
HAL Id: hal-03588288
https://hal.science/hal-03588288

Submitted on 2 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient computation of Cantor’s division polynomials of
hyperelliptic curves over finite fields

Elie Eid

To cite this version:
Elie Eid. Efficient computation of Cantor’s division polynomials of hyperelliptic curves over finite
fields. Journal of Symbolic Computation, 2023, 117, pp.68 - 100. �10.1016/j.jsc.2022.10.006�. �hal-
03588288�

https://hal.science/hal-03588288
https://hal.archives-ouvertes.fr


Efficient computation of Cantor’s division polynomials
of hyperelliptic curves over finite fields
Elie Eid
IRMAR, Université de Rennes 1, France

ART ICLE INFO
Keywords:
p-adic differential equations
Newton scheme
Arithmetic geometry
Isogenies
Cantor’s polynomials

ABSTRACT
Let p be an odd prime number. We propose an algorithm for computing ra-
tional representations of isogenies between Jacobians of hyperelliptic curves
via p-adic differential equations with a sharp analysis of the loss of precision.
Consequently, after having possibly lifted the problem in the p-adics, we
derive fast algorithms for computing explicitly Cantor’s division polynomials
of hyperelliptic curves defined over finite fields.

1. Introduction
An important aspect in the study of principally polarized abelian varieties over finite fields is

to design effective algorithms to calculate the number of points on these varieties. In 1985, Schoof
proposed the first deterministic polynomial time algorithm for counting points on elliptic curves [1].
A few years later, improvements were made by computing kernels of isogenies, resulting in the
Schoof-Elkies-Atkin algorihm which is sufficiently fast for practical purposes [2, 3, 4]. In 1990,
Pila gave a generalization of the classical Schoof algorithm to abelian varieties and in particular
Jacobians of curves over finite fields [5]. His algorithm remains impractical in the general case but
improvements were made for varieties of small dimension, typically for Jacobians of genus 2 and
3 curves [6, 7, 8]. When the inputs are Jacobians of hyperelliptic curves, isogenies (for curves
of low genus) and Cantor’s division polynomials (for curves of arbitrary genus) are important
ingredients to these algorithms. For this reason, a keen interest has been raised to compute them
efficiently [9, 10, 11, 12, 13]. In this work, we tackle, in all generality, the problem of effective
computation of isogenies between Jacobians of hyperelliptic curves to obtain fast algorithms that
compute Cantor’s division polynomials.
1.1. Isogenies and (p-adic) differential equations

A separable isogeny between Jacobians of hyperelliptic curves of genus g defined over a field
k is characterized by its so called rational representation (see Section 3.2 for the definition); it is a
compact writing of the isogeny and can be expressed by 2g rational fractions defined over a finite
extension of k. These rational fractions are related. In fields of characteristic different from 2, they
can be determined by computing an approximation of the solutionX(t) ∈ k′JtKg, where k′ is a finite
extension of k of degree at most O(g!), of a first order non-linear system of differential equations
of the form

H (X(t)) ⋅X′(t) = G(t) (1)
ORCID(s):

First Author et al.: Preprint submitted to Elsevier Page 1 of 30



Efficient computation of Cantor’s division polynomials

where H ∶ k′JtKg → Mg
(

k′JtK
) is a well chosen map and G(t) ∈ k′JtKg. This approach is a

generalization of the elliptic curves case [10] for which Equation (1) is solved in dimension one.
Equation (1) was first introduced in [11] for genus two curves defined over finite fields of odd

characteristic and solved in [14] using a well-designed algorithm based on a Newton iteration; this
allowed them to compute X(t) modulo tO(l) in the case of an (l,l)-isogeny for a cost of Õ(l)
operations in k then recover the rational fractions that defines the rational representation of the
isogeny. This approach does not work when the characteristic of k is positive and small compared
to l, in which case divisions by p occur and an error can be raised while doing the computations.
We take on this issue similarly as in the elliptic curve case [15, 12] by lifting the problem to the
p-adics. We will always suppose that the lifted Jacobians are also Jacobians for some hyperelliptic
curves. It is relevant to assume this, even though it is not the generic case when g is greater than 31
[16], since it allows us to compute efficiently the rational representation of the multiplication by an
integer in which case the lifting can be done arbitrarily. After this process, we need to analyze the
loss of p-adic precision in order to solve Equation (1) without having a numerical instability. We
extend the result of [10] to compute isogenies between Jacobians of hyperelliptic curves, by proving
that the number of lost digits when computing an approximation of the solution of Equation (1)
modulo tO(gl), stays within O(logp(gl)) (see Sections 2 and 4).
1.2. Computing with p-padic numbers

We introduce the computation model that we will use throughout this paper. Let p be a prime
number and K a finite extension of the p-adic field ℚp. We denote by �p the unique normalized
extension to K of the p-adic valuation. We denote by K the ring of integers of K , � ∈ K a
fixed uniformizer of K and e the ramification index of the extension K∕ℚp. We naturally extend
the valuation �p to quotients of K , the resultant valuation is also denoted by �p.From an algorithmic point of view, p-adic numbers behave like real numbers: they are defined
as infinite sequences of digits that cannot be handled by computers. It is thus necessary to work
with truncations. For this reason, several computational models were suggested to tackle these
issues (see [17] for more details). In this paper, we use the fixed point arithmetic model at precision
O(pM ), whereM ∈ ℕ∗, to do computations in K . More precisely, an element in K is represented
by an interval of the form a+O(pM ) with a ∈ K∕�eMK . We define basic arithmetic operations
on intervals in an elementary way

(

x + O(pM )
)

±
(

y + O(pM )
)

= (x ± y) + O(pM ) ,
(

x + O(pM )
)

×
(

y + O(pM )
)

= xy + O(pM ) .

For divisions we make the following assumption: for x, y ∈ K∕�eMK , the division of x+O(pM )by y+O(pM ) raises an error if �p(y) > �p(x), returns 0+O(pM ) if x = 0 inK∕�eMK and returns
any representative z + O(pM ) with the property x = yz in K∕�eMK otherwise.
Matrix computation

We extend the notion of intervals to the K-vector space Mn,m(K): an element in Mn,m(K) of
the form A + O(pM ) represents a matrix (

aij + O(pM )
)

ij with A = (aij) ∈ Mn,m
(

K∕�eMK
).

