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Thermodynamics: One Law from the Four Principles

After the presentation of the paper "The Mathematics of Thermodynamics", based on ideas of B. Finzi [one of the professors at Milan Politecnico] and Thermodynamics Maths with Fermi, Feynman, Finzi ideas we present the unique equation of Thermodynamics that unifies the four principles of Thermodynamics. The equation was already known, but the unification shown here, with the temperature (and micro-particles velocity, energy) distribution seams new.

Introduction

This document shows that the four Principles of Thermodynamics, the 0 th , the 1 st , the 2 nd and the 3 rd , can be "condensed" in the single law dU=TdS+pdV, related to reversible processes of closed systems. We name them Principles because they are assumptions induced into our mind by known facts we see in Nature. From them we can derive Theorems able to predict, using Mathematics, the results of "real cases" happening in Nature. The same was done by Galileo, Newton, Maxwell, …, Einstein, …, Bohr, Schrödinger, Heisenberg, Born, … about Mechanics, Electrodynamics, Relativity, Quantum Mechanics, … The relationship dU=TdS+pdV, for reversible processes of closed systems, is named law because it is the result of the use of Mathematics about some fundamental concepts such as the temperature, the thermal equilibrium, the transformation of energy (mechanical, kinetic, gravitational, electromagnetic, nuclear, …, heat), the thermodynamic properties, the process, the cycle, the state variables, and the entropy. We ask the reader to recap these concepts from any good book. We cite here only the [1.] thermodynamic properties: they are the quantities whose numerical value (with specified measures) define a state of a system and are such that they do not depend on the way of going from an initial state to a final state: they depend only on the end states; they are also named the state variables [2.] process is the change of system state from an initial state to a final state: the succession (history) of states, followed by the system from the initial to the final state is named the path of the process [3.] cycle is a special process in which the final state coincides with the initial state. We ask the reader to recap ideas about statistical mechanics, probability (Random Variables, densities, distributions) and stochastic processes. We know that any "object/body" (human beings included) is made of molecules and atoms obeying to to "natural laws" which determine their movement (translation, rotation, and vibration); whatever is the physical state of an object (solid, liquid, gas) this movement is related physical quantities such as positions, velocities (translational, rotational, and vibrational) and masses generating kinetic energy, and potential energy. We know as well that any "object/body" (human beings included) have a temperature, related to molecules kinetic energy, which has a special name: Internal Energy, U. If there is a temperature gradient (difference between the system and its surroundings), this causes a type of energy [thermal energy] transfer across the boundary of the system: the amount of energy transferred is indicated by the symbol Q and Heat is the process for transferring the thermal energy. Moreover, we know that any "object/body" (human beings included) can generate Work, indicated by W. These three types of energies are related by the relationship, in Thermodynamics written as dU = d*W + d*Q differential form], of the quantity of Heat (Q, thermal energy) supplied to the system, so that the Heat (Q, thermal energy) depends BOTH on the end-points A (initial point) and B (final point) of a transformation AND on the transformation AB itself; All the variables in [START_REF] Feynman | The Feynman lectures on physics, New Millennium Edition[END_REF] are measured in J (Joule). The formula [START_REF] Feynman | The Feynman lectures on physics, New Millennium Edition[END_REF] states that the increase of the Internal Energy dU is the sum of the Work done on the system d*W and the Heat supplied to the system d*Q. In (1) are considered only W and Q and no other types of "external" energy (kinetic, gravitational, nuclear, chemical, ….) Being U a "state function" [dU is an exact differential], for a cycle we have [START_REF] Fermi | Thermodynamics, book related to his lessons at Columbia University[END_REF] This 1 st principle stating that a change in internal energy in a system can occur as a result of energy transfer by heat, by work, or by both, is essentially presented in one form and it is very important, but it makes no distinction between processes that occur spontaneously and those that do not. This distinction is provided by the 2 nd Principle of Thermodynamics which states a strong impossibility: the thermal energy cannot be, always and completely, converted into Work (there are some special cases that this can happen). Form that we can mathematically derive that [START_REF] Finzi | Cosa è la temperatura (what is the temperature[END_REF] where S is a state function (Entropy), so that the variation S=S B -S A depends only on the end-points A (initial point) and B (final point) of a transformation and NOT on the transformation AB itself, is the amount of energy transferred by heat when the system follows a reversible infinitesimal path between two states (from one equilibrium state to another) and T is the Absolute Temperature. We have assumed the temperature is constant because the process is infinitesimal. NOTICE that the entropy change for an irreversible process can be determined by calculating the entropy change for a reversible process that connects the same initial and final states.

