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A quasi-stationary approach to the long-term asymptotics of
the growth-fragmentation equation

Denis Villemonais* Alexander R. Watson†

24th February 2022

Abstract

In a growth-fragmentation system, cells grow in size slowly and split apart at random. Typ-
ically, the number of cells in the system grows exponentially and the distribution of the sizes of
cells settles into an equilibrium ‘asymptotic profile’. In this work we introduce a new method
to prove this asymptotic behaviour for the growth-fragmentation equation, and show that the
convergence to the asymptotic profile occurs at exponential rate. We do this by identifying
an associated sub-Markov process and studying its quasi-stationary behaviour via a Lyapunov
function condition. By doing so, we are able to simplify and generalise results in a number
of common cases and offer a unified framework for their study. In the course of this work we
are also able to prove the existence and uniqueness of solutions to the growth-fragmentation
equation in a wide range of situations.
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1 Introduction

Growth-fragmentation describes a system of objects which grow slowly and deterministically, and
split apart suddenly at random. It arises in biophysical models of cell division [33, §4], cellular
aggregates [2] and protein polymerisation [36]. We are concerned in this work with a mathemat-
ical model of a growth-fragmentation system which describes its average behaviour over time. We
will give general conditions for such a model to make sense, and characterise its long-term beha-
viour, by showing that cell numbers grow exponentially and the cell size distribution settles into an
equilibrium, and that this occurs at exponential rate.

In a growth-fragmentation system, each cell has a trait associated with it, called its size. As
time progresses, the size of the cell increases in a deterministic way, mathematically modelled by
an ordinary differential equation. At some random time, it undergoes fragmentation, and splits its
size, again at random, into a collection of descendant cells.

A common starting point for the study of these phenomena is the equation

∂t ut (x)+∂x
(
c(x)ut (x)

)= ∫ ∞

x
ut (y)k(y, x)dy −K (x)ut (x), (1)

where ut (x) represents the density of cells of size x at time t , c and K are growth and fragmentation
rates respectively, and k represents the repartition of size between parent and descendant cells.

This equation can be expressed in a more general form, without requiring densities, by consid-
ering a semigroup T which solves the following equation:

∂t Tt f (x) = Tt A f (x), A f (x) = ∂ f

∂s
(x)+

∫
(0,x)

f (y)k(x,dy)−K (x) f (x), (2)

for suitable functions f . Here, s represents the growth term, K (x) is again the rate at which a cell
of size x experiences fragmentation, and k(x,dy) is the rate at which a cell of size y appears as the
result of the fragmentation of a cell of size x. We call (2) the growth-fragmentation equation.

Our standing assumptions on the coefficients of (2) will be given at the beginning of section 2.
For the moment, we note that s should be continuous and strictly increasing, recall the definition

∂ f

∂s
(x) = lim

h→0, h>0

f (x +h)− f (x)

s(x +h)− s(x)
,

and define C s to be the set of continuous functions f : (0,+∞) → (0,+∞) such that ∂ f /∂s is well-
defined on (0,+∞). We also write C s

c for functions f ∈ C s with compact support and with ∂ f /∂s
bounded; and C s

loc the set of functions f ∈C s with ∂ f /∂s locally bounded.
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The purpose of this work is to give general conditions for the existence and uniqueness of the
semigroup solving the growth-fragmentation (2), and to describe its long-term behaviour precisely.

For the first of our results, we require the following assumption on the existence of a Lyapunov
type function for A .

Assumption 1. There exists a positive function h ∈C s
loc such that

sup
x∈(0,M)

∫
(0,x)

h(y)

h(x)
k(x,dy) <+∞ (3)

and such that (0,∞) 3 x 7→ A h(x)
h(x) is bounded from above and locally bounded.

This assumption is quite abstract, but we will show shortly that it is verified for a wide class of
coefficients, covering many commonly studied cases in the literature. It gives the following general
result on the solution of the growth-fragmentation equation.

Theorem 1. Assume that Assumption 1 holds true. Let

B = { f : (0,∞) →R : f is Borel and f /h is bounded } and D(A ) =C s
c ∪ {h}.

There exists a unique semigroup (Tt )t≥0 on B such that∫ t

0
Tu |A f |(x)du <∞ and Tt f (x) = f (x)+

∫ t

0
TuA f (x)du for all f ∈D(A ). (4)

We study the semigroup T by connecting it to that of a Markov process via an h-transform, and
this is a feature shared by other recent work such as [10, 14, 5, 13]. However, whereas these previous
works have been concerned with finding either a subharmonic function (in the first two cases) or
an eigenfunction (in the latter two) for A , we are quite free in our choice of the function h, provided
that we verify Assumption 1. In turn, we make use of the theory of sub-Markov processes and their
quasi-stationary distributions. This gives us a great deal of freedom and accounts for the flexibility
of our approach. In particular, we do not require conservation of size at splitting events (i.e., K (x) =∫ y

x k(x,dy)), and both K (x) ≤ ∫ y
x k(x,dy) and K (x) ≥ ∫ y

x k(x,dy) are possible in our framework,
modelling respectively size creation and destruction; see section 3.1.1 for a representative example.

Other approaches, which do not adapt well to our situation, have been proposed. An approach
via Hille-Yosida theory may be found in [4, 7, 8], and further references therein; a method using
strongly continuous semigroups in L1 spaces is contained in [14, 29, 27]; [31] discusses perturba-
tion results for C0-semigroups in well chosen function spaces; an approach from martingale theory
can be found in [10]; and [6] uses a fixed point argument.

The second part of our work consists of describing the long-term behaviour of T , the unique
solution of the growth-fragmentation equation. In order to do this, we leverage a representation of
T in terms of a sub-Markov process which is developed in the proof of Theorem 1, and make use
of the theory of quasi-stationary limits in weighted total variation distance. Some further assump-
tions are required, and we content ourselves with referring forward to section 3 for these.

Theorem 2. Assume that Assumption 1, an irreducibility assumption (Assumption 2), and a local
Doeblin condition (Assumption 3 or 4) hold. Assume that there exist positive functions ψ,ψ′ ∈ C s

loc,
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constants λ1 ≥ λ2 and C > 0, and a compact interval L ⊂ (0,+∞), such that inf(0,+∞)ψ/h > 0,

sup(0,+∞)ψ
′/h <∞, limx→0,+∞

ψ′(x)
ψ(x) = 0, supx∈(0,M)

∫
(0,x)

ψ′(y)
ψ′(x) k(x,dy) <+∞ for all M > 0, and

Aψ(x) ≤−λ1ψ(x)+C 1L(x), x ∈ (0,+∞),

Aψ′(x) ≥−λ2ψ
′(x), x ∈ (0,+∞).

Then, there existλ0 ≤λ2, a unique positive measure m on (0,+∞) and a unique functionϕ : (0,+∞) →
(0,+∞) such that m(ψ) = 1 and ‖ϕ/ψ‖∞ = 1 and such that, for all t ≥ 0, mTt = eλ0t m and Ttϕ =
eλ0tϕ. Moreover, for all f : (0,+∞) →R such that | f | ≤ψ, we have∣∣∣eλ0t Tt f (x)−ϕ(x)m( f )

∣∣∣≤ ce−γtψ(x).

for some constants c,γ> 0. If moreover Aψ′
ψ′ is not constant, then λ0 <λ2.

This result is exactly what one hopes for from a Lyapunov function approach, but the reader
may still wonder whether these conditions and assumptions can be verified in practice. In sec-
tion 3.1, we consider several situations and give a detailed comparison with the literature. A rep-
resentative case is the following.

Consider the operator A given in the form

A f = c(x) f ′(x)+K (x)

(∫
(0,1)

f (ux) p(du)− f (x)

)
,

where p is a finite measure on (0,1) such that
∫

(0,1) u p(du) = 1, K is right-continuous and c : (0,+∞) →
(0,+∞) is right-continuous and locally bounded. This means that p(du) describes the rate of see-
ing children of relative size du at splitting, regardless of the size of the parent; there is conservation
of size at splitting events; and that prior to splitting, the size xt of a cell follows the ordinary dif-

ferential equation ẋt = c(xt ). To put this into the framework of (2), we may take s(x) = ∫ x
1

dy
c(y) and

k(x, ·) = K (x)p ◦m−1
x , where mx (u) = xu.

Proposition 1. Assume that supx∈(0,M) K (x) < +∞ for each M > 0, that Assumption 2 and either
Assumption 3 or 4 hold true, that ∫

(0,1)

K (x)

c(x)
dx <+∞

and that there exists α> 1 such that, for all u ∈ (0,1),

liminf
x→+∞

∫ x

ux

K (x)

c(x)
dx > −α lnu

1−∫
(0,1) vαp(dv)

. (5)

Then, Assumption 1 holds, and the conclusions of Theorem 2 are valid, with λ0 < 0.

In the case where p(du) = 2du, which represents splitting into an average of two children with
uniform size repartition, Assumption 3 is satisfied provided K has some positive lower bound on a
compact interval, and the inequality (5) holds if

liminf
x→+∞

xK (x)

c(x)
> 3+2

p
2. (6)
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On the contrary, when p(du) = 2δ1/2(du), representing equal mitosis, Assumption 4 holds
provided that K has some positive lower bound on a compact interval I and that c(x) 6= 2c(x/2) for
x ∈ I (see Remark 3). Moreover, the right-hand side of (5) has minimum approximately −3.86lnu
(with the exact expression involving an implicit function). This implies that (5) holds if

liminf
x→+∞

xK (x)

c(x)
> 3.86. (7)

Proposition 1 and inequalities (6) and (7) give very concrete conditions for checking the long-term
behaviour in these common cases.

These situations were considered in Theorem 1.3 of [13] where, as discussed earlier, the au-
thors begin by finding an eigenfunction ϕ for A , using functional analysis techniques, and then
use Lyapunov function criteria for the convergence of the resulting (conservative) semigroup. Pro-
position 1 improves upon this by reducing the regularity assumptions on c and K and the require-
ments on the relative growth rates of these functions; for instance, [13] additionally requires that
limx→0 xK (x)/c(x) = 0 and that limx→+∞ xK (x)/c(x) =∞, compared to our condition (6) or (7).

Besides giving general Lyapunov function criteria for solutions of the growth-fragmentation
and their long-term behaviour, the present work also makes it possible to consider more general
growth dynamics, since the growth term in A is given by the general differential ∂ f /∂s. As in-
timated in the previous example, the classical situation, where ∂ f /∂s is replaced by c f ′ for some

continuous positive function c, can be recovered by setting s(x) = ∫ x
1

dy
c(y) . However, our setting al-

lows us to handle, in particular, situations where the drift c vanishes and is not Lipschitz. Indeed,
consider the case where c(x) =p|x −1|. Then the flow directed by the generator f 7→ c f ′, acting on
continuously differentiable functions, has multiple solutions, whereas the flow directed by the gen-
erator f 7→ ∂ f /∂s, acting on functions with bounded s derivatives, admits only one solution. It also
covers seamlessly the situation where the drift c is not locally bounded. The fact that the generator
is not restricted to continuously differentiable functions is of course a central component.

Finally, finer estimates and properties of the spectral elements of T are available in the liter-
ature, though they may not hold true in the level of generality we consider. We refer the reader
to the advanced studies conducted, among others, in [21, 3, 1, 7, 15] and references therein. Note
also that some very different, and difficult to compare, approaches have been considered; see for
instance [20] for a study of the entropy associated to the measure valued solution of (1), [21] for a
compactness argument, [24] where explicit computations in L2 spaces are considered, and [25, 31]
and references therein for the use of general properties of positive operators on Banach spaces, as
well as recent works [38, 26, 12, 28].

Outline of the paper. In section 2, we prove that the growth-fragmentation equation admits a
unique solution, by representing it as an h-transform of the semigroup of a sub-Markov process. In
section 3, we state and prove a general result which implies Theorem 2, and we provide several ap-
plications to different families of growth fragmentation equations, with a comparison to the state
of the art. Finally, in Appendix A, we give several useful technical properties of one dimensional
piecewise-deterministic Markov processes (PDMP).

2 Existence of a unique solution to the growth-fragmentation equation

This section is devoted to the proof of Theorem 1, which is to say, the existence and uniqueness
of a semigroup T solving the growth-fragmentation (2). Before discussing this in detail, we should
clarify our standing assumptions, notation and definitions.
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The coefficients of (2) have the following standing assumptions in place. Let k be a positive ker-
nel from (0,+∞) to itself such that k(x, [x,+∞)) = 0 for all x ∈ (0,+∞), let s : (0,+∞) →R be a strictly
increasing continuous function such that s(1) = 0 and limx→+∞ s(x) =+∞, and K : (0,+∞) → R be
a measurable locally bounded function.

Recall the definition given earlier of the derivative of f with respect to s,

∂ f

∂s
(x) = lim

h→0, h>0

f (x +h)− f (x)

s(x +h)− s(x)
,

and the function spaces C s , C s
c and C s

loc of s-differentiable functions. It is also useful at this point to
observe that, if a function f is s-differentiable on the right with locally bounded derivatives in the
above sense, then f is s-absolutely continuous (as defined in the appendix) and ∂ f /∂s is its Radon–
Nikodym derivative. On the other hand, if f is s-absolutely continuous, then the right-hand side
above is equal to its Radon–Nikodym derivative almost everywhere.

We say that T = (Tt )t≥0 is a semigroup on a measurable space E if

(i) for each t ≥ 0, Tt is a kernel from E to itself,

(ii) for each t ,u ≥ 0, x ∈ E and measurable A ⊂ E , Tt+u(x, A) = ∫
E Tt (x,dy)Tu(y, A),

(iii) T0(x, ·) = δx

As is usual for kernels, we can regard Tt as acting on a measurable function f : E → R+ by the
definition Tt f (x) = ∫

E Tt (x,dy) f (y), and if µ is a measure on E , we can also define a measure µTt =∫
E µ(dx)Tt (x, ·). If B is some space of functions on E with the property that Tt (B) ⊂ B , we will refer

to Tt as a semigroup on B . Crucially, we do not make the requirement that T is strongly continuous.
In addition (see Corollary 2 below) the semigroup T does not depend on the choice of h made in
Assumption 1.

The proof of our first theorem is based on the study of the infinitesimal generator of an auxiliary
Markov process. More precisely, setting b := supx∈(0,+∞)

A h(x)
h(x) which is finite by assumption, we

show that L f (x) = A (h f )(x)
h(x) −b f (x) defines the infinitesimal generator of a sub-Markov process X ,

whose killing rate is given by

q(x) := b − A h(x)

h(x)
≥ 0, ∀x ∈ (0,+∞).

The following result is proved in section 2.1.

Proposition 2. Assume that Assumption 1 holds true. Let E = (0,∞)∪ {∂}, where ∂ is an isolated
point. Consider the operator L given by L f (∂) = 0 and

L f (x) = A (h f )(x)

h(x)
−b f (x)+q(x) f (∂),

= ∂ f

∂s
(x)+

∫
(0,x)

(
f (y)− f (x)

)h(y)

h(x)
k(x,dy)+q(x)

(
f (∂)− f (x)

)
, x ∈ (0,+∞).

with domain
D(L ) = {

f : E →R : f (∂) ∈R and f |(0,∞) ∈C s
c

}
.

There exists a unique càdlàg solution to the martingale problem (L ,D(L )) for any initial measure
δx . Moreover, its semigroup Q satisfies: for all t ≥ 0, all x ∈ E and all f ∈D(L ),∫ t

0
Qu |L f |(x)du <+∞ and Qt f (x) = f (x)+

∫ t

0
QuL f (x)du. (8)
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Then we show that there is at most one Markov semigroup Q on L∞(E) and satisfying (8). A
semigroup Q on E is called Markov if Qt 1E = 1E for all t ≥ 0. The following result is proved in
section 2.2.

Proposition 3. Assume that Assumption 1 holds true. Then there is at most one Markov semigroup
Q on L∞(E) satisfying: for all t ≥ 0, all x ∈ E and all f ∈D(L ),∫ t

0
Qu |L f |(x)du <+∞ and Qt f (x) = f (x)+

∫ t

0
QuL f (x)du. (9)

The proof of Theorem 1 is then concluded in section 2.3, making use of the fact that solutions
of (9) are h-transforms of solutions to the growth fragmentation equation (4). With this repres-
entation, we can make use of the theory of Markov processes to prove further properties of the
semigroup T . In section 3, we leverage on this representation to prove the existence of a spectral
gap. In the following result, proved in section 2.4, we prove properties on the support of δx T and
prove that (4) holds true on an extension of the domain of A .

Corollary 1. Assume that Assumption 1 holds true. Then, for all x ∈ (0,+∞) and all t ≥ 0, the
support of δx Tt is included in [0, s−1(s(x)+ t )]. Let f ∈ C s

loc such that | f |/|h| is bounded and such

that inf A f
h >−∞ or sup A f

h <+∞. Then equality (4) holds true.

We now conclude with a result, proved in section 2.5, ensuring that the solution to (4) does not
depend on the choice of h.

Corollary 2. Let h1 and h2 satisfy Assumption 1. Then, the solution T 1 to (4) with h1 instead of h,
and the solution T 2 to (4) with h2 instead of h, are identical.

Remark 1. In this paper, we assume that sizes take values in (0,+∞). However, when 0 is an en-
trance boundary for the growth component, that is when s(0+) >−∞, it is straightforward to adapt
the method and results of this paper to the case where the space (0,+∞) is replaced by [0,+∞),
with k(x, {0}) ≥ 0 for all x ∈ [0,+∞).

2.1 An auxiliary Markov process

This section is devoted to the proof of Proposition 2.
From now on, we set

kh(x,dy) = h(y)

h(x)
k(x,dy).

so that, by Assumption 1, x 7→ kh(x, (0, x)) is bounded on (0, M), for all M > 0. Before proving
Proposition 2, we start with a useful technical lemma. We define f−(x) = max{− f (x),0}.

Lemma 1. Assume f ∈D(L ), meaning that f |(0,+∞) ∈C s
c , and that Assumption 1 holds true. Then

(i) L f is locally bounded;

(ii) if f is non-negative, then L f is bounded below;

(iii) if f is non-negative and f (∂) = 0, then, for all M > 0, supx∈(0,M) L f (x) <+∞.

7



Proof. Since f ∈ D(L ), f |(0,∞) ∈ C s
c . Define F = supp f |(0,∞), a compact subset of (0,∞). We first

note the following: for all x ∈ (0,+∞),

∣∣L f (x)
∣∣≤ ∥∥∥∥∂ f

∂s

∥∥∥∥∞+2‖ f ‖∞kh(x, (0, x))+2‖ f ‖∞q(x),

where q(x) = b − A h(x)
h(x) ≥ 0 and kh(x, (0, x)) are locally bounded by Assumption 1. This proves the

first point.
If f is non-negative, then

L f (x) ≥−
∥∥∥∥∂ f

∂s

∥∥∥∥∞− f (x)kh(x, (0, x))−q(x) f (x) ≥−
∥∥∥∥∂ f

∂s

∥∥∥∥∞−1x∈F‖ f ‖∞(kh(x, (0, x))+q(x)) (10)

which is bounded below since F is compact and q(x) and kh(x, (0, x)) are locally bounded. This
proves the second point of Lemma 1.

If f is non-negative and f (∂) = 0, then

L f (x) ≤
∥∥∥∥∂ f

∂s

∥∥∥∥∞+
∫

(0,x)
f (y)kh(x,dy) ≤

∥∥∥∥∂ f

∂s

∥∥∥∥∞+‖ f ‖∞kh(x, (0, x))

which is bounded over x ∈ (0, M), for all M > 0, according to Assumption 1.

We can now proceed to the proof of Proposition 2.

Proof of Proposition 2. We first show that there exists a càdlàg solution of the (L ,D(L )) martingale
problem, and then prove that this solution is unique.

(1) There exists a càdlàg solution of the (L ,D(L )) martingale problem.
Since s is continuous and strictly increasing, there exists a unique semi-flow φ : (0,+∞) ×

[0,+∞) → (0,+∞) such that φ(x,0) = x and

d

dt
s(φ(x, t )) = 1, ∀x, t , (11)

which is given by φ(x, t ) = s−1(s(x)+ t ) for all x ∈ (0,+∞) and t ≥ 0. We also set φ(∂, t ) = ∂ for
all t ≥ 0. We observe that φ is not explosive since it satisfies s(φ(x, t )) = s(x)+ t for all t ≥ 0 and
x ∈ (0,+∞), while s(y) →+∞ when y →+∞. Moreover, for all f ∈D(L ), we have

d+
dt

f (φ(x, t )) := lim
h→0,h>0

f (φ(x, t +h))− f (φ(x, t ))

h

= lim
h→0,h>0

f (s−1(s(x)+ t +h))− f (s−1(s(x)+ t ))

h

= lim
y→φ(x,t ),y>φ(x,t )

f (y)− f (φ(x, t ))

s(y)− s(φ(x, t ))
= ∂ f

∂s
(φ(x, t )). (12)

Let us consider the piecewise-deterministic Markov process (PDMP) X directed by the flow
φ between its jumps and with jump kernel kh and killing rate q , constructed jump after jump,
similarly as in [19], with values on (0,+∞)∪ {∞,∂} and up to the time of explosion of the number
of jumps. Here ∞ is the point to which the process is sent after explosion of the number of jumps
and ∂ is the cemetery point.

8



We prove now that the process X is non-explosive, so that it defines a càdlàg Markov process
on E . For all k ≥ 2, we set τ+k = inf{t ≥ 0, X t ≥ k or X t− ≥ k} and τ−1/k

= inf{t ≥ 0, X t ≤ 1/k or X t− ≤ 1/k}.
As pointed out above, we know that the flow φ does not explode. Since the process only admits
negative jumps, X t ≤ φ(X0, t ) almost surely, so that, for all x ∈ (0,+∞) and all t ≥ 0, there exists
kx,t ≥ 2 such that

Px (τ+kx,t
≤ t ) = 0, (13)

where Px denotes the law of X with initial distribution δx (as usual, we extend this notation to
initial distribution µ by Pµ and denote Ex and Eµ the associated expectations).