1Indeed, the dimension of the moduli schemeg is equal to 3g −3, while the subspace of hyperelliptic curves init has dimension 2g − 1.

First Author et al.: Preprint submitted to Elsevier Page 2 of 30



Efficient computation of Cantor’s division polynomials

Operations inMn,m(K) are defined from those in K:
(

A + O(pM )
)

±
(

B + O(pM )
)

= (A ± B) + O(pM ) ,
(

A + O(pM )
)

⋅
(

B + O(pM )
)

= (A ⋅ B) + O(pM ) .

For inversions, we use standard Gaussian elimination.
Proposition . [18, Proposition 1.2.4 and Théorème 1.2.6] Let A ∈ GLn(K) with entries known
up to precision O(pM ). The Gauss-Jordan algorithm computes the inverse A−1 of A with entries
known with the same precision as those of A using O(n3) operations in K .

1.3. Main result
We are interested in designing fast algorithms that solve Equation (1). In a first step, we arrive

at a generic algorithm for solving the differential system. Its complexity depends on the complexity
of matrix multiplication and the compositionH(X(t)). Let MM(g, n) be the number of arithmetical
operations required to compute the product of two g×g matrices containing polynomials of degree
bounded by n. Our first theorem is the following.
Theorem A (See Theorem 3 and Proposition 4). Let p be a prime number and g ≥ 1 be an integer.
LetK be a finite extension ofℚp andK be its ring of integers. There exists an algorithm that takes
as input:

• two positive integers n andN ,

• an analytic map H ∶ KJtKg → Mg
(

KJtK
)

of the form H(y1(t),⋯ , yg(t)) = (fij(yi(t)))ij
with fij ∈ KJtK andH(0) ∈ GLg(K),

• a vector G(t) ∈ KJtKg,

and, assuming that the unique solution of the differential equation

H (X(t)) ⋅X′(t) = G(t)

is in
(

tKJtK
)g, outputs an approximation of this solution modulo (pN , tn+1) for a cost

O
(MM(g, n) + CH (n)

)

operations in K , where CH (n) denotes the algebraic complexity of
an algorithm computing the composition H(X(t)) mod tn+1, at precision O(pM ) with M =
max(N, 3) + ⌊logp(n)⌋ if p = 2, M = max(N, 2) + ⌊logp(n)⌋ if p = 3 and M = N + ⌊logp(n)⌋
otherwise.

It is important to know that one can do a bit better for p = 2 and 3 if we follow the same strategy
as [10], in this caseM is equal to max(N, 2) + ⌊logp(n)⌋ if p = 2 and N + ⌊logp(n)⌋ otherwise.For the sake of simplicity, we will not prove this here.

The field K in the algorithm of Theorem A is generally given with a uniformizing parameter
to avoid the calculation of its ring of integers. However, for the computation of isogenies, this ring
is already known since the extension K can always be chosen to be unramified.

If the integer g is assumed to be small then the function CH (n) depends only on the number of
arithmetical operations required to compute the composition of two power series modulo tn+1. In
First Author et al.: Preprint submitted to Elsevier Page 3 of 30



Efficient computation of Cantor’s division polynomials

the general case, Kedlaya and Umans bound [19] allows us to obtain CH (n) = Õ(n). In our context,the composition H(X(t)) mod tn+1 is easy to compute since H only includes univariate rational
fractions of radicals of constant degree, therefore CH (n) = M(n), where M(n) is the number of
arithmetical operations required to compute the product of two polynomials of degrees bounded
by n. Moreover, MM(g, n) = M(n), hence if g is small, the algorithm in Theorem A requires at
most Õ(n ⋅ [K ∶ ℚp]) operations in ℤp to compute X(t) mod tn+1.

If g is arbitrary then the algorithm of Theorem A requires at most Õ(g!n ⋅ [K ∶ ℚp]) operationsin ℤp, where ! ∈]2, 3] is a feasible exponent of matrix multiplication. This complexity can be
reduced to Õ(gn ⋅ [K ∶ ℚp]) operations in ℤp ifH is given by a structured matrix.
In the case of the computation of a rational representation of an isogeny I over an unramified
extension K0 of ℚp, the field K can be chosen to be an extension of K0 of degree at most O(g)
and H is given by an alternant matrix. Therefore, the algorithm of Theorem A performs at most
Õ(g2n ⋅ [K0 ∶ ℚp]) operations in ℤp to compute an approximation of X(t) mod tn+1; but this is
not optimal in g since I is defined over K0.In order to remedy this problem, we work directly on the first Mumford coordinate of a rational
representation of I , i.e. the degree g monic polynomial whose roots are the components of the
solutionX(t), which has the decisive advantage to be defined over the base fieldK0. Consequently,we obtain a fast algorithm for computing a rational representation of I in quasi-linear time. This is
the main result of Section 4.
Theorem B (See Theorem 30 and Proposition 31). Let p be an odd prime number. Let K0 be an
unramified extension of ℚp and K0 the ring of integers of K0. There exists an algorithm that takes
as input:

• three positive integers g, n andN ,

• a monic polynomial U0(z) =
g
∏

j=1
(z − x(0)j ) ∈ K0[z] such that U0(z) mod p is separable,

• a polynomial V0 ∈ K0[z] of degree g−1 such that V (x
(0)
j ) mod p ≠ 0 for all j ∈ {1,… , g},

• a polynomial f ∈ K0JtK[z] of degree O(g) such that U0 divides f − V
2
0 in K0JtK[z],

• a vector G(t) ∈ K0JtK
g,

and, assuming that the unique solution X(t) of the differential equation
{

H(X(t)) ⋅X′(t) = G(t), X(0) = (x(0)1 ,⋯ , x(0)g ),
yj(t)2 = f (xj(t)), yj(0) = V0(x

(0)
j ) for j = 1,… , g

whereH(X(t)) is the matrix defined by

H(X(t)) =

(

xj(t)i−1

yj(t)

)

1≤i,j≤g

,

First Author et al.: Preprint submitted to Elsevier Page 4 of 30



Efficient computation of Cantor’s division polynomials

is in KJtKg, where K denotes the splitting field of U0, outputs a polynomial U (t, z) =
g
∏

i=1
(z − xi(t)) ∈ K0JtK[z] such that (x1(t),… , xg(t)) is an approximation of this solution modulo

(pN , tn+1) for a cost Õ (ng) operations inK0 , at precisionO(p
M+⌊logp(2g−1)⌋), withM = max(N, 2)+

⌊logp(n)⌋ if p = 3 andM = N + ⌊logp(n)⌋ otherwise.

