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Deep Time Series Forecasting with Shape and
Temporal Criteria

Vincent Le Guen, Nicolas Thome

Abstract—This paper addresses the problem of multi-step time series forecasting for non-stationary signals that can present sudden
changes. Current state-of-the-art deep learning forecasting methods, often trained with variants of the MSE, lack the ability to provide
sharp predictions in deterministic and probabilistic contexts. To handle these challenges, we propose to incorporate shape and temporal
criteria in the training objective of deep models. We define shape and temporal similarities and dissimilarities, based on a smooth
relaxation of Dynamic Time Warping (DTW) and Temporal Distortion Index (TDI), that enable to build differentiable loss functions and
positive semi-definite (PSD) kernels. With these tools, we introduce DILATE (DIstortion Loss including shApe and TimE), a new objective
for deterministic forecasting, that explicitly incorporates two terms supporting precise shape and temporal change detection. For
probabilistic forecasting, we introduce STRIPE++ (Shape and Time diverRsIty in Probabilistic forEcasting), a framework for providing a
set of sharp and diverse forecasts, where the structured shape and time diversity is enforced with a determinantal point process (DPP)
diversity loss. Extensive experiments and ablations studies on synthetic and real-world datasets confirm the benefits of leveraging shape
and time features in time series forecasting.

Index Terms—Time series forecasting, deep neural networks, differentiable programming, loss functions, structured prediction, shape
and temporal criteria, dynamic time warping, time distortion, structured diversity, determinantal point processes

✦

1 INTRODUCTION

Time series forecasting consists in analyzing historical
signal correlations to anticipate future behaviour. Traditional
approaches include linear autoregressive methods [3] or
state space models [4], which are simple yet mathemat-
ically grounded and benefit from interpretability. They
often exploit prior knowledge based on stationarity, e.g. by
leveraging trend or seasonality to constrain forecasting.

These grounding assumptions are often violated in many
real-world time series that are non-stationary and can present
sharp variations such as sudden drops or changes of regime.
Long-term multi-step forecasting in this context is particu-
larly challenging and arises in a wide range of important
application fields, e.g. analyzing traffic flows [5], [6], medical
records [7], predicting sharp variations in financial markets
[8] or in renewable energy production [9], [10], [11], etc.

This work focuses on forecasting multi-step future tra-
jectories with potentially sharp variations in the determinis-
tic and probabilistic cases. Deep neural networks are an
appealing solution for this problem [12], [13], [14], [15],
[16], [17], due to their automatic feature extraction and
complex nonlinear time dependencies modeling. However,
the verification criteria typically used in applications are
not used at training time because they are mostly not
differentiable. We may cite for instance the ramp score [9] for
assessing the detection of sharp ramping events, or the Time
Distortion Index (TDI) [18] for assessing the time delay of a
particular predicted event.

Instead, the huge majority of methods optimize at train-
ing time the Mean Squared Error (MSE) or its variants (MAE,
quantile loss, etc) as a proxy loss function. However, the MSE
has important drawbacks for assessing predictions, especially
in non-stationary contexts with sharp variations [9], [18], [19],
[20], [21], [22], [23]. We illustrate the limitations of the MSE in
Figure 1. Figure 1 (a) shows three deterministic predictions,

which have the same MSE loss compared to the target
step function (in black). Thus, the MSE does not support
predictions (2) and (3) over prediction (1), although they
clearly are more adequate for regulation purposes because
they do anticipate the drop to come, although with a slight
delay (2) or with a slightly inaccurate amplitude (3). For
probabilistic forecasting (Figure 1 (b)), current state-of-the art
probabilistic methods trained with variants of the MSE tend
to produce blurry predictions that do not match the sharp
steps of the true futures (in green).

In this work, we intend to bridge this train/test criterion
gap by introducing shape and temporal similarities and
dissimilarities for training deep forecasting models. We
introduce differentiable loss functions, which makes them
amenable to gradient-based optimization. We decouple
the definition of these criteria from the introduction of
general deterministic and probabilistic forecasting methods
leveraging such criteria.

For deterministic forecasting, we introduce the DILATE
training loss function (DIstortion Loss with shApe and TimE)
as an alternative to the MSE. DILATE efficiently combines a
shape matching term based on a smooth approximation of
Dynamic Time Warping (DTW) [19] with a temporal term,
which ensures both sharp predictions with accurate temporal
localization. In Figure 1 (a), DILATE favors predictions (2)
and (3) over prediction (1), contrarily to the MSE.

For probabilistic forecasting, our goal is to cover the true
future distribution density with a small number (e.g. N =
10) of admissible trajectories. To this end, we introduce
the STRIPE++ framework (Shape and Time diverRsIty in
Probabilistic forEcasting) for producing both diverse and
accurate forecasts. We leverage the proposed shape and
temporal positive semi-definite (PSD) kernels to design
a structured diversity measure, which is embedded into
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True predictive distribution deep stoch. model [1] STRIPE++ (ours)
(a) MSE limits in deterministic forecasting (b) Probabilistic forecasting

Fig. 1: (a) We illustrate the limitations of the MSE in deterministic forecasting: the three predictions (1,2,3) have the same
MSE with respect to the target, contrary to our proposed DILATE loss that favours predictions 2 (correct shape, slight delay)
and 3 (correct timing, inaccurate amplitude) over prediction 1. (b) In probabilistic forecasting, state-of-the-art methods
trained with variants of the MSE (e.g. [1], [2]) loose the ability to produce sharp forecasts (middle). In contrast, our proposed
STRIPE++ model ensures both sharp and diverse forecasts (right) that better match the true future distribution (left).

a determinantal point processes (DPP). As illustrated in
Figure 1 (b), STRIPE++ produces diverse predictions, which
are i) representative of the ground truth future density and ii)
consistent to the sharp nature of the expected forecasts. We
validate the relevance of DILATE and STRIPE++ on extensive
synthetic and real-world datasets highlighting the benefits
brought up by leveraging shape and temporal features for
time series forecasting.

This paper extends two previous conference papers that
first introduced the DILATE loss [24] and the STRIPE model
[25]. This submission includes the following improvements:

• We provide a unified view of shape and temporal
differentiable criteria between time series, expressed
in terms of dissimilarities (loss functions) and similari-
ties (positive semi-definite kernels). This general view
enables to put into perspective our contributions for
deterministic and probabilistic forecasting with respect
to the literature. In that regard, the related work has
substantially been extended compared to [24], [25].

• STRIPE++ improves STRIPE [25] at two important
methodological levels for guaranteeing a good qual-
ity/diversity cooperation: we enrich the prediction
model with a posterior network inspired by [26] for bet-
ter disentangling deterministic and probabilistic spaces,
and we add a quality constraint into the DPP kernels to
explicitly support predictions, which are both diverse
and accurate.

• The experiments have been substantially extended,
including new evaluations of DILATE on top of recent
state-of-the-art forecasting models [16], [17] , experi-
ments on the additional Electricity and ETTh1 datasets,
a more in-depth analysis of the DTW smoothing parame-
ter γ and a comparison to a recent smooth DTW variant
[27], and a validation of the relevance of STRIPE++
compared to STRIPE [25] with respect to the F1 score.

2 RELATED WORK

We review here the literature on deterministic and proba-
bilistic time series forecasting, focusing on the multi-step
non stationary context. We insist on the previous works

leveraging shape and temporal features and the methods for
enforcing structured diversity.

2.1 Time series forecasting
Deterministic forecasting: Traditional methods for time
series forecasting are based on linear state space models
[4], including autoregressive models (e.g. ARIMA [3]) and
Exponential Smoothing [28]. These methods often exploit
strong structural assumptions on data such as stationarity
and seasonality that are not satisfied for many real-world
time series that can present abrupt changes of distribution.
Since, Recurrent Neural Networks (RNNs), in particular
Long Short Term Memory Networks (LSTMs) [29], have
become popular due to their automatic feature extraction
capabilities and long-term dependencies modeling. For
multi-step forecasting, the most common approach is to
apply recursively a one-step ahead trained model [14]. A
thorough comparison of the different multi-step strategies
[30] recommend the Direct Multi-Horizon Strategy. Of
particular interest in this category are Sequence To Sequence
(Seq2Seq) models [13], [31], [32], [33]. Recently, much effort
has been devoted to design new architectures that address
error accumulation in multi-step forecasting [34], [35]. In
particular, Oreshkin et al. introduce the N-Beats model [16]
with deep stacks of fully-connected layers with forward
and backward residual connections. Zhou et al. propose
the Informer model [17] that leverages the self-attention
Transformer architecture [36] to extend predictions to much
farther temporal horizons.

Probabilistic forecasting: Many critical applications re-
quire forecasts associated with uncertainty to make relevant
decisions. Some methods propose to estimate the variance
with Monte Carlo dropout [37], [38] or ensembling [39]. Other
methods predict the quantiles of the conditional distribution
of future values [40], [41], [42] by minimizing the pinball
loss [43] or the continuous ranked probability score (CRPS)
[44]. State space models, which have an inherent probabilistic
nature, were recently revisited with deep learning [45], [46].
Salinas et al. introduce deepAR [15] by explicitly approximat-
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ing the predictive distribution of the next time step with a
Gaussian distribution; subsequent works investigate other
parametric distributions [47]. Generative models were also
used to implicitly approximate the predictive distribution,
e.g. with conditional variational autoencoders (cVAEs) [1],
conditional generative adversarial networks (cGANs) [48],
or normalizing flows [2], [49]. However, these methods lack
the ability to produce sharp forecasts by minimizing variants
of the MSE (pinball loss, Gaussian maximum likelihood),
at the exception of cGANs - but which suffer from mode
collapse that limits predictive diversity. Moreover, these
generative models are generally represented by unstructured
distributions in the latent space (e.g. Gaussian), which do not
allow to have an explicit control on the targeted diversity.