According to (3), the jump rate of X from (0,+∞) to (0,+∞), that is y 7→ kh(y, (0, y)), is uniformly
bounded on (0,kx,t ]. Since in addition ∂ is an absorbing point, the process does not undergo an
infinity of negative jumps before time t ∧τ+kx,t

, Px -almost surely for all x ∈ E . Using the fact that

the flow φ is increasing, we deduce that the process does not converge to 0 before time t ∧ τ+kx,t

Px -almost surely for all x ∈ E , that is

lim
k→+∞

Px (τ−1/k
≤ t ∧τ+kx,t

) = 0, ∀x ∈ E . (14)

Combining both (13) and (14), we deduce that, for all initial distribution ν on (0,+∞)∪∂,

lim
k→+∞

Pν(τ−1/k
∧τ+k ≤ t ) = 0. (15)

This concludes the proof that X defines a non-explosive càdlàg Markov process on E .
Let us now remark that it satisfies the (L ,D(L ))-local martingale problem. Indeed, for all

f ∈ D(L ), f belongs to the domain of the extended generator of X , as proved in Theorem 26.14
in [19], with the only difference being that, in our case, the flow φ is not determined by a locally
Lipschitz continuous vector field χ, but instead by s. The only adaptation to be made in the proof
of Theorem 26.14 in [19] to obtain that f is an element of the domain of the extended generator of
X is as follows: we have, denoting by Ji−1 and Ji the i −1th and i th jump times of X ,

f (X Ji−)− f (X Ji−1 ) =
{

0 if X Ji−1 = ∂,∫ Ji−Ji−1
0

d+
dt f (φ(X Ji−1 , t ))dt = ∫ Ji−Ji−1

0
∂ f
∂s (φ(X Ji−1 , t ))dt = ∫ Ji

Ji−1

∂ f
∂s (X t )dt , otherwise

instead of
∫ Ji

Ji−1
X (X t )dt in [19]. The rest of the proof is identical.

Let us now prove that X satisfies the (L ,D(L ))-martingale problem. We have that, for all x ∈ E

and under Px , M f
t := f (X t )− f (x)− ∫ t

0 L f (Xu)du is a càdlàg local martingale. Moreover, since
f and L f are locally bounded by Lemma 1 point (i), the sequence τk = τ−1/k

∧τ+k is a localization
sequence.

We initially focus on the case where f ∈ D(L ) is non-negative, and set a = infE L f , which is
finite by Lemma 1 point (ii). We have, for any fixed t > 0 and any k ≥ 2,

|M f
t∧τk

| ≤ 2‖ f ‖∞+
∫ t

0

∣∣L f (Xu)
∣∣ du ≤ 2‖ f ‖∞+|a|t +

∫ t

0

∣∣L f (Xu)−a
∣∣ du

9



where, by the monotone convergence theorem and the local martingale property for M f ,

Ex

(∫ t

0
|L f (Xu)−a|du

)
= Ex

(
liminf
k→+∞

∫ t∧τk

0
|L f (Xu)−a|du

)
= liminf

k→+∞
Ex

(∫ t∧τk

0
|L f (Xu)−a|du

)
= liminf

k→+∞
Ex

(∫ t∧τk

0
(L f (Xu)−a)du

)
= liminf

k→+∞
Ex

(
f (X t∧τk )− f (x)−M f

t∧τk

)
+|a|t .

≤ 2‖ f ‖∞+|a|t .

Hence, for all T ≥ 0, {|M f
t∧τk

| : t ≤ T,k ≥ 2} is dominated by an integrable random variable. We

conclude by [35, Theorem 51] that, for all x ∈ E , under Px , M f is a martingale.
Next, we remove the assumption that f is non-negative, and permit any f ∈ D(L ). Let ϕ ∈

D(L ) such that ϕ ≥ f+, where f+(x) = max{ f (x),0}. Then, according to the above result, Mϕ is a
martingale. Setting ψ = ϕ− f , we have ψ ≥ 0 and ψ ∈ D(L ) and hence Mψ is also a martingale.
Since M f = Mϕ−Mψ, we deduce that M f is a martingale.

Finally, we conclude that X defines a non-explosive càdlàg Markov process on E , which satisfies
the (L ,D(L ))-martingale problem. In particular, we showed that

∫ t
0 Ex (|L f |(Xu))du < +∞, and

we observe that the semigroup of X satisfies (8).

(2) X is the unique càdlàg solution of the (L ,D(L )) martingale problem. For all n ≥ 2, we
consider the operator Ln on D(L ) defined, for all x ∈ E and g ∈D(L ), by

Ln g (x) = 1x∈(0,+∞)

[
∂g

∂sn
(x)+

∫
(0,x)∪∂

[g (y)− g (x)]Qn(x,dy)

]
,

where sn is a continuous increasing function on (0,+∞) and Qn a kernel such that
sn(x) = s(x), x > 1/n,

limx↓0 sn(x) =−∞,

Qn(x,dy) = 1x∈(1/n,n)[kh(x,dy)+q(x)δ∂(dy)].

According to Proposition 17 in the appendix, the solution of the martingale problem for (Ln ,D(L ))
is unique. In particular, any two solutions of the DE [0,+∞) martingale problem for Ln have the
same distribution on DE [0,+∞) (see Corollary 4.4.3 in [23]). This and Theorem 4.6.1 in [23] im-
ply that, for each n ≥ 2 and all probability measures ν on E , the stopped martingale problem
for (Ln ,ν, (1/n,n)∪ {∂}) admits a unique solution with sample paths in DE [0,+∞). Since, for all
g ∈ D(L ), we have Ln g (x) = L g (x) for all x ∈ (1/n,n)∪ {∂}, we deduce that the stopped martin-
gale problem for (L ,ν, (1/n,n)∪{∂}) also admits a unique solution with sample paths in DE [0,+∞).
Since X stopped at time τn := inf{t ≥ 0, X t or X t− ∉ (1/n,n)∪ {∂}} is a càdlàg solution to this stopped
martingale problem, it gives its unique solution in DE [0,+∞). Since it satisfies in addition

lim
n→+∞Pν(τn ≤ t ) = 0,

we deduce from Theorem 4.6.3 in [23] that there is a unique solution to the DE [0,+∞)-martingale
problem associated to L on D(L ).
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2.2 Uniqueness of a Markov semigroup generated by L

This section is devoted to the proof of Proposition 3, that is to the uniqueness of a Markov semig-
roup Q satisfying (9).

In order to do so, we first prove useful technical lemmas. Then, we show that, given such a
Markov semigroup Q, one can construct a càdlàg solution to the (L ,D(L ))-martingale problem
with semigroup Q. The uniqueness of the solution to (9) then derives from the uniqueness of this
martingale problem, proved in Proposition 2.

2.2.1 Technical lemmas

Let Q be a Markov semigroup solution to (9). The following lemmas will be useful to prove the
non-explosion of a process with semigroup Q.

Lemma 2. Assume that Assumption 1 holds true. Let W : (0,+∞) ∪ {∂} → [0,+∞) be such that
W |(0,+∞) is a non-decreasing function in C s

loc with W (∂) = 0 and such that supz>0
∂W
∂s (z) < +∞.

Then,
∫ t

0 Qu |L W (x)|du <∞ and

Qt W (x) ≤W (x)+
∫ t

0
QuL W (x)du, t ≥ 0 and x ∈ (0,+∞).

Proof of Lemma 2. For any A ≥ 1, we consider the C s
loc function WA : (0,+∞) → [0,+∞) defined by

WA(x) =
{

W (x) if x ≤ A+1,

W (A+1) if x ≥ A+1,

and also set WA(∂) = 0. For any m ≥ 3, we consider a C s
loc function f A

m : (0,+∞) → [0,+∞) such that

f A
m (x) =

{
W (A+1) if x ≤ 1/m,

WA(x) if x ≥ 2/m,

such that f A
m which is non-increasing on (1/m,2/m). In particular,

∂ f A
m
∂s (x) ≤ ∂WA

∂s (x) ≤ ∂W
∂s (x) for all

x ∈ (0,+∞). We also set f A
m (∂) = 0.

Since g A
m :=W (A+1)1E − f A

m ∈D(L ), we deduce from (9) that, for all t ≥ 0 and all x ∈ (0,+∞),

Qt g A
m(x) = g A

m(x)+
∫ t

0
QuL g A

m(x)du = g A
m(x)−

∫ t

0
QuL f A

m (x)du.

But Qt 1E = 1E , and hence, substracting W (A +1)1E (x) on both sides of the equation, we deduce
that

Qt f A
m (x) = f A

m (x)+
∫ t

0
QuL f A

m (x)du. (16)

Set h A
m(z) = ∫

(0,z)[ f A
m (y)− f A

m (z)]kh(z,dy) for all z > 0. We observe that h A
m(z) ≤ 0 for all z ≥ A +

1 and that h A
m(z) ≤ W (A + 1)supy∈(0,A+1) kh(y, (0, y]) for all z ≤ A + 1, which is finite according to

Assumption 1. Using the fact that, for all z > 0,

f A
m

∂s
(z)+q(x)( f A

m (∂)− f A
m (z)) = f A

m

∂s
(z)−q(x) f A

m (z) ≤CW := sup
y>0

∂W

∂s
(y),

11



we deduce that

sup
m≥1

sup
z∈(0,+∞)

L f A
m (z) <+∞.

Hence, applying Fatou’s Lemma in the integral part of (16), we deduce that

limsup
m→+∞

Qt f A
m (x) ≤ limsup

m→+∞
f A

m (x)+
∫ t

0
Qu(limsup

m→+∞
L f A

m )(x)du. (17)

We have limsupm→+∞ f A
m (x) =WA(x) and the left hand side is equal to Qt WA(x) by dominated con-

vergence (recall that f A ≤W (A+1)). Moreover, for any fixed z > 0, we deduce from Fatou’s Lemma
(recall that, when m → +∞, f A

m (y)− f A
m (z) is uniformly bounded from above in y and converges

pointwise to WA(y)−WA(z), while kh(z,dy) has finite mass) that

limsup
m→+∞

∫
(0,z)

[ f A
m (y)− f A

m (z)]kh(z,dy) ≤
∫

(0,z)
[WA(y)−WA(z)]kh(z,dy),

while ∂ f A
m /∂s(z) converges pointwisely toward ∂W A/∂s(z), so that

limsup
m→+∞

L f A
m (z) ≤L WA(z).

This and (17) thus entail that, for all A ≥ 2,

Qt WA(x) ≤WA(x)+
∫ t

0
QuL WA(x)du.

Since L WA ≤CW , we can use again Fatou’s Lemma, and deduce

limsup
A→+∞

Qt WA(x) ≤ limsup
A→+∞

WA(x)+
∫ t

0
Qu(limsup

A→+∞
L WA)(x)du.

On the one hand, limsupA→+∞WA(x) = W (x) and, by monotone convergence, we obtain that
limsupA→+∞Qt WA(x) = Qt W (x). On the other hand, using the monotone convergence theorem
(note that WA(y) is increasing in A, for any fixed y), we deduce that, for all z > 0,

limsup
A→+∞

∫
(0,z)

[WA(y)−WA(z)]kh(z,dy) =
∫

(0,z)
[W (y)−W (z)]kh(z,dy)

and hence that limsupA→+∞L WA(z) =L W (z). This implies that

Qt W (x) ≤W (x)+
∫ t

0
QuL W (x)du.

In particular, since L W is bounded from above by CW , this implies that
∫ t

0 Qu(L W )−(x)du <
+∞ and hence that

∫ t
0 Qu |L W |(x)du <+∞. This concludes the proof of Lemma 2.

Lemma 3. We define the function p : E → [0,+∞] by p(z) = kh(z, (0,1)) and p(∂) = 0. If Assumption 1
holds true, then p(E) ⊂ [0,+∞) and, for all x ∈ (0,+∞),∫ t

0
Qu p(x)du <+∞.
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Proof of Lemma 3. We first observe that p(z) <+∞ for all z ∈ (0,+∞) according to (3). Let W be a
C s

loc non-decreasing function with W (∂) = 0, such that CW := supz>0
∂W
∂s (z) <+∞ and

W (x) =
{

0 if x ≤ 1,

1 if x ≥ 2.

For all z > 0, we have

L W (z) ≤CW +
∫

(0,z)
[W (y)−W (z)]kh(z,d y) ≤CW +

{
0 if z ≤ 2

−∫
(0,z) 1y≤1 kh(z,dy) if z ≥ 2.

Hence

(L W )−(z) ≥ 1z≥2

∫
(0,z)

1y≤1kh(z,dy)−CW

= p(z)1z≥2 −CW ≥ p(z)− sup
r∈(0,2)

kh(r, (0,r ))−CW ,

where supr∈(0,2) kh(r, (0,r )) <+∞ by Assumption 1. Hence

∫ t

0
Qu p(x)du ≤

∫ t

0
Qu(L W )−(x)du + t

(
sup

r∈(0,2)
kh(r, (0,r ))+CW

)
.

According to Lemma 2, we have
∫ t

0 Qu(L W )−(x)du <+∞. Hence we obtain∫ t

0
Qu p(x)du <+∞.

Lemma 4. Assume that Assumption 1 holds true. Let W : E → [0,+∞) be a C s
loc non-increasing func-

tion such that W (x) = 0 for all x ≥ 1 and W (∂) = 0. Assume that pW (x) <+∞ and
∫ t

0 Qu pW (x)du <
+∞ for all t > 0 and x ∈ (0,+∞), where pW (x) = ∫

(0,x) W (y)kh(x,dy). Then
∫ t

0 Qu |L |W (x)du <+∞
and

Qt W (x) ≤W (x)+
∫ t

0
QuL W (x)du, ∀x ∈ (0,+∞) and t ≥ 0.

Proof. For all A ≥ 2, let WA : (0,+∞) → [0,+∞) be the non-increasing C s
loc function defined as

WA(x) =
{

W (1/A) if x ≤ 1/A,

W (x) if x ≥ 1/A.

We also set WA(∂) = 0. For all m ≥ 2, let m′ > 0 be such that s(m′) = s(m) +W (1/A) and let
f A

m : (0,+∞) → [0,+∞) be a C s
loc function such that

f A
m (x) =

{
WA(x) if x ≤ m,

W (1/A) if x ≥ m′,
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such that f A
m is non-decreasing on (1,+∞) and such that

∂ f A
m
∂s (x) ≤ 1 for all x ∈ (0,+∞). We set

f A
m (∂) = 0. Proceeding as in the proof of Lemma 2, we have

Qt f A
m (x) = f A

m (x)+
∫ t

0
QuL f A

m (x)du, ∀t ≥ 0 and x ∈ (0,+∞). (18)

Set h A
m(z) = ∫

(0,z)[ f A
m (y)− f A

m (z)]kh(z,dy) for all z > 0. We have, for all 0 < y ≤ z,

f A
m (y)− f A

m (z) ≤W (1/A)1y<1

and hence

h A
m(z) ≤W (1/A)

∫
(0,z)

1y<1kh(z,dy) ≤W (1/A)p(z),

where p is defined in the previous lemma. Since
∂ f A

m
∂s (z) ≤ 1 for all z > 0, we deduce that L f A

m (z) ≤
1+W (1/A)p(z). Since

∫ t
0 Qu(1+W (1/A)p)(x)du < +∞ according to Lemma 3, we deduce using

Fatou’s Lemma in (18), that

limsup
m→+∞

Qt f A
m (x) ≤ limsup

m→+∞
f A

m (x)+
∫ t

0
Qu(limsup

m→+∞
L f A

m )(x)du.

As in the proof of Lemma 2, this entails that

Qt WA(x) ≤WA(x)+
∫ t

0
QuL WA(x)du.

Now we observe that, for all z > 0, for all A ≥ 2,

L WA(z) ≤
∫

(0,z)
W (y)kh(z,dy) = pW (z).

Since pW is integrable by assumption, we can apply again Fatou’s Lemma to deduce that

limsup
A→+∞

Qt WA(x) ≤ limsup
A→+∞

WA(x)+
∫ t

0
Qu(limsup

A→+∞
L WA)(x)du.

As in the proof of Lemma 2, this entails that

Qt W (x) ≤W (x)+
∫ t

0
QuL W (x)du.

In addition,
∫ t

0 Qu(L W )+(x)du ≤ ∫ t
0 Qu pW (x)du <+∞, and hence

∫ t
0 Qu(L W )−(x)du <+∞, which

concludes the proof.

2.2.2 Construction of càdlàg Markov process with semigroup Q

In this section, Q is a Markov semigroup satisfying (9). In Lemma 5, we prove the continuity and the
non-explosion of any process (Zt )t∈F with semigroup Q, where F ⊂ [0,+∞) containsQ+ = [0,+∞)∩
Q and is countable.
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Lemma 5. Assume that Assumption 1 holds true. Let F ⊃ Q+ be a countable subset of [0,+∞)
and let (Zt )t∈F be a Markov process on E with semigroup Q, defined on the probability space Ω =
E F . Then, almost surely, the process (Zt )t∈F is continuous at any time t ∈ F and, for all T > 0,
inft∈F∩[0,T ] 1Zt 6=∂/Zt <+∞ and supt∈F∩[0,T ] 1Zt 6=∂Zt <+∞.

Proof. First note that the existence of (Zt )t∈F is guaranteed by the Kolmogorov extension theorem.
In order to simplify the expressions, we consider the case F =Q+. We denote by PZ

x (resp. PZ
µ ) the

law of Z with initial measure δx (resp. µ), with the associated expectations EZ
x and EZ

µ . We first
prove that Z is right-continuous almost surely, then that it is left-continuous almost surely, and
conclude by proving that, on any finite time horizon, the trajectories of the process are almost
surely bounded away from 0 and +∞.

(1) The process (Zt )t∈Q+ is right-continuous almost surely. Let x ∈ (0,+∞) and f : E → [0,+∞)
such that f |(0,+∞) ∈ C s

c with f (∂) = 0 and such that f is maximal at x. Fix δ > 0 a positive rational
number. For all n ≥ 1, let M (n)

0 = 0 and, for all k ≥ 0,

M (n)
k+1 −M (n)

k = f (Zδ(k+1)/n)− f (Zδk/n)−
∫ δ/n

0
QuL f (Zδk/n)du.

The process M (n) is a discrete time martingale and, using Doobs inequality, we deduce that, for all
ε> 0,

PZ
x

(
sup

k∈{0,...,n}
|M (n)

k | > ε
)
≤ EZ

x

(|M (n)
n |)

ε
. (19)

But M (n)
k = f (Zδk/n)− f (x)−∑k−1

l=0

∫ δ/n
0 QuL f (Zδl /n)du, so that

|M (n)
n | ≤ f (x)− f (Zδ)+

n−1∑
l=0

∫ δ/n

0
Qu |L f |(Zδl/n)du,

since the maximum of f is attained at x. Taking the expectation on both sides of the inequality, we
obtain

EZ
x (|M (n)

n |) ≤ f (x)−Qδ f (x)+
n−1∑
l=0

∫ δ/n

0
Qu+δl/n |L f |(x)du

≤Q0 f (x)−Qδ f (x)+
∫ δ

0
Qu |L f |(x)du.

We also obtain that

|M (n)
k | ≥ | f (Zδk/n)− f (x)|−

n−1∑
l=0

∫ δ/n

0
Qu |L f |(Zδl /n)du,

where

P

(
n−1∑
l=0

∫ δ/n

0
Qu |L f |(Zδl/n)du > ε

)
≤ 1

ε
E

(
n−1∑
l=0

∫ δ/n

0
Qu |L f |(Zδl /n)du

)

≤ 1

ε

∫ δ

0
Qu |L f |(x)du.
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Hence (19) implies that

PZ
x

(
sup

k∈{0,...,n}
| f (Zδk/n)− f (x)| > 2ε

)
≤PZ

x

(
sup

k∈{0,...,n}
|M n

k | > ε
)
+PZ

x

(
n−1∑
l=0

∫ δ/n

0
Qu |L f |(Zδl/n)du > ε

)

≤ Q0 f (x)−Qδ f (x)+2
∫ δ

0 Qu |L f |(x)du

ε
.

Setting hx (δ) =Q0 f (x)−Qδ f (x)+2
∫ δ

0 Qu |L f |(x)du, this implies in particular that, for all n ≥ 1,

PZ
x

(
sup

k∈{0,...,n!}
| f (Zδk/n!)− f (x)| > 2ε

)
≤ hx (δ)

ε
.

But, almost surely,

sup
k∈{0,...,n!}

| f (Zδk/n!)− f (x)| ≤ sup
k∈{0,...,(n+1)!}

| f (Zδk/(n+1)!)− f (x)|

and hence we can take the limit when n →+∞ in the penultimate inequality, which leads to

PZ
x

(
sup

n≥1,k∈{0,...,n!}
| f (Zδk/n!)− f (x)| > 2ε

)
=PZ

x

( ⋃
n≥1

{ sup
k∈{0,...,n!}

| f (Zδk/n!)− f (x)| > 2ε}

)

≤ 1∧ hx (δ)

ε
.

Since {k/n! : n ≥ 1, 0 ≤ k ≤ n} = [0,1]∩Q, we deduce that

PZ
x

(
sup

q∈[0,δ]∩Q
| f (Zq )− f (x)| > 2ε

)
≤ 1∧ hx (δ)

ε
. (20)

Note that hx (δ) → 0 when δ→ 0, since Qt f (x) is continuous in t by (9) and Qu |L f |(x) is integrable
over [0, t ]. We deduce that

PZ
x

(
sup

q∈[0,δ]∩Q
| f (Zq )− f (x)| > 2ε

)
−−−→
δ→0

0, (21)

Since this is true for all functions f ∈ C s
c such that f is maximal at x, this implies that (Zt )t∈Q is

(right)-continuous at time t = 0, Px -almost surely. In particular

PZ
x

(
sup

q∈[0,δ]∩Q
|Zq −x| > ε

)
−−−→
δ→0

0, ∀x ∈ (0,+∞).

For x = ∂, we have, for all t ≥ 0, Qt 1∂(x) = Q01∂(x) = 1, so that Zt = ∂ P∂-almost surely, which of
course implies the right-continuity of (Z )t∈Q+ P∂-almost surely. Hence the last convergence also
holds true under P∂ (taking for instance |y −∂| = +∞ for all y ∈ (0,+∞)).

