20,21] or more recently in the antiferromagnetic
spin chains BaCo2V2O8 [22–24] and SrCo2V2O8 [25–27].

Among the very rich class of materials realizing quasi-
one-dimensional physics, BaCo2V2O8 (see Fig. 1) has indeed
proven to be a specially fascinating example. In this mate-
rial, Co2+ ions form screw chains along the c axis and carry
effective spins 1/2 coupled by antiferromagnetic exchange.
Several ingredients make it even richer: (i) The chains possess
a significant Ising anisotropy in the c “chain” direction, which
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FIG. 1. Canted antiferromagnetic structure of the Co2+ screw
chains of BaCo2V2O8 in a 12 T transverse magnetic field applied
along the b axis (shown by the dark green arrow): (a) perspective
view of one chain (the Co and O atoms are white and red, respec-
tively; the CoO6 octahedra are materialized in light blue; and the
Co2+ spins are represented by the blue arrows); (b) projection in the
(a, b) plane of the two types of Co chains, with red (blue) spins
for the chains having a 41 (43) screw axis symmetry. Two chains
of the same type correspond to each other by the lattice centering
1
2 (a + b + c). In both (a) and (b), the labeling of the Co atoms is
the same as in Refs. [15,23]. At 12 T, the 0.92-μB antiferromagnetic
component of the magnetic moment is aligned along the a axis
with a field-induced 0.55-μB ferromagnetic component along the b
direction. (c) Phase diagram as a function of the applied transverse
magnetic field with a sketch of the soliton excitations and their time
evolution on both sides of the critical field. At zero field, the spinon
excitations carry a spin Sc = ±1/2, corresponding to the topological
index of the excitation, and hop by two sites along the chain axis
when time evolves. At 12 T in the high-field phase, the elementary
excitations carry a topological index Sa = ±1, hop by one site when
time evolves, and are dual from the low-field spinons [23].

is modeled by an anisotropic exchange tensor with still sizable
components in the a and b directions; (ii) the g tensor has
off-diagonal staggered parts, which allows one to effectively
apply a staggered magnetic field to the system when apply-
ing experimentally a uniform magnetic field [28]; (iii) the
interchain dispersion is non-negligible and quite complex due
to the screw nature of the chains. As a result, BaCo2V2O8

has been a perfect laboratory to tackle the exotic physics of
low-dimensional quantum magnets.

Without a magnetic field, BaCo2V2O8 shows a long-range
Néel order below TN = 5.5 K where the spins align an-
tiferromagnetically along the c axis, i.e., the direction of

Ising anisotropy [29]. In the presence of such Néel order the
spinons, which would be free for an isolated single chain, are
confined by the linear potential due to the interchain coupling,
giving rise to a series of bound states, which have been ob-
served by neutrons [30] as a series of discrete excitations, in
agreement with theoretical expectations. Similar effects have
been reported in the sister compound studied in Refs. [31,32].
Note that although existing for a 3D compound, those modes,
also called Zeeman ladders [33], are different from classical
spin waves, a remarkable result which is due to the small yet
sizable value of the interchain coupling. It is worth noting that,
in the case of an antiferromagnetic spin chain, any staggered
field, arising from interchain couplings as described above or
from nondiagonal terms in the g tensor, was shown both exper-
imentally [23,30,34,35] and analytically [36–38] to confine
spinons.

The staggered parts in the g tensor are responsible for an
even richer situation. The system undergoes a transition at
μ0Hc ≈ 10 T that was identified [22,23,39], by a combination
of field theory, numerical analysis, and neutron scattering
experiments, as a spin-flop transition from the c to a direc-
tion. This transition, which is in the same universality class
as the celebrated transverse field Ising model one [19], is
characterized by different topological excitations above and
below μ0Hc [23] and is generally described by a dual-field
double sine-Gordon model [40]. The evolution of the spin
correlations as measured by polarized neutrons was studied
for fields up to 12 T with a special focus on the low-energy
modes, including their nature and polarization.

The aim of this paper is to continue such investigations
in the high-field phase, above the transition, combining an
inelastic neutron scattering study of the spin-spin correlations
with a theoretical analysis based on the model that was intro-
duced in Ref. [23]. Such an analysis is particularly useful in
the case of BaCo2V2O8 given its complexity and the various
ingredients at play, namely, the spin anisotropy, the interchain
coupling, and the “two” magnetic fields (uniform and stag-
gered) effectively applied to the system due to the nature
of the g tensor. The comparison between measurements and
theory allows us to precisely analyze the spectrum of the new
soliton excitations in the high-field phase and to thoroughly
disentangle the influence of the various ingredients at play in
BaCo2V2O8 on the physics of this phase. This is especially
important for the two components of the magnetic field since
the uniform one is responsible for the incommensurability
of the spin excitations while the staggered one is the one
determining the quantum phase transition. Although most of
the properties are well in line with the model introduced in
Ref. [23], some yet unexplained additional features emerge,
such as a tetramerization of the spectrum.

The plan of the paper is as follows: Sec. II provides
the details of our experimental and theoretical approaches.
Section III describes the neutron measurements of the spin-
spin correlation functions and their interpretation in terms
of the corresponding numerical simulations, based essen-
tially on the infinite time-evolving block decimation (iTEBD)
technique [41] with a mean-field treatment of the coupling be-
tween the chains. We focus in particular on the identification
of the collective modes and on their polarization. Section IV
discusses these results in the light of a simplified model
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introduced to better understand and highlight the important
features of the dispersions. Conclusions and perspectives are
found in Sec. V.

II. SYSTEM, MODEL, AND METHODS

In this section, we describe how to model the target ma-
terial, BaCo2V2O8, as a quasi-one-dimensional spin system,
schematically represented in Fig. 1. We also explain our ex-
perimental and theoretical methods to study the microscopic
mechanisms at the origin of the dynamics of the system.

