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Basis-set correction for coupled-cluster estimation of dipole moments
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The present work proposes an approach to obtain a basis-set correction based on density-functional theory
(DFT) for the computation of molecular properties in wave-function theory (WFT). This approach allows
one to accelerate the basis-set convergence of any energy derivative of a non-variational WFT method, gen-
eralizing previous works on the DFT-based basis-set correction where either only ground-state energies could
be computed with non-variational wave functions [J. Phys. Chem. Lett. 10, 2931 (2019)] or properties
where computed as expectation values over variational wave functions [J. Chem. Phys. 155, 044109 (2021)].
This work focuses on the basis-set correction of dipole moments in coupled-cluster with single, double, and
perturbative triple excitations (CCSD(T)), which is numerically tested on a set of fourteen molecules with
dipole moments covering two orders of magnitude. As the basis-set correction relies only on Hartree-Fock
densities, its computational cost is marginal with respect to the one of the CCSD(T) calculations. Statistical
analysis of the numerical results shows a clear improvement of the basis convergence of the dipole moment
with respect to the usual CCSD(T) calculations.

I. INTRODUCTION

Quantum chemistry aims to provide theoretical meth-
ods to pblackict molecular properties starting from the
many-body quantum mechanical problem. To solve this
problem a wide range of methods were developed in
the last decades mainly based on wave-function theory
(WFT) and density-functional theory (DFT). The pur-
pose of both approaches is to accurately treat correla-
tion effects, or in other terms, the quantum effects which
go beyond a mean-field description such as Hartree-Fock
(HF). In the context of WFT, there exists a wide range of
methods of increasing computational cost – ranging from
Møller-Plesset perturbation theory31 to coupled-cluster
methods32 – which in principle systematically converge
to the full configuration interaction (FCI) limit which is
the exact solution within a given basis set. Neverthe-
less, the accuracy of the results of a WFT method – even
at the FCI level – strongly depends on the quality of
the basis set, mainly because of the slow convergence of
the wave function near the electron-electron coalescence
point33,34. The combination of the slow basis-set conver-
gence and the strong increase of the computational cost
with both the size of the basis set and the number of
electrons makes it very difficult to obtain well converged
WFT calculations on large systems.

There are mainly two approaches to tackle the basis-
set convergence problem of WFT: basis-set extrap-
olation techniques35,36 and explicitly correlated F12
methods37–42. The basis-set extrapolation techniques

a)Electronic mail: diata.traore@upmc.fr
b)Electronic mail: toulouse@lct.jussieu.fr
c)Electronic mail: emmanuel.giner@lct.jussieu.fr

rely on a known asymptotic behavior of the correla-
tion energy with the size of the basis set but requires
WFT calculations with basis sets of increasing sizes,
which makes their application limited to small or medium
system size. The F12 methods accelerate the basis-
set convergence of the results thanks to the inclusion
of a correlation factor explicitly depending on electron-
electron distances and restoring Kato’s electron-electron
cusp condition34. Although F12 methods improve indeed
the results (typically, energy differences obtained with
a F12 method using a triple-zeta basis set are as accu-
rate as the ones obtained with the corresponding uncor-
rected WFT method using a quintuple-zeta basis set43),
the F12 methods necessarily induce computational over-
heads due to the large auxiliary basis sets requiblack to
resolve three- and four-electron integrals44.

An alternative path has been recently introduced by
some of the present authors in Ref. 45 where a rigor-
ous framework was proposed to correct for the basis-set
incompleteness of WFT using DFT. A central idea of
this work is the fact that the Coulomb electron-electron
interaction projected in an incomplete basis set is non-
divergent and quite similar to the long-range interac-
tion used in range-separated DFT (RSDFT). A basis-
set correction density functional can then be built from
RSDFT short-range correlation functionals using a local
range-separation parameter which automatically adapts
to the basis set used. This results in a relatively cheap
way of correcting the basis-set incompleteness of WFT,
which has the desirable property of leading to an unal-
teblack complete-basis-set (CBS) limit. Two versions of
this theory were proposed: (i) a non self-consistent ver-
sion where the basis-set correction functional is evaluated
with any accurate approximation of the FCI density and
then simply added to an approximation of the FCI en-
ergy in a given basis set45; and (ii) a recently introduced
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self-consistent variant were the energy is minimized in
the presence of the basis-set correction functional and
therefore allows for the wave function to be changed
by the DFT correction46. The efficiency of the non-
self-consistent approach for computing total energies and
chemically relevant energy differences of relatively large
magnitudes (such as ionization potentials45,47, molecular
atomization energies48–51, or excitation energies52) has
been well established in previous works on a quite wide
range of atomic and molecular systems including light to
transition-metal elements, and it was numerically shown
that the self-consistent framework does not give any sig-
nificant improvement of total energies46.