Now, for any probability measure µ on E , integrating with respect to µ(dx) the last convergence
and using the dominated convergence theorem, we deduce that

PZ
µ

(
sup

q∈[0,δ]∩Q
|Zq −Z0| > ε

)
−−−→
δ→0

0,
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which implies that Z is continuous at time 0, Pµ-almost surely.
Finally, fixing t ∈ Q+ and using the Markov property at time t , we deduce that the process is

right continuous at time t ∈Q+ almost surely. This implies that Z is right-continuous at any time
t ∈Q+, PZ

x -almost surely for all x ∈ E .

(2) The process (Zt )t∈Q+ is left-continuous almost surely.
Fix ε> 0. Then, for all x ∈ (2ε,1/ε), there exists a function fx,ε ∈C s

c with support in (ε/2,1/ε+2ε)
such that fx,ε(y) ≤ 1|y−x|<ε. The collection of functions fx,ε can be chosen such that, for each ε> 0,
the values and derivatives (with respect to s) of the functions fx,ε are bounded with respect to x and
such that 0 ≤ fx,ε(y) ≤ fx,ε(x) = 1 for all x ∈ (2ε,1/ε) and all y ∈ (0,+∞)∪ {∂}. We deduce, using (20),
that, for all x ∈ (2ε,1/ε)∪ {∂} (the case x = ∂ being immediate, since we observed in step 1 that ∂ is
absorbing),

PZ
x

(
sup

q∈[0,δ]∩Q
|Zq −x| > ε

)
≤PZ

x

(
sup

q∈[0,δ]∩Q
| fx,ε(Zq )− fx,ε(x)| ≥ 1

)
≤ 2 sup

x∈(2ε,1/ε)
hx,ε(δ), (22)

where hx,ε(δ) =Q0 fx,ε(x)−Qδ fx,ε(x)+2
∫ δ

0 Qu |L fx,ε|(x)du Using the fact that fx,ε is maximal at x,
we deduce that Q0 fx,ε(x)−Qδ fx,ε(x) is non-negative, hence

hx,ε(δ) =Q0 fx,ε(x)−Qδ fx,ε(x)+2
∫ δ

0
Qu |L fx,ε|(x)du

≤ 2(Q0 fx,ε(x)−Qδ fx,ε(x))+2
∫ δ

0
Qu |L fx,ε|(x)du

=−2
∫ δ

0
QuL fx,ε(x)du +2

∫ δ

0
Qu |L fx,ε|(x)du = 4

∫ δ

0
Qu(L fx,ε)−(x)du,

where we used (9) for the penultimate equality. We observe that (L fx,ε)−(z) is bounded in z ∈
(0,+∞) ∪ {∂} according to Lemma 1 point (ii), uniformly in x ∈ (2ε,1/ε) according to (10) in its
proof (for this last claim, we simply observe that ‖ fx,ε‖∞ and ‖∂ fx,ε/∂s‖∞ are bounded in x by
assumption and that the union of the supports of these functions is included in a compact subset
of (0,+∞)). Hence Cε(δ) := 2supx∈(2ε,1/ε) hx,ε(δ) goes to 0 when δ→ 0.

Fix x ∈ E and a positive time t ∈ Q+. Then, for any δ ∈ [0, t ]∩Q, the Markov property at time
t −δ and inequality (22) entail that, for any x ∈ (0,+∞) and any ε′ ∈ (0,ε/2],

PZ
x

(
sup

q∈[0,δ]∩Q
|Zt −Zt−q | > ε

)
≤PZ

x

(
sup

q∈[0,δ]∩Q
|Zt−q −Zt−δ| > ε/2

)

≤PZ
x

(
sup

q∈[0,δ]∩Q
|Zt−q −Zt−δ| > ε′

)

= EZ
x

(
PZ

Zt−δ

(
sup

q∈[0,δ]∩Q
|Zδ−q −Z0| > ε′

))
≤Cε′(δ)+PZ

x (Zt−δ ∉ (2ε′,1/ε′)∪ {∂}). (23)

But

PZ
x (Zt−δ ∉ (2ε′,1/ε′)∪ {∂}) = 1−Qt−δ(1(2ε′,1/ε′)∪{∂})(x) ≤ 1−Qt−δgε′(x),
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where gε′ is any non-negative function in D(L ) bounded by 1, equal to 1 on (3ε′, 1/2ε′)∪ {∂} and
vanishing outside (2ε′,1/ε′)∪ {∂}. Now, for all η> 0, there exists ε′ > 0 such that 1−Qt gε′(x) ≤ η/2
(by dominated convergence theorem and the fact that 1E ≥ gε′ → 1E pointwisely, with Qt 1E = 1E )
and δ′ > 0 such that, for all δ ∈ (0,δ′), |Qt gε′(x)−Qt−δgε′(x)| ≤ η/2 (by continuity of u 7→ Qu gε′ at
time t ). In particular, for all δ ∈ (0,δ′),

PZ
x (Zt−δ ∉ (2ε′,1/ε′)∪ {∂}) ≤ η,

Hence, we deduce from (23) that

PZ
x

(
sup

q∈[0,δ]∩Q
|Zt −Zt−q | > ε

)
−−−→
δ→0

0, (24)

so that Z is PZ
x -almost surely left continuous at time t .

The extension to non-Dirac initial distribution can be done as in Step 1, and this concludes the
proof of the first part of Lemma 5.

(3) The trajectories of the process (Zt )t∈[0,T ]∩Q+ are bounded away from 0 and +∞.
Fix T > 0. We first show that, for all x ∈ (0,+∞)∪{∂}, Z isPZ

x -almost surely bounded from above.
In order to do so, fix x ∈ (0,+∞) (the result is trivial for x = ∂). Let W1 be a C s

loc non-decreasing
function such that C1 := supz>0∂W1/∂s(z) <+∞ and limm→+∞W1(m) =+∞ (such a function exists
since limz→+∞ s(z) =+∞ by assumption) and set W1(∂) = 0. According to Lemma 2 and using the
fact that L W1 ≤C1, we obtain that, for all n ≥ 1,

M (n)
k =W1(ZT k/n)−C1 T k/n

defines a super-martingale. Hence, for any m > 0, defining the stopping time σn
m = inf{l T /n, l ∈

Z+, Zl T /n > m} and using the optional sampling theorem, we deduce that

EZ
x (W1(Zσn

m∧T )) ≤W1(x)+C1T.

Since W1(Zσn
m∧T ) ≥W1(m) on the event σn

m ≤ T , we deduce that

PZ
x (σn

m ≤ T ) ≤ W1(x)+C1T

W1(m)
.

Since (σn!
m)n is almost surely non-increasing and converges toward σm = inf{u ∈ Q+, Zu > m}, we

deduce that

PZ
x (σm ≤ T ) ≤ W1(x)+C1T

W1(m)
.

Using now that (σm)m is almost surely non-decreasing, we deduce that

PZ
x

(
sup

u∈[0,T ]∩Q+
1Zu 6=∂Zu =+∞

)
=PZ

x

(
lim

m→+∞σm ≤ T
)
= 0. (25)

We prove now that Z is almost surely bounded away from 0, starting from x ∈ (0,+∞). We
consider the non-negative measure ν on (0,1) defined by

ν(A) :=
∫ t

0
Qu p A(x)du.
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where p A(z) = ∫ z
0 1A(y)kh(z,dy) for all measurable A subset of (0,1). This is a finite measure ac-

cording to Lemma 3. Hence there exists a non-increasing C s
loc function W2 : (0,+∞) → (0,+∞) such

that W2(z) →+∞ when z → 0 and W2(z) = 0 for all z ≥ 1, and such that ν(W2) <+∞; see Lemma 6
below.

According to Lemma 4 and using the fact that
∫ t

0 QuL W2 du ≤ ν(W2) (with W2(∂) := 0), we have
that, for all n ≥ 1,

N (n)
k =W2(ZT k/n)−ν(W2)T k/n

defines a super-martingale. Defining the stopping time σn
1/m = inf{l T /n : l ∈Z+, Zl T /n < 1/m} and

using the same method used to obtain (25), we deduce that

PZ
x

(
sup

u∈[0,T ]∩Q+
1Zu 6=∂/Zu =+∞

)
= 0.

This and equation (25) concludes the proof of Lemma 5.

Lemma 6. Let ν be a finite measure on (0,1). Then, there exists a non-increasing C s
loc function W2

such that W2(x) →∞ when x → 0, W2(x) = 0 for x > 1 and ν(W2) <+∞.

Proof. Let yn = 2n−1 −1 for n ≥ 1. Let (xn) be a decreasing sequence of numbers in (0,1) such that
ν(0, xn) < 3−n for n ≥ 1, which exists because ν((0,1)) <+∞. Then

A := ∑
n≥1

yn+1ν[xn+1, xn) ≤ ∑
n≥1

2n3−n <∞.

Now let W2 be defined by

W2(x) = yn+1 + s(x)− s(xn+1)

s(xn)− s(xn+1)
(yn − yn+1), x ∈ [xn+1, xn),

so that W2(x) ∈ (yn , yn+1] when x ∈ [xn+1, xn). Let W2(x) = 0 for x ≥ 1. Then W2 is a positive, non-
increasing, continuous, and admits a right derivative with respect to s given by

∂W2

∂s
(x) = yn − yn+1

s(xn)− s(xn+1)
≤ 0, x ∈ [xn+1, xn),

and, for all x ≥ 1, by ∂W2
∂s (x) = 0. Moreover, we have∫

(0,1)
W2(x)ν(dx) ≤ ∑

n∈N
yn+1ν ([xn+1, xn)) <+∞,

which proves the lemma.

We state now the uniqueness of the Markov semigroup, so that the proof of the following lemma
concludes the proof of Proposition 3. In order to do so, we show that (Zt )t∈Q+ (as in the proof of
the preceeding lemma) can be extended to a càdlàg process (Yt )t∈[0,+∞) with values in E , which
appears to be solution to the (L ,D(L ))-martingale problem. The conclusion is then obtained
from Proposition 2.

Lemma 7. Assume that Assumption 1 holds true and that Q is a semigroup satisfying (9). Then
Qt f (x) = Ex ( f (X t )) for all bounded measurable functions f on E, where X is the unique càdlàg
solution to the martingale problem (L ,D(L )). Moreover, Qt 1(0,∞)(x) = 1(0,∞)(x)−∫ t

0 Qu q(x)du, for
all x ∈ E.
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Proof. Let (Zt )t∈Q+ be as in the proof of Lemma 5. In a first step, we show that, for any sufficiently
regular function f , ( f (Zt ))t∈Q+ admits only finitely many upcrossings over non-empty open inter-
vals. In a second step, we use this to deduce that Z can be extended to a càdlàg Markov process
(Yt )t∈[0,+∞) with semigroup Q and taking its values in the one point compactification of E . Finally,
we prove that Y takes its values in E and that it satisfies the (L ,D(L ))-martingale problem.

(1) Finiteness of the number of upcrossings. Let x ∈ (0,+∞) and f be a non-negative function
in C s

c , extended to ∂ with f (∂) = 0. Our aim is to prove that, for any a < b ∈ R, the number of
upcrossings through (a,b) of ( f (Zt )− f (x))t∈Q+ is finitePZ

x -almost surely on any finite time horizon.
Fix a < b ∈ R and δ ∈ (0, b−a

1+4c )∩Q, where c := sup(L f )− is finite according to Lemma 1 point

(ii). For all n ≥ 1, let M (n)
0 = 0 and

M (n)
k+1 −M (n)

k = f (Zδ(k+1)/n)− f (Zδk/n)−
∫ δ/n

0
QuL f (Zδk/n)du.

The process M (n) is a discrete time martingale. Hence, setting N (n)
0 = 0 and

N (n)
k+1 −N (n)

k = f (Zδ(k+1)/n)− f (Zδk/n)+ cδ

n
= M (n)

k+1 −M (n)
k +

∫ δ/n

0
QuL f (Zδk/n)du + cδ

n

defines a sub-martingale. In particular, using Lemma 2.5 p.57 in [23], we have (here U (n)(a,b)
denotes the number of upcrossings through the interval (a,b) during the n first steps of the sub-
martingale N (n)):

EZ
x (U (n)(a,b)) ≤ EZ

x ((N (n)
n −a)+)

b −a
≤ ‖ f ‖∞+ cδ+|a|

b −a
,

since N (n)
n = f (Zδ)− f (x)+cδ. In addition, the number of up-crossing through (a,b) of ( f (Zδk/n)−

f (x))k∈{0,...,n}, denoted by V (n)(a,b,δ) from now on, is bounded from above by the number of up-
crossing through (a + cδ,b − cδ) of (N (n)

k )k∈{0,...,n}. Hence

EZ
x (V (n)(a,b,δ)) ≤ ‖ f ‖∞+2cδ+|a|

b −a −2cδ
.

Since, for all n ≥ 1, ( f (Zk/n!)− f (x))k∈{0,n!} is a sub-process of ( f (Zk/(n+1)!)− f (x))k∈{0,(n+1)!}, we have
V (n!)(a,b,δ) ≤V ((n+1)!)(a,b,δ) almost surely and hence

EZ
x

(
sup
n≥1

V (n)(a,b,δ)

)
≤ ‖ f ‖∞+2cδ+|a|

b −a −2cδ
.

But supn≥1 V (n)(a,b,δ) is exactly the number of upcrossings through (a,b) of ( f (Zt )− f (x))t∈Q+∩[0,δ]

and hence, denoting by V (a,b,δ) this number, we have

EZ
x (V (a,b,δ)) ≤ ‖ f ‖∞+2cδ+|a|

b −a −2cδ
.

Hence

EZ
x

(
V (a − f (x),b − f (x),δ)

)≤ ‖ f ‖∞+2cδ+|a − f (x)|
b −a −2cδ

≤ 2‖ f ‖∞+2cδ+|a|
b −a −2cδ

,

and, since the upcrossings through (a− f (x),b− f (x)) by ( f (Zt )− f (x))t∈Q+∩[0,δ] is exactly the num-
ber V ′(a,b,δ) of upcrossings of (a,b) by ( f (Zt ))t∈Q+∩[0,δ], we deduce that

EZ
x

(
V ′(a,b,δ)

)≤ 2‖ f ‖∞+2cδ+|a|
b −a −2cδ

.
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We conclude that the number of upcrossings V ′(a,b,δ) is finite PZ
x -almost surely. Since this is true

for all initial distribution, using the Markov property at times δ, 2δ, ..., we obtain that, for all T ∈Q+,
the number of upcrossings V ′(a,b,T ) is finite almost surely. Since this is true for all a < b ∈ R, this
in turn implies that V (a,b,T ) is finite PZ

x -almost surely.

(2) Construction of a càdlàg representation of (Qt )t∈[0,+∞) in E∪{∆}. Now, using Problem 9(a),
p. 90 in [23], we deduce that, for all non-negative functions f ∈C s

c (0,+∞) extended to ∂with f (∂) =
0, PZ

x -almost surely, for all t ∈ [0,+∞),

lim
u∈Q+,u>t ,u→t

f (Zu) and lim
u∈Q+,u<t ,u→t

f (Zu) (26)

both exist. Moreover ∂ is an absorbing point for Z , so that (1∂(Zt ))t∈Q+ is increasing, taking its
values in {0,1}, and hence the above limits also exist for f = 1∂.

As a consequence, there exists a countable family H of continuous functions f that separates
points in E and such that the above limits exist (recall that 1∂ is continuous since ∂ is an isolated
point). We deduce that, PZ

x -almost surely, for all t ∈ [0,+∞),

lim
u∈Q+,u>t ,u→t

Zu and lim
u∈Q+,u<t ,u→t

Zu

also exist in (0,+∞)∪{∂,∆}, where∆ is a compactification point for (0,+∞) (and hence for (0,+∞)∪
{∂}). Indeed, let Zt+ and Z ′

t+ be two accumulation points in (0,+∞)∪ {∂,∆} of (Zu)u∈Q+,u≥t at t ∈
[0,+∞). On the one hand, if Zt+ ∈ (0,+∞)∪ {∂} and Z ′

t+ ∈ (0,+∞)∪ {∂} are different, then there
exists a function f ∈H such that f (Zt+) 6= f (Z ′

t+). Since f is continuous, then this contradicts (26).
On the other hand, if Zt+ ∈ (0,+∞)∪ {∂} and Z ′

t+ = ∆, then one chooses any function f ∈ H such
that f (Zt+) > 0 with compact support, and observe that f extended by 0 at ∆ is continuous, so
that f (Zt+) 6= 0 = f (Z ′

t+) also contradicts (26). This implies that, almost surely, for all t ∈ (0,+∞),
the accumulation point in (0,+∞)∪ {∂,∆} of (Zt+u)u∈Q+ at t ∈ (0,+∞) is unique, which implies the
existence of the first limit. The existence of the second limit is proved similarly.

We deduce that Z satisfies almost surely the assumptions of Lemma 2.8, p. 58 in [23] and hence
we can define the càdlàg random process (Yt )t∈R+ with values in E ∪ {∆} as

Yt := lim
u∈Q,u>t ,u→t

Zu , PZ
x -almost surely.

Since (Zt )t∈Q+ is (right)-continuous according to Lemma 5, we deduce that Yt = Zt for all t ∈Q+ (in
particular, Yt ∈ E PZ

x -almost surely, for all t ∈Q+).
Let us now show that, for all t ≥ 0, δxQt is the law of Yt under PZ

x . We have, for all f ∈ D(L )
extended to E ∪ {∆} by f (∆) = 0,

EZ
x ( f (Yt )) = EZ

x

(
lim

u>t ,u∈Q,u→t
f (Zu)

)
= lim

u>t ,u∈Q,u→t
EZ

x ( f (Zu)) = lim
u>t ,u∈Q,u→t

Qu f (x) =Qt f (x),

since Qu f (x) is continuous in u for all f ∈D(L ) by (9). Since C s
c ⊂D(L ) and 1∂ ∈D(L ), we deduce

that PZ
x (Yt ∈ A) = δxQt 1A for all measurable A ⊂ (0,+∞)∪ {∂}. Since δxQt 1E = 1, we conclude that

PZ
x (Yt ∈ E) = 1 and that δxQt is the law of Yt under PZ

x , for all t ∈ [0,+∞).
Let us now prove that Y is a Markov process (relatively to its natural filtration (Ft )t≥0). Fix u0 ≤

t0 ∈ [0,+∞) and consider the Markov process (Z ′
t )t∈Q+∪{u0,t0} with semigroup (Qt )t∈Q+∪{u0,t0}. Then

(Z ′
t )t∈Q+ under PZ ′

x has the same law as (Zt )t∈Q+ under PZ
x . Since Z ′ and Y are right-continuous
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at times u0, t0 almost-surely (according to Lemma 5 for Z ′), we deduce that (Z ′
u0

, Z ′
t0

, (Z ′
t )t∈Q+) un-

der PZ ′
x and (Yu0 ,Yt0 , (Zt )t∈Q+) under PZ

x have the same law, for all x ∈ E . Hence, for all bounded
measurable functions f : E →R and g : E →R,

EZ
x ( f (Yu0 )g (Yt0 )) = EZ ′

x ( f (Z ′
u0

)g (Z ′
t0

))

= EZ ′
x ( f (Z ′

u0
)Qt0−u0 g (Z ′

u0
))

= EZ
x ( f (Yu0 )Qt0−u0 g (Yu0 )).

The same line of arguments applies for any finite family of times u1 ≤ . . . ≤ uk ≤ u0 ≤ t0, which
implies that, for all 0 ≤ u ≤ t ,

EZ
x ( f (Yt ) |σ(Yv , v ≤ u)) =Qt−u f (Yu), PZ

x -almost surely.

We conclude that Y is indeed a Markov process, with values in E ∪ {∆}.

(3) The càdlàg representation is a solution to the martingale problem in E . We observe that,
for all t ≥ u ≥ 0 and all f ∈D(L ), and setting L f (∆) = 0,

EZ
x

(
f (Yt )−

∫ t

0
L f (Yv )d v |Fu

)
=Qt−u f (Yu)−

∫ u

0
L f (Yv )dv −EZ

x

(∫ t

u
L f (Yv )dv |Fu

)
,

where F is the natural filtration of Y . But

Qt−u f (Yu) = f (Yu)+
∫ t−u

0
Qv L f (Yu)dv and EZ

x

(∫ t

u
L f (Yv )dv |Fu

)
=

∫ t

u
Qv−u L f (Yu)dv

(using the fact that
∫ t

u Qv−u |L f |(Yu)dv is finite, which allows the use of Fubini’s theorem). Hence
f (Yt )−∫ t

0 L f (Yv )dv defines a martingale. We deduce that Y is a càdlàg solution to the martingale
problem associated to L on E ∪ {∆}.

But, according to Lemma 5, Z is bounded away from 0 and +∞ almost surely, so that Y (whose
values are in the adherence of the values taken by Z almost surely) is also bounded away from 0
and +∞ almost surely. This implies that Y never reaches ∆ and hence that Y takes its values in E ,
PZ

x -almost surely for all x ∈ E . This entails that Y is a càdlàg solution to the martingale problem
in E .

We conclude the proof of the first part of Lemma 7 by observing that Proposition 2 states that
the càdlàg solution to the martingale problem (L ,D(L )) is unique.

In order to obtain the last claim of Lemma 7, observe that 1∂ ∈ D(L ) and that Qt 1E = 1E , so
that

δxQt 1(0,+∞) = δxQt 1E −δxQt 1∂ = 1E (x)−1∂(x)−
∫ t

0
QuL 1∂(x)du = 1(0,+∞)(x)−

∫ t

0
Qu q(x)du.

This concludes the proof of Lemma 7.

2.3 Conclusion of the proof of Theorem 1

For the existence, we set Tt f (x) = ebt h(x)Qt ( f /h)(x) for all f ∈D(A ) with the convention f /h(∂) :=
0, where Q is the semigroup of Proposition 3. For all f ∈D(A ), the function g = f /h is in D(L ) or

22



g = 1(0,+∞), and hence, for all x ∈ (0,+∞), if g ∈D(L ), then

∂t Tt f (x) = ∂t [ebt h(x)Qt g (x)] = bebt h(x)Qt g (x)+ebt h(x)Qt L g (x)

= bebt h(x)Qt g (x)+ebt h(x)Qt

(
A (hg )

h
−bg

)
(x)

= ebt h(x)Qt

(
A f

h

)
(x) = Tt A f (x),

understanding differentiation here in the sense of density with respect to Lebesgue measure; if
g = 1(0,+∞), then the same computation holds true according to the last property of Lemma 7. The
fact that Tt B ⊂ B is a straightforward consequence of the fact that Qt 1(0,+∞) ≤ 1(0,+∞).