A. Experimental measurements

The BaCo2V2O8 single crystal was grown at Institut Néel
by the floating-zone method [42]. It was aligned with the
b-axis vertical yielding (a�, c�) as the horizontal scattering
plane and placed in a cryomagnet providing a maximum uni-
form field of 12 T at a base temperature of 1.5 K. Inelastic
neutron scattering (INS) experiments were performed on two
cold-neutron triple-axis spectrometers, Three-Axis instrument
for Low Energy Spectroscopy (ThALES) and Forschungszen-
trum Jülich Collaborating Research Group (FZJ-CRG) IN12,
both installed at Institut Laue Langevin (ILL, France). On
ThALES [43], a PG(002) monochromator (analyzer) was used
to select (analyze) the initial (final) wave vector of the un-
polarized neutron beam. On IN12, the spin of the incident
neutrons was polarized using a cavity transmission polarizer
located far upstream in the guide. The initial wave vector
was selected by a PG(002) monochromator, and both the final
wave vector and neutron polarization were analyzed using a
Heusler analyzer (see Ref. [44] for a more detailed descrip-
tion of the standard polarized neutron setup on IN12). On
both spectrometers, the energy resolution was of the order
of 0.15 meV, and the high-order harmonics were suppressed
by a velocity selector. The polarization analysis performed
on IN12 uses the classical (X,Y, Z ) frame where the X axis
is aligned with the scattered wave vector Q, the Z axis is
vertical, and the Y axis is perpendicular to Q and Z . The strong
applied vertical magnetic field (up to 12 T) restricts the polar-
ization analysis to the so-called PZ channel. Scattering which
involves a spin flip then encodes the correlations between Y
components of the spins, while the non-spin-flip scattering
encodes the correlations between Z components (on top of
the nuclear scattering). Importantly, the vertical current of the
Mezei spin flipper, placed just before the monochromator on
IN12, was calibrated for every used value of the incident wave
vector and of the magnetic field. The horizontal current was
checked to be nonsensitive to the applied field. The flipping
ratios were determined using a graphite sample: Their values
ranged between 12 and 23, depending on the incident wave
vector and magnetic field values.

B. Model

We consider the model Hamiltonian for BaCo2V2O8

H = J
∑
n,μ

[
ε
(
Sa

n,μSa
n+1,μ + Sb

n,μSb
n+1,μ

) + Sc
n,μSc

n+1,μ

]

−
∑
n,μ

μ0μBH · g̃Sn,μ + J ′ ∑
n

∑
〈νμ〉

Sc
n,μSc

n,ν , (1)

also used in Ref. [23]. The first term is the XXZ Hamiltonian
where Sn,μ is a spin-1/2 operator, μ is the chain index, n is
the site index, J = 5.8 meV is the antiferromagnetic (AFM)
intrachain exchange coupling, and ε = 0.53 is the magnetic
anisotropy. The second term is the Zeeman term arising from
the application of the magnetic field. μB is the Bohr magne-
ton, g̃ is the Landé g tensor, and H is the external magnetic
field (applied along the b axis). The last term describes the
weak interchain coupling. We consider here the simplest form
for this coupling, namely, a uniform antiferromagnetic unfrus-
trated nearest-neighbor term. Note that the precise nature of
the interchain coupling in BaCo2V2O8 is still largely unknown
with most likely more complex terms occurring due to the
screw nature of the chains [45]. The interchain term taken here
should thus be seen as a phenomenological term, resulting
potentially from the average of several individual couplings.
The value giving at zero magnetic field the best comparison
with the experimental results for the spinon confinement [23]
is J ′ = 0.17 meV. This is the value that we take in this paper.

Due to tilting of the ligands of Co2+, the g̃ tensor becomes
nondiagonal [28]. The influence of an applied uniform field
along the b axis given this g̃ tensor is then described by

H · g̃Sn,μ = H

[
gba(−1)nSa

n,μ + gbbSb
n,μ

+ gbc cos

(
π

2n − 1

4

)
Sc

n,μ

]
, (2)

with gba/gbb = 0.40, gbc/gbb = 0.14, and gbb = 2.35. The
third term in Eq. (2) is a four-site periodic field, but its effect
is negligible [23].

Owing to the effective staggered field [first term in Eq. (2)]
induced by the nondiagonal g̃ tensor, it is favorable for the
spins to cant from the c to a direction with increasing ap-
plied field. A quantum phase transition eventually occurs at
around μ0Hc ≈ 10 T, above which the spins are essentially
aligned along the a axis and get progressively polarized by
the uniform field in the b direction [see Figs. 1(a) and 1(b)].
Moreover, this transition can be considered as a topological
transition as it separates two phases which host different types
of topological excitations. The latter are dual from each other
and well described by the double-sine Gordon model [23].
Below μ0Hc, the excitations are spinons, while they become
solitons carrying a topological index Sx(=a) = ±1 along the a
direction above μ0Hc. In Ref. [23], the evolution of the spec-
trum under a transverse magnetic field up to 12 T was studied.
Special attention was paid to the lowest-energy excitations at
selected positions of the reciprocal space, but the instructive
full spectrum of the solitons in the high-field phase was not
investigated. In the subsequent sections of this paper we focus
on this point and investigate by inelastic neutron scattering the
dispersion along the c axis of the solitonic excitations above
the critical field Hc.