2.2 Evaluation and training metrics
Current research mainly focuses on forecasting architec-
ture design and the question of the training loss is often
overlooked. The MSE, MAE and its variants (SMAPE, etc)
are predominantly used as proxies. Many works have
highlighted the limitations of the MSE to assess the ability
to anticipate sharp variations [9], [18], [19], [20], [21], [22],
[23]. Metrics reflecting shape and temporal localization exist
but their non-differentiability makes them unsuitable for
training deep models. For characterizing shape, Dynamic
Time Warping (DTW) [50], [51], [52] performs time series
alignment, and the ramp score [9], [20] assesses the detection
of ramping events in wind and solar energy forecasting.
Timing errors can be characterized among other ways by the
Temporal Distortion Index (TDI) [9], [18], or by computing
detection scores (precision, recall, Hausdorff distance) after
change point detection [53].

Recently, some attempts have been made to train deep
neural networks based on alternatives to MSE, especially
based on smooth approximations of DTW [19], [27], [54],
[55], [56]. The soft-DTW of Cuturi and Blondel [19] was
further normalized to ensure a non-negative divergence
[27]. However, since DTW is by design invariant to elastic
distortions, it completely ignores the temporal localization
of the changes (see illustrations of soft-DTW in Figure 4). A
differentiable timing error loss function based on DTW on
the event (binary) space was proposed in [57] ; however it
is only applicable for predicting binary time series. Some
works explored the use of adversarial losses for time series
[58], [59], which can be seen as an implicit way of enforcing
semantic criteria learned from data. However, it gives a
weaker and non-interpretable control on shape and time
criteria and brings additional adversarial training difficulties.
In this work, we focus on efficiently combining explicit shape
and temporal differentiable criteria at training time.

2.3 Structured diversity for prediction
For diversifying forecasts, several repulsive schemes were
studied such as the variety loss [60], [61] that consists
in optimizing the best sample, or entropy regularization
[62], [63] that encourages a uniform distribution. Besides,
generative models, such as variational autoencoders (VAE)
[64], are widely used for producing multiple predictions
through sampling from a latent space. However latent states
are typically sampled at test time from a standard Gaussian

prior distribution, resulting in an unstructured diversity.
To improve this unstructured mechanism, prior works [1],
[65] introduced proposal neural networks for generating the
latent variables that are trained with a diversity objective.

Determinantal Point Processes (DPP): DPPs are appeal-
ing probabilistic models for describing the diversity of a set of
items Y = {y1, ...,yN}. A DPP is a probability distribution
over all subsets of Y that assigns the following probability to
a random subset Y:

PK(Y = Y ) =
det(KY )∑

Y ′⊆Y det(K′
Y )

=
det(KY )

det(K+ I)
(1)

where K is a positive semi-definite (PSD) kernel and KA is
its restriction to the elements indexed by A.

DPPs offer efficient algorithms for sequentially sampling
diverse items or maximizing the diversity of a set with a
given sampling budget. Importantly, the choice of the kernel
enables to incorporate prior structural knowledge on the
targeted diversity. As such, DPPs have been successfully
applied in various contexts, e.g. document summarization
[66], recommendation systems [67], image generation [68]
and diverse trajectory forecasting [1]. GDPP [68] proposed by
Elfeki et al. is based on matching generated and true sample
diversity by aligning the corresponding DPP kernels, and
thus limits their use in datasets where the full distribution of
possible outcomes is accessible. In contrast, our probabilistic
forecasting approach is applicable in realistic scenarii where
only a single future trajectory is available for each training
sample. Although we share with the work of Yuan and
Kitani [1] the goal to use DPP as diversification mechanism
for future trajectories, the main limitation in [1] is to use the
MSE loss for training the predictor and the MSE kernel for
diversification, leading to blurred prediction, as illustrated
in Figure 1 (b). In contrast, we design specific shape and
time DPP kernels and we show the necessity to decouple the
criteria used for quality and diversity.

3 DIFFERENTIABLE SHAPE AND TEMPORAL
(DIS)SIMILARITIES FOR TIME SERIES

In this section, we introduce an unified view of shape and
temporal criteria applicable to deep time series forecasting.
We insist on their differentiability and efficient computation.
We propose both a dissimilarity version useful for defining
loss functions and a similarity version useful for defining
positive semi-definite (PSD) kernels.

3.1 Shape (dis)similarity
3.1.1 Background: Dynamic Time Warping
To assess the shape similarity between two time series, the
popular Dynamic Time Warping (DTW) method [50] seeks a
minimal cost alignment for handling time distortions. Given
two d-dimensional time series y ∈ Rd×n and z ∈ Rd×m

of lengths n and m, DTW looks for an optimal warping
path represented by a binary matrix A ⊂ {0, 1}n×m where
Aij = 1 if yi is associated to zj and 0 otherwise. The set
of admissible warping paths An,m is composed of paths
connecting the endpoints (1, 1) to (n,m) with the following
authorized moves →, ↓,↘. The cost of warping path A is the
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sum of the costs along the alignment ; this cost can be written
as the scalar product ⟨A,∆(y, z)⟩, where ∆(y, z) is a n×m
pairwise dissimilarity matrix whose general term is typically
chosen an the euclidean distance ∆(y, z)ij = ∥yi − zj∥22.
DTW computes the minimal cost warping path:

DTW∆(y, z) := min
A∈An,m

⟨A,∆(y, z)⟩ (2)

Although the cardinality of An,m increases exponentially in
min(n,m) 1, DTW and the optimal path A∗ can be computed
efficiently in O(nm) by dynamic programming. However,
a major limitation of DTW is its non-diffentiability, which
prevents its integration in neural network pipelines trained
with gradient-based optimization.

3.1.2 Smooth DTW shape dissimilarity
For handling the non-differentiability of DTW, Cuturi and
Blondel [19] introduced the soft-DTW by replacing the hard-
minimum operator by a smooth minimum with the log-sum-
exp trick minγ(a1, ..., an) = −γ log(

∑n
i exp(−ai/γ)):

DTW∆
γ (y, z) := −γ log

 ∑
A∈An,m

e−⟨A,∆(y,z)⟩/γ

 (3)

where γ > 0 is a smoothing parameter (when γ → 0, this
converges to the true DTW).

DTW∆
γ as defined in Eq. 3 is differentiable with respect

to ∆ (and with respect to both series y and z by chain’s rule,
provided a differentiable cost function ∆).

We can interpret this relaxed DTW version by considering,
instead of the unique optimal path A∗, a Gibbs distribution
over possible paths:

pγ(A;∆) =
1

Z
e−⟨A,∆(y,z)⟩/γ (4)

The soft-DTW is then the negative log-partition of this
distribution: DTW∆

γ (y, z) := −γ logZ .
Since DTW∆

γ (y, z) can take negative values and is not
minimized for y = z, Mensch and Blondel [54] normalized
the soft-DTW to make it a true divergence. We found
experimentally that this does not improve performances
and is heavier computationally (see Appendix D.4).

3.1.3 Shape similarity kernel
Based on the soft-DTW shape dissimilarity defined in Eq. 3,
we define a shape similarity kernel as follows:

Kshape(y, z) = e− DTW∆
γ (y,z)/γ . (5)

We experiment with the following choices of kernels ∆ij =
∆(y, z)ij :

• Half-Gaussian: ∆ij = ∥yi − zj∥22 + log(2− e−∥yi−zj∥2
2)

• L1: ∆ij = ∥yi − zj∥1 (for d = 1)
• Euclidean: ∆ij = ∥yi − zj∥22

Kshape was proven to be positive semi-definite (PSD) for the
half-Gaussian2 and the L1 kernels [27], [69] and is conjectured

1. |An,m| is equal to the Delannoy number Delannoy(n,m) which
grows exponentially in min(n,m)

2. We denote this kernel ”half-Gaussian” since the corresponding
k kernel defined in the proof (Appendix A) equals k(yi, zj) =

e−∆(yi,zj) =
(

1
2
e−∥yi−zj∥2 )

)
×

(
1− 1

2
e−∥yi−zj∥2

)−1

to be PSD for the Euclidean kernel [27]. Experimentally
we observed that these three cost matrices lead to similar
behaviour.

3.2 Temporal (dis)similarity
Quantifying the temporal similarity between two time series
consists in analyzing the time delays between matched
patterns detected in both series. As discussed in introduction,
it of great importance for many applications to anticipate
sharp variations.

3.2.1 Smooth temporal distortion index
A common temporal similarity is the Temporal Distortion
Index (TDI) [9], [18]. The TDI computes the approximate
area included between the optimal path A∗ and the first
diagonal, characterizing the presence of temporal distortion.
A generalized version of the TDI, that we proposed in [24],
can be written:

TDI∆,Ωdissim(y, z) := ⟨A∗,Ωdissim⟩ (6)

where A∗ = argmin
A∈An,m

⟨A,∆(y, z)⟩ is the DTW optimal path

and Ωdissim ∈ Rn×m is a matrix penalizing the association
between yi and zj for i ̸= j. We typically choose a quadratic
penalization Ωdissim(i, j) ∝ (i− j)2, but other variants can
encode prior knowledge and penalize more heavily late than
early predictions, and vice-versa.

The TDI dissimilarity defined in Eq. 6 is however non-
differentiable, since the optimal path A∗ is not differentiable
with respect to ∆. We handle this problem by defining a
relaxed optimal path A∗

γ as the gradient of DTW∆
γ :

A∗
γ := ∇∆DTW∆

γ (y, z) =
1

Z

∑
A∈An,m

A e−⟨A,∆(y,z)⟩/γ (7)

The expression in Eq. 7 results from a direct computation
from Eq. 3. Notice that this soft optimal path corresponds
to the expected path A∗

γ = Epγ(·;∆)[A] under the Gibbs
distribution in Eq. 4. Note also that A∗

γ becomes a soft
assignment, i.e. A∗

γ(i, j) represents the probability for a path
to contain the cell (i, j). An illustration of soft optimal paths
with the influence of γ is given in Figure 6.

We can now define a differentiable version of the TDI:

TDI∆,Ωdissim
γ (y, z) :=

〈
A∗

γ ,Ωdissim

〉
=

1

Z

∑
A∈An,m

⟨A,Ωdissim⟩ e−
⟨A,∆(y,z)⟩

γ (8)

which corresponds to the expected value of the TDI under
the Gibbs distribution.