The main advantage of the self-consistent formulation
is nevertheless to allow for the computation of first-order
properties as expectation values over the minimized wave
function thanks to the variational property of the theory.
In Ref. 46 the present authors have focussed on the dipole
moments which are known to exhibit a slow convergence
with respect to the size of the basis set53–55. It was
shown that the dipole moments computed at near FCI
level with the self-consistent basis-set correction method
are close to the CBS limit in triple-zeta basis sets, which
contrasts with the slow basis-set convergence of the usual
WFT approaches. The drawback of the self-consistent
framework is nonetheless to require a self-consistent vari-
ational WFT calculation, which therefore excludes its ap-
plication to non-variational approaches such as coupled-
cluster with singles, doubles, and perturbative triple ex-
citations (CCSD(T)).

In the present work, we propose to overcome this lim-
itation and target the computation of first-order molec-
ular properties as energy derivatives of the non-self-
consistent basis-set correction approach. We apply this
strategy to the computation of dipole moments at the
CCSD(T) level and propose a cheap computational strat-
egy for the basis-set correction which uses only densities
at the HF level, similarly to what have been done in the
context of atomization energies in Ref. 48.

The paper is organized as follows. In Sec. II, we in-
troduce the theory of the basis-set correction extended
to the computation of dipole moments. In Sec. III, we
provide computational details of our study on a set of
fourteen molecules with dipole moments covering two or-
ders of magnitude. The numerical results are discussed
in Sec. IV, and compablack for some molecules with the
fully self-consistent formalism of Ref. 46. Detailed re-
sults, as well as the molecular geometries used, are avail-
able in the Supplementary material.

II. THEORY

A. Dipole moment from the self-consistent basis-set
correction

In this section, we generalize the framework of the
basis-set correction to the presence of a static external
electric field. Consider the Hamiltonian of a N -electron
system under an external electric field ε = εu of strength
ε along a direction u,

Ĥ(ε) = Ĥ0 − εd̂, (1)

where Ĥ0 is the Hamiltonian of the system without the
electric field,

Ĥ0 = T̂ + V̂ne + Ŵee, (2)

with the kinetic-energy operator T̂ , the electron-nuclei
interaction operator V̂ne, and the electron-electron inter-

action operator Ŵee, and d̂ = d̂ · u where d̂ is the total
(electron+nuclear) dipole-moment operator,

d̂ = −
N∑
i=1

ri +

Nnuclei∑
A=1

ZARA, (3)

where ri are the electron coordinates, and ZA and RA

are the nuclei charges and coordinates.

In the basis-set correction formalism45,46,49, the
ground-state energy E0(ε) of the Hamiltonian in Eq. (1)
is approximated by

EB0 (ε) = min
ΨB

{
〈ΨB|Ĥ(ε)|ΨB〉+ ĒB[nΨB ]

}
, (4)

where the minimization is performed over the set of N -
electron wave functions ΨB expanded on the N -electron
Hilbert space generated by the one-electron basis set B
and ĒB[nΨB ] is the basis-set correction functional eval-
uated at the density nΨB of ΨB. The energy functional
ĒB[n] (introduced in Ref. 45) compensates for the re-
striction on the wave functions ΨB due to the incom-
pleteness of the basis set B. The restriction coming from
the basis set B in Eq. (4) then applies only to densi-
ties nΨB . Roughly speaking, since the density converges
much faster than the wave function with respect to the
basis set, EB0 (ε) is a much better approximation to the
exact energy E0(ε) than the corresponding FCI ground-
state energy EBFCI(ε) calculated with the same basis set
B. Moreover, in the CBS limit, ĒB[n] vanishes and thus
EB0 (ε) correctly converges to the exact energy E0(ε).