C. Numerical calculations

In the theoretical approach employed in this paper, we
treat the interchain coupling in Eq. (1) using a mean-field
approximation

J ′ ∑
n

∑
〈μ,ν〉

Sc
n,μSc

n,ν � J ′ ∑
n,μ

∑
〈ν〉μ

Sc
n,μ

〈
Sc

n,ν

〉
,
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which allows us to reduce the quasi-1D problem to an effec-
tive one-dimensional one in the presence of a (self-consistent)
staggered field. Mean fields arising from interchain coupling
with Sa and Sb are much smaller than the magnetic field and
are thus considered as negligible. Therefore the Hamiltonian
is recast into the simple chain problem

H = J
∑

n

[
ε
(
Sa

nSa
n+1 + Sb

nSb
n+1

) + Sc
nSc

n+1

] − μ0μBH

×
∑

n

[
gba(−1)nSa

n + gbbSb
n + gbc cos

(
π

2n − 1

4

)
Sc

n

]

+ h̃c

∑
n

(−1)nSc
n, (3)

where h̃c = J ′|〈Sc
n〉| is an effective staggered field induced

by the interchain coupling. Note that the number of nearest-
neighbor chain sites is only due to the spiral structure of Co2+

ions.
For the numerical simulations, we first obtain the ground

state of the Hamiltonian using the infinite density matrix
renormalization group (iDMRG) [46] and then calculate the
retarded spin-spin correlation function,

Cαβ (r, t ) = −iθs(t )
〈[

Sα
r (t ), Sβ

0 (0)
]〉

[θs(t ) is the step function], by using iTEBD [41] with infinite
boundary conditions [47]. The dynamical susceptibility is the
Fourier transform of the retarded correlation function,

χαβ (Q, ω) =
∫ ∞

−∞
dt

∑
r

ei(ωt−Q·r)Cαβ (r, t ),

which is related to the INS spectrum S(Q, ω) by

S(Q, ω) ∝
∑

α,β=x,y,z

(
δα,β − QαQβ

|Q|2
)

Sαβ (Q, ω),

where Sαβ (Q, ω) = |Im χαβ (Q, ω)| at low temperature. For
the calculations of the INS spectrum (especially the lattice
Fourier transform), we employ the actual positions of Co2+

ions. The dimension of the matrix product representation
for iDMRG and iTEBD is 60, the discrete time step is
dt/(εJ )−1 = 0.05, and the spin-spin correlation is calculated
for the time interval 0 � dt/(εJ )−1 � 60 or 80.

To better identify the excitations, we shall also consider a
simplified model where the spins occupy the sites of a simple
linear chain:

H = J
∑

n

[
ε
(
Sa

nSa
n+1 + Sb

nSb
n+1

) + Sc
nSc

n+1

]

− gbaμBμ0H
∑

n

(−1)nSa
n − gbbμBμ0H

∑
n

Sb
n. (4)

III. RESULTS

In this section, we present the results of the INS measure-
ments and elucidate the dynamics of BaCo2V2O8 under the
large transverse magnetic field by comparing the experimental
data with the theory essentially based on the numerical simu-
lation.

FIG. 2. Inelastic scattering intensity maps showing the intrachain
dispersion of the magnetic excitations along (a)–(c) Q = (2, 0, QL )
and (d)–(f) Q = (0, 0, QL ), in a transverse field of 12 T applied along
the b axis: (a) and (d) maps obtained experimentally on ThALES
and IN12, respectively, from a series of constant-Q energy scans,
compared with the numerically calculated neutron scattering cross
section [48] (b) and (e) of a tetramerized chain with t = 0.3 meV
and (c) and (f) of a uniform chain (t = 0), as explained in the text.
In (a), the yellow dotted lines show the energy scans presented in
Figs. 3(a)–3(d), and the first three modes are labeled in (a) and (b) by
the orange numbers. The white lines in (c) correspond to the same
three modes plus a fourth one, all sketched in Fig. 6 with the same
symbols (solid, dotted, dashed, and dash-dotted lines for modes 1, 2,
3, and 4, respectively). Constant-Q energy scans along (2, 0, QL ) and
(0, 0, QL ) comparing experimental and calculated data are shown in
Appendix C.

A. Spin dynamics along the chain

The spectrum of the magnetic excitations measured by
means of INS at μ0H = 12 T is plotted in Figs. 2(a) and
2(d). The experimental intensity maps are constructed from
constant-Q energy scans taken along (2, 0, QL ) and (0, 0, QL ).
They were recorded with a 0.1-r.l.u. step in QL (where r.l.u.
refers to reciprocal lattice units) and an energy transfer vary-
ing between 0.2 and 8.2 meV.

As already reported in Ref. [23], the discrete Zeeman lad-
der spectrum characterizing the zero-field spin dynamics (see
Fig. 1 in Ref. [30]) becomes less evident when increasing
the uniform field and is lost above the μ0Hc ≈ 10 T critical
field which signals the quantum phase transition. The present
results at 12 T exhibit well-defined branches, drastically dif-
ferent from these Zeeman ladders. Some diffuse intensity is
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also observed above 2 meV, which reflects underlying con-
tinua of excitations. Note that “spurious” (parasitic) intensities
were identified in the map of Fig. 2(d) at about 1 meV around
QL = 2 due to a contamination from a Bragg peak and around
7.5 meV for 2 � QL � 2.6 due to the Bragg scattering from
the aluminum frame of the analyzer.

The low-energy excitations characterized by the largest
spectral weight are labeled as modes 1 and 2 [see Fig. 2(a)].
Leaving aside the anticrossing at Q = (2, 0, 1.5) discussed
below, mode 1 disperses throughout the Brillouin zone from
0.4 meV at QL = 1, up to 5.5 meV at QL = 2. Mode 2 is
observed at 3.2 meV for QL = 1 and disperses downwards
and then upwards reaching also 5.5 meV at QL = 2. The third
branch, labeled as mode 3, especially visible in Fig. 2(d),
starts from 3.2 meV at QL = 2 and disperses up to 7 meV
at QL = 3. An extinction in the spectral weight, at ≈3 meV,
is observed for various QL values, especially clearly around
Q = (2, 0, 1.5) and Q = (0, 0, 2.6). It is attributed to an anti-
crossing between modes 1 and 2.