3.2.2 Temporal similarity kernel
Based on the temporal dissimilarity in Eq. 8 and the shape
similarity kernel in Eq. 5, we can define a time similarity as
follows:

Ktime(y, z) := e−DTW∆
γ (y,z)/γ × TDI∆,Ωsim

γ (y, z) (9)

where in this case, we use a similarity matrix Ωsim favoring
pairs of time series with low temporal distortion, i.e. with an
optimal path near the main diagonal. We typically choose
a pointwise inverse of Ωdissim: Ωsim(i, j) = 1

(i−j)2+1 . We
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Fig. 2: The DILATE loss LDILATE for training deterministic deep time series forecasting models is composed of two terms:
Lshape based on the soft DTW and Ltime that penalizes the temporal distortions visible on the soft optimal path. The overall
loss LDILATE is differentiable, and we provide an efficient implementation of its forward and backward passes.

prove that Ktime defines a valid PSD temporal kernel (proof
in Appendix A).

The table below provides an overview of the shape and
temporal criteria introduced in this work:

criterion differentiable loss PSD sim. kernel
shape DTW∆

γ (y, z) e− DTW∆
γ (y,z)/γ

time TDI∆,Ωdissim
γ (y, z)

e−DTW∆
γ (y,z)/γ

×TDI∆,Ωsim
γ (y, z)

Efficient forward and backward computation: The direct
computation of the shape and temporal dissimilarities in Eq.
3 and Eq. 8 is intractable, due to the exponential growth of
cardinal of An,m. We provide a careful implementation of
the forward and backward passes in order to make learning
efficient, limiting the forward and backward complexity to
O(nm) (see details in Appendix B).

3.2.3 Discussion on differentiability
One may mask why not directly optimizing the true DTW
and TDI objectives with subgradient methods instead of
deriving smooth surrogates? The DTW is indeed continuous
with respect to both input time series and when the optimal
warping path A∗ is unique (which is almost always the
case for continuous data), DTW is differentiable almost
everywhere with gradient A∗. However, a first difficulty of
directly optimizing DTW is that the gradient is discontinuous
at the points where a change in the input time series
causes a change in the optimal path A∗, which can hamper
the performances of gradient-based methods. A second
difficulty is that the DTW objective is non-convex, making
the subgradient method prone to collapsing to local minima
[19]. Furthermore, for defining the TDI in the DILATE loss,
we need second-order differentiability, which exacerbates the
aforementioned difficulties.

Considering a smooth relaxation of DTW and TDI allevi-
ates both difficulties. First, these relaxations are continuously
differentiable by design. Second, the smoothing convexifies
the DTW and TDI objectives and provide a better opti-
mization landscape. This point was noted by several works
[19], [54] which showed that the soft-DTW yielded better

performances than the DTW optimized with subgradient,
even when evaluated with the true DTW. We have also
confirmed this experimentally for our smooth shape and
time surrogate criteria in section 5.2.3.

4 APPLICATION TO TIME SERIES FORECASTING

Given an input sequence x1:T = (x1, . . . ,xT ) ∈ Rp×T , we
consider as discussed in introduction the multi-step time
series forecasting problem in two important contexts: (1)
deterministic forecasting consisting in predicting a τ -steps
future trajectory ŷ = (ŷT+1, . . . , ŷT+τ ) ∈ Rd×τ and (2)
probabilistic forecasting where we seek to predict a set
of N future trajectories {ŷ(i)}i=1..N ∈ Rd×τ (corresponding
to diverse scenarii sampled from the true future distribution
ŷ(i) ∼ p(·|x1:T )).

In this section, we introduce two general methods to
leverage differentiable shape and temporal criteria - such as
those derived in section 3 - for deterministic and probabilistic
forecasting. We introduce in section 4.1 a differentiable loss
function, termed DILATE, for tackling the deterministic fore-
casting problem (1) in non-stationary contexts, that ensures
sharp predictions with accurate temporal localization. In
section 4.2, we extend these ideas to the probabilistic problem
(2) with the STRIPE++ model that enforces structured shape
and temporal diversity with determinantal point processes
(DPP).

4.1 DILATE loss for deterministic forecasting
Our proposed framework for deterministic forecasting is
depicted in Figure 2. We introduce the DIstortion Loss with
shApe and TimE (DILATE) for training any deterministic
deep multi-step forecasting model. Crucially, the DILATE
loss needs to be differentiable in order to train models with
gradient-based optimization.

The DILATE objective function, which compares the
prediction ŷ = (ŷT+1, . . . , ŷT+τ ) with the actual ground
truth future trajectory y∗ = (y∗

T+1, . . . ,y
∗
T+τ ), is composed

of two terms balanced by the hyperparameter α ∈ [0, 1]:

LDILATE(ŷ,y
∗) = α Lshape(ŷ,y

∗) + (1− α) Ltime(ŷ,y
∗)

= α DTW∆
γ (ŷ,y∗) + (1− α) TDI∆,Ωdissim

γ (ŷ,y∗) (10)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Discussion: A variant of our approach to combine
shape and temporal penalization would be to incorporate a
temporal term inside our smooth Lshape function in Eq. 3,
i.e. :

LDILATEt(ŷi,y
∗
i ) :=

− γ log

 ∑
A∈An,m

exp
(
− ⟨A,α∆(ŷi,y

∗
i )+(1−α)Ω⟩
γ

) (11)

We can notice that Eq. 11 reduces to minimizing
⟨A, α∆(ŷi,y

∗
i ) + (1− α)Ω⟩ when γ → 0+. In this case,

LDILATEt can recover DTW variants studied in the literature
to bias the computation based on penalizing sequence
misalignment, by designing specific Ω matrices:

Sakoe-Chiba DTW
band constraint [50] Ω(i, j) =

{
+∞ if |i− j| > T

0 otherwise
Weighted DTW [51] Ω(i, j) = f(|i− j|) f ↗
LDILATEt in Eq. 11 enables to train deep neural networks

with a smooth loss combining shape and temporal criteria.
However, LDILATEt presents limited capacities for disentan-
gling the shape and temporal errors, since the optimal path is
computed from both shape and temporal terms. In contrast,
our LDILATE loss in Eq. 10 separates the loss into two shape
and temporal components, the temporal penalization being
applied to the optimal unconstrained DTW path.

4.2 Probabilistic forecasting with structured diversity

We introduce the STRIPE++ framework (Shape and Time
diverRsIty in Probabilistic forEcasting), that extends STRIPE
[25]. Depicted in Figure 3, STRIPE++ builds upon a general
multi-step forecasting pipeline: the input time series x1:T is
fed into an encoder that summarizes the input into a latent
vector h. This context vector h is then transformed by a
decoder into a future trajectory.

The key idea of STRIPE++ is to augment the deterministic
latent state h with stochastic diversifying variables zs (resp.
zt) meant to capture the shape (resp. temporal) variations of
the future time series. We distinguish two phases for training
the overall model: (i) we train the predictor with a quality
loss and (ii) we train the diversifying STRIPE++ mechanism
with a DPP diversity loss (with the weights of the predictor
frozen). For both of these steps, we detail now how the
diversifying variables are sampled.

4.2.1 Training the predictor with a quality loss
For training the predictor (upper part in Figure 3) with
possibly multiple admissible futures as supervision, we take
inspiration from the probabilistic U-Net [26] and introduce
a posterior network from which to sample the diversifying
variables z∗s and z∗t (which represent the shape and temporal
variant attached to a particular future y∗). The posterior net
outputs the parameters µ∗

s and σ∗
s of a Gaussian distribution

N (µ∗
s, σ

∗
s ) for parameterizing the shape posterior distribu-

tion q(zs|x,y∗) (and similarly for the temporal posterior
distribution).

To train this generative model (encoder, decoder and
posterior networks), we resort to variational inference [64]

and maximize the evidence lower bound (ELBO) of the log-
likelihood, or equivalently, minimize the following prediction
loss over all training examples:

Lprediction(ŷ,y
∗) = Lquality(ŷ,y

∗) +

KL (q(zs|x,y∗) || p(zs)) + KL (q(zt|x,y∗) || p(zt)) (12)

In our non-stationary context, we choose the DILATE loss
for Lquality , in order to guarantee sharp predictions with
accurate temporal localization. The Kullback-Leibler (KL)
losses enforce that the shape posterior distribution q(zs|x,y∗)
matches a prior distribution p(zs) (we use a Gaussian prior
N (0, I) - a common choice in variational inference).

4.2.2 Training the STRIPE++ diversification mechanism
For including structured shape and temporal diversity (lower
part in Figure 3), we introduce two proposal neural networks
STRIPE++

shape and STRIPE++
time that aim to produce a set of Ns

shape latent codes
{
zis
}
i=1..Ns

∈ Rk (resp. Nt time codes{
zit
}
i=1..Nt

∈ Rk) dedicated to generate diverse trajectories
in terms of shape (resp. time).

When training STRIPE++
shape (the description for STRIPE++

time
is similar), we concatenate h with the posterior time latent
code µ∗

t and the Ns shape latent codes zis provided
by STRIPE++

shape, which leads to Ns future trajectories
ŷi = Decoder

(
(h, zis, µ

∗
t )
)
, i = 1..Ns

3. The shape diversity
of this set of Ns trajectories is then enforced by a shape
diversity loss that we describe below.

DPP diversity loss: We resort to determinantal point pro-
cesses (DPP) for their appealing properties for maximizing
the diversity of a set of items Y = {y1, ...,yN} given a fixed
sampling budget N and for structuring diversity via the
choice of the DPP kernel. Following [1], we minimize the
negative expected cardinality of a random subset Y from the
DPP:

Ldiversity(Y;K) = −EY∼DPP(K)|Y | (13)

= −Tr(I− (K+ I)−1) (14)

Intuitively, a larger expected cardinality means a more
diverse sampled set according to kernel K. We provide more
details on DPPs and the derivation of Ldiversity in Appendix
E.1. This loss is differentiable and can be computed in closed
form.