From the basis-set corrected energy EB0 (ε) in Eq. (4),
one can define the corresponding basis-set corrected
dipole moment dB as the first-order derivative with re-
spect to the electric field

dB = −dEB0 (ε)

dε

∣∣∣∣
ε=0

. (5)
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It is important to stress here that dB is different from the
FCI dipole moment dBFCI with the same basis set B, as the
former is taken as the derivative of EB0 (ε) which contains
the basis-set correction functional ĒB[n]. Similarly to the
case of the energy, we expect dB to have a faster basis-set
convergence than dBFCI.

Since EB0 (ε) is stationary with respect to ΨB, the
Hellmann-Feynman theorem applies and gives dB as a
simple expectation value

dB = 〈ΨB0 (ε = 0)|d̂|ΨB0 (ε = 0)〉, (6)

where ΨB0 (ε = 0) is the minimizing wave function of the
self-consistent equation in Eq. (4) at ε = 0. This was the
approach used in Ref. 46.

Note that the Hellmann-Feynman theorem applies be-
cause the basis set B is independent from the perturb-
ing electric field. By contrast, if we wanted to calculate
the gradient of the energy with respect to nuclear coordi-
nates, we would have to take into account the dependence
of the atomic basis set B on the nuclei coordinates. In
that case, the Hellmann-Feynman theorem would not ap-
ply and we would have to consider additional Pulay terms
coming from the dependence of both the wave function
ΨB0 and the basis-set correction energy ĒB on the nuclei
coordinates.

B. Dipole moment from the non-self-consistent basis-set
correction

As initially proposed in Ref. 45 for the case without the
electric field, one can avoid the minimization in Eq. (4)
and approximate the energy EB0 (ε) by approximating the
minimizing wave function ΨB0 (ε) in Eq. (4) by the FCI
wave function ΨBFCI(ε) in a given basis set B. This leads
to the following estimation of the ground-state energy

EB0 (ε) ≈ EBFCI(ε) + ĒB[nBFCI(ε)], (7)

where nBFCI(ε) is the ground state FCI density obtained
in the presence of the electric field of strength ε. The cor-
responding non-self-consistent basis-set corrected dipole
moment is thus

dB ≈ dBFCI + d̄B, (8)

where

d̄B = −dĒB[nBFCI(ε)]

dε

∣∣∣∣
ε=0

(9)

is the non-self-consistent basis-set correction to the dipole
moment.

As obtaining both the dipole moment and the den-
sity at FCI level is often computationally prohibitive, we
follow Ref. 48 and approximate the FCI energy by the

CCSD(T) energy and the FCI density by the HF density
(in the presence of the electric field)

EB0 (ε) ≈ EBCCSD(T)(ε) + ĒB[nBHF(ε)]. (10)

Within these approximations, the basis-set corrected
dipole moment in Eq. (8) becomes

dB ≈ dBCCSD(T) + d̄B, (11)

where dBCCSD(T) is the dipole moment at the CCSD(T)

level and the basis-set correction d̄B is

d̄B = −dĒB[nBHF(ε)]

dε

∣∣∣∣
ε=0

. (12)

We approximate the basis-set correction functional
ĒB[n] with the so-called (spin-dependent) PBEUEG en-
ergy functional introduced in Ref. 48 where the local
range-separation parameter µB(r) is obtained using the
HF wave function in the basis set B as proposed in Refs.
45 and 48. The results obtained with Eq. (11) with the
PBEUEG approximation for ĒB[n] evaluated at the HF
density will be referblack to as CCSD(T)+PBEUEG.

In practice, we calculate the CCSD(T) dipole moment
and the basis-set correction to the dipole moment using a
finite-difference approximation for the energy derivatives
with respect to the electric field

dBCCSD(T) ' −
EBCCSD(T) (ε)− EBCCSD(T) (−ε)

2ε
, (13)

and

d̄B ' −
ĒB
[
nBHF(ε)

]
− ĒB

[
nBHF(−ε)

]
2ε

, (14)

using a finite field strength of ε = 10−4 a.u., as suggested
in Ref. 53.