Let us now check the uniqueness. Assume that T is a semigroup which solves the above equa-

tion for f ∈ D(A ). Then h ∈ D(A ) and hence the semigroup defined by δx Rt := e−btδx Tt (·h)
h(x) (x ∈

(0,+∞)) satisfies, for all x ∈ (0,+∞),

Rt 1(0,+∞)(x) = e−bt Tt h(x)

h(x)
= 1−b

∫ t

0

e−buTuh(x)

h(x)
du +

∫ t

0
e−bu TuA h(x)

h(x)
du

= 1+
∫ t

0
RuL 1(0,+∞)(x)du ≤ 1.

Hence (Rt )t≥0 is a sub-Markov semigroup on the set of bounded measurable functions on (0,+∞).
As usual, we extend R as a Markov semigroup on the set of bounded measurable functions on
E = (0,+∞)∪ {∂}, by setting Rt 1∂(x) = 1−Rt 1(0,+∞)(x) for all x ∈ (0,+∞) and Rt f (∂) = f (∂) for all
bounded measurable functions f on E . For all f ∈C s

c , f h ∈D(A ) and hence, for all x ∈ (0,+∞),

Rt f (x) = e−bt Tt ( f h)

h(x)
= f (x)−b

∫ t

0

e−buTu( f h)

h(x)
du +

∫ t

0
e−bu TuA ( f h)(x)

h(x)
du

= f (x)+
∫ t

0
RuL f (x)du,

while Rt f (∂) = f (∂) = f (∂)+∫ t
0 RuL f (∂)du. For all x ∈ (0,+∞), we have

Rt 1(0,+∞)(x) = 1−
∫ t

0
Ru q(x)du

and hence

Rt 1∂(x) =
∫ t

0
Ru q(x)du =

∫ t

0
RuL 1∂(x)du,

while Rt 1∂(∂) = 1∂(∂) = 1∂(∂)+∫ t
0 RuL 1∂(∂)du. Using Lemma 7, we deduce that Rt =Qt and hence

that Tt f (x) = ebt h(x)Qt ( f /h)(x). This concludes the proof of Theorem 1.

2.4 Proof of Corollary 1

Fix x ∈ (0,+∞). Assume first that f ≥ 0 and set ϕ = f /h and let (ϕm)m≥0 be a non-decreasing se-
quence of functions in C s

c such that ϕm(x) =ϕ(x) for all x ∈ (1/m,m). We also set ϕm(∂) =ϕ(∂) = 0.
Then, for all m > k ≥ 1, since ϕm ∈ D(L ) and τk (defined in the first step of the proof of Proposi-
tion 2) is a stopping time, for all t ≥ 0, and all x ∈ (1/k,k), we have

Ex (ϕm(X t∧τk )) =ϕm(x)+Ex

(∫ t∧τk

0
Lϕm(Xu)du

)
=ϕ(x)+Ex

(∫ t∧τk

0
Lϕm(Xu)du

)
.
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But, almost surely, for all u < τk , we have Xu ∈ (1/k,k) ⊂ (1/m,m) and hence

Lϕm(Xu) = ∂ϕm

∂s
(Xu)+

∫
(0,x)

ϕm(y)kh(Xu ,dy)−ϕm(Xu)kh(Xu , (0, Xu))−q(Xu)ϕm(Xu)

= ∂ϕ

∂s
(Xu)+

∫
(0,x)

ϕm(y)kh(Xu ,dy)−ϕ(Xu)kh(Xu , (0, Xu))−q(Xu)ϕ(Xu)

↗ ∂ϕ

∂s
(Xu)+

∫
(0,x)

ϕ(y)kh(Xu ,dy)−ϕ(Xu)kh(Xu , (0, Xu))−q(Xu)ϕ(Xu)

=Lϕ(Xu) when m →+∞.

The monotone convergence theorem (taking into account the fact that Ex
(∫ t∧τk

0 |Lϕm(Xu)|du
)<

+∞ for all m ≥ 1), we deduce that

Ex

(∫ t∧τk

0
Lϕm(Xu)du

)
−−−−−→
m→+∞ Ex

(∫ t∧τk

0
Lϕ(Xu)du

)
.

Since ϕ= f /h is bounded, by the dominated convergence theorem, we also deduce that

Ex (ϕm(X t∧τk )) −−−−−→
m→+∞ Ex (ϕ(X t∧τk ))

and hence

Ex (ϕ(X t∧τk )) =ϕ(x)+Ex

(∫ t∧τk

0
Lϕ(Xu)du

)
.

Assume first that A f /h is lower bounded by −a, where a > 0. Then

Ex (ϕ(X t∧τk ))+aEx (t ∧τk ) =ϕ(x)+Ex

(∫ t∧τk

0
(Lϕ(Xu)+a)du

)
,

where Lϕ(Xu)+ a = A f (Xu)/h(Xu)+ a ≥ 0, so that, by dominated convergence on the left hand
side, and by monotone convergence in the right-hand side, we obtain by letting k →+∞

Ex (ϕ(X t ))+aEx (t ) =ϕ(x)+Ex

(∫ t

0
(Lϕ(Xu)+a)du

)
and hence that

Ex

(∫ t

0
|Lϕ(Xu)|du

)
<+∞ and Ex (ϕ(X t )) =ϕ(x)+Ex

(∫ t

0
Lϕ(Xu)du

)
. (27)

Assume now instead that A f /h is upper bounded by a > 0. Then

Ex (ϕ(X t∧τk ))−aEx (t ∧τk ) =ϕ(x)−Ex

(∫ t∧τk

0
(−Lϕ(Xu)+a)du

)
,

where −Lϕ(Xu)+a =−A f (Xu)/h(Xu)+a ≥ 0. As above, this entails that (27) holds true.
In both cases, we deduce from Fubini’s theorem that∫ t

0
Qu |Lϕ|(x)du <+∞ and Qtϕ(x) =ϕ(x)+

∫ t

0
QuLϕ(x)du.

Replacing Q, L and ϕ by their respective expressions of T , A and f , this concludes the proof of
Corollary 1.
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2.5 Proof of Corollary 2

We observe that Assumption 1 is clearly satisfied with h = h1 +h2, and hence, according to The-
orem 1, there exists T a solution to (4). In addition, A h1/h is upper bounded by A h1/h1 and
hence is upper bounded. By Corollary 1, we deduce that∫ t

0
Tu |A h1|du <+∞ and Tt h1(x) = h1(x)+

∫ t

0
TuA h1 du.

Since in addition (4) holds true for all f ∈ C s
c , we deduce from the uniqueness part of Theorem 1

that T = T 1. Similarly, T = T 2 which concludes the proof.

3 Long time asymptotics of the solution to the growth-fragmentation
equation

In this section, we focus on the existence of leading eigenelements and a spectral gap for the semig-
roup T solution to (4) acting on the Banach space B . Our approach will be to leverage the repres-
entation of T as the h-transform of the semigroup Q of an absorbed Markov process evolving on
E = (0,+∞)∪ {∂}, as given in section 2. More precisely, we will make use of the results developed
in [17] for the study of quasi-stationary distributions.

In order to do so, we first state a useful result on the càdlàg Markov process with semigroup
Q defined in Proposition 2. Precisely, we will make use of the following assumption to ensure the
irreducibility of the process.

Assumption 2. For all x ∈ (0,+∞), the Lebesgue measure of s({y ∈ (x,+∞) : k(y, (0, x)) > 0}) is pos-
itive.

Under Assumption 1 and 2, the semigroup T from Theorem 1, the semigroup Q from Proposi-
tion 3 and the Markov process X from Proposition 4 below are well defined. In the following result,
proved in section 3.2, Px denotes the law of X with initial distribution δx , for any x ∈ (0,+∞), and
Hy = inf{t ≥ 0, X t = y}.

Proposition 4. Assume that Assumption 1 holds true. Let X be the unique càdlàg solution of the
martingale problem (L ,D(L )). Then X is a strong Markov process with respect to its completed
natural filtration. If in addition Assumption 2 holds, then X is irreducible in (0,+∞), in the sense
that, for all l < r ∈ (0,+∞), there exists t0 > 0 such that

inf
x,y∈[l ,r ]

Px (Hy ≤ t0) > 0.

The proof of our main result requires that the process X satisfies a local Doeblin condition. In
order to obtain this condition, we will make use of one of the following assumptions. The first one
is original and make use of a Doeblin type condition on the fragmentation kernel k. The second
one is a straightforward adaptation of the general and multi-dimensional result developed in [34,
Proposition 1].

Assumption 3. There exist a positive constant a > 0, a non-empty, open, compactly contained
interval I ⊂ (0,+∞) and a probability measure µ on (0,+∞), such that

k(x, ·) ≥ aµ ∀x ∈ I .
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Assumption 4. There exist a positive constant a > 0, a non-empty, open, compactly contained
interval I ⊂ (0,+∞) and a function T : (0,+∞) such that

k(x,dy) ≥ aδT (x), ∀x ∈ I ,

and such that s ◦T is continuously differentiable with respect to s on I , with

∂s ◦T

∂s
(x) 6= 1, ∀x ∈ I . (28)

The following result states that any of the above two assumptions is a sufficient condition for
X to satisfy a local Doeblin condition. Under Assumption 3, its proof, developed in section 3.3,
relies on the fact that at each jump from a position in a given interval I , the law of the process
after the jump is lower bounded. Under Assumption 4, it leverages on a simple change of variable
argument, as detailed in section 3.4 (for other coupling approaches, see for instance [16] for the
TCP process and [13] for the mitosis kernel k(x,dy) = 2K (x)δx/2(dy), this kernel is also considered
in section 6.3.3 of [39] using, as we do, the proof of Proposition 1 in [34], see Remark 3 below for
a detail of the argument). Finally, we refer the reader to [14], where the Doeblin condition is a
consequence of the regularity of the density of the kernel k with respect to the Lebesgue measure.

Proposition 5. Assume that Assumptions 1, 2 and either Assumption 3 or Assumption 4 hold true.
Then there exists a probability measure υ on (0,+∞) such that, for any compactly contained interval
L ⊂ (0,+∞), there exists tL > 0 such that, for all t ≥ tL and all x ∈ L,

Px (X t ∈ ·) ≥ cL,tυ(·), (29)

where cL,t > 0 only depends on L and t and is non-increasing in t .

If Assumptions 1, 2 and the Doeblin condition (29) hold true, we can introduce the growth
coefficient of T , defined by

λ0 := inf{λ ∈R, liminf
t→+∞ eλt Tt 1L(x) =+∞},

with arbitrary x ∈ (0,+∞) and non-empty interval L ⊂ (0,+∞). One easily checks, using the rela-
tionship between T and the semigroup of X , that λ0 =λX

0 −b, where

λX
0 := inf{λ ∈R, liminf

t→+∞ eλtPx (X t ∈ L) =+∞}, (30)

The fact that λX
0 (and hence λ0) does not depend on x nor L is a well known consequence of the

irreducibility property and the Doeblin condition (29).
Our aim is to apply Theorem 3.5 in [17] to X . This requires a Foster-Lyapunov type condition,

which will be obtained using the following assumption, where we recall that C s
loc denotes the set of

functions with a locally bounded derivative with respect to s. (In fact, one may consider situations
where ψ is only s-absolutely continuous, as defined in the appendix).

Assumption 5. There exist a positive function ψ ∈C s
loc, a constant λ1 > λ0 and a compact interval

L ⊂ (0,+∞) such that infx∈(0,+∞)ψ/h > 0 and

Aψ(x) ≤−λ1ψ(x)+C 1L(x), ∀x ∈ (0,+∞),

for some constant C > 0.
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We emphasis that, in most cases, taking h = ψ is the most natural choice, in which case the
requirement infx∈(0,+∞)ψ/h > 0 of the last assumption is trivial.

We can now state the main result of this section. It is proved in section 3.5.

Theorem 3. Assume that Assumptions 1, 2, 5 and Assumption 3 or 4 hold true. Then there exist
a unique positive measure m on (0,+∞) and a unique function ϕ : (0,+∞) → (0,+∞) such that
m(ψ) = 1 and ‖ϕ/ψ‖∞ <+∞ and such that, for all t ≥ 0, mTt = eλ0t m and Ttϕ= eλ0tϕ. Moreover,
for all f : (0,+∞) →R such that | f | ≤ψ, we have∣∣∣eλ0t Tt f (x)−ϕ(x)m( f )

∣∣∣≤Ce−γtψ(x).

for some constants C ,γ> 0.

Theorem 3 entails the existence of a spectral gap for the semigroup of (Tt )t≥0 acting on the
Banach space L∞(ψ) := { f : (0,+∞) → R, ‖ f /ψ‖∞ < +∞}, endowed with the norm f 7→ ‖ f /ψ‖∞.
Conversely, if the convergence of Theorem 3 holds true, then (Tt )t≥0 also satisfies Lyapunov type
conditions and Doeblin type conditions (we refer the reader to [6] and [18] for such converse prop-
erties) and it is thus expected that Theorem 3 covers most situations where a spectral gap exists in
some L∞(ψ). However it is clear that our result does not apply in situations with no spectral gap.
While a similar approach may be used in this situation, the main limitation is that the theory of
quasi-stationary distributions for sub-Markov semigroup without spectral gap is limited and is still
as of this day an active area of research.

In practice, checking Assumption 5 requires to find a upper bound onλ0 and to find a Lyapunov
function ψ. We first relate λ0 to an apparently lower quantity. This result is proved in section 3.6.

Proposition 6. If Assumptions 1, 2 and Assumption 3 or 4 hold true, then

λ0 = inf{λ ∈R,
∫ ∞

0
eλt Tt 1L(x)dt =+∞}

for any x ∈ (0,+∞) and any non-empty compactly embedded subset L ⊂ (0,+∞).

Making use of a second Lyapunov-type function ψ′, the following result provides a criterion to
find upper bounds for λ0, proved in section 3.7 (the proof adapts easily to situations where ψ′ is
only s-absolutely continuous). Theorem 3 together with part (b) of this result provides Theorem 2
in the introduction.

Proposition 7. Assume that Assumptions 1, 2 and Assumption 3 or 4 hold true, and that:

(i) There exist a positive function ψ ∈C s
loc, a constant λ1 ∈ R and a compact interval L ⊂ (0,+∞)

such that infx∈(0,+∞)ψ/h > 0 and

Aψ(x) ≤−λ1ψ(x)+C 1L(x), ∀x ∈ (0,+∞), (31)

for some constant C > 0.

(ii) There exists a positive function ψ′ ∈ C s
loc such that ‖ψ′/h‖∞ < +∞, such that ψ′(x)

ψ(x) −−−−−−→
x→0,+∞ 0,

and such that there exists λ2 ∈R such that

Aψ′(x) ≥−λ2ψ
′(x), ∀x ∈ (0,+∞). (32)
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The following hold:

(a) if λ2 <λ1, then λ0 ≤λ2;

(b) if λ2 ≤ λ1 and supx∈(0,M)

∫
(0,x)

ψ′(y)
ψ′(x) k(x,dy) < +∞ for all M > 0, then λ0 ≤ λ2, with strict in-

equality if x ∈ (0,+∞) 7→ Aψ′(x)
ψ′(x) is not constant.

While finding Lyapunov functions can be tricky, we show in the next section that exponentials
of s or of

∫ ·
1 K (y)s(dy) cover several situations and allow to recover and improve on several results

in the literature.

Remark 2. We emphasize that λ0 may be characterized by other means than its definition. For in-
stance, in [9, Proposition 3.3] it is shown that λ0 =− inf{q ∈R, Lx0,x0 (q) < 1}, where Lx0,x0 is defined
in terms of a multiplicative functional of an auxiliary Markov process evaluated at the return time
to x0. In particular, [9, Proposition 3.4] provides a upper bound for λ0. We also refer the reader
to [14, Section 2.2] for a situation where the mass conservation does not hold.

3.1 Applications

In this section, we apply the results of sections 2 and 3 to different situations, focusing on As-
sumptions 1 and 5, since Assumptions 2, 3 and 4 are already explicit (see also Remark 3 below). In
subsection 3.1.1, we provide a sufficient criterion for Assumptions 1 and 5 in the situation where
s(0+) >−∞. In subsection 3.1.2, we consider the situation where

∫
(0,1) K (y) s(dy) <+∞ and where

mass conservation holds true. The last two subsections are dedicated to the study of near-critical
cases, the critical case being when K is constant and s(x) = ln x, in which case it is well known that
the conclusions of Theorem 3 do not hold true. In subsection 3.1.3, we study the case s(x) = ln x
and K is not constant. In subsection 3.1.4, we study the case s(x) 6= ln x and K is constant.

Remark 3. Although Assumption 4 is explicit, let us illustrate how it applies when k is locally lower
bounded by the equal mitosis kernel, that is when

k(x,dy) ≥ aδx/2(dy), ∀x ∈ I ,

where I is a sub-interval of (0,+∞), a > 0 and with s(x) = ∫ x
1 1/c(y)dy for some positive function

c : (0,+∞) → (0+∞), continuous on I . We recover the situation of Assumption 4 with T (x) = x/2
and we observe that condition (28) is equivalent to c(x) 6= 2c(x/2) for all x ∈ I (see [39, Section 6]
for an original account of this condition and generalizations to the multi-dimensional setting).

3.1.1 Entrance boundary

In this section, we provide a simple criterion for processes with an entrance boundary at 0 (i.e.
s(0+) >−∞) and with a locally bounded fragmentation rate, inspired by the main result of [14]. As
in this reference, and contrarily to the following sections, the result depends on λ0.

Proposition 8. Assume that s(0+) > −∞, that supx∈(0,M) k(x, (0, x)) < +∞ for all M > 0, that K is
non-negative and that

limsup
x→+∞

k(x, (0, x))−K (x) <+∞. (33)
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Then Assumption 1 holds true. If in addition Assumptions 2 and Assumption 3 or 4 hold true, and if

limsup
x→+∞

k(x, (0, x))−K (x) <−λ0, (34)

then Assumption 5 holds true.

Before proceeding with the proof of Proposition 8, we remark on the strong similarities with
Theorem 1.1 of [14]. There, the author reaches the conclusion of Theorem 3, making some ad-
ditional regularity and further assumptions on s, k and K ; these ensure in particular that T is
a strongly continuous Feller semigroup on the space of bounded functions vanishing at infinity,
which is not in general true for us. Interestingly, however, [14] requires neither Assumption 3 nor 4,
and the fact that the conclusion of Proposition 5 holds in that setting is a consequence of the partic-
ular form and regularity of k. This demonstrates an alternative technique for ensuring the Doeblin
property needed for Theorem 3.

Proof of Proposition 8. Let a <− limsupx→0 k(x, (0, x))−λ0 such that a ≤ 0. Let x0 ≥ 1 be such that
exp(−as(0+))+ s(x0) = 1 and set, for all x ∈ (0,+∞),

h(x) = exp(a (s(x)− s(0+)))1x<1 +1∧ (
exp(−as(0+))+ s(x)

)
1x≥1.

Then, for all x ∈ (0,1),

A h(x)

h(x)
= a +

∫
(0,x)

exp
(
a(s(y)− s(x))

)
k(x,dy)−K (x)

≤ a +exp(a(s(0+)− s(x)))k(x, (0, x)),

which is uniformly bounded from above on x ∈ (0,1) by assumption. For x ∈ [1, x0), we have

A h(x)

h(x)
= 1

h(x)
+

∫
(0,1)

exp
(
a (s(y)− s(0+))

)
exp(−as(0+))+ s(x)

k(x,dy)+
∫

[1,x)

exp(−as(0+))+ s(y)

exp(−as(0+))+ s(x)
k(x,dy)−K (x)

≤ exp(as(0+))+exp(as(0+))k(x, (0,1))+k(x, [1, x)),

which is uniformly bounded from above on x ∈ [1, x0) by assumption. For x ≥ x0, we have

A h(x)

h(x)
=

∫
(0,1)

exp
(
a (s(y)− s(0+))

)
k(x,dy)

+
∫

[1,x0)

(
exp(−as(0+))+ s(y)

)
k(x,dy)+k(x, [x0, x))−K (x)

≤ k(x, (0, x))−K (x),

which is locally bounded from above and is bounded when x →+∞ by (33). This entails that A h(x)
h(x)

is bounded from above on (0,+∞). It is clearly locally bounded, and, in addition, for all M > 0,

sup
x∈(0,M)

kh(x, (0, x)) ≤ sup
x∈(0,M)

∫
(0,x)

exp(as(0+))k(x,dy)

which is finite by assumption. We conclude that Assumption 1 holds true.
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We now work under the additional assumptions and set ψ = h. We have s(x) → s(0+) when
x → 0, and hence

limsup
x→0

Aψ(x)

ψ(x)
≤ limsup

x→0
a +exp(a(s(0+)− s(x)))k(x, (0, x)) = a + limsup

x→0
k(x, (0, x)) <−λ0.

Using (34), we also obtain

limsup
x→+∞

Aψ(x)

ψ(x)
≤ limsup

x→+∞
k(x, (0, x))−K (x) <−λ0.

This concludes the proof of Proposition 8.

3.1.2 Pseudo-entrance boundary and mass conservation

In this section, we consider the situation where
∫

(0,1) K (x) s(dx) <+∞. Informally, this means that
a PDMP with drift determined by s and jump rate K has a positive, lower bounded probability to
reach 1 before its first jump when starting from any x ∈ (0,1).

For simplicity, we consider the situation k(x, ·) = K (x)p◦m−1
x where mx (u) = xu, p is a measure

on (0,1) such that
∫

(0,1) up(du) = 1. We assume that K is right-continuous and that, for all x ∈
(0,+∞), s(x) = ∫ x

1
1

c(y) dy where c : (0,+∞) → (0,+∞) is a right-continuous and locally bounded
function.

Proposition 9. Assume that supx∈(0,M) K (x) <+∞ for each M > 0. Assume in addition that Assump-
tion 2 and either Assumption 3 or 4 hold true, that p is a finite measure, that∫

(0,1)
K (x) s(dx) <+∞

and that there exists α> 1 such that, for all u ∈ (0,1),

liminf
x→+∞

∫ x

ux
K (y) s(dy) > −α lnu

1−∫
(0,1) vαp(dv)

. (35)

Then, Assumption 1 holds, λ0 < 0 and the conclusions of Theorem 3 hold true.