Quality regularizer in the DPP: When training the shape
and time proposal networks with the diversity loss, we do
not have control over the quality of predictions, which can de-
teriorate to improve diversity. To address this, we introduce
a quality regularization term in the DPP kernels. Crucially,
we decouple the criteria used for quality (DILATE) and
diversity (shape or time). Kshape maximizes the shape (DTW)
diversity, while maintaining a globally low DILATE loss
(thus playing on the temporal localization to ensure a good
tradeoff). This contrasts with [1] which uses the same MSE
criterion for both quality and diversity (see Appendix E.3 for
a detailed explanation). In practice, we introduce a quality

3. If there exists multiple futures as supervision, we repeat this
operation for each posterior latent code µ∗,j

t (it corresponds to consider
each tuple (x1:T ,y∗,j) as a separate training example).
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Fig. 3: Our STRIPE++ model builds upon a forecasting architecture trained with a quality loss Lquality enforcing sharp
predictions. The latent state is disentangled into a deterministic part h from the encoder and two stochastic codes zs and zt
that account for the shape and time variations. First step (figure upper part), we train the predictor with a quality loss, the
stochastic codes are sampled from a posterior network. Second step (bottom part), we diversify the predictions with two
STRIPE++ shape and time proposal networks trained with a DPP diversity loss (keeping the encoder and decoder frozen).

vector q = (q1, . . . , qNs) between the prediction ŷi and the
ground truth y∗ 4. We choose qi = µ(1 − DILATE(ŷi,y∗)),
where µ > 0 is a hyperparameter to tune the influence of the
quality regularization. The modified shape kernel becomes
(and similarly for the time kernel):

K̃shape = Diag(q) Kshape Diag(q) (15)

This decomposition enables to sample sets of items of both
high quality and diversity:

PK̃(Y = Y ) ∝
(∏

i∈Y

q2i

)
det(KY ) (16)

We then train STRIPE++
shape by applying the shape kernel

K̃shape (Eq. 15) to the set of Ns shape future trajectories
Ldiversity(ŷ

1, . . . , ŷNs ; K̃shape) and STRIPE++
time by applying

the time kernel K̃time to the set of Nt time future trajectories
Ldiversity(ŷ

1, . . . , ŷNt ; K̃time).

4.2.3 Diverse trajectory generation at test time

At test time, the posterior network is discarded and we only
rely on the trained encoder, STRIPE++

shape, STRIPE++
time proposal

networks and decoder to generate future predictions. More
precisely, we combine the shape and temporal proposals{
zis
}
i=1..Ns

and
{
zjt

}
j=1..Nt

to obtain Ns ×Nt predictions

ŷi,j = Decoder((h, zis, z
j
t )).

4.2.4 Discussion: differences to prior work STRIPE

Our proposed STRIPE++ model improves over STRIPE [25]
by gaining a better control on quality at the diversification

4. If there are multiple futures as supervision, we again consider each
tuple (input sequence, possible future) as a separate training example.

stage. This leads to forecasts of better quality while maintain-
ing the diversity performances (see the experiments in Table
3). This is attained with two mechanisms described above:

the use of a posterior network which provides the
diversification variables z∗s and z∗t attached to a par-
ticular true future trajectory y∗. This ensures a bet-
ter disentanglement between the deterministic latent
variable h and the stochastic diversification variable
zs and zt. In contrast in STRIPE [25], the zt variables
are random standard Gaussian samples when training
STRIPE-shape.the quality constraint in the diversity
kernels K̃shape and K̃time which enables to favour
predictions of both good quality and diversity.

Note that an important additional benefit of using a
posterior net at training time is the ability to accommodate
multiple future supervision trajectories, whereas in [25] the
diversifying variables are zeroed when training the predictor,
meaning that the future ambiguity would be captured in h,
and not in zs and zt.

Another minor difference with STRIPE [25] is that we dis-
carded the conditioning of STRIPE-time on the shape codes
generated by STRIPE-shape (which leads to no experimental
benefits over a non-conditional proposal network).

5 EXPERIMENTS

We evaluate our approach on the two tasks presented in
introduction: deterministic and probabilistic time series
forecasting, focusing particularly on non-stationary series
that can present sudden changes.

5.1 Datasets
We carry out experiments on 6 synthetic and real-world
datasets from various domains to illustrate the broad applica-
bility of our methods. For each dataset, the task is to predict
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TABLE 1: DILATE forecasting results on generic MLP and RNN architectures, averaged over 10 runs (mean ± standard
deviation). Metrics are scaled for readability. For each experiment, best method(s) (Student t-test) in bold.

Fully connected network (MLP) Recurrent neural network (Seq2Seq)

Dataset Eval
Train MSE DTW∆

γ [19] DILATE (ours) MSE DTW∆
γ [19] DILATE (ours)

MSE (x1000) 16.5 ± 1.4 48.2 ± 4.0 16.7± 1.8 11.0 ± 1.7 23.1 ± 4.5 12.1 ± 1.3
Synthetic DTW (x10) 38.6 ± 1.28 27.3 ± 1.37 32.1 ± 5.33 24.6 ± 1.20 22.7 ± 3.55 23.1 ± 2.44

TDI (x10) 15.3 ± 1.39 26.9 ± 4.16 13.8 ± 0.71 17.2 ± 1.22 20.0 ± 3.72 14.8 ± 1.29
Ramp (x10) 5.21 ± 0.10 2.04 ± 0.23 3.41 ± 0.29 5.80 ± 0.10 4.27 ± 0.8 4.99 ± 0.46
Hausdorff (x1) 4.04 ± 0.28 4.71 ± 0.50 3.71 ± 0.12 2.87 ± 0.13 3.45 ± 0.32 2.70 ± 0.17

MSE (x100) 31.5 ± 1.39 70.9 ± 37.2 37.2 ± 3.59 21.2 ± 2.24 75.1 ± 6.30 30.3 ± 4.10
ECG DTW (x10) 19.5 ± 0.16 18.4 ± 0.75 17.7 ± 0.43 17.8 ± 1.62 17.1 ± 0.65 16.1 ± 0.16

TDI (x10) 7.58 ± 0.19 17.9 ± 0.7 7.21 ± 0.89 8.27 ± 1.03 27.2 ± 11.1 6.59 ± 0.79
Ramp (x1) 4.9 ± 0.1 5.1 ± 0.3 5.0 ± 0.1 4.84 ± 0.24 4.79 ± 0.37 4.80 ± 0.25
Hausdorff (x1) 4.1 ± 0.1 6.3 ± 0.6 4.7 ± 0.3 4.32 ± 0.51 6.16 ± 0.85 4.23 ± 0.41

MSE (x1000) 6.58 ± 0.11 25.2 ± 2.3 19.3 ± 0.80 8.90 ± 1.1 22.2 ± 2.6 10.0 ± 2.6
Traffic DTW (x100) 25.2 ± 0.17 23.4 ± 5.40 23.1 ± 0.41 24.6 ± 1.85 22.6 ± 1.34 23.0 ± 1.62

TDI (x100) 24.8 ± 1.1 27.4 ± 5.01 16.7 ± 0.51 15.4 ± 2.25 22.3 ± 3.66 14.4± 1.58
Ramp (x10) 6.18 ± 0.1 5.59 ± 0.1 5.6 ± 0.1 6.29 ± 0.32 5.78 ± 0.41 5.93 ± 0.24
Hausdorff (x1) 1.99 ± 0.2 1.91 ± 0.3 1.94 ± 0.2 2.16 ± 0.38 2.29 ± 0.33 2.13 ± 0.51

TABLE 2: DILATE forecasting results on state-of-the-art architectures N-Beats [16] and Informer [17]. Evaluation metrics
are scaled for readability. Results are averaged over 10 runs, best(s) method(s) in bold (Student t-test).

Dataset Model MSE DTW Ramp TDI Hausdorff DILATE

Synthetic N-Beats [16] MSE 13.6 ± 0.5 24.9 ± 0.6 5.9 ± 0.1 13.8 ± 1.1 2.8 ± 0.1 19.3 ± 0.5
N-Beats [16] DILATE 13.3 ± 0.7 23.4 ± 0.8 4.8 ± 0.4 14.4 ± 1.3 2.7 ± 0.5 18.9 ± 0.8

Informer [17] MSE 10.4 ± 0.3 20.1 ± 1.1 4.3 ± 0.3 13.1 ± 0.9 2.5 ± 0.1 16.6 ± 0.8
Informer [17] DILATE 11.8 ± 0.7 18.5 ± 1.2 2.4 ± 0.3 11.6 ± 0.9 2.4 ± 0.9 15.1 ± 0.7

Electricity N-Beats [16] MSE 24.8 ± 0.4 15.6 ± 0.2 13.3 ± 0.3 4.6 ± 0.1 2.6 ± 0.3 13.4 ± 0.2
N-Beats [16] DILATE 25.8 ± 0.9 15.5 ± 0.2 13.3 ± 0.3 4.4 ± 0.2 3.1 ± 0.5 13.2 ± 0.2

Informer [17] MSE 38.1 ± 2.1 18.9 ± 0.6 13.2 ± 0.2 6.5 ± 0.3 2.1 ± 0.2 16.4 ± 0.5
Informer [17] DILATE 37.8 ± 0.8 18.5 ± 0.3 12.9 ± 0.2 5.7 ± 0.2 1.9 ± 0.1 15.9 ± 0.3

ETTH1 (96) N-Beats [16] MSE 32.5 ± 1.4 3.9 ± 0.2 13.3 ± 2.0 21.6 ± 4.3 5.7 ± 0.7 7.4 ± 1.0
N-Beats [16] DILATE 26.0 ± 2.8 2.9 ± 0.1 4.6 ± 0.6 11.4 ± 1.7 6.4 ± 1.0 4.6 ± 0.4

Informer [17] MSE 28.2 ± 2.6 4.3 ± 0.3 5.8 ± 0.1 21.6 ± 3.3 6.6 ± 1.9 7.8 ± 0.9
Informer [17] DILATE 32.5 ± 3.8 3.2 ± 0.3 4.5 ± 0.3 19.1 ± 1.9 6.4 ± 1.0 6.4 ± 0.6

the τ -steps ahead future trajectory (or multiple trajectories
in the probabilistic case) given a T -steps context window:

•• Synthetic-det (T = 20, τ = 20): deterministic dataset
consisting in predicting sudden changes (step functions)
based on an input signal composed of two peaks. This
controlled setup was designed to measure precisely the
shape and time errors of predictions (see Figure 4).

• Synthetic-prob (T = 20, τ = 20): probabilistic version
of the previous dataset where for each input series, there
exists 10 admissible futures obtained by varying the
amplitude and the timing of the step (see Figure 1 (b)).