III. COMPUTATIONAL DETAILS

The computation of the basis-set correction to the
dipole moment d̄B were performed using the Quantum
Package program56 and the CCSD(T) dipole moment
were obtained with the Gaussian program57. We used
the augmented Dunning basis sets (Refs. 58 and 59) aug-
cc-pVXZ (abbreviated as AVXZ in the tables and figures
of the paper) where X is the cardinal number of the ba-
sis set X ∈ {D,T,Q, 5}. As no core-valence functions
are used, the frozen-core approximation is used through-
out this paper where the 1s orbital is kept frozen for the
elements from Li to F.

The tests are done on a set of n = 14 molecules
among which six open-shell molecules, for which we use
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restricted open-shell CCSD(T) (ROCCSD(T)) energies
and restricted open-shell HF (ROHF) densities, and eight
closed-shell molecules. Experimental geometries used for
the computations are taken from Ref. 55 for the entire
set except in the case of BH and FH for which the ge-
ometries are taken from Ref. 53. We also report the re-
sults obtained in Ref. 46 for the BH, FH, CH2, and H2O
molecules using the self-consistent formalism [Eq. (6)] at
near-FCI level in order to compare with the present non-
self-consistent formalism.

The accuracy of the dipole moments obtained with a
given basis set and a given level of approximation is evalu-
ated with respect to the CBS limit of the CCSD(T) dipole
moments, dCBS

CCSD(T), which are evaluated as in Ref. 53.

Namely, the CBS results are computed as follows

dCBS
CCSD(T) = dCBS

HF + dCBS
c , (15)

where dCBS
c is the CBS limit of the correlation contribu-

tion to the CCSD(T) dipole moment which is computed
using the following two-point X−3 extrapolation formula

dCBS
c =

dX
c X

3 − d(X-1)
c (X − 1)3

X3 − (X − 1)3
, (16)

with

dX
c = dX

CCSD(T) − d
X
HF, (17)

where dX
c and dX

HF are the correlation and HF contribu-
tions, respectively, to the CCSD(T) dipole moment using
the aug-cc-pVXZ basis set. In the present calculations,
we evaluate Eq. (16) at X = 5 and we estimate the CBS
limit of HF dipole moment dCBS

HF in Eq. (15) simply by us-
ing the HF dipole moment in the aug-cc-pV5Z basis set.
For all the systems studied here, the HF dipole moments
are converged with an accuracy better than 0.001 a.u. (as
measublack by the difference between the aug-cc-pVQZ
and aug-cc-pV5Z dipole moments).

At a given level of calculation in a basis set B we re-
port the error on the dipole moment with respect to the
CBS reference ∆B = dB−dCBS

CCSD(T) and the relative error

∆Brel = ∆B/dCBS
CCSD(T). To statistically analyze the results,

we also calculate the normal distribution function of the
errors for a given basis set B,

ρ(∆B) =
1

∆Bstd
√

2π
exp

[
−1

2

(
∆B − ∆̄B

∆Bstd

)2
]
, (18)

where ∆̄B = (
∑n
i=1 ∆Bi )/n is the mean error and ∆Bstd =√∑n

i=1(∆Bi − ∆̄B)2/(n− 1) is the root-mean-square de-

viation.

IV. RESULTS AND DISCUSSION

In Table I, we report the dipole moments at
various levels of approximations (HF, CCSD(T),

CCSD(T)+PBEUEG) with different basis sets, as well
as the CCSD(T)/CBS reference values, for the set of
14 molecules. Note the wide range of magnitudes of
the dipole moments (from 0.04485 a.u. for CO to
2.78718 a.u. for LiN). The mean error (ME), mean
absolute error (MAE), mean absolute relative error
(MARE), maximal absolute error (MAX), and root-
mean-square deviation (RMSD) obtained with CCSD(T)
and CCSD(T)+PBEUEG are reported in Table II. The
graphical representations of this data are provided in
Figs. 1 and 2 for the errors and relative errors, and in
Fig. 3 for the normal distributions of errors.