The numerically calculated INS spectra with the
Hamiltonian equation (1) in a magnetic field of μ0H = 12 T
are displayed in Figs. 2(c) and 2(f). They are in good
agreement with the experiment. The well-defined excitations
coexist with a continuum, especially visible in the
Q = (0, 0, QL ) map with a minimum of ≈2 meV at QL = 2.
These results, however, do not reproduce the anticrossing at
the wave vector QL = 1/2. It is instructive to translate this
wave vector using the reduced reciprocal units associated
with the fictitious lattice spacing c0 = c/4 between two
neighboring Co2+ ions along the chain direction. The
physical meaning of the anticrossing point at 2π

c QL = 1
2

π
2c0

is
the loss of the four-site translational symmetry. The original
band and its shifted replica by π

2c0
are coupled, yielding the

opening of a gap at the crossing point. Although the last
term in Eq. (2), which is four-site periodic, may be a good
candidate, the result of numerical calculations [Figs. 2(c) and
2(f)] shows that its influence is negligible and cannot be the
cause of the anticrossing. To describe this anticrossing, we
add a phenomenological isotropic tetramerization term

−t
∑

n

∑
μ

√
2 cos

(
π

2n + 1

4

)
Sn,μ · Sn+1,μ (5)

to the Hamiltonian equation (1). In Figs. 2(b) and 2(e), we dis-
play the calculated spectra for the tetramerization parameter
t = 0.3 meV. This additional ingredient indeed accounts for
the anticrossing, which quite remarkably is already observed
at zero magnetic field [30]. The origin of this tetramerization
could not be determined on experimental grounds and remains
unclear at the present stage. It would require, for instance, an
additional symmetry lowering with respect to the tetragonal to
orthorhombic one already reported [49]. At least, our results
indicate that the four-site periodic perturbation can cause the
anticrossing at the proper wave vector. We discuss in more
detail this anticrossing and its possible origin in Sec. IV.

B. Spin polarization of the excitations

The polarization of the various excitations in the high-field
phase can be further studied both experimentally and numer-
ically. To this end, inelastic neutron scattering experiments

FIG. 3. Constant-Q energy scans measured on IN12 using polar-
ized neutrons in the spin-flip (SF) and non-spin-flip (NSF) channels
at (a) and (b) Q = (2, 0, 1), (c) Q = (2, 0, 1.2), and (d) Q =
(2, 0, 1.5). These scans are materialized by the yellow dotted lines
on the map of Fig. 2(a). Note the about 16 times larger intensity
scale for (a) as compared with (b)–(d). The SF intensity corresponds
to fluctuations occurring in the (a, c) plane and perpendicular to the
scattering vector Q, while the NSF one corresponds to fluctuations
along the b axis. Here, neutron monitor (mon).

were conducted on IN12, using polarized neutrons. Since a
strong magnetic field (12 T) is applied along the vertical
b axis, the spin flip (SF) and non-spin-flip (NSF) channels
correspond to correlations between spin components perpen-
dicular to the scattering wave vector Q within the (a, c) plane
and between spin components along the b axis, respectively.
Figure 3 shows constant-Q energy scans performed in both
channels at the QL positions and E ranges spotted in Fig. 2(a)
by the yellow dotted lines.

The SF data allow us to follow mode 1 (green points in
Fig. 3). It is visible at 0.4 meV for QL = 1 and at 1.7 meV for
QL = 1.2 and is distributed on both sides of the anticrossing
for QL = 1.5. Hence it is mostly polarized in the (a, c) plane.
We can further deduce that its polarization is along the c axis
as it is absent in the Q = (0, 0, QL ) map. Mode 1 is thus a
transverse fluctuation, with respect to the ordered antiferro-
magnetic moments (along a), and involves spin components
along c. In the same QL range, mode 2 appears with a larger
intensity in the NSF channel (red points in Fig. 3) at QL = 1
and 3.15 meV, showing that it is more polarized along the b
axis than in the other two directions [see Figs. 3(b)–3(d)]. It
becomes more mixed with the other polarizations at higher
energy. This confirms our previous understanding of these
modes and definitely demonstrates their transverse character,
perpendicular to the ordered moments in the high-field phase
[23]. Mode 3, visible at 4 meV in Fig. 3(c), seems to present
equal SF and NSF contributions, which should result from a
mixture of the a, b, and c polarizations.

These experimental determinations of the magnetic exci-
tation polarization have been further inspected using iTEBD
calculations. Figures 4(a)–4(c) show the components of
dynamical structure factors calculated at 12 T for t = 0
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FIG. 4. (a)–(c) Saa, Sbb, and Scc components of the intensity color map calculated at 12 T [48] and shown in Fig. 2(c). (d)–(f) show the
same quantities but calculated in a higher magnetic field of 15.7 T. The dashed red lines show the shift of the incommensurate minimum, from
QL � 1.26 to QL � 1.32, with increasing magnetic field.

(i.e., with no tetramerization) and spin components along the
a, b, and c axes, labeled Saa, Sbb, and Scc, respectively. They
confirm that modes 1 and 2 are mainly polarized along the c
and b axis, respectively, while modes 3 and 4 are polarized
in the three directions a, b, and c. Overall, the mixing of
polarization increases with the energy for all excitations.

Note that the total spectral weight of the well-defined exci-
tations is mostly transverse, i.e., polarized perpendicular to a.
Longitudinal spin dynamics (polarized along a) is hardly ob-
served in this 12-T magnetic phase at low energy, in contrast
to the zero-field phase [30]. On the other hand, a continuum of
excitations is clearly visible at 12 T in the longitudinal channel
with a minimum at ≈2 meV.

C. Identification of the collective modes

It is quite difficult to single out the excitation modes in
the above results. This is due to the fact that the crystalline
structure of BaCo2V2O8 induces a significant complication
on the spin excitation spectrum. In particular, it is necessary
to include four ions in the unit cell (along c) to get a proper
description of a single chain. This redundancy, with respect to
an ideal uniform chain where spins would be placed regularly
along the chain, gives rise to folding effects, and more specif-
ically to four replicas of the main dispersions, shifted along
the c∗ direction by one reciprocal lattice unit (�QL = 1).