• ECG5000 (T = 84, τ = 56): dataset composed of 5000
electrocardiograms (ECG) with sharp spikes whose time
intervals are of great importance (see Figure 4).

• Traffic (T = 168, τ = 24) dataset consisting in hourly
occupancy rates in California (see Figure 4).

• Electricity (T = 168, τ = 24): consisting in hourly
electricity consumption measurements (kWh) from 370
customers.

• ETTh1 [17] (T = 96, τ = 96): dataset of hourly Electric-
ity Transformer Temperature measurements, which is
an important indicator for electricity grids. This dataset
enables to assess the generalization of our approach on
much longer term predictions.

We give more details for each dataset in Appendix C.

5.2 Deterministic forecasting with the DILATE loss
To evaluate the benefits of our proposed DILATE training
loss, we compare it against the widely used Euclidean (MSE)
loss, and the smooth DTW introduced in [19], [54]. We
use the following multi-step prediction metrics: MSE, DTW
(shape), TDI (temporal). To consolidate the evaluation, we
also consider two additional (non differentiable) metrics
for assessing shape and time. For shape, we compute the
ramp score [9]. For time, we compute the Hausdorff distance
between a set of detected change points in the target signal
T ∗ and in the predicted signal T̂ :

Hausdorff(T ∗, T̂ ) := max(max
t̂∈T̂

min
t∗∈T ∗

|t̂−t∗|, max
t∗∈T ∗

min
t̂∈T̂

|t̂−t∗|)
(17)

which corresponds to the largest possible distance between
a change point and its prediction. Additional details about
these external metrics, the architectures and implementation
of models used in this section are given in Appendix D.

5.2.1 DILATE performances on generic architectures
To demonstrate the broad applicability of our approach, we
first perform multi-step forecasting with two generic neural
network architectures: a fully connected network (1 layer
of 128 neurons), which does not make any assumption on
data structure, and a more specialized Seq2Seq model with
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Fig. 4: Qualitative prediction results with the DILATE loss. For each dataset, the MSE training loss leads to non-sharp
predictions, whereas the soft-DTW loss can predict sharp variations but has no control over their temporal localization. In
contrast, the DILATE loss produces sharp predictions with accurate temporal localization.

1 layer of 128 Gated Recurrent Units (GRU). We perform a
Student t-test with significance level 0.05 to highlight the
best(s) method(s) in each experiment (averaged over 10
runs). Overall results are presented in Table 1.

Comparison to MSE training loss: DILATE outperforms
MSE when evaluated on shape (DTW) in all experiments,
with significant differences on 5/6 experiments. When
evaluated on time (TDI), DILATE also performs better in all
experiments (significant differences on 3/6 tests). Finally,
DILATE is equivalent to MSE when evaluated on MSE on
3/6 experiments.

Comparison to DTW∆
γ training loss: When evaluated

on shape (DTW), DILATE performs similarly to DTW∆
γ (2

significant improvements, 1 significant drop and 3 equivalent
performances). For time (TDI) and MSE evaluations, DILATE
is significantly better than DTW∆

γ in all experiments, as
expected.

We can notice that the ramp score (resp. the Haussdorff
distance) provides the same trends than the shape metric
DTW (resp. the time metric TDI). It reinforces our conclu-
sions and shows that DILATE indeed improves shape and
temporal accuracy beyond the metrics being optimized.

We display a few qualitative examples for Synthetic,
ECG5000 and Traffic datasets in Figure 4 (other examples

are provided in Appendix D.5). We see that MSE training
leads to predictions that are non-sharp, making them
inadequate in presence of drops or sharp spikes. DTW∆

γ

leads to very sharp predictions in shape, but with a possibly
large temporal misalignment. In contrast, our DILATE loss
predicts series that have both a correct shape and precise
temporal localization.

5.2.2 DILATE performances with state-of-the-art models

Beyond generic forecasting architectures, we show that
DILATE can also improve the performances of state-of-the-
art deep architectures. We experiment here with two recent
and competitive models: N-Beats [16] and Informer [17].
Results in Table 2 are consistent with those in Table 1: models
trained with DILATE improve over MSE in shape (in DTW
and ramp score for 6/6 experiments) and time (in TDI for
5/6 and Hausdorff for 4/6 experiments) and are equivalent
to MSE when evaluated in MSE (equivalent or better for 3/6
experiments). We provide qualitative predictions of N-Beats
on Electricity in Appendix D.3.

5.2.3 DILATE loss analysis

Impact of α: We analyze in Figure 5 the influence of the
tradeoff parameter α when training a Seq2Seq model on
the synthetic-det dataset. When α = 1, LDILATE reduces
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to DTW∆
γ , with an accurate shape but a large temporal

error. When α −→ 0, we only minimize Ltime without any
shape constraint. Both MSE and shape errors explode in this
case, illustrating the fact that Ltime is only meaningful in
conjunction with Lshape. Both the MSE and DILATE error
curves present a U-shape ; in this case, α = 0.5 seems an
acceptable tradeoff for the Synthetic-det dataset.

Fig. 5: Influence of α in the DILATE loss. The shaded areas
represent ± std computed over 10 runs.

Influence of γ: We analyse the influence of the DTW∆
γ

smoothing parameter γ in Figure 6. We represent (bottom
of the figure) the assignment probabilities of the DTW∆

γ

path between two given test time series, the true DTW path
being depicted in red. When γ increases, the DTW∆

γ path
is more uncertain and becomes multimodal. When γ −→ 0,
the soft DTW converges toward the true DTW. However, we
see (top of the figure) that for small γ values, optimizing
DTW∆

γ becomes more difficult, resulting in higher test error
and higher variance (on the synthetic-det dataset). We fixed
γ = 10−2 in all our experiments, which yields a good tradeoff
between an accurate soft optimal path and a low test error.

Fig. 6: Influence of γ in the DILATE loss. The shaded areas
represent ± std computed over 10 runs.

5.3 Probabilistic forecasting with STRIPE++
We firstly assess the ability of STRIPE++ to capture the
full predictive distribution of future trajectories. To do so,
we need for evaluation the ground truth set of admissible
futures for a given input ; we use here the synthetic-prob
dataset (described in section 5.1) constructed for this purpose.
Secondly, on a more realistic setting where we only know one
future for each input, we evaluate STRIPE++ on the Traffic
and Electricity datasets with the best (resp. the mean) sample
metrics as a proxy for diversity (resp. quality). We describe
the implementation details and neural network architectures
(encoder, decoder, posterior net and STRIPE++ proposal
network) in Appendix E.2.

5.3.1 Full predictive distribution evaluation on synthetic-prob
Metrics: To assess the discrepancy between the predicted
and true distributions of futures trajectories, we define two
measures Hquality(ℓ) and Hdiversity(ℓ) (ℓ = DTW, TDI or
DILATE in our experiments):

Hquality(ℓ) := Ex∈Dtest
Eŷ

[
inf

y∈F (x)
ℓ(ŷ,y)

]
(18)

Hdiversity(ℓ) := Ex∈DtestEy∈F (x)

[
inf
ŷ

ℓ(ŷ,y)

]
(19)

F1 score =
2 Hquality(ℓ) · Hdiversity(ℓ)

Hquality(ℓ) + Hdiversity(ℓ)
(20)

Hquality penalizes forecasts ŷ that are far away from a
ground truth future of x denoted y ∈ F (x) (similarly to the
precision concept in pattern recognition) whereas Hdiversity

penalizes when a true future is not covered by a forecast
(similarly to recall). As a tradeoff balancing quality and
diversity, we compute the F1 score in Eq. 20. In addition,
we also use the continuous ranked probability score (CRPS)
which is a standard proper scoring rule [44] for assessing
probabilistic forecasts [41]. Intuitively, the CRPS is the pinball
loss integrated over all quantile levels. A key property is that
the CRPS attains its minimum when the predicted future
distribution equals the true future distribution, making this
metric particularly adapted to our context.

Forecasting results: We compare in Table 3 our
method to 4 recent competing diversification mechanisms
(variety loss [61], entropy regularisation [62], diverse DPP
[1] and GDPP [68]) based on a conditional variational
autoencoder (cVAE) backbone trained with DILATE. We
observe that STRIPE and STRIPE++ obtain the global best
performances by improving diversity by a large amount
(Hdiversity(DILATE)=17.6) compared to the backbone
cVAE DILATE (Hdiversity(DILATE)=33.9) and to other
diversification schemes (the best competitor GDPP [68]
attains Hdiversity(DILATE)=23.9). This highlights the
relevance of the structured shape and time diversity. We
can also notice that, in contrast to competing diversification
schemes that improve diversity at the cost of a loss in
quality, STRIPE++ maintains high quality predictions.
STRIPE++ is only beaten in Hquality(DILATE) by GDPP
[68], but this method is significantly worse than STRIPE++
in diversity, and GDPP requires full future distribution
supervision, which it not applicable in real datasets (see
section 5.3.3). All in all, the F1 scores summarize the quality
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TABLE 3: STRIPE++ forecasting results on the synthetic dataset with multiple futures, averaged over 5 runs (mean ±
std). Best equivalent methods (Student t-test) shown in bold. Metrics are scaled (MSE × 1000, DILATE ×100, CRPS × 1000).