The distribution of velocity in a fluid (gas)

We said in section 1 that molecules velocity is related to the temperature of a body. We now elaborate the way of relating molecules velocity to some macroscopic quantities, e.g., pression and temperature. The thermal random (stochastic process), fluctuation-motion of micro-particles gives rise to thermal macroproperties, like temperature, heat capacity, and entropy, among others. Temperature is a measure of average kinetic energy of relevant micro-particles; the thermal motion of all micro-particles gives rise to thermal heat capacity. When thermal motion ceases, virtually all thermal properties vanish at absolute zero temperature (3 rd Principle of Thermodynamics). These, thermal parameters characterize the collective physical state of atoms and molecules, be they solids, liquids or gases. The temperature, thermal energy, and entropy are macroscopic properties reflecting the random (thermal) collective behaviour of the constituents within a system. While temperature represents the average kinetic energy of all the system's particles (i.e., the kinetic energy of a representative particle), the internal energy represents the total amount of kinetic-and potential thermal-energy possessed by all the particles in the system. Similarly, entropy quantifies chaotic displacements of thermal disorder within a system -the displacement of randomly disordered energy. In addition, the nature and strength of mutual attractions between atoms and molecules in solids and liquids give rise to other macroscopic properties such as hardness, elasticity and tensile strength in solids, viscosity in liquids, and similar. Note that on an individual microscale the "Thermodynamics becomes Dynamics." In ideal, reversible processes the entropy is conserved, but there is no way to destroy entropy, even when heat is converted to work since entropy is not associated with work. Destruction of entropy would be equivalent to spontaneous heat transfer from lower to higher temperature, or to have heat engine with higher efficiency than ideal, reversible Carnot cycle, against the directional, thermal forcing and against the equilibrium existence in nature. We can then interpret Entropy as the result of the ("thermal") potential d*Q=TdS related to thermal, randomly moving, micro-particles in space; entropy is a thermal displacement, an integral measure of (random) thermal energy redistribution (due to heat transfer and/or irreversible heat generation due to energy degradation) within a system mass and space, per absolute temperature level: dS system =dQ system /T with J/K unit. Note that adjective "thermal" is critically important, since similar but non-thermal phenomena are not related to thermodynamic entropy. Let's, for a while, assume that we know the velocity of the i th micro-particle (molecule or atom); it is a vector with 3 scalar components such that , depending on the time instant t. The momentum of the i th micro-particle is the vector where m i is the mass. The 2 nd low of Mechanics states where is the Force acting of the i th micro-particle. Let's now assume that N micro-particles are in a cubic container, with edge L. The mean force acting on a face of the cube, orthogonal to the x axe, is (the same for the other faces) so that the pression p (be careful, the symbol is similar to the momentum) is the scalar quantity for any small area L 2 of a face of a cube, orthogonal to the unit vector . Therefore we see that the pression p depends on the average velocity of the micro-particles (molecules or atoms). We derive also that the Average Kinetic Energy , when all the micro-particles have the same mass m depends on the average velocity of the micro-particles (molecules or atoms).

We need then a way to estimate the average velocity of the micro-particles (molecules or atoms). We can do that by Stochastic Processes Theory [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Thermodynamics Maths with Fermi, Feynman, Finzi ideas[END_REF] that allows us to get some insight on the individual microscale of systems, where the "Thermodynamics becomes Dynamics" and the Statistical (Mechanics of)Thermodynamics that deals with microscopic structures and dynamic interactions of microparticles with an objective to describe thermo-physical properties of a classical system as a statistical average of all possible and relevant microstates, described by positions and momenta of micro-particles. In principle, we can reason and derive Classical Thermodynamics from relevant statistics of microstates' dynamics, down to quantum behaviour of molecules and atoms.

In physical applications of Stochastic Processes one important example is the Brownian movement: this process describes the motion [position x(t), y(t), z(t), in a tri-dimensional space] of a particle (micro-particle) in a given medium (gas, fluid, …); for a single particle "i" this motion is very complicated, in a microscopic scale: we indicate as x i () the vector of the position of the particle at the instant . We can compute a "macroscopic" quantity x mai (t), the moving or an interval t ----t+t, , for varying times t. To see "intuitively" the above ideas let's consider a two-dimensional space, t (time) as abscissa and x as ordinate: a line is the function x(t). Now consider a coin tossing process: every t interval we toss the coin and we take, instantly, an up-step (of quantity s) if head shows and a down-step (of quantity -s) if tail shows; the step function x(t j ), for j=0, 1, n, is named Random Walk. At time t n , we have k heads and n-k tails, so the vertical position is a Random Variable x(t n )=ks-(n-k)s=ms [with m=2k-n]: we can compute the probability P[x(t n )]. It is clear that x(t n ) is the sum of the single up and down, independent, steps. The cumulative distribution of x(t n ) is, in the limit, P[x(t n )ms] becomes the Normal distribution [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Thermodynamics Maths with Fermi, Feynman, Finzi ideas[END_REF]. Another limiting form of the Random Walk, for t0 and n, is the Random Variable w(t), named Wiener Process, whose probability density is (normal pdf) [w(t) is the position of …] (4)