In the case of uniform mass repartition, where p(du) = 2du, the right hand term in (35) reaches
its minimal value (− lnu)(3+2

p
2) at α= 1+p

2. In particular, (35) holds true if

liminf
y→+∞

yK (y)

c(y)
> 3+2

p
2.

Before turning to the proof of this proposition, it is interesting to compare it with the find-
ings of [13]. In this recent paper, the authors use advanced methods from functional analysis to
derive the existence of an eigenfunction h. This gives them access to a (conservative) Markov pro-
cess using an h-transform (see also [30, 32], where similar approaches were used to study non-
conservative semigroups). This allows them to study the growth fragmentation equation under
mild conditions. The main drawback of this approach is that it requires the preliminary proof of
the existence and fine properties of a positive right eigenfunction h, which typically requires ad-
ditional assumptions on regularity and asymptotic behaviour of the coefficients. On the contrary,
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our approach, based on the study of non-conservative Markov processes, only requires the exist-
ence of a Lyapunov function h, and the existence of an eigenfunction is then a consequence of our
theorem, instead of a preliminary step in the proof. This lets us consider more general situations.

More precisely, in the case where p is the uniform measure over (0,1) (where Assumption 3 is
clearly satisfied), Theorem 1.3 in [13] states that the conclusions of our Theorem 3 hold true, as-
suming in addition (compared to Proposition 9) that c is locally Lipschitz, that limsupx→+∞

c(x)
x <

+∞, that c(x) = o(x−ξ) when x → 0 for some ξ≥ 0, that K is continuous on [0,+∞), that xK (x)/c(x) →
0 when x → 0 and that xK (x)/c(x) → +∞ when x → +∞. Similarly, the mitosis kernel case con-
sidered in [13] is a special case of Proposition 9 (using this time Assumption 4 instead of Assump-
tion 3).

We can also compare Proposition 9 with Theorem 4.3 in the recent paper [6], where the authors
consider the special case where c ≡ 1 (which means that s(x) = x − 1) and K is a continuously
differentiable increasing function, and under the additional assumption that p is lower bounded
by a uniform measure over a subinterval of [0,1] or by a Dirac measure (these situations clearly
satisfy Assumption 3 and 4 respectively). In this situation, both assumptions of Proposition 9 are
clearly satisfied, with liminfx→+∞

∫ x
ux K (y) s(dy) = +∞ for all u ∈ (0,1) and Theorem 4.3 in [6] is

thus a special case of Proposition 9.

Remark 4. In the proof, we make use of the functions ψ and h defined by

ψ(x) = h(x) = exp

(∫
(x,1)

a0K (y) s(dy)

)
1x<1 +exp

(∫
(1,x)

a∞K (y) s(dy)

)
1x≥1,

where a0, a∞ ∈R, so that, for all x < 1,

Aψ(x)

ψ(x)
= K (x)

(∫
(0,1)

exp

(
a0

∫
(ux,x)

K (y) s(dy)

)
p(du)−1−a0

)
and similarly for x ≥ 1. Our assumptions are then used to derive asymptotics on Aψ(x)

ψ(x) when x → 0
and x →+∞. In this situation, the main point of the mass conservation assumption is to ensure
that x ∈ (0,+∞) 7→ x is a natural candidate forψ′ in Proposition 7, and is thus used to derive a lower
bound for λ0. We emphasize that the strategy developed in the proof, and in particular the use of
such a functionψ, is relevant in situations where k and s do not have the particular forms assumed
in the context of Proposition 9.

Proof of Proposition 9. For all a ∈R, we set pa := ∫
(0,1) ua p(du).

(1) Identification of h =ψ. For all u ∈ (0,1), we define

εu := liminf
x→+∞

∫ x
ux K (y) s(dy)

− lnu
− α

1−pα

and set
` := α

1−pα
+ ε1/2

2
.

Note that εu > 0 by assumption and hence α/`< 1−pα and

lim
a→1−pα

∫
(0,1)

ua(εu+α/(1−pα)) p(du) =
∫

(0,1)
u(1−pα)εu+α p(du) < pα.
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In particular, there exists a∞ ∈ (
α
` ,1−pα

)
such that∫

(0,1)
ua∞(εu+α/(1−pα)) p(du) < pα. (36)

We also fix a0 > p0 −1 and define the function

ψ(x) =
{

exp
(−a0

∫ x
1 K (y)s(dy)

)
if x ≤ 1

exp
(
a∞

∫ x
1 K (y) s(dy)

)
if x ≥ 1.

We have, for all x < 1,

Aψ(x)

ψ(x)
= K (x)

(∫
(0,1)

exp

(
a0

∫ x

ux
K (y) s(dy)

)
p(du)−1−a0

)
.

Since exp
(
a0

∫ x
ux K (y) s(dy)

)≤ exp
(
a0

∫ 1
0 K (y) s(dy)

)
, with∫

(0,1)
exp

(
a0

∫ 1

0
K (y) s(dy)

)
p(du) = exp

(
a0

∫ 1

0
K (y) s(dy)

)
p0 <+∞

and since
∫ x

ux K (y) s(dy) → 0 as x → 0, we deduce from the dominated convergence theorem that

lim
x→0

∫
(0,1)

exp

(
a0

∫ x

ux
K (y) s(dy)

)
p(du)−1−a0 = p0 −1−a0 < 0.

Hence there exists x0 > 0 such that

Aψ(x)

ψ(x)
≤ 0, for all x ∈ (0, x0). (37)

For all x ≥ 1, we have

Aψ(x)

ψ(x)
= K (x)

(∫
(0,1/x)

exp

(
a0

∫ 1

ux
K (y) s(dy)−a∞

∫ x

1
K (y) s(dy)

)
p(du)

+
∫

[1/x,1)
exp

(
−a∞

∫ x

ux
K (y) s(dy)

)
p(du)−1+a∞

)
.

On the one hand, we have (noting that a∞ > 0)∫
(0,1/x)

exp

(
a0

∫ 1

ux
K (y) s(dy)−a∞

∫ x

1
K (y) s(dy)

)
p(du) ≤ exp

(
a0

∫ 1

0
K (y) s(dy)

)
p((0,1/x))

−−−−−→
x→+∞ 0.

On the other hand, for all u ∈ (0,1),

limsup
x→+∞

1u∈[1/x,1) exp

(
−a∞

∫ x

ux
K (y) s(dy)

)
= ua∞(εu+α/(1−pα))

and hence, by Fatou’s Lemma and using (36),

limsup
x→+∞

∫
[1/x,1)

exp

(
−a∞

∫ x

ux
K (y) s(dy)

)
p(du)−1+a∞ ≤ pα−1+a∞ < 0.
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We deduce that there exists x∞ ≥ 1 such that, for all x ≥ x∞,

Aψ(x)

ψ(x)
≤ 0. (38)

Taking h = ψ, we observe that x ∈ (0,+∞) 7→ A h(x)
h(x) is locally bounded, and we deduce from (37)

and (38) that it is bounded from above. Moreover, the above calculations show that, for all M > 0,

sup
x∈(0,M)

∫
(0,x)

h(y)

h(x)
k(x,dy) <+∞.

We conclude that Assumption 1 holds true.

(2) Identification of ψ′ and conclusion. We choose ψ′(x) := x for all x ∈ (0,+∞). We first prove
thatψ′(x) = x = o(ψ(x)) close to 0 and +∞. Sinceψ is bounded away from 0 in a vicinity of 0, this is
immediate for x close to 0. Now, according to our assumptions and the definition of `, there exists
x1 ≥ 1 (which is fixed from now on) such that, for all x ≥ x1,∫ x

x/2
K (y) s(dy) ≥ ` ln2.

For any x > x1, let n ≥ 0 such that 2−n x ≥ x1 ≥ 2−(n+1)x (in particular n ln2 ≥ ln x−ln x1−ln2). Then∫ x

1
K (y) s(dy) ≥

∫ 2−n x

1
K (y) s(dy)+

∫ 2−(n−1)x

2−n x
K (y) s(dy)+·· ·+

∫ x

2−1x
K (y) s(dy)

≥ n` ln2 ≥ ` ln x −` ln(2x1).

Since a∞ >α/`, we deduce that, for all x > x1,

a∞
∫ x

1
K (y) s(dy) ≥α ln x −a∞` ln(2x1).

This shows that liminfx→+∞ψ(x)/xα > 0 and hence, since α > 1 by assumption, that x = o(ψ(x))
when x →+∞.

We also observe that, for all M > 0, supx∈(0,M)

∫
(0,x)

ψ′(y)
ψ′(x) k(x,dy) = supx∈(0,M) K (x) < +∞, by

assumption. Finally, for all x ∈ (0,+∞),

Aψ′(x)

ψ′(x)
= 1

x

∂ψ′

∂s
(x) = c(x)

x
.

Since c(x)/x is not zero, we deduce that it is either lower bounded by a positive constant or that it
is not constant. Using Proposition 7 together with (37) and (38), we deduce that λ0 < 0. This also
entails that Assumption 5 holds true, which concludes the proof.

3.1.3 Critical case, s comparable to ln x

It is well known that, when K is constant and s(x) = ln x, the results of Theorem 3 do not hold true
in general (see, for instance, [22, end of §2]). In this section, we consider first the situation where
s(x) = ln x and K is not constant, and then the situation where s(x)/ ln x has positive limit inferior
when x → 0 and x →+∞ and finite limit superior when x →+∞.

As in the previous section, we consider for simplicity the situation where k(x, ·) = K (x)p ◦m−1
x ,

with p a positive measure on (0,1) such that
∫

(0,1) u p(du) = 1; we do not assume that p is a finite
measure. We assume that K is right-continuous and non-negative.
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Proposition 10. Assume that Assumption 2 and either Assumption 3 or 4 hold true. Assume in
addition that s(x) = ln x for all x ∈ (0,+∞) and that there existα< 1 <β such that

∫
(0,1) uα p(du) <∞

and

limsup
x→0

K (x) < 1−α∫
(0,1) uα p(du)−1

and liminf
x→∞ K (x) > β−1

1−∫
(0,1) uβ p(du)

. (39)

Then Assumptions 1 and 5 hold true.

We note that in the case of uniform mass repartition, i.e. p(du) = 2du, condition (39) reduces
to

limsup
x→0

K (x) < 2 < liminf
x→∞ K (x).

This may be compared with the conditions in section 6 of [11]. We leave as an open problem to
check whether this condition is sharp; one natural approach to this question would be to follow
the strategy developed in [15].

Proposition 10 is actually a particular case of the following result, which applies when the drift
c(x) is only approximately linear in x. We assume here that, for all x ∈ (0,+∞), s(x) = ∫ x

1
1

c(y) dy ,
where c : (0,+∞) → (0,+∞) is a right-continuous and locally bounded function.

Proposition 11. Assume that Assumption 2 and either Assumption 3 or 4 hold true. Assume in
addition that there exist α,β≥ 0 such that

α< inf
x>0

c(x)

x
and

∫
(0,1)

uα infx<1
x

c(x) p(du) <+∞ (40)

and

β> limsup
x→+∞

c(x)

x
and

∫
(0,1)

uβ infx≥1
x

c(x) p(du) <+∞. (41)

If

limsup
x→0

K (x) < infx
c(x)

x −α∫
(0,1) uα liminfx→0

x
c(x) p(du)−1

(42)

and

liminf
x→+∞ K (x) > β− infx

c(x)
x

1−∫
(0,1) uβ liminfx→+∞ x

c(x) p(du)
, (43)

then Assumptions 1 and 5 hold true.

Proof. For all a ∈R, we set pa := ∫
(0,1) ua p(du).

Note that limsupx→0 K (x) <+∞ and hence, since K is locally bounded, K is bounded on (0, M),
for all M > 0. We define, for all x ∈ (0,+∞),

ψ(x) = h(x) = exp(αs(x))1x<1 +exp
(
βs(x)

)
1x≥1 and ψ′(x) = x.

In particular, for all x ∈ (0,+∞),

Aψ′(x)

ψ′(x)
= c(x)

x
.
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We first prove that ψ/ψ′ →+∞ when x → 0 and +∞. According to (40), there exists x0 ∈ (0,1)
and ε> 0 such that, for all y ∈ (0, x0), α/c(y) ≤ (1−ε)/y , so that, for all x ∈ (0, x0),

αs(x)− ln x =
∫

(x,1)

( −α
c(y)

+ 1

y

)
dy ≥ ε

∫
(x,x0)

1

y
dy +

∫
(x0,1)

( −α
c(y)

+ 1

y

)
dy −−−→

x→0
+∞.

This shows that ψ/ψ′ →+∞ when x → 0. Similarly, (41) implies that there exists x∞ ≥ 1 and ε> 0
such that, for all y > x∞, β/c(y) ≥ (1+ε)/y , so that, for all x > x∞,

βs(x)− ln x =
∫

(1,x)

(
β

c(y)
− 1

y

)
dy ≥

∫
(1,x∞)

(
β

c(y)
− 1

y

)
+ε

∫
(x∞,x)

1

y
dy −−−−−→

x→+∞ +∞. (44)

This shows that ψ/ψ′ →+∞ when x →+∞.
We observe that, for all x ∈ (0,1),

A h(x)

h(x)
=α+

∫
(0,x)

h(y)

h(x)
k(x,dy)−K (x) =α+K (x)

(∫
(0,1)

exp(α(s(ux)− s(x))) p(du)−1

)
.

We have, for all u ∈ (0,1) and x ∈ (0,1),

s(ux)− s(x) ≤−
(

inf
y∈(0,1)

y

c(y)

)∫ x

ux

1

y
dy =

(
inf

y∈(0,1)

y

c(y)

)
lnu,

so that exp(α(s(ux)− s(x))) ≤ uα infy∈(0,1)
y

c(y) , which does not depend on x and is integrable with re-
spect to p(du) by Assumption (40). We conclude that

sup
x∈(0,1)

∫
(0,x)

h(y)

h(x)
k(x,dy) <+∞. (45)

In addition, for all u ∈ (0,1),

limsup
x→0

(
s(ux)− s(x)

)≤ limsup
x→0

(
inf

y∈(0,x)

y

c(y)

)
lnu = liminf

x→0

x

c(x)
lnu.

Using Fatou’s Lemma, we deduce that

limsup
x→0

∫
(0,x)

h(y)

h(x)
k(x,dy)−K (x) ≤ limsup

x→0
K (x)

(∫
(0,1)

uα liminfy→0
y

c(y) p(du)−1

)
.

We conclude, using in addition (42) and the fact that α liminfx→0
x

c(x) < 1, that

limsup
x→0

A h(x)

h(x)
≤α+ limsup

x→0
K (x)

(∫
(0,1)

uα liminfy→0
y

c(y) p(du)−1

)
< inf

x

Aψ′(x)

ψ′(x)
. (46)

For all x ≥ 1, we have

A h(x)

h(x)
=β+

∫
(0,x)

h(y)

h(x)
k(x,dy)−K (x)

=β+K (x)

(∫
(0,1/x)

exp(αs(ux)−βs(x)) p(du)+
∫

(1/x,1)
exp(β(s(ux)− s(x))) p(du)−1

)
. (47)
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According to (44), there exists x ′∞ ≥ 1 such that, for all x ∈ (x ′∞,+∞), βs(x) ≥ ln x, so that, for all
x ∈ (x ′∞,+∞) and u ∈ (0,1/x),

αs(ux)−βs(x) ≤α
(

inf
y∈(0,1)

y

c(y)

)
(lnu + ln x)− ln x ≤α

(
inf

y∈(0,1)

y

c(y)

)
lnu,

since α infy∈(0,1)
y

c(y) < 1 by (40). Since, by (40), uα infy∈(0,1)
y

c(y) is integrable with respect to p(du), we
deduce by dominated convergence that∫

(0,1/x)
exp(αs(ux)−βs(x)) p(du) −−−−−→

x→+∞ 0.

For all x > 1 and u ∈ (1/x,1), we have

s(ux)− s(x) ≤
(

inf
y≥1

y

c(y)

)
lnu,

so that exp(β(s(ux)−s(x))) ≤ uβ infy≥1
y

c(y) , which does not depend on x and is integrable with respect
to p(du) by (41). We conclude that

sup
x∈[1,M)

∫
(0,x)

h(y)

h(x)
k(x,dy) <+∞, ∀M > 1. (48)

Similarly as above, we have in addition, for all u ∈ (0,1),

limsup
x→+∞

(
s(ux)− s(x)

)= liminf
x→+∞

x

c(x)
lnu.

Using again Fatou’s Lemma, we obtain

limsup
x→+∞

∫
(1/x,1)

exp(β(s(ux)− s(x))) p(du) ≤
∫

(0,1)
uβ liminfx→+∞ x

c(x) p(du).

Using (47), we deduce that

limsup
x→+∞

A h(x)

h(x)
≤β+ limsup

x→+∞
K (x)

(∫
(0,1)

uβ liminfx→+∞ x
c(x) p(du)−1

)
< inf

x

Aψ′(x)

ψ′(x)
, (49)

where we used (43) and the fact that β liminfx→+∞ x
c(x) > 1 for the last inequality.

By (45) and (48), we deduce that the first part of Assumption 1 holds true. Since A h/h is locally
bounded, we deduce from (46) and (49) that it is bounded from above. We conclude that Assump-
tion 1 holds true.

Finally, using Proposition 7, we deduce from (46) and (49) that Assumption 5 holds true.

To once again give an explicit example, we offer:

Corollary 3. Assume that Assumption 2 and Assumption 3 or 4 hold true. Let p(du) = 2du and let

c(x) =
{

c0x, x ≤ xc ,

c∞x, x > xc ,

for some xc > 0 and 0 < c∞ < c0 <∞. Assume that

limsup
x→0

K (x) < 3c0 − c∞−2
√

2c0(c0 − c∞) (50)

and liminfx→∞ K (x) > 2c∞. Then, the conditions of Proposition 11 are satisfied.
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Proof. With this particular choice of c, the conditions of Proposition 11 are that there exist α ∈
[0,c∞) and β> c∞, such that

limsup
x→0

K (x) < c∞−α∫
(0,1) uα/c0 2du −1

= (α+ c0)(c∞−α)

c0 −α
(51)

and

liminf
x→+∞ K (x) > β− c∞

1−∫
(0,1) uβ/c∞ 2du

=β+ c∞. (52)

The maximum of α 7→ (α+c0)(c∞−α)
c0−α on the domain α ∈ [0,c∞) is given by the right-hand side of

(50), which shows that the condition given suffices for (51) to hold.
Since liminfx→∞ K (x) > 2c∞, one can find β > c∞ such that (52) holds, which concludes the

proof.

3.1.4 Critical case, K comparable to a constant

We consider now the situation where K is the constant function 1, and then the situation when K
is bounded away from 0 and bounded from above by 1.

As in the previous section, we consider for simplicity the situation where k(x, ·) = K (x)p ◦m−1
x ,

with p a positive measure on (0,1) such that
∫

(0,1) u p(du) = 1. We also assume that, for all x ∈
(0,+∞), s(x) = ∫ x

1
1

c(y) dy where c : (0,+∞) → (0,+∞) is a right-continuous and locally bounded
function.

Proposition 12. Assume that Assumption 2 and Assumption 3 or 4 hold true. Assume in addition
that there exists δ> 0 such that

∫
(0,1) u−δ p(du) <+∞. If s(0+) =−∞ and

limsup
x→+∞

c(x)

x
<−

∫
(0,1)

lnu p(du) < liminf
x→0

c(x)

x
, (53)

then Assumptions 1 and 5 hold true.

In [15], the author consider the case where p(du) is absolutely continuous with respect to the
Lebesgue measure and where there exist positive constants a− and a+ such that

c(x) =
{

a−x if x < 1,

a+x if x ≥ 1.

In this case, our assumption reads

a+ <−
∫

(0,1)
lnu p(du) < a−,

which is sharp, according to [15], in the sense that, if one of the inequalities fails, then eλ0t Tt f does
not converge (for some bounded, compactly supported function f ). Additional properties, and in
particular fine estimates on the limiting profile of eλ0t Tt , can be found in the above reference.

The previous result is a particular case of the following proposition, where we do not assume
any more that K is constant. Here K is a locally bounded right-continuous function.
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Proposition 13. Assume that Assumption 2 and Assumption 3 or 4 hold true. Assume in addition
that there exists δ> 0 such that

∫
(0,1) u−δ p(du) <+∞, and 0 < infK ≤ 1. If s(0+) =−∞ and

infK = limsup
x→0

K (x) = limsup
x→+∞

K (x) (54)

and

limsup
x→+∞

c(x)

x
<−

∫
(0,1)

lnu p(du) < liminf
x→0

c(x)

x
, (55)

then Assumptions 1 and 5 hold true.

We start with a simple technical lemma, whose proof is standard and thus omitted.

Lemma 8. If there exists δ> 0 such that
∫

(0,1) u−δ p(du) <+∞ and constants a0, a1 such that

a0 <−
∫

(0,1)
lnu p(du) < a1,

then there exists ε0 > 0 such that, for all ε ∈ (0,ε0),

ε+
∫

(0,1)
(uε/a0 −1) p(du) < 0 and

∫
(0,1)

u−ε/a1 p(du) < ε+p((0,1)).

Proof of Proposition 13. Let ψ′(x) = 1 for all x ∈ (0,+∞) and set

ψ(x) = h(x) = exp(−αs(x))1x<1 +exp(βs(x))1x≥1,

where α> 0 and β> 0 are (small enough) constant which will be chosen later. We already observe
that, by assumption, ψ(x)/ψ′(x) →+∞ when x → 0 and when x →+∞. In addition,

Aψ′(x)

ψ′(x)
= K (x)

(∫
(0,1)

p(du)−1

)
≥ infK

∫
(0,1)

(1−u) p(du). (56)

For all x < 1, we have∫
(0,x)

h(y)

h(x)
k(x,dy) = K (x)

∫
(0,1)

exp(−α(s(ux)− s(x))) p(du),

where

exp(−α(s(ux)− s(x))) ≤ u−αsupy∈(0,x)
y

c(y) .