Hquality(·) (↓) Hdiversity(·) (↓) F1 score (↓) CRPS (↓)

Methods DTW TDI DILATE DTW TDI DILATE DTW TDI DILATE

DeepAR [15] 42.9 ± 6.6 16.6 ± 7.6 33.5 ± 6.0 23.9 ± 3.5 12.8 ± 2.5 22.7 ± 2.2 30.7 14.5 27.1 62.4 ± 9.9
cVAE DILATE 11.7 ± 1.5 9.4 ± 2.2 14.2 ± 1.5 18.8 ± 1.3 48.6 ± 2.2 33.9 ± 3.9 14.4 15.7 20.0 62.2 ± 4.2

variety loss [61] DILATE 15.6 ± 3.4 10.2 ± 1.1 16.8 ± 0.9 22.7 ± 4.1 37.7 ± 4.9 30.8 ± 1.0 18.5 16.1 21.7 62.6 ± 3.0
entropy reg. [62] DILATE 13.8 ± 3.1 8.8 ± 2.2 15.0 ± 1.6 20.4 ± 2.8 42.0 ± 7.8 32.6 ± 2.3 16.5 14.5 20.5 62.4 ± 3.9
Diverse DPP [1] DILATE 12.9 ± 1.2 9.8 ± 2.1 15.1 ± 1.5 18.6 ± 1.6 42.8 ± 10.1 31.3 ± 5.7 15.2 15.9 20.4 60.7 ± 1.6

GDPP [68] DILATE 14.8 ± 2.9 11.7 ± 8.4 14.4 ± 2.1 20.8 ± 2.4 25.2 ± 7.2 23.9 ± 4.5 17.3 15.9 17.9 63.4 ± 6.4
STRIPE [25] 16.8 ± 0.5 6.7 ± 0.4 15.4 ± 0.5 16.1 ± 1.1 13.2 ± 1.7 17.7 ± 0.6 16.4 8.8 16.5 60.5 ± 0.4
STRIPE++ 13.5 ± 0.5 9.2 ± 0.5 15.0 ± 0.3 12.9 ± 0.3 16.3 ± 1.2 17.9 ± 0.6 13.2 11.7 16.3 48.6 ± 0.6

TABLE 4: Probabilistic forecasting results on the Traffic and Electricity datasets, averaged over 5 runs (mean ± std).
Metrics are scaled for readability. Best equivalent method(s) (Student t-test) shown in bold.

Traffic Electricity
MSE DILATE MSE DILATE

Method mean best mean best mean best mean best

Nbeats [16] MSE - 7.8 ± 0.3 - 22.1 ± 0.8 - 24.8 ± 0.4 - 20.2 ± 0.3
Nbeats [16] DILATE - 17.1 ± 0.8 - 17.8 ± 0.3 - 25.8 ± 0.9 - 19.9 ± 0.5

Deep AR [15] 15.1 ± 1.7 6.6 ± 0.7 30.3 ± 1.9 16.9 ± 0.6 67.6 ± 5.1 25.6 ± 0.4 59.8 ± 5.2 17.2 ± 0.3
cVAE DILATE 10.0 ± 1.7 8.8 ± 1.6 19.1 ± 1.2 17.0 ± 1.1 28.9 ± 0.8 27.8 ± 0.8 24.6 ± 1.4 22.4 ± 1.3

Variety loss [61] 9.8 ± 0.8 7.9 ± 0.8 18.9 ± 1.4 15.9 ± 1.2 29.4 ± 1.0 27.7 ± 1.0 24.7 ± 1.1 21.6 ± 1.0
Entropy regul. [62] 11.4 ± 1.3 10.3 ± 1.4 19.1 ± 1.4 16.8 ± 1.3 34.4 ± 4.1 32.9 ± 3.8 29.8 ± 3.6 25.6 ± 3.1

Diverse DPP [1] 11.2 ± 1.8 6.9 ± 1.0 20.5 ± 1.0 14.7 ± 1.0 31.5 ± 0.8 25.8 ± 1.3 26.6 ± 1.0 19.4 ± 1.0
STRIPE [25] 10.1 ± 0.4 6.5 ± 0.2 19.2 ± 0.8 14.2 ± 0.2 29.7 ± 0.3 23.4 ± 0.2 24.4 ± 0.3 16.9 ± 0.2
STRIPE++ 10.0 ± 0.2 6.7 ± 0.3 19.0 ± 0.2 14.1 ± 0.3 29.5 ± 0.3 23.6 ± 0.4 24.1 ± 0.2 17.3 ± 0.4

vs. diversity tradeoffs, and STRIPE++ gets the best F1
DILATE score. Moreover, STRIPE++ outperforms all other
methods with the CRPS metric, indicating that the predicted
future trajectory distribution is closer to the ground truth one.

Discussion on quality regularization: As discussed
above, the key difference between STRIPE and STRIPE++
consists in an additional quality constraint during the diver-
sification stage. We observe that STRIPE++ indeed produces
globally better quality forecasts (Hquality(DILATE)= 15.0 for
STRIPE++ vs. 15.5 for STRIPE) while maintaining the level
of diversity. It leads to a better DILATE F1 score and a better
CRPS for STRIPE++.

5.3.2 Ablation study
To analyze the respective roles of the quality and diversity
losses, we perform an ablation study on the synthetic-prob
dataset with the cVAE backbone trained with the quality
loss DILATE and different DPP diversity losses. For a finer
analysis, we report in Table 5 the shape (DTW, computed
with Tslearn [70]) and time (TDI) components of the DILATE
loss [24].

Results presented in Table 5 first reveal the crucial im-
portance to define different criteria for quality and diversity.
With the same loss for quality and diversity (as this is the
case in [1]), we observe here that the DILATE DPP kernel
exp(−DILATE) does not bring a significant diversity gain
compared to the cVAE DILATE baseline (without diversity
loss). By choosing the MSE kernel instead, we even get a
small diversity and quality improvement.

In contrast, our introduced shape and time kernels Kshape

and Ktime largely improve the diversity in DILATE without
deteriorating quality. As expected, each kernel brings its own

TABLE 5: Ablation study on the synthetic-prob dataset. We
train a backbone cVAE with the DILATE quality loss and
compare different DPP kernels for diversity.

Hquality (↓) Hdiversity(.) (↓)

diversity DILATE DTW TDI DILATE
None 14.2 ± 1.5 18.8 ± 1.3 48.6 ± 2.2 33.9 ± 3.9

DILATE 15.1 ± 1.9 18.6 ± 1.6 42.8 ± 10.2 31.3 ± 10.7
MSE 15.1 ± 1.4 18.5 ± 1.3 41.9 ± 8.8 30.8 ± 4.7

shape 15.1 ± 0.6 16.4 ± 1.5 15.4 ± 4.2 18.9 ± 1.8
time 15.6 ± 0.6 17.6 ± 0.5 15.1 ± 3.1 19.4 ± 1.6

STRIPE++ 15.0 ± 0.3 12.9 ± 0.3 16.3 ± 1.2 17.9 ± 0.6

benefits: Kshape brings the best improvement in the shape
metric DTW (Hdiversity(DTW) = 16.4 vs. 18.8) and Ktime the
best improvement in the time metric TDI (Hdiversity(TDI) =
15.1 vs. 48.6). STRIPE++ gathers the benefits of both criteria
and gets the global best results in diversity and equivalent
results in quality.

5.3.3 State-of-the-art comparison on real-world datasets
We evaluate here the performances of STRIPE++ on two chal-
lenging real-world datasets Traffic and Electricity commonly
used as benchmarks in the time series forecasting literature
[14], [15], [24], [34], [45], [71]. Contrary to the synthetic-prob
dataset, we only dispose of one future trajectory sample
y∗
T+1:T+τ for each input series x1:T . In this case, the metric

Hquality (resp. Hdiversity) defined in section 5.3.1 reduces to
the mean sample (resp. best sample), which are common for
evaluating stochastic forecasting models [72], [73].

Results in Table 4 reveal that STRIPE and STRIPE++
outperform all other baselines in the best sample (evaluated
in MSE or DILATE). Our method even outperforms in
the best sample the state-of-the-art N-Beats algorithm [16]
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(a) Traffic (c) Electricity

Fig. 7: STRIPE++ qualitative predictions on real-world datasets Traffic (a) and Electricity (b).

(either trained with MSE or DILATE), which is dedicated
to producing high quality deterministic forecasts. In terms
of quality (evaluation with the mean sample), STRIPE++
improves over STRIPE (as expected) and gets the best (or
equivalently best) results in all cases. This contrasts to
competing diversification methods, e.g. Diverse DPP [1], that
deteriorate quality to improve diversity. Finally we notice
that STRIPE++ is consistently better in diversity and quality
than the state-of-the art probabilistic deep AR method [15].

We display a few qualitative forecasting examples of
STRIPE++ on Figure 7. We observe that STRIPE++ predic-
tions are both sharp and accurate: both the shape diversity
(amplitude of the peaks) and temporal diversity match the
ground truth future.

5.3.4 STRIPE++ analysis: quality-diversity cooperation

Fig. 8: Influence of the number N of trajectories on quality
(higher is better) and diversity for the synthetic-prob
dataset.

We analyze here the quality-diversity tradeoff with respect to
the number N of sampled future trajectories. In Figure 8 we
represent the evolution of performances when N increases
from 5 to 100 on the synthetic-prob dataset. As expected, the
normalized DILATE diversity Hdiversity(5)/Hdiversity(N)
(higher is better) increases with N for both STRIPE++ and
deepAR models [15]. However we remark that STRIPE++
does not deteriorate normalized quality (which even in-
creases slightly), in contrast to deepAR which does not

have control over the targeted diversity. This again confirms
the relevance of our approach that effectively combines an
adequate quality loss function and a structured diversity
mechanism. We provide an additional cooperation analysis
in Appendix E.3 highlighting the importance to decouple the
criteria used for quality and diversity.

6 CONCLUSION

In this work, we tackle the multi-step deep time series
forecasting problem, in the challenging context of non-
stationary series that can present sharp variations. In contrast
to the majority of existing methods that train models with
the surrogate MSE or variants, we propose to leverage shape
and temporal criteria at training time. We introduce differ-
entiable similarities and dissimilarities for characterizing
shape accuracy and temporal localization error. We provide
two implementations for time series forecasting: the DILATE
loss function for deterministic forecasting that ensures both
sharp predictions with accurate temporal localization, and
the STRIPE++ model for probabilistic forecasting with shape
and temporal diversity. We validate our claims with extensive
experiments on synthetic and real-world datasets.

An interesting future perspective would be to incorporate
seasonality and extrinsic prior knowledge (such as special
events) [38] to better model the non-stationary abrupt
changes and measure their impact on diversity and model
confidence. Other appealing directions include diversity-
promoting forecasting for exploration in reinforcement
learning [74], [75], [76], and extension of shape/temporal
criteria and structured diversity to spatio-temporal or video
prediction tasks [73], [77], [78], [79].
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APPENDIX A
PROOF THAT THE TEMPORAL KERNEL IS PSD
The DTW score between two time series y ∈ Rd×n and
z ∈ Rd×m can be written S(π) =

∑|π|
i=1 ∆(yπ1(i), zπ2(i))

where π = (π1, π2) is a valid alignment between
both series. Equivalently we can write the DTW score
S(π) = S(A) = ⟨A,∆(y, z)⟩, where A ⊂ {0, 1}n×m is the
warping path in matrix form (Aij = 1 if yi is associated to
zj and 0 otherwise).