Analyzing first the results at the CCSD(T) level in Ta-
ble II, one can notice that, as expected, the ME and MAE
systematically decrease with the size of the basis set.
Moreover, as noticed in previous studies48,60, not only
the average values of the errors but also the RMSD tends
to decrease with the basis-set size. Nevertheless, the im-
provement of the results is rather slow as a MAE below
0.001 a.u. is not reached even with the aug-cc-pV5Z basis
set, illustrating the slow convergence of properties with
respect to the basis set at the CCSD(T) level. Regarding
the relative errors in Fig. 2, not surprisingly, the largest
errors with respect to the CBS reference come from the
molecules with smallest dipole moments (i.e. CO and
BeH). More quantitatively, an aug-cc-pVQZ basis set is
needed to obtain a MARE smaller than 1%.

Going from CCSD(T) to CCSD(T)+PBEUEG, one
observes a systematic decrease of the MAE, ME, MARE,
and RMSD. Focusing on the MAE, an error below 0.001
a.u. is reached with the aug-cc-pVQZ basis set, whereas
such an accuracy is not even reached at the CCSD(T)
level with the aug-cc-pV5Z basis set. Qualitatively, for
the aug-cc-pVTZ basis set and larger basis sets, the
MAEs obtained with CCSD(T)+PBEUEG with a basis
set of cardinal number X are comparable to the MAEs
obtained with CCSD(T) with a basis set of cardinal num-
ber X+1. Regarding the MARE, an error below 1%
is reached with CCSD(T)+PBEUEG already with the
aug-cc-pVTZ basis set. One nevertheless observes that
the effects of the basis-set correction on the RMSD is
very weak. From the plots of Fig. 1 one notices that,
even if the basis-set correction systematically improves
the results for the aug-cc-pVTZ basis set, its effect is less
impressive when there is both a large error and a large
dipole moment (i.e. for BN, BO, and LiN).

In order to further demonstrate the validity
of the different approximations leading to the
CCSD(T)+PBEUEG method, we conclude this study
by a comparison with the self-consistent basis-set
correction formalism of Ref. 46, as well as differ-
ent flavors of non-self-consistent approximations. In
Ref. 46, the self-consistent method referblack to as
SC CIPSI+PBEUEG was introduced, which can be
consideblack as the nearly exact theory within our
framework thanks to the use of near-FCI (CIPSI, see
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FIG. 1: (a) CCSD(T) and (b) CCSD(T)+PBEUEG errors on the dipole moments of 14 molecules compablack to
CCSD(T)/CBS reference values. The green area indicates an error of ±0.001 a.u..
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FIG. 2: (a) CCSD(T) and (b) CCSD(T)+PBEUEG relative errors on the dipole moments of 14 molecules
compablack to CCSD(T)/CBS reference values. The green area indicates an error of ±1%.
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56 and references therein) wave functions. In all the
calculations reported below, the absolute value of the
second-order perturbative contribution to the energy in
the CIPSI calculations is below 10−4 a.u., which implies
that the CIPSI energy and density can indeed be con-
sideblack as near-FCI quantities. We also consider two
different levels of non-self-consistent approximations:
(i) CIPSI+PBEUEG@CIPSI where the CIPSI energy

is corrected with the PBEUEG functional evaluated at
the CIPSI density, and (ii) CCSD(T)+PBEUEG@CIPSI
where the CIPSI energy is approximated by the
CCSD(T) energy but the PBEUEG functional is still
evaluated at the CIPSI density. Therefore, we have
a hierarchy of approximations for the basis-set cor-
rection method using the PBEUEG functional: SC
CIPSI+PBEUEG as the exact self-consistent theory,
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then CIPSI+PBEUEG@CIPSI as the exact non-self-
consistent theory, then CCSD(T)+PBEUEG@CIPSI
where only the WFT energy part is approximated
with respect to CIPSI+PBEUEG@CIPSI, and finally
CCSD(T)+PBEUEG where both the WFT energy
and the density are approximated with respect to
CIPSI+PBEUEG@CIPSI.