To illustrate this point, it is useful to consider the simplified
model given by Eq. (4), where the spins occupy the sites of
such a simple linear spin chain. Figures 5(a)–5(c) show the
calculated dynamical structure factors Saa, Sbb, and Scc for the
g̃ tensor values (gba, gbb) = (0.94, 2.35), which correspond
to BaCo2V2O8. The spectrum includes a continuum along

with dispersing modes, and a one-to-one correspondence can
be easily done with the full results displayed in Figs. 2(a)
and 2(d). Mode 1 is visible in Scc [Fig. 5(c)], while mode
2 is visible in Sbb [Fig. 5(b)]. The continuum as well as the
dispersions of the modes have been reproduced in Fig. 6(a),
using reduced wave vectors expressed both in terms of the
actual reciprocal units 2π/c (upper scale) and in terms of
1/c0 (lower scale). The minimum of the continuum occurs
at the “antiferromagnetic point” Q = π/c0, which translates
into the reduced value 2 × 2π

c for the actual screw chains
of BaCo2V2O8. Similar correspondences can be done for the
dispersive features. Interestingly, the latter shall be described
over a period consisting of 4 r.l.u.

Figure 6(b) shows a sketch of the full spectrum, includ-
ing the replicas, to be compared with the actual case of
BaCo2V2O8. The portion of reciprocal space probed in Fig. 2
is highlighted by an orange rectangle.

This analysis shows that the lowest interlaced energy
modes, modes 1 and 2, are thus basically identical. A notice-
able difference between the experimental and calculated maps
is the size of the gaps, which is different in the measurements
at QL = 1 and QL = 2. This indicates a dispersion along the
a and b directions resulting from the interchain coupling that
is not fully captured by the mean-field treatment in the calcu-
lations. Interestingly, two higher-energy modes, modes 3 and
4, are also visible although less clearly, which also seem to be
basically identical.

The spectral weight of the different modes also varies at
various “equivalent” QL positions. This is related not only
to an interference effect due to the atomic positions but also
to the fact that neutrons are sensitive only to the magnetic
correlations between spin components perpendicular to the
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FIG. 5. Dynamical susceptibility calculated for the simplified
model of Eq. (4) describing a linear spin chain with ε = 0.53,
μ0H = 12 T. (gba, gbb) are equal to (0.94,2.35) for (a)–(c) and equal
to (0.94,0) for (d)–(f). The components of dynamical susceptibility
(a) and (d) Saa, (b) and (e) Sbb, and (c) and (f) Scc are shown. In
contrast to all other theoretical results, the squared neutron magnetic
form factor f 2(Q) of Co2+ was not included in these calculations,
which are not directly compared with experiments.

scattering vector. This explains the difference in both maps
of Figs. 2(a) and 2(d), with, in particular, the absence of mode
1 in the (0, 0, QL ) map since, as discussed above, it is mainly
polarized along the c direction.

D. Shape of the dispersions

It is worth noting that modes 1 and 2 present two kinds
of minima, located at commensurate and incommensurate
positions. As shown in Fig. 2 and schematized in Fig. 6,
they are located at QL = 2 (modulo 1) and at QL � 1.74 and
QL � 2.26 (modulo 1), respectively.

Although the effect of the uniform magnetic field is rel-
atively minor compared with the effect of the staggered
one, it is nevertheless responsible for this incommensurate
feature. To prove this relationship, we performed numeri-
cal calculations using the simplified linear spin-chain model
equation (4). Figures 5(d)–5(f) show the calculations car-
ried out for (gba, gbb) = (0.94, 0), i.e., without uniform field.
The comparison with Figs. 5(b) and 5(e) demonstrates that
the incommensurate features in the spectrum only appear in

FIG. 6. Schematic drawing of the excitation spectrum of
BaCo2V2O8 with the same labeling of the modes as in Fig. 2 without
(a) and with (b) the replica due to the presence of four ions in the
lattice unit cell describing the screw chains (see Sec. III C).

the presence of the external uniform magnetic field. In ad-
dition, as shown in Figs. 5(b) and 5(e) as well as Figs. 5(c)
and 5(f), it is clear that the uniform field produces the minima
at incommensurate positions around Q/π = 0 for Saa and
around Q/π = 1 for Sbb. In Appendix B, we also show how
this incommensurability can be understood from the view-
point of the bosonized field theory [7].

Furthermore, the incommensurability shifts from π to 0 in
reduced momentum transfer with increasing magnetic field,
as already mentioned by Matsuda et al. [22]. In this spirit, nu-
merical calculations were also performed at a higher magnetic
field of 15.7 T, as shown in Figs. 4(d)–4(f). With increas-
ing field, the energy gaps increase not only at the minimum
of the dispersion but also at the incommensurate positions,
so that the whole excitation spectrum is pushed upward in
energy. The incommensurate minimum of modes 1 and 2 is
also shifted with the field by approximately 0.06 r.l.u. [see
red dashed lines in Figs. 4(b) and 4(e)]. The increase in the
shift from the wave number QL = integer with increasing field
can also be understood in the bosonized field theory since
the ∇φ(x) term (see Appendix B) becomes larger due to the
increase of the uniform field along the b axis.

IV. DISCUSSION

BaCo2V2O8 is a model system of the XXZ spin-chain an-
tiferromagnet. In zero field, its easy-axis anisotropy along the
c axis forces the magnetic moments to lie along the c axis in a
Néel order driven by the interchain coupling. This is opposed
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by effective staggered and uniform magnetic field along the a
and b axes, respectively, both produced by the combination of
a uniform magnetic field applied along b and of the nondiag-
onal g tensor. This competition between the antiferromagnetic
orders along the a and c directions provokes a quantum phase
transition at 10 T. This transition is in the universality class
of the transverse field Ising model [19] as identified from
the dual-field double-sine Gordon model [23,40]. However,
it is important to note that the dispersion of excitations in the
two phases surrounding the transition is quite different from
that of a transverse field Ising model. Indeed, in the low-field
phase, the terms proportional to ε in the Hamiltonian lead to
the dynamics of domain walls (spinons) even at zero mag-
netic field, i.e., the excitations have a momentum-dependent
dispersion different from the transverse field Ising model
(see Appendix A).