On the one hand, choosing α< δ/supy∈(0,1)
y

c(y) , we deduce that∫
(0,x)

h(y)

h(x)
k(x,dy) ≤ sup

y∈(0,1)
K (y)

∫
(0,1)

u−δ p(du), (57)

and, on the other hand, letting x → 0 and using Fatou’s lemma, we deduce that

limsup
x→0

A h(x)

h(x)
=−α+ limsup

x→0

∫
(0,x)

h(y)

h(x)
k(x,dy)−K (x)

≤−α+ limsup
x→0

K (x)

(∫
(0,1)

u−α limsupx→0
y

c(y) p(du)−1

)
=−α+ infK

(∫
(0,1)

u−α limsupx→0
y

c(y) p(du)−1

)
.

38



According to Lemma 8 and the second inequality in (55), there existsα0 > 0 such that, for allα<α0,∫
(0,1)

u−α limsupx→0
y

c(y) p(du) <α+p((0,1)).

This implies, choosing α < α0 ∧ (δ/supy∈(0,1)
y

c(y) ) (which we will assume from now on) and using
in addition (56), that

limsup
x→0

A h(x)

h(x)
<−α(1− infK )+ infK (p(0,1)−1) < inf

x

Aψ′(x)

ψ′(x)
. (58)

For all x ≥ 1, we have∫
(0,x)

h(y)

h(x)
k(x,dy) = K (x)

∫
(0,1/x)

exp
(−αs(ux)−βs(x)

)
p(du)

+K (x)
∫

(1/x,1)
exp

(
β(s(ux)− s(x))

)
p(du)−K (x),

where

exp(−αs(ux)−βs(x)) ≤ (ux)−αsupy∈(0,ux)
y

c(y) ≤ u−δ

and

exp
(
β(s(ux)− s(x))

)≤ uβ infy∈(ux,x)
y

c(y) .

On the one hand, we deduce that∫
(0,x)

h(y)

h(x)
k(x,dy) ≤ sup

y∈(0,M)
K (y)

∫
(0,1)

u−δ p(du) (59)

and, on the other hand, choosing β < 1/infy≥1
y

c(y) , letting x →+∞ and using Fatou’s Lemma, we
deduce that

limsup
x→+∞

A h(x)

h(x)
=β+ limsup

x→+∞

∫
(0,x)

h(y)

h(x)
k(x,dy)−K (x)

≤β+ limsup
x→+∞

K (x)

(∫
(0,1)

uβ liminfy→+∞
y

c(y) p(du)−1

)
=β+ infK

(∫
(0,1)

uβ liminfy→+∞
y

c(y) p(du)−1

)
.

According to Lemma 8 and the first inequality in (55), there exists β0 > 0 such that, for all β<β0,∫
(0,1)

uβ liminfx→+∞
y

c(y) p(du) <−β+p((0,1)).

Choosing β<β0 ∧ (1/infy≥1
y

c(y) ), we deduce that

limsup
x→+∞

A h(x)

h(x)
≤β(1− infK )+ infK (p(0,1)−1)
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and hence, choosing β small enough and using (56),

limsup
x→+∞

A h(x)

h(x)
< inf

x

Aψ′(x)

ψ′(x)
. (60)

By (57) and (59), and observing that our assumptions imply that K is uniformly bounded, we de-
duce that the first part of Assumption 1 holds true. In addition, A h/h is locally bounded and,
by (58) and (60), it is thus bounded from above. We conclude that Assumption 1 is verified.

Finally, (58) and (60) in combination with Proposition 7 entail that Assumption 4 holds true.
This concludes the proof of Proposition 13.

3.2 Proof of Proposition 4

Since the process X is a PDMP, it is a strong Markov process with respect to its completed natural
filtration according to Theorem 25.5 in [19] (its proof remains correct under our assumptions).

Let us now prove the irreductiblity of X . Fix x0 ∈ (0,+∞) and set

A := {x ∈ (0,+∞), Px (Hx0 <+∞) > 0}.

We first note that A is non-empty since x0 ∈ A. Our strategy is to prove that A is open and closed in
(0,+∞), so that A = (0,+∞) since (0,+∞) is connected.

(1) A∩ (0, x0) is open. For all x < x0 ∈ (0,+∞), mx := supz∈[x,x0] kh(z, (0, z)) is finite according to
Assumption 1. Setting tx = s(x0)− s(x), we deduce from the construction of the process (see Step 1
in the proof of Proposition 2) that

Px (Hx0 ≤ tx ) ≥Px (the process X does not jump during the time interval [0, tx ]) ≥ e−mx tx > 0.

In particular, (0, x0) ⊂ A so that A∩ (0, x0) is open.
(2) A contains a neighbourhood of x0. According to the previous step, for all ε >∈ (0, x0),

(x0 − ε, x0] ⊂ A. It remains to prove that there exists ε > 0 such that (x0, x0 + ε) ⊂ A. According
to Assumption 2, the Lebesgue measure of s({y ∈ (x0,+∞), k(y, (0, x0)) > 0}) is positive. Since

{y ∈ (x0,+∞), k(y, (0, x0)) > 0} = ⋃
n≥1, m≥1

{y ∈ (x0,n), k(y, (0, x0)) > 1/m},

we deduce that there exists a bounded I0 ⊂ (x0,+∞) such that

λ1(s(I0)) > 0 and inf
y∈I0

k(y, (0, x0)) > 0.

Choosing ε> 0 small enough, we deduce that, for all x ∈ (x0, x0 +ε), λ1(s(I0 ∩ (x,+∞))) > 0.
We also have, denoting by σ the first jump time of X and using the strong Markov property at

time σ,

Px (Hx0 <+∞) ≥ Ex
(
1σ<+∞PXσ

(Hx0 <+∞)
)

. (61)

Since Py (Hx0 <+∞) > 0 for all y ∈ (0, x0), it is sufficient to prove that P(σ<+∞ and Xσ ∈ (0, x0)) > 0
to conclude that Px (Hx0 <+∞) > 0. By construction of the process X , we have

Px (σ<+∞ and Xσ ∈ (0, x0)) ≥Px (σ<+∞ and Xσ− ∈ I0 and Xσ ∈ (0, x0))

≥Px (s−1(s(x)+σ) ∈ I0)
infy∈I0 kh(y, (0, x0))

supy∈I0
kh(y, (0, y))+q(y)

(62)
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since s−1(s(x)+ t ) is the position of the process X t− under Px , conditionally to t ≤σ. We also have

Px (s−1(s(x)+σ) ∈ I0) =Px (σ ∈ s(I0)− s(x))

=
∫

s(I0)−s(x)

1

[kh +q](s−1(s(x)+ t ))
exp

(
−

∫ t

0
[kh +q](s−1(s(x)+u))du

)
dt > 0. (63)

Using (61), (62) and (63), we deduce that, for all x ∈ (x0, x0 +ε),

Px (Hx0 <+∞) > 0.

This concludes the second step of the proof.
(3) A∩ (x0,+∞) is open. Fix x ∈ A∩ (x0,+∞). Then, for all ε ∈ (0, x), for all y ∈ (x−ε, x), we have

using the strong Markov property at time Hx ,

Py (Hx0 <+∞) ≥Py (Hx <+∞)Px (Hx0 <+∞) > 0,

since y < x and x ∈ A. In particular, (x −ε, x) ⊂ A. Moreover, since X is right-continuous,

lim
y→x,y>x

Px (Hy < Hx0 ) = 1.

Hence there exists ε> 0 such that, for all y ∈ (x, x +ε),

Px (Hy < Hx0 ) ≥ 1−Px (Hx0 <+∞)/2

This implies that
Px (Hy < Hx0 and Hx0 <+∞) > 0.

Since, by the strong Markov property applied at time Hy , we have Px (Hy < Hx0 and Hx0 < +∞) =
Px (Hy < Hx0 )Py (Hx0 <+∞), we deduce that, for all y ∈ (x, x +ε),

Py (Hx0 <+∞) > 0.

This concludes the third step of the proof.
(4) A is closed in (0,+∞). We prove that A is sequentially closed in (0,+∞). Let (xn)n∈N ∈ AZ+

be a sequence converging to a point x ∈ (0,+∞).
If there exists n ∈ Z+ such that x ≤ xn , then Px (Hxn < +∞) > 0 and hence, using the Markov

property at time Hxn , we deduce that Px (Hx0 <+∞) > 0 and hence that x ∈ A.
Assume now that xn < x for all n ∈ Z+. Without loss of generality, we assume that (xn)n∈Z+ is

non-decreasing. According to Assumption 2, the Lebesgue measure of s({y ∈ (x,+∞), kh(y, (0, x)) >
0}) is positive. Since

{y ∈ (x,+∞), kh(y, (0, x)) > 0} = ⋃
n≥1, m≥1,p≥1

{y ∈ (x, p), kh(y, (0, xn)) > 1/m},

we deduce that there exists a bounded I1 ⊂ (x,+∞) and n ∈Z+ such that

λ1(s(I1)) and inf
y∈I1

kh(y, (0, xn)) > 0.

Using the same procedure as in Step 2 above, we deduce that Px (Hxn <+∞) > 0. Using the strong
Markov property at time Hxn and the fact that xn ∈ A, we deduce that Px (Hx0 < +∞) > 0, so that
x ∈ A.
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(5) Conclusion. Steps 1, 2, 3 and 4 above imply that A is both open and closed in the connected
set (0,+∞), so that A = (0,+∞) and, for all x, y ∈ (0,+∞)

Px (Hy <+∞) > 0.

Now let l < r ∈ (0,+∞) and set tl ,r = s(r )− s(l ) . Then, for all x ≤ y ∈ [l ,r ],

Px (Hy < tl ,r ) ≥Pl (σ≥ tl ,r ) > 0.

Moreover, since Pr (Hl < +∞) > 0, we deduce that there exists t ′l ,r > 0 such that Pr (Hl < t ′l ,r ) > 0.
Using the strong Markov property, we deduce that, for all x > y ∈ [l ,r ],

Px (Hy < tl ,r + t ′l ,r + tl ,r ) ≥Px (Hr < tl ,r )Pr (Hl < t ′l ,r )Pl (Hy < tl ,r )

≥Pl (σ≥ tl ,r )Pr (Hl < t ′l ,r )Pl (σ≥ tl ,r ) > 0.

Setting t0 = tl ,r + t ′l ,r + tl ,r , this concludes the proof of Proposition 4.

3.3 Proof of Proposition 5 under Assumption 3

In what follows, we set I = (a,b) where 0 < a< b<+∞ and we only consider functions f vanishing
on the cemetery point, so that Qt f (x) = Ex ( f (X t )1t<ζ) = Ex ( f (X t )) for all x ∈ E , where ζ is the first
hitting time of ∂. Moreover, b is defined in section 2.

Let us denote by r (x) = kh(x, (0, x))+q(x) = b+K (x)− 1
h(x)

∂h
∂s (x) the jump rate of X at position x ∈

(0,+∞). Using Assumption 3, the local boundedness of K and the local boundedness of 1
h∂h/∂s,

we obtain

0 < inf
y∈I

kh(y, (0, y)) ≤ inf
I

r ≤ sup
I

r ≤ b + sup
y∈I

K (y)+ ∂h

∂s
(y)/h(y) <+∞.

These bounds are thus valid for r (X t ) for all t ∈ [0,σ∧ (s(b)− s(a))], Pa-almost surely. We deduce
from Assumption 3 that the law of Xσ (where σ denotes the first jump time of X ) conditionally on
Xσ− satisfies

Pa(Xσ ∈ dy | Xσ−) ≥ kh(Xσ−,dy)

r (Xσ−)
≥ 1Xσ−∈I a

h(Xσ−) supI r
µ(h(y)dy) ≥ a1 1Xσ−∈I µ(dy),

where

a1 = a infI h

supI h supI r
.

Using the strong Markov property at the first jump time σ of X , we then have for all t > 0,

Ea( f (X t )) ≥ Ea
(
1σ≤tEXσ

( f (X t−u))|u=σ
)

≥ a1Ea
(
1σ≤t 1Xσ−∈IEµ( f (X t−u))|u=σ

)
. (64)

Since, Pa-almost surely, X t = s−1(s(a)+ t ) for all t <σ, we have

Pa

(
X t− ∈ I , ∀t ∈

(
0,σ∧ s(b)− s(a)

2

))
= 1,

and hence, setting t1 = s(b)−s(a)
4 ,

Pa

(
X t− ∈ I , ∀t ∈

[
0,σ∧ (2t1)

])
= 1.
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We deduce from the last equality and from (64) that, for all t ∈ [t1,2t1],

Ea( f (X t )) ≥ a1Ea
(
1σ≤tEµ( f (X t−u))|u=σ

)
= a1

∫ t

0
r (Xu)e−

∫ u
0 r (Xs )dsEµ( f (X t−u))du

≥ a1

∫ t

0
infI r ·e−u supI r Eµ( f (X t−u))du

≥ a1 infI r ·e−2t1 supI r
∫ t1

0
Pµ(u < ζ)du ·υ( f )

where

υ( f ) :=
∫ t1

0 Eµ( f (Xu))du∫ t1
0 Pµ(u < ζ)du

.

Setting

a2 := a1 infI r ·e−2t1 supI r
∫ t1

0
Pµ(u < ζ)du > 0,

we deduce that

Ea( f (X t )) ≥ a2υ( f ). (65)

Now, since υ is a non-zero measure on (0,∞), we have, by the irreducibility property proved in
Proposition 4,

Pυ(Ha <+∞) =
∫

(0,+∞)
υ(dy)Py (Ha <∞) > 0,

where Ha = inf{t ≥ 0 : X t = a}. In particular, there exists t2 > 0 such that

a3 :=Pυ(Ha ∈ [t2, t2 + t1/2]) > 0.

Hence, using the strong Markov property at time Ha, we deduce that for all t ∈ [t2 +3t1/2, t2 +
2t1],

Eυ( f (X t )) ≥ Eυ
[
1Ha∈[t2,t2+t1/2]Ea( f (X t−u) | u = Ha)

]≥ a3 a2υ( f ).

Iterating the above inequality (i.e., applying the Markov property successively at times tk/n, k =
1, . . . ,n −1) we deduce that

Eυ( f (X t )) ≥ (a3a3)nυ( f ), t ∈ [n(t2 +3t1/2),n(t2 +2t1)]. (66)

We set n1 =
⌊

2t2+3t1
t1

⌋
+ 1 (so that (n + 1)(t2 + 3t1/2) ≤ n(t2 + 2t1) for all n ≥ n1), and define t3 =

n1(t2 +3t1/2). For any t ≥ t3, the integer n =
⌊

t
t2+3t1/2

⌋
satisfies t ∈ [n(t2 +3t1/2), (n +1)(t2 +3t1/2)]

and n ≥ n1, so that t ∈ [n(t2 +3t1/2),n(t2 +2t1)]. Hence, setting

βt = (a3a2)

⌊
t

t2+3t1/2

⌋
> 0, ∀t ≥ t3,

we deduce from (66) that

Eυ( f (X t )) ≥βtυ( f ), ∀t ≥ t3.
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Using again the irreducibility property stated in Proposition 4, we know that, for any compactly
contained interval L ⊂ (0,+∞) containing a, there exists a constant t4(L) > 0 such that

a4(L) := inf
x∈L

Px (Ha ≤ t4(L)) > 0.

Hence Markov’s property applied at time Ha and the above inequalities gives, for t ≥ t1 + t3 + t4(L)
and x ∈ L,

Ex
(

f (X t )
)≥ Ex

[
1Ha≤t4(L)Ea

(
f (X t−u) | u = Ha

)]
≥ Ex

[
1Ha≤t4(L)a2Eυ

(
f (X t−t1−u) | u = Ha

)]
≥ Ex

[
1Ha≤t4(L)a2βt−t1−Ha

]
υ( f )

≥ cL,t υ( f ),

where cL,t := a4(L) a2βt−t1−t4(L). This concludes the proof of Proposition 5 under Assumption 3.

3.4 Proof of Proposition 5 under Assumption 4

This proof is a direct adaptation of the proof of Proposition 1 in [34], where the problem is already
solved when s is of the form

∫ x
1 1/c(y)dy , with c continuous and positive.

Let I = (a,b) and fix t1 > 0 small enough so that φ(a, t ) ∈ I for all t ∈ (0, t1). Restricting to the
event where the process jumps only one time in the time interval (0, t1), we deduce that, for all
t ∈ (0, t1) and all positive measurable function f ,

Qt f (a) ≥
∫ t

0
f (φ(T (φ(a,u)), t −u)) a e−

∫ u
0 r (φ(T (φ(a,u)),t−u))dv du,

where Q and r are as in the previous section. By assumption, r is uniformly bounded away from 0
and ∞ on compact subsets of (0,+∞), so that there exists a constant a1 > 0 such that

Qt f (a) ≥ a1

∫ t

0
f (φ(T (φ(a,u)), t −u))du = a1

∫ t

0
f ◦ s−1(s ◦φ(T (φ(a,u)), t −u))du.

Observe now that s ◦φ(T (φ(a,u)), t −u) = s(T (φ(a,u)))+ t −u, so that (recall (12))

ds ◦φ(T (φ(a,u)), t −u)

du
= ds ◦T (φ(a,u))

du
−1 = ∂s ◦T

∂s
(φ(a,u))−1 6= 0,

with the left hand side continuous in u and in particular bounded away from 0 and ∞ for t ∈ (0, t1).
We are now in position to use the change of variable y =φ(T (φ(a,u)), t −u), and deduce that there
exists a positive constant a2 > 0 such that, for all t ∈ (0, t1),

Qt f (a) ≥ a2

∣∣∣∣∫ T (φ(a,t ))

φ(T (a),t )
f ◦ s−1(y)dy

∣∣∣∣ .

Since u 7→ φ(T (φ(a,u)), t −u) is strictly monotone on (0, t ), one easily checks that this entails that
there exist a constant a′

2 > 0, two points x1 < x2 ∈ (0,+∞) and two fixed times t ′1 < t ′′1 ∈ (0, t1) such
that, for all t ∈ (t ′1, t ′′1 ),

Qt f (a) ≥ a′
2

∫ x2

x1

f ◦ s−1(y)dy.

Setting υ′(dx) = 1x∈(x1,x2)dx and then υ= υ′ ◦ s, and proceeding as in the previous section after (65),
we deduce that the conclusion of Proposition 5 holds true.
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3.5 Proof of Theorem 3

Our aim is to prove that Assumptions 1, 2, 5 and Assumption 3 or 4 together imply that Assump-
tion F of [17] is satisfied for the Markov semigroup (Qt )t∈[0,+∞). Let us recall this assumption.

Assumption (F). There exist positive real constants γ1,γ2,c1,c2 and c3, t1, t2 ∈ [0,+∞), a measur-
able function ψ1 : (0,+∞) → [1,+∞), and a probability measure ν on a measurable subset L ⊂
(0,+∞) such that

(F0) (A strong Markov property). Defining

HL := inf{t ≥ 0, X t ∈ L}, (67)

assume that for all x ∈ (0,+∞), XHL ∈ L, Px -almost surely on the event {HL <∞} and for all
t > 0 and all measurable f : (0,+∞)∪ {∂} →R+,

Ex
[

f (X t )1HL≤t<ζ
]= Ex

[
1HL≤t∧ζEXHL

[
f (X t−u)1t−u<ζ

]|u=HL

]
.

(F1) (Local Dobrushin coefficient). ∀x ∈ L,

Px (X t1 ∈ ·) ≥ c1ν(·∩L).

(F2) (Global Lyapunov criterion). We have γ1 < γ2 and

Ex (ψ1(X t2 )1t2<HL∧ζ) ≤ γt2
1 ψ1(x), ∀x ∈ (0,+∞)

Ex (ψ1(X t )1t<ζ) ≤ c2, ∀x ∈ L, ∀t ∈ [0, t2],

γ−t
2 Px (X t ∈ L) −−−−→

t→+∞ +∞, ∀x ∈ L.

(F3) (Local Harnack inequality). We have

sup
t≥0

supy∈LPy (t < ζ)

infy∈LPy (t < ζ)
≤ c3

We prove in the following subsections that F0, F1, F2 and F3 are satisfied, in this order, with the
aim to apply the following result, which is Theorem 3.5 in [17] combined with the continuous time
adaptation of Theorem 1.7 in [17].

Theorem 4 ([17]). Under Assumption (F), (X t )t∈[0,+∞) admits a quasi-stationary distribution νQS on
(0,+∞), which is the unique one satisfying νQS(ψ1) <∞ andPνQS (X t ∈ L) > 0 for some t ∈ [0,+∞). In

addition, there exists a constant λX
0 ≥ 0 such that λX

0 ≤ log(1/γ2) < log(1/γ1) and PνQS (t < ζ) = e−λ
X
0 t

for all t ≥ 0, and there exists a function η : (0,+∞) → [0,+∞) lower bounded away from 0 on L and
such that ∣∣∣η(x)−eλ

X
0 tPx (t < ζ)

∣∣∣≤Ce−γt ψ1(x), ∀x ∈ (0,+∞) (68)

and such that Ex (η(X t )1t<ζ) = e−λ
X
0 tη(x) for all x ∈ (0,+∞) and t ≥ 0. Finally, setting E ′ = {x ∈

(0,+∞), η(x) > 0}, we have, for all f : E ′ →R such that ‖ f η/ψ1‖∞ <+∞,∣∣∣∣∣eλ
X
0 t

η(x)
Ex (η(X t ) f (X t )1t<ζ)−νQS(η f )

∣∣∣∣∣≤Ce−γt ψ1(x)

η(x)
‖ f η/ψ1‖∞, ∀x ∈ E ′, (69)

for some constants γ> 0 and C > 0.
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Note that, in the above result, it is clear that λX
0 is the same as the one defined in (30). We

conclude by proving that the property obtained from this result entails Theorem 3.
In what follows, we only consider functions f vanishing on the cemetery point, so that Qt f (x) =

Ex ( f (X t )1t<ζ) = Ex ( f (X t )) for all x ∈ E , where ζ is the first hitting time of ∂. Moreover, b and h are
the objects defined in section 2.1.

3.5.1 Proof of F0 and F1

The completed natural filtration of X is right continuous (see Theorem 25.3 in [19]). Hence the
Début Theorem (see for instance Lemma 75.1 in [37]) implies that HL is a stopping time with re-
spect to this filtration. By Proposition 4, we deduce that F0 holds true for any compact interval
L ⊂ (0,+∞) (this set shall be chosen in subsection 3.5.2).