We report in Table III the results obtained with these
different levels of theory for the dipole moments of the
BH, CH2, FH, and H2O molecules. The results obtained
with the self-consistent method SC CIPSI+PBEUEG are
in close agreement with that obtained with the different
non-self-consistent approximations, the largest discrep-
ancy being less than 0.006 a.u. for BH in the aug-cc-
pVDZ basis set with CCSD(T)+PBEUEG@CIPSI. Com-
paring the two methods at the extremities of our hi-
erarchy of approximations, one can notice that the ab-
solute deviation between CCSD(T)+PBEUEG and SC
CIPSI+PBEUEG in a given basis set is never larger
than 0.001 a.u. for FH and H2O, and the discrepancy
slightly increases up to 0.006 and 0.003 a.u. in the case
of CH2 and BH, respectively. Nevertheless, as originally
reported in Ref. 46 and apparent from Table III, dis-
crepancies of the same order of magnitude also appear
between the uncorrected CIPSI and CCSD(T) results
in the case of the CH2 and BH molecules. This sug-
gests that the main source of differences between the
CCSD(T)+PBEUEG and SC CIPSI+PBEUEG meth-
ods actually comes from the parent WFT theory. Fo-
cussing now specifically on the effect of the density
in the non-self-consistent basis-set correction, one can
notice that the use of either a HF or CIPSI den-
sity does not significantly change the results, as the
largest deviation between CCSD(T)+PBEUEG@CIPSI
and CCSD(T)+PBEUEG are about 0.002 a.u. in the
case of CH2 in the aug-cc-pVDZ basis set. These results
illustrate the validity of the different approximations
leading to the CCSD(T)+PBEUEG approach and are
encouraging considering that the latter has a much lower
computational cost with respect to the self-consistent
basis-set formalism. Indeed, CCSD(T)+PBEUEG relies
only on a standard CCSD(T) calculation and HF calcu-
lations for the basis-set correction which is of negligible
computational cost with respect to CCSD(T).

V. CONCLUSION

In the present study, we have proposed an exten-
sion of the recently introduced non-self-consistent basis-
set correction of CCSD(T) ground-state energies48 to
the computation of properties as energy derivatives, fo-
cussing here on the dipole moment. The theory relies on
the originally proposed DFT-based basis-set correction
approach45 which accelerates the basis-set convergence
to the unalteblack CBS limit. Numerical tests on a set of

14 molecules (including both closed and open-shell) with
dipole moments spanning two orders of magnitude have
been carried in order to obtain a representative study of
the performance of the present approach.

Although this study aims at correcting the basis-set
convergence of the CCSD(T) dipole moments, it can be
formally generalized to any wave-function method and
any energy derivative with respect to a static perturba-
tion. In its present form, the basis-set correction relies
only on HF calculations, which makes the basis-set cor-
rection essentially computationally free compablack to
the correlated wave-function calculation. This approach
is an alternative to the recently proposed self-consistent
basis-set correction46 which allows for the computation
of first-order properties through expectation values over
an energy-minimized wave function. In contrast with the
self-consistent formalism, the present approach does not
require a variational wave function, which considerably
extend the domain of application of the basis-set correc-
tion.

Regarding now the numerical results, we have shown
that the present approach significantly accelerates the
basis-set convergence of CCSD(T) dipole moments. Typ-
ically, the error obtained in a basis set of cardinal X
with the basis-set correction is comparable to the error
of the uncorrected CCSD(T) calculation with cardinal
number X+1. We also compablack the present non-self-
consistent basis-set correction with the self-consistent
formalism of Ref. 46 and shown that the two theories
agree within a few milli-atomic units, illustrating the
soundness of the approximations leading to the non-self-
consistent approach.

Considering the generality, the global performance,
and the small computational cost of the present ap-
proach, it could be an alternative to explicitly correlated
approaches for calculation of molecular properties. In the
near future we will extend the method to higher-order
static properties, such as static polarizabilities, and also
to more general dynamic properties, leading in particular
to the possibility of accelerating the basis-set convergence
of excitation energies.