Let w : An,m −→ R∗
+ be a strictly positive weighting

function on alignment paths and let’s consider the following
kernel:

Kw(y, z) =
∑

A∈An,m

w(A) e−
S(A)

γ (1)

=
∑

A∈An,m

w(A) e−
⟨A,∆(y,z)⟩

γ (2)

=
∑

π∈An,m

w(π) e−
∑|π|

j=1
∆(yπ1(j),zπ2(j))

γ (3)

=
∑

π∈An,m

w(π)

|π|∏
j=1

e−
∆(yπ1(j),zπ2(j))

γ (4)

=
∑

π∈An,m

w(π)

|π|∏
j=1

k(yπ1(j), zπ2(j)) (5)

where we denote k = e−
∆
γ . We prove the following result:

Proposition 1. If k is a PSD kernel such that k
1+k is also PSD,

the kernel Kw defined in Eq. 5 is also PSD.

Proof. The proof is adapted from [7]. First, for any time series
y = (y1, . . . ,yn) ∈ Rd×n of length n and for any sequence
a ∈ Nn, we introduce the notation:

ya = (y1, . . . ,y1︸ ︷︷ ︸
a1 times

, . . . ,yn, . . . ,yn︸ ︷︷ ︸
an times

) (6)

Let χ be any PSD kernel defined on Rd with the following
condition |χ| < 1, we introduce the kernel κ defined as:

κ(y, z) =

{∏|x|
i=1 χ(yi, zj) if |y| = |z|

0 otherwise
(7)

Then, given a strictly positive weighting function
w(a, b) > 0, the following kernel Kw defined in Eq. 8 is
PSD by construction:

Kw(y, z) =
∑
a∈Nn

∑
b∈Nm

w(a, b) κ(ya, zb) (8)

where we recall that n = |y| and m = |z|. We denote
ϵa = (1, . . . , 1︸ ︷︷ ︸

a1 times

, . . . , p, . . . , p︸ ︷︷ ︸
ap times

) for any a ∈ Np. We also

write for any sequences u and v of common length p:
u ⊗ v = ((u1, v1), . . . , (up, vp)). With these notations, we
can rewrite Kw as:

Kw(y, z) =
∑

a∈Nn,b∈Nm

∥a∥=∥b∥

w(a, b)

∥a∥∏
i=1

χ((y, z)ϵa⊗ϵb(i)) (9)

Notice now for each couple (a, b) there exists a unique
alignment path π and an integral vector v verifying πv = ϵa⊗
ϵb. Conversely, for each couple (π, v) there exists a unique
pair (a, b) verifying πv = ϵa ⊗ ϵb. Therefore the kernel Kw in
Eq. 9 can be written equivalently with a parameterization on
(π, v) for w:

Kw(y, z) =
∑

π∈An,m

∑
v∈N|π|

w(π, v)

|π|∏
j=1

χ((y, z)πv(j)) (10)

where χπ(j) is a shortcut for χ(yπ1(j), zπ2(j)).

Now we assume that the weighting function w depends
only on π: w(π, v) = w(π). Then we have:

Kw(y, z) =
∑

π∈An,m

w(π)
∑

v∈N|π|

|π|∏
j=1

χ
vj
π(j)

=
∑

π∈An,m

w(π)

|π|∏
j=1

(
χπ(j) + χ2

π(j) + χ3
π(j) + . . .

)

=
∑

π∈An,m

w(π)

|π|∏
j=1

χπ(j)

1− χπ(j)

By setting now χ = k
1+k which is PSD by hypothesis and

verifies |χ| < 1 (recall that k = e−
∆
γ ), we get:
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Kw(y, z) =
∑

π∈An,m

w(π)

|π|∏
j=1

kπ(j)

=
∑

π∈An,m

w(π)

|π|∏
j=1

k(yπ1(j), zπ2(j))

which corresponds exactly to the kernel Kw defined in Eq. 5.
This proves that Kw in Eq. 5 is a well defined PSD kernel.

With the particular choice w(A) = ⟨A,Ωsim⟩, we re-
cover:

Kw(y, z) =
∑
A∈A

⟨A,Ωsim⟩ e−
⟨A,∆(y,z)⟩

γ

= Z × TDI∆,Ωsim
γ (y, z)

= e−DTW∆
γ (y,z)/γ × TDI∆,Ωsim

γ (y, z)

= Ktime(y, z)

which finally proves that Ktime defined in paper Eq. 9 is a
valid PSD kernel.

The particular choice k(u, v) =
1
2e

−∥u−v∥2
2

1− 1
2e

−∥u−v∥2
2

fullfills

Proposition 1 requirements: k is indeed PSD as the infinite
limit of a sequence of PSD kernels

∑∞
i=1 g

i = g
1−g = k, where

g is a halved Gaussian PSD kernel: g(u, v) = 1
2e

−∥u−v∥2
2 . For

this choice of k, the corresponding pairwise cost matrix
writes (it is the half-Gaussian cost defined in paper section
3.1.3):

∆(yi, zj) = γ
[
∥yi − zj∥22 − log

(
2− e−∥yi−zj∥2

2

)]
(11)

APPENDIX B
EFFICIENT FORWARD AND BACKWARD COMPUTATION

The direct computation of the shape loss DTW∆
γ (paper

Eq. 3) and the temporal loss TDI∆,Ωdissim
γ (paper Eq. 8) is

intractable, due to the exponential growth of cardinal of
An,m. We provide a careful implementation of the forward
and backward passes in order to make learning efficient.

Shape loss: Regarding DTW∆
γ , we rely on [6] to

efficiently compute the forward pass with a variant of the
Bellmann dynamic programming approach [1]. For the
backward pass, we implement the recursion proposed in [6]
in a custom Pytorch loss. This implementation is much more
efficient than relying on vanilla auto-differentiation, since it
reuses intermediate results from the forward pass.

Temporal loss: For TDI∆,Ωdissim
γ , note that the

bottleneck for the forward pass in Eq. 8 is to compute
A∗

γ = ∇∆DTW∆
γ (y, z), which we implement as explained

for the DTW∆
γ backward pass. Regarding TDI∆,Ωdissim

γ

backward pass, we need to compute the Hessian
∇2DTW∆

γ (y, z). We use the method proposed in [11],
based on a dynamic programming implementation that
we embed in a custom Pytorch loss. Again, our back-prop
implementation allows a significant speed-up compared to

Fig. 1: Speedup of the custom forward and backward
implementation of DILATE.

standard auto-differentiation (see paper section 5.2.3). The
resulting time complexity of both shape and temporal losses
for forward and backward is O(nm).

Custom backward implementation speedup: We com-
pare in Figure 1 the computational time between the standard
Pytorch auto-differentiation mechanism and our custom
backward pass implementation. We plot the speedup of
our implementation with respect to the prediction length
τ (averaged over 10 random target/prediction tuples). We
notice the increasing speedup with respect to τ : speedup of
× 20 for 20 steps ahead and up to × 35 for 100 steps ahead
predictions.

APPENDIX C
DATASETS

We provide here a detailed description of the datasets used
in the paper. We precise for each case the length of the
context window T and the prediction horizon τ .

Synthetic-det (T = 20, τ = 20): dataset consisting in
predicting sudden changes (step functions) based on an
input signal composed of two peaks. This controlled setup
was designed to measure precisely the shape and time
errors of predictions. We generate 500 times series for train,
500 for validation and 500 for test, with 40 time steps: the
first 20 are the inputs, the last 20 are the targets to forecast.
In each series, the input range is composed of 2 peaks of
random temporal position i1 and i2 and random amplitude
j1 and j2 between 0 and 1, and the target range is composed
of a step of amplitude j2 − j1 and stochastic position
i2 +(i2 − i1)+ randint(−3, 3). All time series are corrupted
by an additive Gaussian white noise of variance 0.01.

Synthetic-prob (T = 20, τ = 20): this is a variant of
Synthetic-det where for each input series, we generate 10
different future series of length 20 by adding noise on the
step amplitude and localisation. The dataset is composed of
100× 10 = 1000 time series for each train/valid/test split.
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ECG5000 (T = 84, τ = 56): this dataset comes from the
UCR Time Series Classification Archive [4], and is composed
of 5000 electrocardiograms (ECG) (500 for training, 4500 for
testing) of length 140. We take the first 84 time steps (60 %)
as input and predict the last 56 steps (40 %) of each time
series (same setup as in [6]).

Traffic (T = 168, τ = 24): this dataset is composed of
road occupancy rates (between 0 and 1) from the California
Department of Transportation (48 months from 2015-2016)
measured every 1h. We work on the first univariate series
of length 17544 (with the same 60/20/20 train/valid/test
split as in [10]), and we train models to predict the 24 future
points given the past 168 points (past week).

Electricity (T = 168, τ = 24): this dataset consists in
hourly electricity consumption measurements (kWh) from
370 customers (see Figure 2 (a)).

ETTh1 [19] (T = 96, τ = 96): dataset of hourly Electricity
Transformer Temperature measurements, which is an impor-
tant indicator for electricity grids. This dataset enables to
assess the generalization of our approach on much longer
term predictions (see Figure 2 (b)).

APPENDIX D
DILATE ADDITIONAL DETAILS

D.1 External shape and temporal metrics
We detail here the two external metrics used in our
experiments to evaluate the shape and temporal errors.

Ramp score: The notion of ramping event is a major issue
for intermittent renewable energy production that needs to
be anticipated for electricity grid management. For assessing
the performance of trained forecasting models in presence of
ramps, the Ramp Score was proposed in [16]. This score is
based on a piecewise linear approximation on both input
and target time series by the Swinging Door algorithm [3],
[8]. The Ramp Score described in [16] is computed as the
integral between the unsigned difference of derivatives of
both linear approximated series. For assessing only the shape
error component, we apply in our experiments the ramp
score on the target and prediction series after alignment by
the optimal DTW path.