1.4. Computing Cantor’s division polynomials
Cantor’s division polynomials are defined as being the numerators and denominators of the

components of a rational representation of the multiplication by an integer endomorphism. They
were first introduced for elliptic curves and later were described for hyperelliptic curves by
Cantor [20]. They are crucial in point counting algorithms on elliptic and hyperelliptic curves.
Classical algorithms for computing a rational representation of the multiplication endomorphism
are usually based on Cantor’s paper [20] and Cantor’s algorithm for adding points on Jacobians
(see for example [21]). Although, they exhibit acceptable running time in practice, their theoretical
complexity has not been well studied yet and experiments show that they become much slower
when the degree or the genus get higher.

Using the algorithm of Theorem B, we derive a fast algorithm to compute Cantor’s division
polynomials over finite fields of odd characteristic. Our final result is then the following.
Theorem C (See Theorem 34). Let p an odd prime number and g > 1 an integer. Let l be an
integer greater than g and coprime to p. Let C ∶ y2 = f (x) be a hyperelliptic curve of genus g
defined over a finite field k of characteristic p. There exists an algorithm that computes Cantor
l-division polynomials of C , performing at most Õ(l2g2) operations in k.

2. Solving a system of p-adic differential equations: the general case
In this section, we give a proof of Theorem A by solving the nonlinear system of differential

equations (1) in an extension of ℚp for all prime numbers p. We use the computational model
introduced in Section 1.2 in our algorithm exposed in Section 2.1 and the proof of its correctness
is presented in Section 2.2.
Throughout this section the letter p refers to a fixed prime number and K corresponds to a fixed
finite extension ofℚp. We denote by K the ring of integers ofK , � ∈ K a fixed uniformizer and
e the ramification index of the extension K∕ℚp.
2.1. The algorithm

Let g be a positive integer, KJtK be the ring of formal series over K in t. We denote byMg(k)
the ring of square matrices of size g over a field k. Let f = (

fij
)

i,j∈Mg
(

KJtK
) andHf be the map

defined by
(

tKJtK
)g Hf

⟶ Mg
(

KJtK
)

(

x1(t),… , xg(t)
)

⟼

(

fij
(

xi(t)
)

)

ij
.

Given f ∈ Mg
(

KJtK
) and G = (G1,… , Gg) ∈ KJtKg, we consider the following differential

equation in X = (x1,… , xg),
Hf◦X ⋅X′ = G. (2)

First Author et al.: Preprint submitted to Elsevier Page 5 of 30



Efficient computation of Cantor’s division polynomials

We will always look for solutions of (2) in (tKJtK
)g in order to ensure thatHf◦X is well defined.

We further assume thatHf (0) is invertible inMg(K).The next proposition guarantees the existence and the uniqueness of a solution of the differential
equation (2).
Proposition 1. Assuming that Hf (0) is invertible in Mg(K), the system of differential equations
(2) admits a unique solution in KJtKg.

Proof. We are looking for a vector X(t) =
∞
∑

n=1
Xntn that satisfies Equation (2). Since X(0) = 0

andHf (0) is invertible in KJtKg, thenHf
(

X(t)
) is invertible inMg

(

KJtK
). So Equation (2) can be

written as
X′(t) =

(

Hf (X(t))
)−1

⋅ G(t). (3)
Equation (3) applied to 0, gives the non-zero vector X1. Taking the n-derivative of Equation (3)
with respect to t and applying the result to 0, we observe that the coefficient Xn only appears on
the hand left side of the result, so each component of Xn is a polynomial in the components of
the Xi’s for i < n with coefficients in K . Therefore, the coefficients Xn exist and are all uniquely
determined.

We construct the solution of Equation (2) using a Newton scheme. We recall that for Y =
(y1,… , yg) ∈ KJtKg, the differential ofHf with respect to Y is the function

dHf (Y ) ∶ KJtKg ⟶ Mg
(

KJtK
)

ℎ ⟼ dHf (Y )(ℎ) =
(

f ′ij
(

yi
)

⋅ ℎi
)

1≤i,j≤g
. (4)

We fix m ∈ ℕ and we consider an approximationXm ofX modulo tm. We want to find a vector
ℎ ∈

(

tmKJtK
)g, such that Xm + ℎ is a better approximation of X. We compute

Hf
(

Xm + ℎ
)

= Hf
(

Xm
)

+ dHf (Xm)(ℎ) (mod t2m) .

Therefore we obtain the following relation
Hf

(

Xm + ℎ
)

⋅
(

Xm + ℎ
)′ − G =

Hf
(

Xm
)

⋅X′
m +Hf

(

Xm
)

⋅ ℎ′ + dHf (Xm)(ℎ) ⋅X′
m − G (mod t2m−1) .

So we look for ℎ such that
Hf

(

Xm
)

⋅ ℎ′ + dHf (Xm)(ℎ) ⋅X′
m = −Hf

(

Xm
)

⋅X′
m + G (mod t2m−1) . (5)

It is easy to see that the left hand side of Equation (5) is equal to (

Hf
(

Xm
)

⋅ ℎ
)′ , therefore

integrating each component of Equation (5) and multiplying the result by (Hf
(

Xm
))−1 gives the

following expression for ℎ

ℎ =
(

Hf
(

Xm
))−1

∫
(

G −Hf
(

Xm
)

⋅X′
m

)

dt (mod t2m), (6)

First Author et al.: Preprint submitted to Elsevier Page 6 of 30



Efficient computation of Cantor’s division polynomials

where ∫ Y dt, for Y ∈ KJtKg, denotes the unique vector I ∈ KJtKg such that I ′ = Y and I(0) = 0.
This formula defines a Newton operator for computing an approximation of the solution of
Equation (2). Reversing the above calculations leads to the following proposition.
Proposition 2. We assume thatHf (0) is invertible inMg(K). Let m ≥ 0 be an integer, n = 2m+ 1
and Xm ∈ KJtKg a solution of Equation (2) mod tm+1. Then,

Xn = Xm +
(

Hf
(

Xm
))−1

∫
(

G −Hf
(

Xm
)

⋅X′
m

)

dt

is a solution of Equation (2) mod tn+1.
It is straightforward to turn Proposition 2 into an algorithm that solves the non-linear system (2).