SUPPLEMENTARY INFORMATION

The preset work comes with supplementary informa-
tion containing: i) all the geometries of the molecules
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the absolute and relative errors with respect to the esti-
mated CBS and the CCSD(T) and CCSD(T)+PBEUEG
levels.
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TABLE I: HF, CCSD(T), and CCSD(T)+PBEUEG dipole moments in atomic units. For the open-shell systems, we
use the spin-restricted open-shell (RO) version of these methods.

AVDZ AVTZ AVQZ AV5Z CBS
CO
HF -0.10199 -0.10499 -0.10433 -0.10421
CCSD(T) 0.05550 0.05000 0.04600 0.04550 0.04485
CCSD(T) + PBEUEG 0.04398 0.04414 0.04273 0.04360

BeH
ROHF 0.11017 0.11076 0.11199 0.11218
ROCCSD(T) 0.09550 0.09100 0.09050 0.09050 0.09030
ROCCSD(T) + PBEUEG 0.08416 0.08746 0.08941 0.08980

BF
HF 0.34436 0.33390 0.33314 0.33328
CCSD(T) 0.34100 0.32700 0.32300 0.32200 0.32081
CCSD(T) + PBEUEG 0.33287 0.32351 0.32082 0.32068

BH
HF 0.68796 0.68649 0.68494 0.68496
CCSD(T) 0.52950 0.54500 0.54750 0.54850 0.54953
CCSD(T)+PBEUEG 0.54162 0.55002 0.54986 0.54980

CH
ROHF 0.62348 0.62000 0.61871 0.61858
ROCCSD(T) 0.54150 0.54950 0.55150 0.55250 0.55368
ROCCSD(T) + PBEUEG 0.55427 0.55481 0.55405 0.55396

NH
ROHF 0.63850 0.63505 0.63381 0.63384
ROCCSD(T) 0.59350 0.59950 0.60200 0.60350 0.60504
ROCCSD(T) + PBEUEG 0.60792 0.60519 0.60464 0.60506

CH2 (singlet)
HF 0.74877 0.74477 0.74355 0.74353
CCSD(T) 0.65600 0.66000 0.66200 0.66350 0.66510
CCSD(T) + PBEUEG 0.66666 0.66455 0.66420 0.66478

FH
HF 0.75976 0.75751 0.75634 0.75617
CCSD(T) 0.70350 0.70450 0.70700 0.70750 0.70820
CCSD(T) + PBEUEG 0.71371 0.70903 0.70946 0.70900

H2O
HF 0.78671 0.78039 0.77956 0.77956
CCSD(T) 0.72700 0.72400 0.72650 0.72800 0.72957
CCSD(T) + PBEUEG 0.73891 0.72930 0.72912 0.72920

BN
ROHF 1.13451 1.13862 1.13831 1.13840
ROCCSD(T) 0.76250 0.77550 0.78400 0.78650 0.78902
ROCCSD(T) + PBEUEG 0.77517 0.78145 0.78756 0.78846

BO
ROHF 1.17803 1.18533 1.18527 1.18539
ROCCSD(T) 0.88300 0.89550 0.90250 0.90450 0.90647
ROCCSD(T) + PBEUEG 0.89417 0.90153 0.90622 0.90698

LiH
HF 2.37055 2.36235 2.36153 2.36129
CCSD(T) 2.32500 2.31000 2.30800 2.30800 2.30825
CCSD(T)+PBEUEG 2.32501 2.30965 2.30795 2.30802

LiF
HF 2.56111 2.54103 2.53949 2.53905
CCSD(T) 2.50400 2.48300 2.48250 2.48250 2.48297
CCSD(T) + PBEUEG 2.50942 2.48542 2.48367 2.48321

LiN
ROHF 2.90309 2.90379 2.90372 2.90317
ROCCSD(T) 2.74200 2.77300 2.78250 2.78450 2.78718
ROCCSD(T) + PBEUEG 2.75215 2.77714 2.78464 2.78583
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TABLE II: Mean error (ME), mean absolute error (MAE), mean absolute relative error (MARE), maximal absolute
error (MAX), and root-mean-square deviation (RMSD) (in atomic units) for the CCSD(T) and CCSD(T)+PBEUEG

dipole moments of 14 molecules. See Fig. 3 for the corresponding plots of the normal distributions of errors.