As emphasized in our previous works [23,40], the spinons
correspond to solitons of the φ bosonic field [7] in the lan-
guage of the bosonized field theory. They are confined by the
weak effective potential induced from the interchain interac-
tion. In contrast, in the high-field phase, the new excitations
are solitons of the θ bosonic field, which is conjugate to φ.
The transition at μ0Hc was thus characterized as a topological
transition from the φ-locked phase to the θ -locked one. More
precisely, the excitations come into strongly bounded pairs
of θ solitons, sitting on neighboring sites and confined by
the large staggered field in the a direction arising from the
nondiagonal g tensor. Modes 1 and 2 discussed above are con-
structed on the basis of these pairs of θ solitons: As sketched
in Fig. 1(c), the hopping is actually accompanied by a flip
from the Sa = ±1 to the Sa = ∓1 index. As a result, modes
1 and 2 are linear combinations of those solitons, forming
transverse excitations with respect to the a axis and polarized
along the b or c axis. It is worth noticing that, beyond these
well-defined modes, some continuum is still visible in the
Sbb and Saa components, hence pointing to the persistence
of deconfined excitations which remain longitudinal to some
extent.

It is thus also clear from this physical analysis that the
interchain interactions become less relevant above μ0Hc. At
low field, the series of discrete energies is a direct mani-
festation of the linear potential between φ solitons induced
by those interchain couplings. Each mode corresponds to a
typical average distance between solitons. In contrast, in the
high-field phase, the interchain interactions play little role:
Not only is the magnetic structure dictated by the staggered
field, but also this field confines the θ solitons into bound pairs
separated by one site [see Fig. 1(c)]. As a result, the concept
of typical distance between solitons disappears above μ0Hc.
It remains that the interchain couplings likely need additional
analysis: A more rigorous treatment beyond the mean-field
approximation may bring some new insight. In the same spirit,
a more detailed description involving different exchange paths
along with anisotropic versus isotropic coupling constants
could be interesting to investigate in future work.

We also comment on the four-site periodic perturba-
tion which causes the anticrossing of dispersion studied in
Sec. III A. Although we show that the tetramerization can
explain the anticrossing, such a perturbation would also stabi-
lize a magnetization plateau at half of the saturation value of

magnetization. This behavior is different from the measured
magnetization curve [13], whose derivative with respect to
the field shows a peak-shaped anomaly at half of the satura-
tion magnetization. Another possible route to get a term with
four-site periodicity and which would be more consistent with
the magnetization curve could be to consider another kind of
perturbation: a Dzyaloshinskii-Moriya (DM) interaction with
the DM vector spiraling in the ab plane with the four-site
period. Such a perturbation is compatible with the geometry
of the material and would have an effect on the magnetization
consistent with the observations. However, this spiral DM
interaction does not fully explain the shape of the dispersion
in the neutron spectrum, as shown by additional numerical
calculations. Possible other origins of the four-site periodicity
could be found in the complicated interchain effects arising
from the spiral structure of BaCo2V2O8. The explanation of
the observed anticrossing remains an interesting open ques-
tion which definitely deserves further investigation. It goes,
however, beyond the scope of this paper.

V. CONCLUSION

BaCo2V2O8 is a very rich material gathering, from its
chemical and crystallographic architecture, many ingredi-
ents at the origin of remarkable behaviors in the field of
quantum magnetism: Ising-like anisotropy, large intrachain
versus weak but non-negligible interchain interactions, an
anisotropic g tensor producing easy-axis anisotropy, and ef-
fective staggered fields under the application of an external
magnetic field. Our combined experimental and numerical
study of the full dispersive spectrum along the chain direction
allows us to understand and pinpoint the role of each param-
eter, in particular, of both uniform and staggered fields, in the
spin dynamics when considering the problem of a magnetic
field applied perpendicular to the chain axis. It also provides
an understanding of the properties of solitonic excitations,
well beyond the canonical spinon continuum of the isotropic
Heisenberg chain of spin 1/2.
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APPENDIX A: EXCITATIONS AND COMPARISON
WITH THE TRANSVERSE FIELD ISING MODEL

As discussed already in Ref. [23], the main features of
BaCo2V2O8 are described by the Hamiltonian equation (1).
Although this Hamiltonian itself is quite complicated, three
main features are clearly important for describing its basic
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physics: (i) the large Ising anisotropy along the c direction;
(ii) the staggered transverse magnetic field along the a axis,
which is created by the staggered g tensor and by the presence
of the uniform magnetic field applied along the b axis; and
(iii) the weak interchain coupling.

In order to analyze the physics of the system, it is con-
venient to first discuss the simplified Hamiltonian given by
Eq. (4). In the first step, both the interchain coupling and the
uniform magnetic field are ignored to focus on the effects
of the staggered transverse field. This leads to the strictly
one-dimensional Hamiltonian

Hstag = J
∑

n

[
ε
(
Sa

nSa
n+1 + Sb

nSb
n+1

) + Sc
nSc

n+1

]

− h̃a

∑
n

(−1)nSa
n, (A1)

where c corresponds to the Ising axis and h̃a is the staggered
part of the magnetic field, in which the g and μB factors have
been absorbed.

An even simpler version of this Hamiltonian would be
to completely neglect the ε term leading to a purely Ising
Hamiltonian along the chains:

HIsing = J
∑

n

Sc
nSc

n+1 − h̃a

∑
n

(−1)nSa
n . (A2)

For this Hamiltonian, a simple gauge transformation S̃a,b
n =

(−1)nSa,b
n , S̃c

n = Sc
n removes the oscillating term and brings

the problem back to the standard form of the transverse field
Ising model:

Htrans = J
∑

n

S̃c
nS̃c

n+1 − h̃a

∑
n

S̃a
n . (A3)

This Hamiltonian, which can be fully solved by a mapping
onto free fermions [19], has a celebrated quantum phase tran-
sition separating two phases, one dominated by a staggered
order along the c direction and one with a uniform polarization
of the S̃a

n operator (and thus a staggered order for Sa
n).