We make a small optimization by integrating the computation ofHf (X)−1 in the Newton scheme.

Algorithm 1: Differential Equation Solver
DiffSolve (G, f , n)

Input : G, f mod tn such that Hf (0) is invertible in Mg(K).
Output: The solution X of Equation (2) mod tn+1, Hf (X) mod t⌈n∕2⌉

if n = 0 then
return 0 mod t, Hf (0)−1 mod t

m ∶= ⌈

n−1
2 ⌉;

Xm, Hm ∶= DiffSolve(G, f , m);
Hn ∶= 2Hm −Hm ⋅Hf (X) ⋅Hm mod tm+1

return Xm +Hn∫
(

G −Hf
(

Xm
)

⋅X′
m
)

dt mod tn+1

According to Proposition 2, Algorithm 1 runs correctly when its entries are given with an
infinite p-adic precision; however it could stop working if we use the fixed point arithmetic model.
The next theorem guarantees its correctness in this type of model.
Theorem 3. Let n, g ∈ ℕ, N ∈ 1

e
ℤ∗, G ∈ KJtKg and f ∈ Mg

(

KJtK
)

. We assume that Hf (0)
is invertible inMg

(

K
)

and that the components of the solution of Equation (2) have coefficients
in K . Then, the procedure DiffSolve runs with fixed point arithmetic at precision O(pM ), with
M = max(N, 3)+⌊logp(n)⌋ if p = 2,M = max(N, 2)+⌊logp(n)⌋ if p = 3 andM = N+⌊logp(n)⌋
otherwise, all the computations are done in K and the result is correct at precision O(pN ).

We give a proof of Theorem 3 at the end of Section 2.2. Right now, we concentrate on
the complexity of Algorithm 1. Recall that MM(g, n) is the number of arithmetical operations
required to compute the product of two g × g matrices containing polynomials of degree n and
M(n) ∶= MM(1, n), therefore M(n) is the number of arithmetical operations required to compute
the product of two polynomials of degree n. According to [22, Chapter 8], the two functions M(.)
and MM(g, .) (in the worst case) are related by the following formula

MM(g, n) = O (g!M(n)) (7)
First Author et al.: Preprint submitted to Elsevier Page 7 of 30



Efficient computation of Cantor’s division polynomials

where ! ∈ [2, 3[ is the exponent of matrix multiplication. Furthermore, we recall that CH (n)denotes the algebraic complexity for computing H◦X mod tn for an analytic map H ∶ KJtKg →
Mg

(

KJtK
) of the form H = Hf where f ∈ Mg

(

KJtK
). We assume that M(n) and CH (n) satisfythe superadditivity hypothesis

M(n1 + n2) ≥ M(n1) +M(n2),CH (n1 + n2) ≥ CH (n1) + CH (n2), (8)

for all n1, n2 ∈ ℕ.
Using Equation (7) we deduce the following relation

O(MM(g, n1 + n2)) ≥ MM(g, n1) +MM(g, n2). (9)
Proposition 4. Algorithm 1 performs O

(MM(g, n) + CHf
(n)

)

operations in K .

Proof. Let D denote the algebraic complexity of Algorithm 1, then we have the following relation

D(n) ≤ D
(⌈n − 1

2

⌉)

+ O
(MM(g, n) + CHf

(n)
)

.

Noticing that g does not change at each iteration and using Equations (8) and (9), we find D(n) =
O
(MM(g, n) + CHf

(n)
) and the result is proved.

Remark 1. If the map Hf includes random univariate rational fractions of radicals of constant
degrees, the algebraic complexity CHf

(n) is equal to O (

g2M(n)). Standard algorithms allow us to
take M(n) ∈ Õ(n). Therefore, Algorithm 1 outputs the solution of Equation (2) mod tn+1 for a cost
of Õ(g!n) operations in K .
Corollary 5. When performed with fixed point arithmetic at precision O(pM ), the bit complexity
of Algorithm 1 is O

((MM(g, n) + CHf
(n)

)

⋅ A(K;M)
)

where A(K;M) denotes an upper bound
on the bit complexity of the arithmetic operations in K∕�eMK .

2.2. Precision analysis
The goal of this subsection is to prove Theorem 3. The proof relies on the the theory of

"differential precision" developed in [23, 24].
We study the solution X(t) of Equation (2) when G(t) varies, with the assumption Hf (0) isinvertible inMg

(

K
). Proposition 1 showed that Equation (2) has a unique solutionX(G) ∈ KJtKg.

Moreover, if we examine the proof of Proposition 1, we see that the n + 1 first coefficients of the
vector X(G) depends only on the first n coefficients of G. This gives a well-defined function

Xn ∶
(

KJtK∕ (tn)
)g

⟶
(

tKJtK∕
(

tn+1
))g

G ⟼ X(G)

for a given positive integer n. In addition, the proof of Proposition 1 states that for G ∈
(

KJtK∕ (tn)
)g, Xn(G) can be expressed as a polynomial in G(0), G′(0),… , G(n−1)(0) with coeffi-

cients in K , therefore Xn is locally analytic.

First Author et al.: Preprint submitted to Elsevier Page 8 of 30



Efficient computation of Cantor’s division polynomials

Proposition 6. For G ∈
(

KJtK∕ (tn)
)g, the differential of Xn with respect to G is the following

function

dXn(G) ∶
(

KJtK∕ (tn)
)g

⟶
(

tKJtK∕
(

tn+1
))g

�G ⟼
(

Hf
(

Xn(G)
))−1

⋅ ∫ �G.