According to Proposition 5, the condition F1 holds true for L, assuming in addition (and without
loss of generality) that L large enough so that υ(L) ≥ 1/2.

3.5.2 Proof of F2

Take ψ1 =ψ/h (we assume without loss of generality that ψ≥ h), extended to ∂ by the value 0. We
deduce from Assumption 5 that there exists λX

1 >λX
0 and a compact interval L ⊂ (0,+∞) such that

Lψ1(x) ≤−λX
1 ψ1(x)+C 1L(x), ∀x ∈ (0,+∞).

Let ( fk )k≥2 be a non-decreasing sequence of non-negative functions in C s
c such that, for all k ≥ 2,

fk (x) =ψ1(x) for all x ∈ (1/k,k). We deduce that, for all x ∈ (1/k,k),

L fk (x) = ∂ f

∂s
(x)+kh(x, fk )− fk (x)kh(x, (0, x))−q(x) fk (x)

= ∂ψ1

∂s
(x)+kh(x, fk )−ψ1(x)kh(x, (0, x))−q(x)ψ1(x)

≤Lψ1(x) ≤−λX
1 ψ1(x)+C 1L(x) =−λX

1 fk (x)+C 1L(x).

Since fk , extended by the value 0 on ∂, belongs to the domain of the extended infinitesimal gener-
ator of X , we deduce that

M k
t := eλ

X
1 t fk (X t )− fk (x)−

∫ t

0
eλ

X
1 u(λX

1 +L fk (Xu))du

is a local martingale. Since eλ
X
1 u(λX

1 +L fk (Xu)) is uniformly bounded on [0, t ] (where we used
Lemma 1 (iii)), we deduce that it is a martingale. In particular, for any 2 ≤ k ′ ≤ k, denoting by
τk ′ = inf{t ≥ 0, X t or X t− ∉ (1/k ′,k ′)}, we have, using the optional stopping theorem,

E
(
eλ

X
1 t∧ζ∧τk′∧HL fk (X t∧ζ∧τk′∧HL )

)
≤ fk (x), ∀x ∈ (1/k ′,k ′).

Letting k →+∞, we deduce that

E
(
eλ

X
1 t∧ζ∧τk′∧HLψ1(X t∧ζ∧τk′∧HL )

)
≤ψ1(x), ∀x ∈ (1/k ′,k ′).

Using Fatou’s Lemma and the non-explosion of the process X , we conclude by letting k ′ →+∞ that

E
(
eλ

X
1 t∧ζ∧HLψ1(X t∧ζ∧HL )

)
≤ψ1(x), ∀x ∈ (0,+∞).
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This entails that
E
(
eλ

X
1 tψ1(X t )1t<ζ∧HL

)
≤ψ1(x), ∀x ∈ (0,+∞),

which implies the first line of F2 for any t2 > 0 and γ1 = e−λ
X
1 .

The same procedure, but replacing λX
1 by −C , stopping the process at time t ∧ζ∧τk ′ instead of

t ∧ζ∧τk ′ ∧HL and using the fact that L fk ≤C for all x ∈ (1/k,k), one deduces that, for all t ≥ 0.

E
(
ψ1(X t )1t<ζ

)≤ eC tψ1(x), ∀x ∈ (0,+∞).

This implies the second line of F2.
Finally, choosing any γ2 ∈ (e−λ

X
1 ,e−λ

X
0 ), the last line of F2 is a direct consequence of the defini-

tion of λX
0 .

3.5.3 F3

The irreducibility property of Proposition 4 implies that there exists tL > 0 such that infx,y∈LPx (Hy <
tL) > 0. Moreover, for any fixed x0 ∈ L, Px0 (tL < ζ) > 0, hence

c3 := inf
x,y∈L

Px (Hy < tL)Px0 (tL < ζ) > 0.

For all all t ≥ tL and all x, y ∈ L, we obtain, using the fact that Px (t < ζ) is decreasing with respect to
t and the strong Markov property at time Hy ,

Px (t < ζ) ≥ Ex
(
1Hy≤tPy (t −u < ζ)|u=Hy

)
≥Px (Hy ≤ tL)Py (t < ζ) ≥ c3Py (t < ζ).

For t < tL , we observe that, for all x, y ∈ L, using the strong Markov property at time Hx0 ,

Px (t < ζ) ≥Px (Hx0 <+∞)Px0 (tL < Hx0 ) ≥ c3 ≥ c3Py (t < ζ).

Hence,

sup
t≥0

supy∈LPy (t < ζ)

infx∈LPx (t < ζ)
≤ 1

c3
<∞. (70)

This concludes the proof of F3.

3.5.4 Conclusion of the proof of Theorem 3

We proved in the above subsections that the semigroup Q satisfies the conditions of Theorem 4.
The Doeblin property obtained in Proposition 5 entails that η is positive on (0,+∞) (and in partic-
ular E ′ = (0,+∞)). Hence we deduce that, for all f ∈ L∞(ψ1) and all t ≥ 0, applying (69) to f /η, we
deduce that ∣∣∣∣∣eλ

X
0 t

η(x)
µQt f −νQS( f )

∣∣∣∣∣≤C e−γt ψ1(x)

η(x)
‖ f /ψ1‖∞, ∀x ∈ E ′.

Since δxQt f = e−bt 1
h(x)δx Tt ( f h), we obtain, for all g ∈ L∞(ψ) = L∞(ψ1h) and taking f = g /h,∣∣∣e(λX

0 −b)tδx Tt g −νQS(g /h)η(x)h(x)
∣∣∣≤C e−γt ψ1(x)h(x)‖g /(hψ1)‖∞ =C e−γt ψ(x)‖g /ψ‖∞.

Finally, using that λ0 = λX
0 −b and setting m(g ) := νQS(g /h) and ϕ(x) = η(x)h(x) we deduce that,

for all g ∈ L∞(ψ), ∣∣∣eλ0tδx Tt g −m(g )ϕ(x)
∣∣∣≤C e−γt ψ(x).

Integrating with respect to µ such that µ(ψ) <+∞ concludes the proof.
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3.6 Proof of Proposition 6

Let λ′
0 = inf{λ ∈ R,

∫ ∞
0 eλt Tt 1L(x)dt = +∞}, where x ∈ (0,+∞) is fixed and L ⊂ (0,+∞) is a non-

empty, compactly embedded open interval. We clearly have λ0 ≥ λ′
0. Let us prove the converse

inequality.
Fix λ>λ′

0, so that
∫ ∞

0 eλt Tt 1L(x)dt =+∞ for some x ∈ (0,+∞) and some compactly embedded

non-empty interval L ⊂ (0,+∞). In particular, setting λX = λ+b, we have
∫ ∞

0 eλ
X tPx (X t ∈ L)dt =

+∞. For any y ∈ (0,+∞), there exists, according to Proposition 4, u0 > 0 such that Py (Hx ≤ u0) > 0,
and hence, using the strong Markov property at time Hx ,∫ ∞

u0

eλ
X tPy (X t ∈ L)dt ≥

∫ ∞

u0

eλ
X tEy

(
1Hx≤u0Px (X t−u ∈ L)|u=Hx

)
dt

= Ey

(
1Hx≤u0

∫ ∞

u0

eλ
X tPx (X t−u ∈ L)|u=Hx dt

)
≥ Ey

(
1Hx≤u0

∫ ∞

u0

eλ
X vPx (Xv ∈ L)dt

)
=+∞.

In particular,
∫ ∞

0 eλ
X tPy (X t ∈ L)dt =+∞ for all y ∈ (0,+∞). This implies that the probability meas-

ure υ from Proposition 5 satisfies ∫ ∞

0
eλtPυ(X t ∈ L)dt =+∞. (71)

Consider tL , υ and cL,t from Proposition 5. Then, for all T ≥ tL+1 and all x ∈ L, we have, applying
the Markov property at time tL +u for all u ∈ [0,1],

Px (XT ∈ L) ≥ cL,tL+uPυ(XT−tL−u ∈ L) ≥ cL,tL+1Pυ(XT−tL−u ∈ L)

and hence

eλ
X TPx (XT ∈ L) ≥ cL,tL+1eλ

X T
∫ 1

0
Pυ(XT−tL−u ∈ L)du

≥ cL,tL+1

∫ 1

0
eλ

X (T−tL−u)Pυ(XT−tL−u ∈ L)du

= cL,tL+1

∫ T−tL

T−tL−1
eλ

X t Pυ(X t ∈ L)dt .

Now, according to (71), for any fixed ε> 0, there exists Tε ∈ {0,1, . . .} such that Tε ≥ tL +1 and∫ Tε−tL

Tε−tL−1
e(λX +ε)t Pυ(X t ∈ L)dt ≥ 1

cL,tL+1

and hence such that

e(λX +ε)TεPx (XTε ∈ L) ≥ 1. (72)

We define the function wε : (0,+∞) → [0,+∞) by

wε(x) =
Tε−1∑
i=0

e(λX +ε)iPx (Xi ∈ L) =
Tε−1∑
i=0

e(λX +ε)i Qi 1L(x),
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where we recall that Q is the semigroup associated to the Markov process X . We thus have

Q1wε(x) =
Tε−1∑
i=0

e(λX +ε)i Qi+11L(x)

= e−(λX +ε)
Tε∑

i=1
e(λX +ε)i Qi 1L(x)

= e−(λX +ε)
(
wε(x)+e(λX +ε)TεQTε1L(x)−1L(x)

)
.

But, by (72), e(λX +ε)TεQTε1L(x) ≥ 1 for all x ∈ L, and hence we obtain, for all x ∈ (0,+∞),

Q1wε(x) ≥ e−(λX +ε)wε(x)

and hence, by iteration,

Qn wε(x) ≥ e−(λX +ε)n wε(x), ∀n ∈ {0,1, . . .}.

Since wε(x) > 0 for all x ∈ L, we deduce that

e−(λX +ε)nQn wε(x) −−−−−→
n→+∞ +∞, ∀x ∈ L. (73)

Proposition 4 and 5 entail that there exists t0 > 0 such that

c0 :=Pυ(X t0 ∈ L) > 0.

We can assume without loss of generality that Tε > tL + t0. Hence, for all y ∈ L, we have according
to the Markov property and by Proposition 5, for all u ≥ t such that u − t ≥ t0 + tL ,

Py (Xu−t ∈ L) ≥ Ey

(
PXu−t−t0

(X t0 ∈ L)
)
≥ cL,u−t−t0Pυ(X t0 ∈ L) ≥ cL,u−t−t0 c0.

Using again the Markov property, we thus observe that, for all u > t0 + tL , all x ∈ (0,+∞) and all
t ∈ [0,u − t0 − tL],

Px (Xu ∈ L) ≥ Ex
(
1X t∈LPX t (Xu−t ∈ L)

)
≥Px (X t ∈ L)cL,u−t−t0 c0.

In particular, for all u > t0 + tL +Tε and all k ∈ {0,1, . . . ,Tε−1},

Px (Xu ∈ L) ≥Px (Xbuc−Tε+k ∈ L)cL,u−buc+Tε−k−t0 c0 ≥Px (Xbuc−Tε+k ∈ L)cL,1+Tε−t0 c0.

Hence, setting δε =∑Tε−1
k=0 e(λX +ε)k , we have

e(λX +2ε)uPx (Xu ∈ L) = e(λX +2ε)u

δε

Tε−1∑
k=0

e(λX +ε)kPx (Xu ∈ L)

≥ e(λX +2ε)u

δε
cL,1+Tε−t0 c0

Tε−1∑
k=0

e(λX +ε)kPx (Xbuc−Tε+k ∈ L)

= e(λX +2ε)u

δε
cL,1+Tε−t0 c0

Tε−1∑
k=0

e(λX +ε)kQbuc−Tε+k 1L(x)

≥ e(λX +2ε)(buc−Tε)

δε
cL,1+Tε−t0 c0Qbuc−Tεwε(x).

By (73), this shows that e(λX +2ε)uPx (Xu ∈ L) goes to infinity when u →+∞. In particular, λX +2ε≥
λX

0 . Since this is true for all ε> 0, we deduce that λX ≥ λX
0 and hence λ≥ λ0. Since this is true for

all λ>λ′
0, we deduce that λ′

0 ≥λ0, which concludes the proof of the proposition.
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3.7 Proof of Proposition 7

(1) Proof of (a) We set ψ1 = ψ/h and ψ2 = ψ′(x)/h, both extended by the value 0 at point ∂. We
observe that (up to a change in the constant C > 0)

Lψ1 ≤−(λ1 +b)ψ1 +C 1L and Lψ2 ≥−(λ2 +b)ψ2.

Since ψ2 is continuous and positive, it is lower bounded on the compact interval L, and hence we
have Lψ1 ≤ −(λ1 +b)ψ1 +C ′ψ2, for some constant C ′ > 0. Hence setting F = ψ1 − C ′

λ1−λ2
ψ2, we

obtain

L F ≤−(λ1 +b)ψ1 +C ′ψ2 + (λ2 +b)C ′

λ1 −λ2
ψ2 =−(λ1 +b)F.

Fix x ∈ (0,+∞). Using the same approach as in section 3.5.2 (note that F is lower bounded on
(0,+∞) and positive in a vicinity of {0,+∞}), we deduce that, for all t ≥ 0,

Ex [e(λ1+b)t F (X t )] ≤ F (x).

In particular, for all t ≥ 0,

Ex (ψ1(X t )) ≤ C ′

λ1 −λ2
Ex (ψ2(X t ))+e−(λ1+b)t F (x).

For all M > 0, there exists a compact interval LM ⊂ (0,+∞) such that ψ1 ≥ Mψ2 on E \ LM . Hence,
for all t ≥ 0,

MEx (ψ2(X t )1X t∉LM ) ≤ C ′

λ1 −λ2
Ex (ψ2(X t ))+e−(λ1+b)t F (x),

so that, choosing M = C ′
λ1−λ2

+1,

Ex (ψ2(X t )1X t∉LM ) ≤ C ′

λ1 −λ2
Ex (ψ2(X t )1X t∈LM )+e−(λ1+b)t F (x),

which entails

Ex (ψ2(X t )) ≤
(
1+ C ′

λ1 −b

)
Ex (ψ2(X t )1X t∈LM )+e−(λ1+b)t F (x)

≤
(
1+ C ′

λ1 −b

)
Px (X t ∈ LM )+e−(λ1+b)t F (x). (74)

In addition, by Corollary 1 (and more precisely its proof), we have, for all t ≥ 0,

Ex (ψ2(X t )) =ψ2(x)+
∫ t

0
Ex (Lψ2(Xu))du ≥ψ2(x)− (λ2 +b)

∫ t

0
Ex (ψ2(Xu))du

and hence, by Grownwall’s Lemma,

ψ2(x) ≤ e(λ2+b)tEx (ψ2(X t )).

The last inequality and (74) and the fact that λ2 +b <λ1 +b imply that, for any fixed λ′ ∈ (λ2,λ1),

e(λ′+b)tPx (X t ∈ LM ) −−−−→
t→+∞ +∞.
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In particular λX
0 ≤λ′+b, so that λ0 ≤λ′ for any λ′ ∈ (λ2,λ1), which concludes the proof of Proposi-

tion 7 (a).
(2) Proof of (b) We consider the right-continuous PDMP Y with drift s and jump kernel k̄(x,dy) =

ψ′(y)
ψ′(x) k(x,dy). The function V =ψ/ψ′ satisfies

∂V

∂s
(x)+

∫
(0,x)

(V (y)−V (x))k̄(x,dy) =V (x)

(
1

ψ(x)

∂ψ

∂s
(x)− 1

ψ′(x)

∂ψ′

∂s
(x)+

∫
(0,x)

ψ(y)

ψ(x)
k(x,dy)− k̄(x, (0, x))

)
=V (x)

(
Aψ

ψ
− Aψ′

ψ′

)
≤V (x)(−λ1 +C 1L(x)+λ2)

≤−λV (x)+C max
L

V 1L(x),

where λ = λ1 −λ2 ≥ 0. Since in addition V (x) →+∞ when x → 0 or x →+∞, and since the jump
rate k̄(x, (0, x)) is locally bounded, this entails that Y is non explosive and recurrent. Its extended
infinitesimal generator, denoted by L Y , satisfies, for all f ∈C s

c ,

L Y f (x) = ∂ f

∂s
(x)+

∫
(0,x)

( f (y)− f (x)) k̄(x,dy), ∀x ∈ (0,+∞).

Set d(x) := Aψ′(x)/ψ′(x) for all x ∈ (0,+∞). We consider the semigroup S acting on non-
negative measurable functions f : (0,+∞) → [0,+∞) as

St f (x) := Ex

(
exp

(∫ t

0
d(Ys)ds

)
f (Yt )

)
,∀t ≥ 0, x ∈ (0,+∞).

According to Proposition 2.1 in [14] (see also Proposition 3.4 in [10]), if Y is recurrent, then −λS
0 ≥

infx>0 d(x), with strict inequality if d is not constant, whereλS
0 is the growth coefficient of S (beware

of the difference of sign convention in the definition of the growth coefficient). It only remains to
prove that λ0 =λS

0 .
For any fixed M > 0, we set d M : x ∈ (0,+∞) 7→ d(x)∧M and

SM
t f (x) := Ex

(
exp

(∫ t

0
d M (Ys)ds

)
f (Yt )

)
,∀t ≥ 0, x ∈ (0,+∞).

For all f ∈C s
c and for f ≡ 1, we have

Ex

(
exp

(∫ t

0
d M (Ys)ds

)
f (Yt )

)
= f (x)+Ex

(∫ t

0
exp

(∫ u

0
d M (Ys)ds

)(
d M (Yu) f (Yu)+L Y f (Yu)

)
du

)
= f (x)+

∫ t

0
Su(d M f +L Y f )(x)du.

Setting
K M (x) = k̄(x, (0, x))−d M (x)

and

BM f (x) = d M (x) f (x)+L Y f (x) = ∂ f

∂s
(x)+

∫
(0,x)

f (y) k̄(x,dy)−K M (x) f (x),

we observe that the growth fragmentation generator BM satisfies Assumption 1 with h′ ≡ 1 instead
of h. In particular, according to Theorem 1, SM is the unique semigroup such that, for all f ∈ C s

c

and for f ≡ 1, for all t ≥ 0 and all x ∈ (0,+∞),

SM
t f (x) = f (x)+

∫ t

0
SM

u (BM f )(x)du.
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We now define, for all f ∈D(A ) and all x ∈ (0,+∞),

A M f (x) =A f (x)− (d(x)−d M (x)) f (x).

Then A M h(x)
h(x) ≤ A h(x)

h(x) and hence one easily checks that A M satisfies Assumption 1. Let T M be
the associated semigroup (whose existence and uniqueness is ensured by Theorem 1). Since ψ′ ∈
L∞(h) and Aψ′/h ≥−λ2ψ

′/h is lower bounded, we deduce from Corollary 1 that

T M
t ψ′(x) =ψ′(x)+

∫ t

0
T M

u (A Mψ′)(x)du.

In particular, the semigroup T̃ M defined, for all f ∈C s
c and for f ≡ 1, by

T̃ M
t f (x) = 1

ψ′(x)
T M

t (ψ′ f )(x), ∀t ≥ 0,∀x ∈ (0,+∞),

satisfies, for all such f , x and t ,

T̃ M
t f (x) = f (x)+

∫ t

0

1

ψ′(x)
T M

u (A M (ψ′ f ))(x)du = f (x)+
∫ t

0
T̃ M

u (Ã M f )(x)du

where

Ã M f (x) = A M ( f ψ′)(x)

ψ′(x)

= ∂ f

∂s
(x)+

∫
(0,x)

f (y) k̄(x,dy)−K (x) f (x)+ 1

ψ′(x)

∂ψ′

∂s
(x) f (x)− (d(x)−d M (x)) f (x)

= ∂ f

∂s
(x)+

∫
(0,x)

f (y) k̄(x,dy)+
(
Aψ′(x)

ψ′(x)
− k̄(x, (0, x))−d(x)+d M (x)

)
f (x)

=BM f (x).

This entails that, for all non-negative measurable function f : (0,+∞) → [0,+∞), all x ∈ (0,+∞) and
all t ≥ 0,

SM
t f (x) = T̃ M

t f (x) = 1

ψ′(x)
T M (ψ′ f )(x).

But, according to the representation of T M as the 1/h transform of a sub-Markov process (see Pro-
position 2 and the conclusion of the proof of Theorem 1 in section 2.3), we have

1

ψ′(x)
T M (ψ′ f )(x) = h(x)ebM t

ψ′(x)
Ex

(
f (X M

t )
ψ′(X M

t )

h(X M
t )

1X M
t 6=∂

)
,

where X M is a (0,+∞)∪ {∂}-valued PDMP with drift determined by s, jump kernel h(y)
h(x) k(x,dy) and

killing rate (that is jump rate toward ∂)

q M (x) = bM − A M h(x)

h(x)
, with bM = sup

x∈(0,+∞)

A M h(x)

h(x)
≤ b.
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Hence

SM
t f (x) = 1

ψ′(x)
T M (ψ′ f )(x) = h(x)ebM t

ψ′(x)
Ex

(
exp

(
−

∫ t

0
q M (Zu)du

)
f (Zt )

ψ′(Zt )

h(Zt )

)
,

where Z is a (conservative) PDMP with drift determined by s and jump kernel h(y)
h(x) k(x,dy). Since

bM → b and q M → q (pointwise) when M → +∞, we deduce (recall that q M and q are non-
negative) by dominated convergence that, for all t ≥ 0 and all x ∈ (0,+∞),

SM
t f (x) −−−−−→

M→+∞
h(x)ebt

ψ′(x)
Ex

(
exp

(
−

∫ t

0
sup

(0,+∞)
q(Zu)du

)
f (Zt )

ψ′(Zt )

h(Zt )

)
= 1

ψ′(x)
Tt (ψ′ f )(x).

On the other hand, by monotone convergence, SM
t f (x) converges, when M →+∞, to St f (x), and

we thus deduce that S is the ψ′ transform of T . We conclude that λ0 = λS
0 ≥ infx>0 d(x), with strict

inequality if d is not constant.