We now consider the process , for varying times t; we indicate the position of the particle at time t, simply by x(t); using the classical ideas on dynamics, we can write the following equation [Langevin equation 1 st type], where m is the mass of the particle, f is the coefficient of friction (proportional to the viscosity of the medium), cx(t) is an external force [depending on the position vector x(t)] and F(t) the collision force between the particles [Newton's law]

(5) Notice that the derivatives of the position vector x(t) are indicated with points over the symbol x(t) and are all vectors. Assuming that c=0, we get [Langevin equation 2 nd type],, with v(t) the velocity of the particle, [START_REF] Galetto | The Mathematics of Thermodynamics[END_REF] To proceed we consider that F(t) has a flat spectrum [white noise, normal distribution]

where k B is the Boltzmann constant and T is the absolute temperature. The solution of the above stochastic differential equation is a non-stationary process v(t). When t (actually for t>>m/f), the process becomes stationary and its steady state "value" has the probability density [START_REF] Galetto | Addendum to Mathematics of Thermodynamics[END_REF] In this manner, we have been able to give a Stochastic Process interpretation to the formula (8, next), which holds for t, that is in the steady state, as is the classical "equilibrium" thermodynamics (mv 2 /2 is the kinetic energy of the average energy for "each" micro-particle). As a matter of fact, the probability density of the "random variable" Kinetic Energy, KE, (translational) of an atom of a gas, at absolute temperature T is, according the Classical Statistical Mechanics, at thermal equilibrium, at temperature T, [START_REF] Galetto | Entropy of Linhart_a nonsense_PREAMBLE[END_REF] from which we can derive [START_REF] Galetto | Linhart ideas on Entropy versus "classical Entropy[END_REF] Since the atom has 3 degrees of freedom we get that k B T, for any degree of freedom, is double of the mean kinetic energy. The temperature T is proportional to the Mean Kinetic Energy per degrees of freedom [START_REF] Finzi | Cosa è la temperatura (what is the temperature[END_REF]. k B is the Boltzmann's constant; k B =R/N A =1.3806504(24)*x10 -23 J/K, N A =Avogadro Number =6.02214179(30)*10 23 particles/mol, Gas constant R=8.314472(15)* /(mol K); the numbers (ab)* parentheses for the values represent the uncertainties of the last two digits. Considering the position , at time t, end of interval 0 ----t, we have the pdf , and, at time t, end of interval t 0 ---t, we have the pdf

The rigth hand side of the relationship is a function of the 4 variables x, x 0 , t, t 0 ; by repeated differentiations we find the diffusion equations where f t and f xx are the partial derivatives of the pdf f and the parameter is the diffusion constant. [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF]Markov Processes]. The above equations are typical of the diffusion processes. We can generalise the previous partial differential equations to the probability density function y which satisfies [START_REF] Galetto | Horstmann Thermodynamics versus Mathematics_FIRST part[END_REF] This equation, Fokker-Planck equation rules the stochastic process X(t) of the Logistics Inventory (due to the random nature of the demand):  is the demand rate [i.e. the demanded quantity per unit time] and  the "variance rate" [i.e. the variability of the demanded quantity per unit time] of the demand. In the case that the stochastic process X(t) represent the temperature X, depending on the time t, X(t) is the "distribution" of the temperature with time. The pdf of the random process X(t), given X(t 0 ), is [14, 15, Markov processes] (11) Notice that the "centre" of the pdf is moving with velocity  (drift) and with standard deviation (diffusion) increasing in time, so that the pdf gets broader as time evolves. The pdf of the RV  x , "time to reach the point x", where =x 2 / and =x/ is and It follows E(Time)= and Var(Time)= 3 /. Putting the maximum of the displacement, in the interval 0 -----t, has probability density The pdf of a RV T(time)IG(,), named Inverse Gaussian [or Wald] (with parameters , ), defined for 0 
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The parameters ,  are related to the MTTF=E(T)= and to the variance Var(T)= 3 /. The failure rate is 1) h(t,,)=0 for t=0, (2) increasing from 0 to a "certain point" and then decreasing, and (3) h(t,,)MTTF/Var(T) for t  , i.e. It is very interesting to notice that the RV T, time to failure, is the time that an item was exposed to a "stress" above which the item fails; the increasing steps of "stress" in two different intervals (not intersecting) as RVs independent normally distributed; therefore the total stress is normally distributed, as well.
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            h (t,,) is (
An interesting application is in the distributive Logistics. It is seen that the methods of analysis of [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] are useful also for that field, where ALL PRACTIONERS use "formulae NOT-proved" they found in books!!! It is very interesting to notice that the equation [START_REF] Galetto | Horstmann Thermodynamics versus Mathematics_FIRST part[END_REF], involving the probability density, can be written also for the physical quantity T, the absolute temperature, [START_REF] Galetto | The SPQR («Semper Paratus ad Qualitatem et Rationem[END_REF] where u is the drift and D is the diffusion. To a gas exploiting a Carnot cycle, in a cylinder with a piston of area A, we provide at time t 1 , thermal energy at temperature T 2 [generating a velocity distribution of the molecules: this causes a pression p forcing the piston to move from the volume V 1 =Ax 1 (50 cm 3 , say, at time t 1 ) to the volume V 3 =Ax 3 (400 cm 3 , say, at time t 3 ), via an isothermal expansion (ending at time t 2 ) and an adiabatic expansion (ending at time t 3 )]. At time t 3 , thermal energy (kinetic energy to the surrounding) is released, for an interval t 3 ------t 4 ), at temperature T 1 <T 2 [followed by an adiabatic compession (ending at time t 5 ) which ends the cycle.. See the two figures below. We have four situations From the above we can compute the increment of the Entropy (for n moles): 