Proof. We differentiate the equation Hf
(

Xn(G)
)

⋅ Xn(G)
′ = G with respect to G. We obtain the

following relation
Hf

(

Xn(G)
)

⋅
(

dXn(G)(�G)
)′

+ dHf
(

Xn(G)
)(

dXn(G)(�G)
)

⋅Xn(G)′ = �G (10)
where dHf

(

Xn(G)
) is the differential ofHf at Xn(G) defined in (4). Making use of the relation

( (

Hf
(

Xn(G)
))

⋅dXn(G)(�G)
)′

= Hf
(

Xn(G)
)

⋅
(

dXn(G)(�G)
)′

+dHf
(

Xn(G)
)(

dXn(G)(�G)
)

⋅Xn(G)′,

Equation (10) becomes
(

Hf
(

Xn(G)
)

⋅ dXn(G)(�G)
)′

= �G.

Integrating the above relation and multiplying by (Hf
(

Xn(G)
))−1 we get the result.

We now introduce some norms on (KJtK∕ (tn)
)g and (tKJtK∕ (tn)

)g. We set En =
(

KJtK∕ (tn)
)g

and Fn =
(

tKJtK∕
(

tn+1
))g; for instance, Xn is a function from En to Fn.First, we equip the vector space Kn ∶= KJtK∕ (tn) with the usual Gauss norm

‖a0 + a1t +⋯ + an−1tn−1‖Kn = max
(

|

|

a0|| , ||a1|| ,… , |
|

an−1||
)

.

We endow Fn with the norm obtained by the restriction of the induced norm ‖.‖ on Fn: for every
X(t) =

(

xi(t)
)

i ∈ Fn,

‖X(t)‖Fn = maxi
‖

‖

xi(t)‖‖Kn .

On the other hand, we endow En with the following norm: for every X(t) = (

xi(t)
)

i ∈ En,

‖X(t)‖En =
‖

‖

‖

‖

∫ X(t)
‖

‖

‖

‖Fn

= max
i

‖

‖

‖

‖

∫ xi(t)
‖

‖

‖

‖Kn

.

Lemma 7. Let A ∈ Mg
(

KJtK∕(tn)
)

. If there exists a vector x(t) ∈
(

KJtK∕ (tn)
)g such that

‖Ax‖Fn < 1 then A is not invertible inMg
(

KJtK∕(tn)
)

.

Proof. Write A = (aij(t))i,j and x(t) = (x1(t),… , xg(t)). By definition, the norm ‖Ax‖Fn is equalto

‖Ax‖Fn = maxi

‖

‖

‖

‖

‖

‖

∑

j
aijxj

‖

‖

‖

‖

‖

‖Kn

.

First Author et al.: Preprint submitted to Elsevier Page 9 of 30



Efficient computation of Cantor’s division polynomials

Therefore, the condition ‖Ax‖Fn < 1 is equivalent to the following inequality
‖

‖

‖

‖

‖

‖

∑

j
aijxj

‖

‖

‖

‖

‖

‖Kn

< 1 (11)

for all i = 1,… , g. Let k be the residue field of K . Equation (11) implies that ∑
j
aijxj = 0

in k. Hence, the reduction of A in Mg
(

kJtK∕(tn)
) is not invertible and A is not invertible in

Mg
(

KJtK∕(tn)
).

Lemma 8. Let G ∈
(

KJtK∕ (tn)
)g. We assume that Xn(G) ∈

(

tKJtK∕ (tn)
)g, then dXn(G) ∶

En ⟶ Fn is an isometry.

Proof. The assumptions Xn(G) ∈
(

tKJtK∕ (tn)
)g and Hf (0) ∈ GLg

(

K
) guarantee the

invertibility of Hf
(

Xn(G)
) in Mg

(

KJtK
). Let �G ∈ En such that ‖�G‖En = 1. Using the fact

thatH(X(G))−1 ∫ �G ∈ (

tKJtK∕ (tn)
)g and applying Lemma 7, we get

‖dXn(G)(�G)‖ = ‖H(X(G))−1 ∫ �G‖Fn = 1.

We define the following function:
�n ∶ Fn × En ⟶ Hom(En, Fn)

(X , G) ⟼

(

�G ↦
(

Hf (X)
)−1

⋅ ∫ �G
)

.

By Proposition 6, the map dXn is equal to �n◦(Xn, id), where id denotes the identity map on
En.

Lemma 9. Let x ∈ ℝ such that x < −2
log p
p − 1

, then Λ
(

Xn
)

≥2(x) < x.

Proof. One checks easily that Λ(id)(x) = x and, by Lemma 9, Λ(�n)(x) ≥ 0 for all x ∈ ℝ∗
+.Applying [24, Proposition 2.5], we get

Λ
(

Xn
)

≥2 (x) ≤ 2
(

x +
log p
p − 1

)

for all x ≤ −
log p
p − 1

. Therefore, Λ(Xn
)

≥2(x) < x if x < −2 log p
p − 1

.
Proposition 10. Let BEn(�) (resp. BFn(�)) be the closed ball in En (resp. in Fn) of center 0 and

radius �. Under the assumption of Lemma 8, we have for all � < p
−2
p−1 ,

Xn
(

G + BEn(�)
)

= Xn(G) + BFn(�) .

First Author et al.: Preprint submitted to Elsevier Page 10 of 30



Efficient computation of Cantor’s division polynomials

Proof. As a direct consequence of [23, Proposition 3.12] and Lemma 9, we have the following
formula

Xn
(

G + BEn(�)
)

= Xn(G) + dXn(G)
(

BEn(�)
)

,

for all � < p −2
p−1 . The result follows from Lemma 8.

We end this section by giving a proof of Theorem 3.
Correctness proof of Theorem 3. Let G, f and n be the input of Algorithm 1. We first prove by
induction on n ≥ 1 the following equation

Hf
(

Xn
)

⋅X ′

n = G mod (tn, pM ).