One might thus naively think that the physics of (A1) is
simply that of the transverse field Ising model up to the gauge
transformation. This naive view, however, is not correct, and
although the quantum phase transition occurring in (A1) is
indeed in the universality class of the Ising model [23,40],
the nature of the phases, in particular, the dispersion of the
excitations, is strongly affected by the Sa

nSa
n+1 and Sb

nSb
n+1

terms present in Eq. (A1) and absent in Eq. (A2). For example,
in the absence of a magnetic field, Eq. (A1) has a dispersion of
the excitation due to the term Sa

nSa
n+1 + Sb

nSb
n+1 = 1

2 (S+
n S−

n+1 +
S−

n S+
n+1), while an excitation created in the chain described by

Eq. (A2) is unable to move. Such a difference between the
models is of course crucial when comparing with the neutron
scattering spectra, which clearly demonstrates the strongly
dispersing nature of the excitations.

To illustrate this point, let us first carry out the gauge
transformation to bring the staggered field into a uniform one,
leading to

Hstag = J
∑

n

[− ε
(
S̃a

n S̃a
n+1 + S̃b

nS̃b
n+1

) + Sc
nSc

n+1

] − h̃a

∑
n

S̃a
n .

(A4)

We then can use the Kramers-Wannier transformation [50]

τ b
n+ 1

2
=

n∏
p=1

σ a
p , τ c

n+ 1
2

= σ c
n σ c

n+1, (A5)

to rewrite the Hamiltonian in terms of the bond operators,
where σα

n and τα
n are Pauli matrices, and Sα

n = 1
2σα

n . Then the
Hamiltonian is transformed into

Hstag = J

4

∑
n

[
ε
(−1 + τ c

n+ 1
2

)
τ b

n− 1
2
τ b

n+ 3
2
+ τ c

n+ 1
2

]

− h̃a

2

∑
n

τ b
n− 1

2
τ b

n+ 1
2
. (A6)

In this representation, the Néel order along the c axis existing
in the original chain for h̃a = 0 corresponds to the uniform po-
larization along the τ c = −1 direction in the τ representation.
The excitations, which are the spinons of the original model,
correspond to simply flipping a single spin in the latter. When
ε = h̃a = 0, such excitations would have no dynamics, as is
the case of the transverse field Ising model. Such dynamics
only appears in the transverse field Ising model when h̃a is
nonzero. As can be seen from Eq. (A6), the h̃a term causes a
hopping between two nearest neighbors and thus allows the
spinon to hop by one lattice site. This gives rise to terms
dispersing as cos(ka) in the excitation spectrum.

In contrast, the ε term in the XXZ model leads to a quite
different dispersion. Indeed, even at h̃a = 0, such terms allow
the spinons to move. In Eq. (A6) for h̃a = 0, ε(−1 + τ c

n+ 1
2
) �

ε(−1 + 〈τ c
n+ 1

2
〉) �= 0, and the τ b

n− 1
2
τ b

n+ 3
2

term connects the sites

n − 1
2 and n + 3

2 , which allows the spinon to move by two
lattice spacings, as can also be directly seen by other methods
[7]. As a result, the modes have a dispersion which is essen-
tially cos(2ka). The excitations in the low-field phase thus
have a different structure and a different dispersion relation
than the ones predicted by the transverse field Ising model.

In the high-transverse-field phase, the uniform field in
Eq. (A4) is dominant in the Hamiltonian, and the magnetic
order in the +S̃a

n direction grows. In this sense, the situation
is similar to the disordered phase of the transverse field Ising
model. However, the uniform field along the b axis, which is
neglected in Eq. (A1) for simplicity, affects the dispersion, as
we discussed in the main text.

Another illustration of this physics is provided by the field
theory representation of the Hamiltonian equation (A1) es-
tablished in Ref. [23]. The field theoretical approach for the
high-field phase is discussed in Appendix B.

APPENDIX B: BOSONIZED FIELD THEORY

We consider the simplified model equation (4) with retak-
ing the spin axes as Sa

n → Sa
n , Sb

n → Sc
n, and Sc

n → −Sb
n (π/2

rotation around the a axis),

H = J
∑

n

(
εSa

nSa
n+1 + Sb

nSb
n+1 + εSc

nSc
n+1

)

− gbaμBμ0H
∑

n

(−1)nSa
n − gbbμBμ0H

∑
n

Sc
n
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= J
∑

n

1 + ε

2

[(
Sa

nSa
n+1 + Sb

nSb
n+1

) + 2ε

1 + ε
Sc

nSc
n+1

− 1 − ε

1 + ε

(
Sa

nSa
n+1 − Sb

nSb
n+1

)]

− gbaμBμ0H
∑

n

(−1)nSa
n − gbbμBμ0H

∑
n

Sc
n. (B1)

The bosonization formulas for the spin operators are [7]

Sc
j � −c0

π

dφ(z)

dz
+ a1(−1) j cos[2φ(z)],

S+
j � e−iθ (z){b0(−1) j + b1 cos[2φ(z)]}, (B2)

where c0 is the lattice constant and a1, b0, and b1 are some
constants. Conjugate bosonic fields 2φ and θ can intuitively
be considered as the polar and azimuthal angles of the Néel
order. The terms appearing in the Hamiltonian are bosonized
following [7,40]

∑
n

(
Sa

nSa
n+1 − Sb

nSb
n+1

) � −
∫

dz cos[2θ (z)],

∑
n

Sc
n � − 1

π

∫
dz∇φ(z),

FIG. 7. Constant-Q scans at chosen (2, 0, QL ) values as a func-
tion of the energy: those measured on ThALES (left panels) and the
calculated ones [48] (right panels). Note that the same scaling ratio
is used in all panels between experiment and theory.

∑
n

(−1)nSa
n �

∫
dz cos θ (z).