where T is the absolute temperature and is the amount of energy transferred by heat when the system follows a reversible infinitesimal path between two states (from one equilibrium state to another). The internal energy U is function of pairs variables (defining thermodynamical paths in a plane), 1.

pression and volume, p and V, U=U(p,V) 2.

temperature and volume, T and V, U=U(T,V)] 3.

pression and temperature p and T, U=U(p,T) 4.

….

5.

temperature and entropy, T and S, U=U(T,S) The area within the cycle provides the work done by the system [-W] because U, internal energy, is a "state function" [dU is an exact differential] (2b) Using ( 1) and (3) we can write for a reversible transformation (14) ( 14) is important because it combines all the four principles; deriving dU we get some important consequences:

1.

defines the temperature [0 th principle] 2.

The entropy of any system vanishes in the state for which [3 rd principle], because the internal energy (which is essentially Kinetic Energy) vanishes at T=0 and has vanishing variance at T=0

3. defines the infinitesimal heat transfer as the infinitesimal entropy increase divided by the "rate of entropy variation with the internal energy variation" 4.

5.

Entropy as function of time t, depending on the probability density function pdf of the position and the velocity vectors ( is a tri-dimensional space)

6. giving a 1 st probabilistic interpretation to 7.

giving a 2 nd probabilistic interpretation to 8.

The work done by the system is, as per the previous figures,

Notice that we can find the unknown probability density function [START_REF] Galetto | Addendum to Mathematics of Thermodynamics[END_REF] of the velocity vector ( is a tridimensional space) as the solution of the variation equation of having fixed the variance of the pdf: the quantity (variable) S and the quantity (fixed) allow us to find the unknown pdf using a variation equation (see any good book of Mathematics).

Conclusion

We presented the unique equation of Thermodynamics that unifies the four principles of Thermodynamics. Each principle can be thought of as a way to define a new system property: (1) the internal energy via the first principle, (2) the entropy via the second principle, (3) the temperature via the zeroth principle (sets whether the system is in thermal equilibrium with another system), and (4) the value S(T=0) of the entropy via the third, as you can see form the important consequences, given above. The equation was known, but the unification shown here, with the temperature (and micro-particles velocity, energy) distribution seams new.

  Principle of Thermodynamics which states the Conservation of Energy, in differential form it is (for an infinitesimal transformation)] where  dU is the exact differential of the state function U (Internal Energy), so that the variation U=U B -U A depends only on the end-points A (initial point) and B (final point) of a transformation and NOT on the transformation AB itself  d*W is a differential form, NOT exact [notice the symbol "d*" which states that d*W is only a differential form], of the Work (W) done on the system, so that the Work (W) depends BOTH on the end-points A (initial point) and B (final point) of a transformation AND on the transformation AB itself  d*Q is a differential form, NOT exact [notice the symbol "d*" which states that d*Q is only a

  see from the figure [where  and  are indicated with m=1 and l=1].

3 .

 3 The single equation of ThermodynamicsWe consider the 1 st Principle of Thermodynamics (Conservation of Energy) in differential form (1) The 2 nd Principle of Thermodynamics allows to define the function S, a state function (Entropy), by

  

  has probability density function

	Notice the similarity of this formula with Random Variable w(t), named Wiener Process, whose probability
	density is (normal pdf)							
	The	probability	P[T>t],	Reliability,	is	[14,	15,	Markov	Processes]