Let m be a positive integer and n = 2m + 1. Let em = G −Hf
(

Xm
)

⋅X′
m. From the relation

Xn = Xm +
(

Hf
(

Xm
))−1

∫ em dt mod (tn+1, pM ) ,

we derive the two formulas
Hf

(

Xm
)

⋅Xn = Hf
(

Xm
)

⋅Xm + ∫ em dt mod (tn+1, pM ) (12)
and

Hf
(

Xm
)

⋅X′
n = Hf

(

Xm
)

⋅X′
m +

(

Hf
(

Xm
))′

⋅
(

Xm −Xn
)

+ em mod (tn, pM )

= G +
(

Hf
(

Xm
))′

⋅
(

Xm −Xn
)

mod (tn, pM )

= G −
(

Hf
(

Xm
))′

⋅
(

Hf
(

Xm
))−1

∫ em dt mod (tn, pM ) .

Using the fact that the first m coefficients of em vanish, we get

Hf
(

Xn
)

⋅X′
n = Hf

(

Xm
)

⋅X′
n + dHf

(

Xm
)

(

(

Hf
(

Xm
))−1

∫ em dt

)

⋅X′
m mod (tn, pM ) .

(13)
In addition, one can easily verifies

dHf
(

Xm
)

(

(

Hf
(

Xm
))−1

∫ em dt

)

⋅X′
m =

(

Hf
(

Xm
))′

⋅
(

Hf
(

Xm
))−1

∫ em dt

Hence, Equation (13) becomes
Hf

(

Xn
)

⋅X′
n = G mod (tn, pM ).

Now, we define Gn = Hf
(

Xn
)

⋅ X′
n so that we have Xn = Xn

(

Gn
) and ‖G − Gn‖Fn ≤ p−M .

Therefore, ‖G − Gn‖En ≤ p−M+⌊logp(n)⌋. By Proposition 10, we have that
Xn

(

Gn
)

= Xn(G) mod (tn+1, pN ).

Thus Xn = Xn(G) mod (tn+1, pN ).
First Author et al.: Preprint submitted to Elsevier Page 11 of 30



Efficient computation of Cantor’s division polynomials

3. Jacobians of curves and their isogenies
Throughout this section, the letter k refers to a fixed field of characteristic different from two.

Let k̄ be a fixed algebraic closure of k. In Section 3.1, we briefly recall some basic elements about
principally polarized abelian varieties and (l,… ,l)-isogenies between them; the notion of rational
representation is discussed in Section 3.2. Finally, for a given rational representation, we construct
a system of differential equations that we associate with it.
3.1. (l,⋯ ,l)-isogenies between abelian varieties

Let A be an abelian variety of dimension g over k and A∨ be its dual. To a fixed line bundle 
on A, we associate the morphism � defined as follows

� ∶ A ⟶ A∨
x ⟼ t∗x⊗ −1

where tx denotes the translation by x and t∗x is the pullback of  by tx.We recall from [25] that an isogeny between two abelian varieties is a surjective homomorphism of
abelian varieties of finite kernel. The degree of an isogeny is the number of preimages of a generic
point in its codomain.
A polarization � of A is an isogeny � ∶ A ⟶ A∨, such that over k̄, � is of the form � for some
ample line bundle  on Ak̄ ∶= A ⊗ Spec(k̄). When the degree of a polarization � of A is equal
to 1, we say that � is a principal polarization and the pair (A, �) is a principally polarized abelian
variety. We assume in the rest of this subsection that we are given a principally polarized abelian
variety (A, �). The Rosati involution on the ring End(A) of endomorphsims of A corresponding to
the polarization � is the map

End(A) ⟶ End(A)
� ⟼ �−1 ◦�∨◦�.

The Rosati involution is crucial for the study of the division algebra End(A) ⊗ ℚ, but for our
purpose, we only state the following result.
Proposition 11. [25, Proposition 14.2] For every � ∈ End(A) fixed by the Rosati involution,
there exists, up to algebraic equivalence, a unique line bundle �

A on A such that ��A = �◦�.
In particular, taking � to be the identity endomorphism denoted “1”, there exists a unique line
bundle 1A such that �1A = �.

The notion of algebraic equivalence is defined as follows. We say that two line bundles 1 and
2 on A are algebraically equivalent if they can be connected by a third line bundle, i.e. if there
exist a connected scheme X, two closed points x1, x2 ∈ X and a line bundle  on A × X, such
that 

|A×{x1} ≃ 1 and 
|A×{x2} ≃ 2. We say that two divisors on A are algebraically equivalent

if their corresponding line bundles are.
Using Proposition 11, we give the definition of an (l,… ,l)-isogeny.

Definition 12. Let (A1, �1) and (A2, �2) be two principally polarized abelian varieties of dimension
g over k and l ∈ ℕ∗. An (l,… ,l)-isogeny I between A1 and A2 is an isogeny I ∶ A1 ⟶ A2
such that

I∗1A2 = lA1 ,

First Author et al.: Preprint submitted to Elsevier Page 12 of 30



Efficient computation of Cantor’s division polynomials

where lA1 is the unique line bundle on A1 associated with the multiplication by l map.

We now suppose that A is the Jacobian of a genus g curve C over k. We will always make the
assumption that there is at least one k-rational point onC . Let r be a positive integer and fix P ∈ C .
We define C (r) to be the symmetric power of C and j(r)P to be the map

C (r) ⟶ A ≃ J (C)
(P1,… , Pr) ⟼ [P1 +⋯Pr − rP ].

If r = 1 then the map j(1)P is called the Jacobi map with origin P . We write jP for the map j(1)P .
The image of j(r)P is a closed subvariety ofAwhich can be also written as r summands of jP (C). Let
Θ be the image of j(g−1)P , it is a divisor on A and when P is replaced by another point, Θ is replaced
by a translate. We call Θ the theta divisor associated with A.
Remark 2. If A is the Jacobian of a curve C and Θ its theta divisor, then 1A = (Θ), where (Θ)
is the sheaf associated to the divisor Θ.

Using Remark 2, Definition 12 for Jacobian varieties gives the following
Proposition 13. Let l ∈ ℕ∗, A1 and A2 be the Jacobians of two algebraic curves over k and Θ1
and Θ2 be the theta divisors associated to A1 and A2 respectively. If an isogeny I ∶ A1 ⟶ A2 is
an (l,… ,l)-isogeny then I∗Θ2 is algebraically equivalent to lΘ1.