Thus the bosonized field theory is given as

Hbos = 1

2π

∫
dz

[
uK (∇θ )2 + u

K
(∇φ)2

]

− g1

∫
dz cos[θ (z)] + g2

∫
dz cos[2θ (z)]

+ g3

∫
dz cos[4φ(z)] + g4

∫
dz∇φ(z), (B3)

where u is the spinon velocity and K is the Tomonaga-
Luttinger parameter. The gi are related to the original
parameters in (B1): g1 ∝ H , g2 ∝ J (1−ε)

1+ε
, g3 ∝ 2εJ

1+ε
, and g4 ∝

H . Since 2ε/(1 + ε) < 1, the cos[4φ(z)] term is irrelevant.
The cos[θ (z)] term is more relevant than the cos[2θ (z)] term.
Therefore the field θ (z) is locked at 2nπ (n is an integer).
From Eq. (B2), the spin-spin correlation function 〈Sc

n(t )Sc
0(0)〉

is related to the correlation function of the φ(z) field. Due to
the existence of the ∇φ(z) term in Eq. (B3), the dispersion
of Scc(q, ω) excitations has an energy local minimum at some
incommensurate momentum.

For the magic value K = 1/4 this Hamiltonian can be
refermionized [7] and mapped onto a free-fermion model with

FIG. 8. Constant-Q scans at chosen (0, 0, QL ) values as a func-
tion of the energy: those measured on IN12 (left panels) and the
calculated ones [48] (right panels). Note that the same scaling ratio
is used in all panels between experiment and theory.
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both a staggered periodic potential (proportional to g3) and a
pairing term (proportional to g1). Retaining only these two
terms and diagonalizing the fermionic Hamiltonian by the
usual Bogoliubov transformation leads for the energy of the
lowest mode to

Ek = −
√

ξ (k)2 + (g3 − g1)2, (B4)

with ξ (k) = −Jε cos(k) and assuming g3 > 0 and g1 > 0.
The momentum k is varying between [0, π/2]. For g1 = 0
one recovers the gap due to the Ising anisotropy. Expanding
the square root gives back the spinon dispersion cos(2k). At
the critical point g3 = g1 the spectrum becomes massless, and
the duality of the model is apparent between g3 > g1 and

g3 < g1 but with an order for the pseudofermions going from
an order in the density g3 < g1 to a pairing order g3 < g1.

APPENDIX C: NEUTRON ENERGY SCANS COMPARED
WITH CALCULATIONS

In order to further compare the experimental and the cal-
culated spectra, constant-Q energy scans along (2, 0, QL ) and
(0, 0, QL ) have been plotted in Figs. 7 and 8. All the experi-
mental features are rather well reproduced by the calculations,
although there are some discrepancies concerning the exact
energy positions and amplitudes of some peaks. The spurions
are also visible at 1 and 8 meV on the experimental energy
scans at (0, 0, 2) and (0, 0, 2.5). Some of the discrepancies, in
particular, of the low-energy peaks, are due to the mean-field
treatment of the interchain coupling.
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[45] M. Klanjšek, M. Horvatić, S. Krämer, S. Mukhopadhyay, H.
Mayaffre, C. Berthier, E. Canévet, B. Grenier, P. Lejay, and
E. Orignac, Giant magnetic field dependence of the coupling
between spin chains in BaCo2V2O8, Phys. Rev. B 92,
060408(R) (2015).

[46] I. P. McCulloch, Infinite size density matrix renormalization
group, revisited, arXiv:0804.2509.

[47] H. N. Phien, G. Vidal, and I. P. McCulloch, Infinite boundary
conditions for matrix product state calculations, Phys. Rev. B
86, 245107 (2012).

[48] The neutron magnetic form factor f (q), included as f 2(q) in
the calculated data to match the experiments, is calculated from
the analytical expression of the 〈 j0〉 form factor for Co2+ using
the tabulated coefficients from P. J. Brown, Magnetic form
factors, in International Tables of Crystallography, Volume C:
Mathematical Physical and Chemical Tables, edited by A. J.
C. Wilson (International Union of Crystallography, Kluwer,
London, 1996), Sec. 4.4.5, pp. 454–461.

[49] S. K. Niesen, G. Kolland, M. Seher, O. Breunig, M. Valldor,
M. Braden, B. Grenier, and T. Lorenz, Magnetic phase dia-
grams, domain switching, and quantum phase transition of the
quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8,
Phys. Rev. B 87, 224413 (2013).

[50] H. A. Kramers and G. H. Wannier, Statistics of the two-
dimensional ferromagnet. Part I, Phys. Rev. 60, 252 (1941).

043227-12

https://doi.org/10.1038/s41567-018-0126-8
https://doi.org/10.1103/PhysRevLett.120.207205
https://doi.org/10.1103/PhysRevB.94.125130
https://doi.org/10.1103/PhysRevLett.123.067203
https://doi.org/10.1103/PhysRevB.102.104431
https://doi.org/10.7566/JPSJ.82.033706
https://doi.org/10.1021/cm050760e
https://doi.org/10.1103/PhysRevLett.114.017201
https://doi.org/10.1103/PhysRevB.89.094402
https://doi.org/10.1103/PhysRevB.96.054423
https://doi.org/10.1143/PTP.63.743
https://doi.org/10.1103/PhysRevLett.93.017204
https://doi.org/10.1103/PhysRevB.91.140404
https://doi.org/10.1103/PhysRevLett.79.2883
https://doi.org/10.1103/PhysRevB.60.1038
https://doi.org/10.1209/0295-5075/121/37001
https://doi.org/10.1007/s00723-015-0655-6
https://doi.org/10.1103/PhysRevB.98.184429
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1016/j.jcrysgro.2011.01.016
https://doi.org/10.1080/10448632.2015.1057050
https://doi.org/10.1016/j.nima.2016.02.067
https://doi.org/10.1103/PhysRevB.92.060408
http://arxiv.org/abs/arXiv:0804.2509
https://doi.org/10.1103/PhysRevB.86.245107
https://doi.org/10.1103/PhysRevB.87.224413
https://doi.org/10.1103/PhysRev.60.252