AVDZ AVTZ AVQZ AV5Z
ME
CCSD(T) 0.01336 0.00579 0.00229 0.00122
CCSD(T)+PBEUEG 0.00319 0.00135 0.000004 -0.00012

MAE
CCSD(T) 0.01637 0.00579 0.00233 0.00125
CCSD(T)+PBEUEG 0.01080 0.00258 0.00086 0.00049

MARE (in %)
CCSD(T) 3.9 1.5 0.5 0.3
CCSD(T)+PBEUEG 1.6 0.6 0.4 0.3

MAX
CCSD(T) 0.04518 (LiN) 0.01418 (LiN) 0.00502 (BN) 0.00268 (LiN)
CCSD(T)+PBEUEG 0.03504 (LiN) 0.01004 (LiN) 0.00254 (LiN) 0.00136 (LiN)

RMSD
CCSD(T) 0.01484 0.00432 0.00163 0.00084
CCSD(T)+PBEUEG 0.01464 0.00376 0.00116 0.00063



11

TABLE III: Dipole moments obtained with near-FCI (CIPSI) and CCSD(T) calculations, and with the
self-consistent basis-set correction method (SC CIPSI+PBEUEG) of Ref. 46 and different non-self-consistent

basis-set correction methods (CIPSI+PBEUEG@CIPSI, CCSD(T)+PBEUEG@CIPSI, and CCSD(T)+PBEUEG).
Estimated CBS values using Eq. (16) with X = 5 are reported when computations could be done with the

aug-cc-pV5Z basis set.

AVDZ AVTZ AVQZ AV5Z CBS
BH
CIPSIa 0.52782 0.54334 0.54563 0.54691 0.54823
SC CIPSI+PBEUEGa 0.53791 0.54815 0.54790 0.54815
CIPSI+PBEUEG@CIPSI 0.54139 0.54852 0.54795 0.54825

CCSD(T) 0.52950 0.54500 0.54750 0.54850 0.54953
CCSD(T)+PBEUEG@CIPSI 0.54307 0.55023 0.54988 0.54996
CCSD(T)+PBEUEG 0.54162 0.55002 0.54986 0.54980

CH2 (singlet)
CIPSIa 0.65120 0.65446 0.65643 0.65780 0.65926
SC CIPSI+PBEUEGa 0.66249 0.65958 0.65890 —b

CIPSI+PBEUEG@CIPSI 0.66382 0.66029 0.65952 —b

CCSD(T) 0.65600 0.66000 0.66200 0.66350 0.66510
CCSD(T)+PBEUEG@CIPSI 0.66874 0.66556 0.66448 —b

CCSD(T)+PBEUEG 0.66666 0.66455 0.66420 0.66478

FH
CIPSIa 0.70249 0.70406 0.70662 —b —b

SC CIPSI+PBEUEGa 0.71326 0.70873 —b —b

CIPSI+PBEUEG@CIPSI 0.71329 0.71188 —b —b

CCSD(T) 0.70350 0.70450 0.70700 0.70750 0.70820
CCSD(T)+PBEUEG@CIPSI 0.71425 0.71209 —b —b

CCSD(T)+PBEUEG 0.71371 0.70903 0.70946 0.70900

H2O
CIPSIa 0.72610 0.72294 —b —b —b

SC CIPSI+PBEUEGa 0.73809 0.72818 —b —b

CIPSI+PBEUEG@CIPSI 0.73656 0.72762 —b —b

CCSD(T) 0.72700 0.72400 0.72650 0.72800 0.72957
CCSD(T)+PBEUEG@CIPSI 0.73734 0.72819 0.72872 —b

CCSD(T)+PBEUEG 0.73891 0.72930 0.72912 0.72920

a From Ref. 46.
b Results non available due to the computational requirement.


	Basis-set correction for coupled-cluster estimation of dipole moments
	Abstract
	Introduction
	Theory
	Dipole moment from the self-consistent basis-set correction
	Dipole moment from the non-self-consistent basis-set correction

	Computational details
	Results and discussion
	Conclusion
	Supplementary information
	Acknowledgement
	Author Declarations
	Data Availability