Proof. For all x ∈ A1, the theorem of squares [25, Theorem 5.5] gives the following relation

t∗lx 
1
A1
⊗

(

1A1
)−1 =

(

t∗x 
1
A1
⊗

(

1A1
)−1

)⊗l
= t∗x

(

1A1
)⊗l ⊗

(

(1A1)
⊗l )−1.

Meaning that,
�(1A1 )⊗l

= �lA1
.

From Proposition 11, we deduce that the line bundle lA1 is algebraically equivalent to (

1A1
)⊗l,

therefore I∗1A2 and
(

1A1
)⊗l are algebraically equivalent. By Remark 2, I∗1A2 corresponds to

I∗Θ2 and
(

1A1
)⊗l corresponds to lΘ1.

3.2. Rational representation of an isogeny between Jacobians of hyperelliptic curves
We focus on computing an isogeny between Jacobians of hyperelliptic curves. Let C1 (resp. C2)be a genus g hyperelliptic curve over k, J1 (resp. J2) be its associated Jacobian and Θ1 (resp. Θ2)be its theta divisor. We suppose that there exists a separable isogeny I ∶ J1 ⟶ J2. Let P ∈ C1be a Weierstrass point, let jP ∶ C1 ⟶ J1 be the Jacobi map with origin P . Generalizing [14,

Proposition 4.1] gives the following proposition
Proposition 14. The morphism I◦jP induces a unique morphism IP ∶ C1 ⟶ C (g)

2 such that the
following diagram commutes

First Author et al.: Preprint submitted to Elsevier Page 13 of 30



Efficient computation of Cantor’s division polynomials

C (g)
2

C1

J2

IP

I◦jP

≃

We assume that C1 (resp. C2) is given by the singular model v2 = f1(u) (resp. y2 = f2(x)),where f1 (resp. f2) is a polynomial of degree 2g + 1 or 2g + 2. Set Q = (u, v) ∈ C1 and
IP (Q) = {(x1, y1),… , (xg, yg)}.We use theMumford’s coordinates to represent the element IP (Q):it is given by a pair of polynomials (U (X), V (X)) such that

U (X) = Xg + �1Xg−1 +⋯ + �g

where
�i = (−1)i

∑

1≤j1<j2<⋯<ji≤g
xj1xj2⋯ xji

and

V (X) = �1Xg−1 +⋯ + �g =
g−1
∑

j=0
yj

(

g−1
∏

i=0,i≠j

X − xi
xj − xi

)

.

The tuple (�1,⋯ , �g, �1,⋯ , �g) consists of rational functions (on C1) in u and v and it is called a
rational representation of I .
We recall that the degree of a rational function f on a curve C , denoted by deg(f ), is the number
of its zeros (or poles).
Lemma 15. Let � ∶ C1 → ℙ1 be a rational function on C1.

1. If �(u, v) is invariant under the hyperelliptic involution of C1 then there exists a rational
fraction A in u such that

�(u, v) = A(u)

and deg(A) ≤ deg(�)∕2.

2. Otherwise, we can always find two rational fractions B and D in u such that

�(u, v) = B(u) + vD(u)

and the degrees ofB andD are bounded by deg(�) and deg(�)+g+1 respectively. Moreover,
if B(u) = 0 then deg(D) ≤ deg(�)∕2 + g + 1.

Proof. 1. The inequality deg(A) ≤ deg(�)∕2 comes from the fact that the function u has degree
2.

First Author et al.: Preprint submitted to Elsevier Page 14 of 30



Efficient computation of Cantor’s division polynomials

2. The rational fractions B(u) and D(u) verify the following relations

B(u) =
�(u, v) + �(u,−v)

2
, D(u) =

�(u, v) − �(u,−v)
2v

.

Since, �(u, v)+�(u,−v) and �(u, v)−�(u,−v) are invariant under the hyperelliptic involution
and have degrees bounded by 2 deg(�), then B(u) is a rational fraction of degree bounded by
deg(�) and D(u) is a rational fraction of degree bounded by deg(�) + g + 1 (Note that v is a
rational fraction of degree bounded by 2g + 2).

Proposition 16. The functions �1,… , �g can be seen as rational fractions in u and have the
same degree bounded by deg(�1)∕2. Moreover, the rational functions �1∕v,… , �g∕v can also be
expressed as rational fractions in u of degrees bounded by deg(�1)∕2+g+1,… , deg(�g)∕2+g+1
respectively.

Proof. It is a direct consequence of Lemma 15 and using the fact that IP (u,−v) = −IP (u, v).
Remark 3. If P is not a Weierstrass point, there exists rational fractions Ai,Bi,Di and Ei in usuch that �i(u, v) = Ai(u) + vBi(u) and �i(u, v) = Di(u) + vEi(u) for all i ∈ {1,⋯ , g}. Let P̄
the image of P by the hyperelliptic involution. The morphism IP̄ gives a rational representation
(�1,⋯ , �g, �1,⋯ , �g) of I . From the relation IP (u,−v) = −IP̄ (u, v), we deduce �i(u, v) = Ai(u) −
vBi(u) and �i(u, v) = −Di(u) + vEi(u) for all i ∈ {1,⋯ , g}. This gives the following formulas

Ai(u) = (�i(u, v) + �i(u, v))∕2, Bi(u) = (�i(u, v) − �i(u, v))∕2v,

Di(u) = (�i(u, v) − �i(u, v))∕2, Ei(u) = (�i(u, v) + �i(u, v))∕2v.

The degrees of Ai and Di (resp. Bi and Ei) are bounded by deg(�i) (resp. deg(�i) + g + 1).
In order to determine the isogeny I , it suffices to compute its rational representation (because I

is a group homomorphism), so we need to have some bounds on the degrees of the rational functions
�1,… , �g, �1,… , �g. In the case of an (l,… ,l)-isogeny, we adapt the proof of [11, § 6.1] in order
to obtain bounds in terms of l and g.
Lemma 17. Let i ∈ {1,… , g}. The pole divisor of �i seen as function on J2, is algebraically
equivalent to 2Θ2. The pole divisor of �i seen as function on J2 is algebraically equivalent to 3Θ2
if deg(f2) = 2g + 1, and 4Θ2 otherwise.