A Appendix

Let s be continuous (strictly) increasing function from (0,+∞) to R such that s(+∞) = +∞, let Q
be a non-negative kernel from (0,+∞)∪ {∂} to (0,+∞)∪ {∂} such that Q(∂, (0,+∞)∪ {∂}) = 0 and
Q(x, [x,+∞)) = 0 for all x > 0, where ∂ ∉ (0,+∞) is an isolated point. From now on, we set E =
(0,+∞)∪ {∂}. We consider the PDMP X with state space E , directed by the flow φ defined by (11)
(withφ(∂, t ) = ∂ for all t ≥ 0) between its jumps and with jump kernel Q (note that ∂ is an absorption
point for X ).

In the following results, Cb(E) denotes the set of bounded real valued continuous functions
on E and C0(E) the set of bounded continuous function vanishing at infinity. We emphasize that
its statement and proof can be easily adapted to the case where X takes its values in [0,+∞) or R.

The first part of the following proposition is proved by Davis in [19, Theorem 27.6], when φ

is generated by a Lipschitz vector field and x 7→ Q(x, (0,+∞)∪ {∂}) is continuous and bounded.
In our case, we do not assume this regularity, but use instead the fact that our state space is one
dimensional.

Proposition 14. Assume that supx∈(0,M) Q(x,E) < +∞ for all M > 0. Then the semigroup T of X
maps Cb(E) to itself.

If in addition s(0+) = −∞, supx∈E Q(x,E) < +∞ and, for all M > 0, limsupx→+∞Q(x, (0, M)∪
{∂}) = limsupx→0 Q(x, {∂}) = 0, then the semigroup of X is Feller, meaning that it maps C0(E) to itself
and is strongly continuous on C0(E).

Proof. We start by showing the first part, and then the second part of Proposition 14.
(1) T maps Cb(E) to itself. Our proof is a simple adaptation of the proof of [19, Theorem 27.6] to

our particular one-dimensional setting. Since s(+∞) =+∞, the explosion time of φ(x, ·) (denoted
by t∗(x) in the cited reference) is equal to infinity for all x ∈ E . Moreover, since supx∈(0,M) Q(x,E) <
+∞, the process X is non-explosive (as detailed in the first step of the proof of Proposition 2) and
well defined for all time t ≥ 0, for any initial distribution. Finally, Q(x,E) is uniformly bounded over
x ∈ E .
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The only difference with the proof of [19, Theorem 27.6] is that, in our case, it is not immediate
that, for any ψ ∈Cb(R+×E) and f ∈Cb(E), the term

Gψ(x, t ) := f (φ(x, t ))e−Λ(t ,x) +
∫ t

0

∫
E
ψ(t −u, y)Q(φ(x,u),dy)e−Λ(x,u) du

where

Λ(x, t ) :=
∫ t

0
Q(φ(x,u),E)du,

is continuous in (t , x) ∈ [0,+∞)×E and bounded. The rest of the proof is identical to the one of [19,
Theorem 27.6] and we thus only need to prove that Gψ ∈Cb(R+×E) to conclude.

First note that ‖Gψ‖∞ ≤ ‖ f ‖∞+‖ψ‖∞, so that it is bounded. It only remains to prove that Gψ is
continuous. Since Q(∂,dy) = 0 and since φ(∂, t ) = ∂ for all t ≥ 0, we have Gψ(∂, t ) = f (∂) for all t ≥ 0
and hence Gψ is continuous on {∂}× [0,+∞). Now let (x, t ) ∈ (0,+∞)× [0,+∞) and (ε,h) ∈ R×R
such that (x +ε, t +h) ∈ (0,+∞)× [0,+∞). We have, for all u ≥ 0, denoting δx,ε := s(x +ε)− s(x)

φ(x +ε,u) = s−1(s(x +ε)+u) = s−1(s(x)+ (u + s(x +ε)− s(x))) =φ(x,u +δx,ε). (75)

In particular,

Λ(x +ε, t +h) =
∫ t+h

0
Q(φ(x +ε,u),E)du

=
∫ t+h

0
Q(φ(x,u +δx,ε),E)du

=
∫ t+h+δx,ε

δx,ε

Q(φ(x,u),E)du,

so thatΛ is continuous and more precisely

|Λ(x +ε, t +h)−Λ(x, t )| ≤ (2δx,ε+h) sup
y∈(0,φ(x,t+h+δx,ε))

Q(y,E). (76)

Using again (75), we also obtain

∫ t+h

0

∫
E
ψ(t −u, y)Q(φ(x +ε,u),dy)e−Λ(x+ε,u) du

=
∫ t+h

0

∫
E
ψ(t −u, y)Q(φ(x,u +δx,ε),dy)e−Λ(x+ε,u) du

=
∫ t+h+δx,ε

δx,ε

∫
E
ψ(t −u −δx,ε, y)Q(φ(x,u),dy)e−Λ(x+ε,u−δx,ε) du.

By dominated convergence, continuity of ψ and of Λ, we deduce that the last term converges to∫ t
0

∫
E ψ(t−u, y)Q(φ(x,u),dy)e−Λ(x,u) du when (ε,h) → 0. In particular, using this and the continuity

of φ, of f and of Λ, we deduce that Gψ(x, t ) is indeed continuous in (x, t ), which concludes the
proof of the first part of Proposition 14.

(2) T maps C0(E) to itself. We assume in addition that s(0+) = −∞, that supx∈E Q(x,E) < +∞
and that, for all M > 0, limsupx→+∞Q(x, (0, M)∪ {∂}) = limsupx→0 Q(x, {∂}) = 0.

Let f ∈C0(E) and fix ε> 0. Let also n0 be large enough so that supx∈(0,1/n0)∪(n0,+∞) f (x) ≤ ε.
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Denoting by T1 < T2 < ·· · the successive jump times of X , we deduce from the boundedness of
Q(·,E), that, for all t ≥ 0,

sup
x∈E

P(Tn ≤ t | X0 = x) −−−−−→
n→+∞ 0.

Fix n1 such that supx∈E P(Tn1 ≤ t | X0 = x) ≤ ε. Since the process X is almost-surely non-decreasing
between the jumps, its law at time t on the event Tn ≤ t < Tn+1 stochastically dominates the nth it-
erate of Q, denoted by Qn (consider that ∂ is below 0). By assumption we have limsupx→+∞Q(x, (0,n0)∪
{∂}) = 0, so that, for all n ≥ 0, limsupx→+∞Qn(x, (0,n0)∪ {∂}) = 0, and hence there exists n2 ≥ 1 such
that, for all n ∈ {0, . . . ,n1},

sup
x≥n2

P(X t < n0 Tn ≤ t ≤ Tn+1 | X0 = x) ≤ ε/(n1 +1).

In particular,

sup
x≥n2

P(X t < n0 | X0 = x) ≤ sup
x≥n2

n1∑
n=0

P(X t < n0 Tn ≤ t < Tn+1 | X0 = x)+ sup
x≥n2

P(Tn1 ≤ t | X0 = x) ≤ 2ε.

As a consequence,
sup
x≥n2

E( f (X t ) | X0 = x) ≤ 2ε‖ f ‖∞+ε.

Since the existence of n2 is true for any fixed ε> 0, we deduce that

E( f (X t ) | X0 = x) −−−−−→
x→+∞ 0.

Now, since s(x) −−−→
x→0

−∞, we deduce that φ(x, t ) → 0 when x → 0. Since X t ≤ φ(x, t ) or X t = ∂

almost surely when it starts from x at time 0, we deduce that, if f vanishes at 0, then so does
Tt f (x) = E( f (X t )1X t 6=∂ | X0 = x) when x → 0. Moreover, the jumping rate from y to ∂ goes to 0
when y → 0, so that P(X t = ∂ | X0 = x) → 0 when x → 0. Finally, we deduce that Tt f (x) → 0 when
x → 0 or x →+∞.

We conclude that Tt maps the space of continuous functions vanishing at 0 and infinity to itself.
(3) T is strongly continuous. We proceed under the same assumptions as in step (2). Let f be

in the space of continuous functions vanishing at 0 and infinity. Fix ε> 0. Since Q(·,E) is uniformly
bounded, say by a constant C , then the probability that the process has no jumps between times 0
and t is larger than e−tC , for any t ≥ 0. Hence∣∣Tt f (x)− f (φ(x, t ))

∣∣≤ 1−e−tC‖ f ‖∞. (77)

Since f vanishes at infinity, there exists n3 large enough so that f (x) ≤ ε for all x ≥ n3 or x < 1/n3.
Since we have φ(x, t ) ≥ x for all starting position x ≥ n3 and t ≥ 0, we deduce that

sup
x≥n′

∣∣ f (φ(x, t ))− f (x)
∣∣≤ 2 sup

x≥n′
| f (x)| ≤ 2ε. (78)

Similarly, φ(x, t ) ≤ φ(1/(n3 + 1), t ) for all starting position x ≤ 1/(n3 + 1). Since φ(1/(n3 + 1), t ) →
1/(n3 +1) when t → 0, there exists t0 > 0 such that φ(x, t ) ≤ 1/n3 for all x ≤ 1/(n3 +1) and t ∈ [0, t0].
We deduce that

sup
x≤1/(n3+1)

∣∣ f (φ(x, t ))− f (x)
∣∣≤ 2ε. (79)
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Finally, φ(x, t ) converges to x when t → 0, uniformly on compact sets and f is uniformly continu-
ous on [1/(n3 +1),n3], so that there exists t1 > 0 such that

sup
x∈[1/(n3+1),n3]

∣∣ f (φ(x, t ))− f (x)
∣∣≤ ε, ∀t ≤ t1.

Using the last equation and inequalities (77), (78) and (79), we deduce that there exists t2 > 0 such
that, for all t ≤ t2, (note that the case x = ∂ is trivial)

sup
x∈E

∣∣Tt f (x)− f (x)
∣∣≤ 3ε.

Since this is true for any ε > 0, we deduce that Tt f converges to f in the uniform topology. This
means that T is a strongly continuous semigroup on C0(E) and concludes the proof of Proposi-
tion 14.

In the following result, we characterize the infinitesimal generator of X when its semigroup is
Feller. We recall that, if s−1 : (−∞,+∞) → (0,+∞), then, given a function f : (0,+∞) → R such that
f ◦ s−1 is absolutely continuous, the function f ◦ s−1 is λ1-almost everywhere differentiable and
that, for any function g equals to this derivative λ1-almost everywhere, we have

f ◦ s−1(t )− f ◦ s−1(u) =
∫ t

u
g (v)dv, ∀u ≤ t ∈ (−∞,+∞).

One easily checks that, as a consequence, f is differentiable with respect to s, λ1 ◦ s-almost every-
where, with derivative h = g ◦ s, and that

f (y)− f (x) =
∫ y

x
h(z)ds(z), ∀x ≤ y ∈ (0,+∞).

In this case, we will say that f is s-absolutely continuous and that h is a s-derivative of f . We con-
sider the domain D(U ), defined as the set functions f : E → R such that f |(0,+∞) is an s-absolutely
continuous function admitting a s-derivative h such that x 7→ h(x)+∫

(0,x)( f (y)− f (x))Q(x,dy) is an

element of C0(E), where we set ∂ f
∂s (∂) = 0. We also define the operator U : D(U ) →C0(E) by

U f (x) = ∂ f

∂s
(x)+

∫
(0,x)

( f (y)− f (x))Q(x,dy), ∀x ∈ E ,

where ∂ f
∂s is the s-derivative of f extended with ∂ f

∂s (∂) = 0 and such that x ∈ E 7→ ∂ f
∂s (x)+∫

(0,x)( f (y)−
f (x))Q(x,dy) ∈C0(E).

Proposition 15. Assumes that s(0+) = −∞, that supx∈E Q(x,E) < +∞ and that, for all M > 0, we
have limsupx→+∞Q(x, (0, M)∪ {∂}) = limsupx→0 Q(x, {∂}) = 0. Then the infinitesimal generator of
the semigroup T of X acting on C0(E) is given by (U ,D(U )). Moreover, for all bounded f : E → R

such that f |(0,+∞) is s-absolutely continuous, denoting by ∂ f /∂s any s-derivative of f |(0,+∞) extended

with ∂ f
∂s (∂) = 0,

M f
t := f (X t )− f (x)−

∫ t

0
QuŨ f (Xs)ds, with Ũ f (y) := ∂ f

∂s
(y)+

∫
(0,x)

( f (y)− f (x))Q(x,dy),

defines a local martingale under Px , ∀x ∈ E.
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Proof. Let us denote by G the infinitesimal generator of T and by D(G ) its domain. Our aim is to
prove that (G ,D(G )) = (U ,D(U )).

We make use of the fact that the proof of Theorem 26.14 in [19] adapts directly to our situation
where the flowφ is generated by s on (0,+∞) and by 0 on ∂, instead of a Lipschitz flow X onRd . The
only adaptation lies in the fact that, between two successive jumps, say at times Ti−1 and Ti , and
for any function f such that f |(0,+∞) is s-absolutely continuous, we have (for the second equality,

recall that d f
du (φ(y,u)) = ∂ f

∂s (φ(y,u)) as soon as the derivative is well defined) if XTi−1 ∈ (0,+∞)

f (XTi−)− f (XTi−1 ) =
∫ Ti−Ti−1

0

d f

du
(φ(XTi−1 ,u))du

=
∫ Ti−Ti−1

0

∂ f

∂s
(φ(XTi−1 ,u))du

=
∫ Ti

Ti−1

∂ f

∂s
(Xv )dv,

instead of f (XTi−)− f (XTi−1 ) = ∫ Ti
Ti−1

X f (Xv )dv in [19], while f (X t )− f (XTi−1 ) = 0 for all t ≥ Ti−1 if
XTi−1 = ∂.

In particular, this result implies that any bounded f : E → R such that f |(0,+∞) is s-absolutely
continuous is in the domain of the extended infinitesimal generator of X , say U ′, and that U ′ f (x) =
∂ f
∂s (x)+∫

(0,x)( f (y)− f (x))Q(x,dy), for any s-derivative ∂ f /∂s of s (note that conditions 2. and 3. of
Theorem 26.14 in [19] are trivially satisfied in our case, respectively because the boundary of the
domain is not reached and because the number of jumps is finite in any finite time horizon almost
surely). This proves that M f is a local martingale under Px , for all x ∈ E .

In particular, given f ∈D(U ), the stochastic process defined, for all t ≥ 0, by

M f
t = f (X t )− f (x)−

∫ t

0
U f (Xu)du

is a local martingale under Px , for all x ∈ E . Since f and U f are bounded and M f is càdlàg, we
deduce that it is a martingale and thus, taking the expectation, we obtain

Tt f (x)− f (x)

t
= 1

t

∫ t

0
TuU f (x)du, ∀x ∈ E .

Moreover, since T is strongly continuous on C0(E) by Proposition 14 and since U f ∈ C0(E) by
assumption, for all x ∈ E ,∣∣∣∣1

t

∫ t

0
TuU f (x)du −U f (x)

∣∣∣∣≤ 1

t

∫ t

0

∥∥TuU f −U f
∥∥∞ du −−−→

t→0
0.

We conclude that, for any f ∈D(U ), we have f ∈D(G ) and G f =U f .
Reciprocally, assume that f ∈ D(G ). Then f is in the domain of the extended infinitesimal

generator of X , so that, according to Theorem 26.14 in [19], f |(0,+∞) is s-absolutely continuous and

Mt = f (X t )− f (x)−
∫ t

0

[
∂ f

∂s
(Xu)+

∫
(0,Xu )

( f (y)− f (Xu))Q(Xu ,dy)

]
du

is a local martingale under Px for all x ∈ E , where ∂ f
∂s is an s-derivative of f |(0,+∞) extended by

∂ f
∂s (∂) = 0. Moreover, denoting by G the infinitesimal generator of X , we have that

M ′
t = f (X t )− f (x)−

∫ t

0
G f (Xu)du
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is a martingale under Px . In particular, Mt − M ′
t is a continuous local martingale with bounded

total variation and hence it is constant Px -almost surely. We deduce that, Px -almost surely,

∂ f

∂s
(Xu)+

∫
(0,Xu )

( f (y)− f (Xu))Q(Xu ,dy) =G f (Xu), λ1(du)−almost everywhere.

Since the jump rate Q is bounded, we know that, for any t > 0, with positive probability, Xu =
φ(x,u) for all u ∈ [0, t ]. This and the previous equality entails that ∂ f

∂s (z)+∫
(0,z)( f (y)− f (z))Q(z,dy)

equals G f (z) for λ1 ◦ s-almost every z ≥ x. Since this is true for all x > 0, we deduce that, up to

a modification of ∂ f /∂s on a λ1 ◦ s-negligible set, z 7→ ∂ f
∂s (z)+ ∫

(0,z)( f (y)− f (z))Q(z,dy) = G f (z) ∈
C0(E), so that f ∈D(U ) and G f =U f .

We conclude this appendix by two results on the uniqueness of the martingale problem for
compactly supported and/or regular functions. Here uniqueness refers to the uniqueness of the
finite dimensional distributions. In particular, it entails that two càdlàg solutions to the martingale
problem are indistinguishable.

Proposition 16. Take the assumptions of the previous proposition. Let D be the space of compactly
supported functions f : E → R such that f |(0,+∞) is s-absolutely continuous and such that ∂ f /∂s is

bounded, with the extension ∂ f
∂s (∂) = 0. Then the (U ,D) martingale problem is well posed, and its

unique solution is the Markov process X .

Proof. Note that X is a solution to the (U ,D) martingale problem, so that the problem admits at
least one solution.

Assume now that Y is a solution to the (U ,D) martingale problem. Then, for all h ∈ D and all
x ∈ E ,

h(Yt )−h(Y0)−
∫ t

0

[
∂h

∂s
(Yu)+

∫
(0,Yu )

h(y)Q(Yu ,dy)−h(Yu)Q(Yu ,E)

]
du

is a martingale. Let f ∈ D(U ) such that f (1) = 0. Note that ∂ f /∂s is bounded. For all n ≥ 2, let hn

be the s-absolutely continuous compactly supported function defined by

hn(x) =



f (∂) if x = ∂,∫ x
1
∂ f
∂s (y) s(dy) if x ∈ (1/n,n),

( f (n)− s(x)+ s(n))+ if x ≥ n and f (n) ≥ 0,

−( f (n)+ s(x)− s(n))− if x ≥ n and f (n) ≤ 0,

( f (1/n)+ s(x)− s(1/n))+ if x ≤ 1/n and f (1/n) ≥ 0,

−( f (1/n)+ s(n)− s(x))− if x ≤ 1/n and f (1/n) ≤ 0,

Then hn is bounded by ‖ f ‖∞ and hn(x) converges toward f (x) for all x ∈ E . Moreover, ∂hn/∂s is
bounded by ‖∂ f /∂s‖∞∨1 and ∂hn/∂s(x) converges toward ∂ f /∂s(x) for all x ∈ E , with the exten-
sion ∂hn/∂s(∂) = 0. Finally, since Q(x, ·) is a bounded measure and hn is uniformly bounded in n,
Q(·,hn)−hn(·)Q(·,E) is bounded and, by dominated convergence, Q(x,hn)−hn(x)Q(x,E) converges
toward Q(x, f )− f (x)Q(x,E) for all x ∈ E . We deduce that (hn ,U hn) converges toward ( f ,U f ) in the
bounded point-wise sense, and hence that f (Yt )− f (x)−∫ t

0 U f (Yu)du is a martingale. If f (1) 6= 0,
then one derives the same result by considering the function f − f (1).

Since this is true for all f ∈ D(U ), we deduce that Y satisfies the (U ,D(U )) martingale prob-
lem (see for instance Proposition 4.3.1 in [23]). But (U ,D(U )) is the infinitesimal generator of the

58



strongly continuous semigroup T , and hence its martingale problem is well-posed (this is a con-
sequence of Hille-Yosida Theorem 1.2.6 and Theorem 4.4.1 in [23]). As a consequence the finite
dimensional laws of X and Y are the same, which concludes the proof of Proposition 16.

Proposition 17. Take the assumptions of the previous proposition. Let D ′ be the space of functions
f ∈ D, such that ∂ f /∂s is continuous1, with the extension ∂ f /∂s(∂) = 0. Then the (U ,D ′) martingale
problem is well posed, and its unique solution is the Markov process X .

Proof. Similarly to the proof of the previous proposition, we know that X is a solution to the (U ,D ′)
martingale problem, and our aim is to show the uniqueness of the solution by a density argument.

Assume that Y is a solution to the (U ,D ′) martingale problem and let S be its semigroup, so
that, for all h ∈ D ′,

St h(x) = h(x)+
∫ t

0
Su
∂h

∂s
(x)du +

∫ t

0
SuQ(·,h)(x)du −h(x)

∫ t

0
SuQ(·,E)(x)du, ∀x ∈ E .

Let f ∈ D (where D is defined in Proposition 16) and denote by [a,b] ⊂ (0,+∞), a < b, a com-
pact interval containing the support of f |(0,+∞). Fix t > 0 and let gn be a bounded sequence of
continuous functions with support in [a/2,2b]∪ {∂} such that gn → ∂ f /∂s in L1(µt +λ1), where

µt (A) :=
∫ t

0
Su1A du, for all measurable set A ⊂ (0,+∞)∪ {∂}.

Defining hn(x) = ∫ x
a gn(y)dy , we observe that (hn)n∈N is a bounded sequence in D ′ such that

hn(x) → f (x) when n →+∞, for all x > 0. In particular, using the fact that A 7→ ∫ t
0 SuQ(·, A)(x)du

defines a bounded measure and by dominated convergence,∫ t

0
SuQ(·,hn)(x)du −−−−−→

n→+∞

∫ t

0
SuQ(·, f )(x)du.

Similarly, St hn(x) → St f (x) when n →+∞, for all x > 0. Moreover,
∫ t

0 Su
∂hn
∂s (x)du = ∫ t

0 Su gn(x)du =
µt (gn) converges to µt (∂ f /∂s) = ∫ t

0 Su
∂h
∂s (x)du when n →+∞. Finally, we proved that S satisfies

St f (x) = f (x)+
∫ t

0
Su
∂ f

∂s
(x)du +

∫ t

0
SuQ(·, f )(x)du − f (x)

∫ t

0
SuQ(·,E)(x)du, ∀ f ∈ D.

This implies that Y satisfies the (U ,D) martingale problem, and hence, according to Proposi-
tion 16, that the finite dimensional laws of Y and X are the same. This concludes the proof of
Proposition 17.
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