Hausdorff distance: Given a set of change points T ∗ in
the target signal and change points T̂ in the predicted signal,
the Hausdorff distance is defined as:

Hausdorff(T ∗, T̂ ) := max(max
t̂∈T̂

min
t∗∈T ∗

|t̂−t∗|, max
t∗∈T ∗

min
t̂∈T̂

|t̂−t∗|)
(12)

It corresponds to the greatest temporal distance between
a change point and its prediction.

We now explain how the change points are computed for
each dataset: for Synthetic, we know exactly by construction
the positions of the change points in the target signals.
For the predictions, we look for a single change point
corresponding to the location of the predicted step function.
We use the exact segmentation method by dynamic

programming described in [15] with the Python toolbox
http://ctruong.perso.math.cnrs.fr/ruptures-docs/build/
html/index.html# .

For ECG5000 and Traffic datasets which present sharp
peaks, this change point detection algorithm is not suited
(detected change points are often located at the inflexion
points of peaks and not at the exact peak location). We
thus use a simple peak detection algorithm based on first
order finite differences. We tune the threshold parameter
for outputting a detection and the min distance between
detections parameter experimentally for each dataset.

D.2 DILATE implementation details
Neural networks architectures: For the generic neural
network architectures, we use a fully connected network (1
layer of 128 neurons), which does not make any assumption
on data structure, and a more specialized Seq2Seq model
[14] with Gated Recurrent Units (GRU) [5] with 1 layer of
128 units. Each model is trained with PyTorch for a max
number of 1000 epochs with Early Stopping with the ADAM
optimizer. The smoothing parameter γ of DTW and TDI is
set to 10−2.

DILATE hyperparameters: the hyperparameter α
balancing Lshape and Ltime is determined on a validation set
to get comparable DTW shape performance than the DTW∆

γ

trained model: α = 0.5 for Synthetic and ECG5000, and
0.8 for Traffic, Electricity and ETTh1. The DTW smoothing
parameter γ is fixed to 10−2, as discussed in paper section
5.2.3.

Our code implementing DILATE is available on line from
https://github.com/vincent-leguen/DILATE.

D.3 Visualizations for Electricity and ETTh1
We provide in Figure 2 qualitative predictions of the N-Beats
model [12] on the Electricity (a) and ETTh1 (b) datasets. For
Electricity (a), DILATE leads to a much sharper prediction
than with the MSE, as expected. For ETTH1 (b), we extend the
experiments to a much longer prediction horizon (τ = 96),
which makes the extrapolation task much more challenging.
We observe that the MSE loss only gives a future trend
trajectory, while DILATE better captures the future sharp
patterns.

D.4 Comparison to DILATE divergence variant
Blondel et al. [2] point out two limitations for using DTW∆

γ

as a loss function: first, it can take negative values and
second, DTW∆

γ (y, z) does not reach its minimum when y =
z. To address these issues, they propose a proper divergence
defined as follows [2]:

DTW-div∆
γ (y, z) = DTW∆

γ (y, z)

− 1

2
(DTW∆

γ (y,y) + DTW∆
γ (z, z)) (13)

This divergence is non-negative and satisfies
DTW-div∆

γ (y,y) = 0. However, it is still not a distance
function since the triangle inequality is not verified (as for

http://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/index.html#
http://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/index.html#
https://github.com/vincent-leguen/DILATE
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Fig. 2: Qualitative forecasting results comparing the N-Beats model [12] trained with MSE and DILATE loss on the Electricity
and ETTH1 datasets.

the true DTW).

These limitations also hold for DILATE. Consequently, we
use the same normalization trick to define a proper DILATE-
divergence. Forecasting results in Table 1 show that DILATE-
div is equivalent to DILATE with the Seq2Seq and N-Beats
[12] models, and inferior to DILATE with the Informer model
[19]. It confirms the good behaviour of the DILATE loss that
does not require this renormalization.

TABLE 1: Comparison between DILATE and DILATE-div on
the synthetic-det dataset.

Model MSE DILATE

Seq2Seq DILATE 13.1 ± 1.8 33.7 ± 3.1
Seq2Seq DILATE-div 13.6 ± 0.9 33.6 ± 2.1

N-Beats [12] DILATE 13.3 ± 0.7 37.9 ± 1.6
N-Beats [12] DILATE-div 13.8 ± 0.9 38.5 ± 1.4

Informer [19] DILATE 11.8 ± 0.7 30.1 ± 1.3
Informer [19] DILATE-div 12.9 ± 0.1 31.8 ± 6.5

D.5 Additional visualizations

We provide additional qualitative predictions with DILATE
for the Synthetic-det in Figure 3, for ECG5000 in Figure 4
and for Traffic in Figure 5.
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Fig. 3: Qualitative predictions for the Synthetic-det dataset.
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Fig. 4: Qualitative predictions for the ECG5000 dataset.
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Fig. 5: Qualitative predictions for the Traffic dataset.

APPENDIX E
STRIPE++ ADDITIONAL DETAILS

E.1 Derivation of the DPP diversity loss

Determinantal Point Processes (DPPs) [9] are a probabilistic
tool for describing the diversity of a ground set of items
S = {y1, ...,yN}. Diversity is controlled via the choice of a
positive semi-definite (PSD) kernel K for comparing items.
A DPP is a probability distribution over all subsets of S that
assigns the following probability to a random subset Y:

PK(Y = Y ) =
det(KY )∑

Y ′⊆S det(K′
Y )

=
det(KY )

det(K+ I)
(14)

where K denotes the kernel in matrix form and KA is its
restriction to the elements indexed by A : KA = [Ki,j ]i,j∈A.

Intuitively, a DPP encourages the selection of diverse
elements from the ground set Y . If Y is more diverse, a
random subset Y ∼ DPP(K) sampled from the DPP will
select more items, i.e. will have a larger cardinality. This idea
is embedded into the diversity loss Ldiversity proposed in
[18]:

Ldiversity(Y;K) = −EY∼DPP(K)|Y | = −Trace(I−(K+I)−1)
(15)
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E.2 STRIPE++ implementation details

Neural network architectures: STRIPE++ is composed of
a Sequence To Sequence predictive model. The encoder
is a recurrent neural network (RNN) with 1 layer of 128
Gated Recurrent Units (GRU) [5] units, producing a latent
state h of dimension 128. We fixed by cross-validation the
dimension of each diversifying variable zs or zt to be k = 8.
The decoder is another RNN with 128 + 8 + 8 = 144 GRU
units followed by fully connected layers responsible for
producing the future trajectory.

The Posterior network has a similar architecture as the
encoder: it is a RNN with 1 layer of 128 GRU units that
takes as input the full series (x1:T ,y

∗
T+1:T+τ ), followed by

two multi-layer perceptrons (MLP) dedicated to output
the parameters (µ∗

s, σ
∗
s ) and (µ∗

t , σ
∗
t ) of the Gaussian

distribution from which to sample the posterior diversifying
variables z∗s and z∗t .

The STRIPE++
shape and STRIPE++

time proposal mechanisms
build on top of the encoder (that produces h) with a MLP
with 3 layers of 512 neurons (with Batch Normalization and
LeakyReLU activations) and a final linear layer to produce
N = 10 latent codes of dimension k = 8 (corresponding to
the proposals for zs or zt).

STRIPE++ hyperparameters: We cross-validated the
relevant hyperparameters of STRIPE++:

• k: dimension of the diversifying latent variables z. This
dimension should be chosen relatively to the hidden
size of the RNN encoders and decoders (128 in our
experiments). We fixed k = 8 in all cases.

• N : the number of future trajectories to sample. We fixed
N = 10. We performed a sensibility analysis to this
parameter in paper Figure 8.

• µ = 20: quality constraint hyperparameter in the DPP
kernels.

E.3 STRIPE++ additional visualizations

In paper Figure 7, we have shown qualitative predic-
tion results of the STRIPE++ model on the Traffic and
Electricity datasets. To complement these visualizations,
we represent in Figure 6 for the same examples the 10th, 90th

quantiles and the mean STRIPE++ prediction, computed over
a set of 100 predictions. We observe that the 10th and 90th

of STRIPE++ predictions offer a realistic and sharp cover of
possible trajectories, that includes the ground truth future.

This contrasts with state-of-the-art deep probabilistic
forecasting methods trained with the MSE or the quantile loss
[17], [18]; the predictions of these models are often smooth
and non-sharp, as illustrated in paper Figure 1 (b). Therefore
they do not correspond to realistic scenarios.

(a) Traffic

(b) Electricity

Fig. 6: STRIPE++ qualitative predictions on real-world
datasets Traffic (a) and Electricity (b).

E.4 STRIPE++ quality/diversity cooperation analysis

We highlight here the importance to separate the criteria for
enforcing quality and diversity. In Figure 7, we represent 50
predictions from the models Diverse DPP DILATE [18] and
STRIPE++ in the plane (DTW,TDI). Diverse DPP DILATE
[18] uses a DPP diversity loss based on the DILATE kernel,
which is the same than for quality. We clearly see that the
two objectives conflict: this model increases the DILATE
diversity (by increasing the variance in the shape (DTW) or
the time TDI) components) but a lot of these predictions have
a high DILATE loss (worse quality). In contrast, STRIPE++
predictions are diverse in DTW and TDI, and maintain an
overall low DILATE loss. STRIPE++ succeeds in recovering a
set of good tradeoffs between shape and time leading a low
DILATE loss.

We also display in Figure 8 the unnormalized results
of the comparison between DeepAR [13] and STRIPE++
with the number of sampled trajectories N . The quality
is measured with −Hquality(DILATE) and the diversity
with −Hdiversity(DILATE) (higher is better in both cases).
These results confirm the conclusions from paper Figure ??.
The diversity increases for deepAR and STRIPE++ with N ;
however, this gain in diversity comes at the cost of a loss of
quality for deepAR, in contrast to STRIPE++ which does not
deteriorate quality.
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Fig. 7: Scatterplot of 50 predictions in the plane (DTW,TDI),
comparing STRIPE++ v.s. Diverse DPP DILATE [18].

Fig. 8: Influence of the number N of trajectories on
quality (−Hquality(DILATE), higher is better) and di-
versity (−Hdiversity(DILATE), higher is better) for the
synthetic-prob dataset.
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