Proof. This is a generalization of [14, Lemma 4.25]. Note that if deg(f2) = 2g + 1, then �i has apole of order two along the divisor {(R1,… , Rg−1,∞) ;Ri ∈ C2} which is algebraically equivalentto Θ2.

Lemma 18 ([26, Appendix]). The divisor jP (C1) of J1 is algebraically equivalent to
Θg−11

(g − 1)!
where

Θg−11 denotes the g − 1 times self intersection of the divisor Θ1.

First Author et al.: Preprint submitted to Elsevier Page 15 of 30



Efficient computation of Cantor’s division polynomials

Proposition 19. Let l be a non-zero positive integer and i ∈ {1,… , g}. If I is an (l,… ,l)-
isogeny, then the degree of �i seen as a function on C1 is bounded by 2gl. The degree of �i seen as
a function on C1 is bounded by 3gl if deg(f2) = 2g + 1, and 4gl otherwise.

Proof. The degrees of �1,… , �g, �1,… , �g are obtained by computing the intersection of IP (C)with their pole divisors. By Lemma 17, it suffices to show that
IP (C) ⋅ Θ2 = lg.

Since I is an (l,… ,l)-isogeny, Proposition 13 gives that I∗Θ2 is algebraically equivalent to lΘ1.Moreover, up to algebraic equivalence,
I∗
(

IP (C)
)

=
(

| ker(I)|
)

jP (C) = lgjP (C).

Using Lemma 18, we obtain
I∗
(

IP (C)
)

⋅ I∗Θ2 = glg+1.

As
I∗
(

IP (C)
)

⋅ I∗Θ2 = deg(I)
(

IP (C) ⋅ Θ2
)

= lg(IP (C) ⋅ Θ2
)

,

the result follows.
3.3. Associated differential equation

We assume that char(k) ≠ 2. We generalize [11, § 6.2] by constructing a differential system
modeling the map FP = I◦jP of Proposition 14. The map FP is a morphism of varieties, it acts
naturally on the spaces of holomorphic differentialsH0(J2,Ω1J2) andH0(C1,Ω1C1) associated to J2and C1 respectively, this action gives a map

F ∗
P ∶ H0(J2,Ω1J2)⟶ H0(C1,Ω1C1).

A basis ofH0(C1,Ω1C1) is given by

B1 =
{

uidu
v
; i ∈ {0,… , g − 1}

}

.

The Jacobi map of C2 induces an isomorphism between the spaces of holomorphic differentials
associated to C2 and J2, so H0(J2,Ω1J2) is of dimension g, it can be identified with the space
H0(Cg

2 ,Ω
1
Cg2
)Sn (here the symmetric group Sn acts naturally on the space H0(Cg

2 ,Ω
1
Cg2
)). With this

identification, a basis ofH0(J2,Ω1J2) is chosen to be equal to

B2 =

{

g
∑

j=1
xij
dxj
yj

; i ∈ {0,… , g − 1}

}

.

Let (mij)0≤i,j≤g ∈ GLg(k̄) be the matrix of F ∗
P with respect of these two bases, we call it the

normalization matrix.
First Author et al.: Preprint submitted to Elsevier Page 16 of 30



Efficient computation of Cantor’s division polynomials

Remark 4. Let P1 and P2 be two points onC1. The twomorphisms IP1 and IP2 satisfy the followingrelation
IP1 = IP2 + I([P2 − P1]).

Therefore, the linear maps I∗P1 and I∗P2 are equal.
Let Q = (uQ, vQ) ∈ C1 be a non-Weierstrass point different from P and IP (Q) = {R1,… , Rg}such that IP (Q) contains g distinct points and does not contain neither a point at infinity nor a

Weierstrass point. The pointsRi may be defined over an extension k′ of k of degree equal toO(g!).
Let t be a formal parameter of C1 at Q, then we have the following diagram

Spec(k′JtK) Cg
2

C1 C (g)
2

t↦(Ri(t))i

IP

For all i = 1,… , g, the pull back of
i−1
∑

j=1
xi−1dxj∕yj along the bottom horizontal arrow, then along

the left vertical arrow, gives
du
v

g
∑

j=1
miju

j−1.

And the pull back of
i−1
∑

j=1
xi−1dxj∕yj along the right vertical arrow, then along the top horizontal

arrow gives
g
∑

j=1
xi−1j dxj .

This gives the differential system
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

dx1
y1

+ ⋯ +
dxg
yg

=
(

m11 + m12 ⋅ u + ... + m1g ⋅ ug−1
)du
v
,

x1 ⋅ dx1
y1

+ ⋯ +
xg ⋅ dxg
yg

=
(

m21 + m22 ⋅ u + ... + m2g ⋅ ug−1
)du
v
,

⋮ ⋮
xg−11 ⋅ dx1

y1
+ ⋯ +

xg−1g ⋅ dxg
yg

=
(

mg1 + mg2 ⋅ u + ... + mgg ⋅ ug−1
)du
v
,

y21 = f2(x1), ⋯ , y2g = f2(xg) .

(14)

First Author et al.: Preprint submitted to Elsevier Page 17 of 30



Efficient computation of Cantor’s division polynomials

Equation (14) has been initially constructed and solved in [11] for g = 2. In this case, the
normalization matrix and the initial condition (x1(0), x2(0)) are computed using algebraic theta
functions. In a more practical way, we refer to [14] for an easy computation of the initial condition
(x1(0), x2(0)) of Equation (14) and for solving the differential system using a Newton iteration.
However, in this case, the normalization matrix is determined by differentiating modular equations.
There is a slight difference in Equation (14) between the two cases, especially x1(0) and x2(0) aredifferent in the first, and equal in the second. LetH be the g-squared matrix defined by

H(x1,… xg) =
(

xi−1j
1
yj

)

1≤i,j≤g
.

We suppose that g = 2. If the initial condition (x1(0), x2(0)) of Equation (14) satisfies x1(0) ≠ x2(0),then the matrixH(x1(0), x2(0)) is invertible inM2(k′). Otherwise, its determinant is equal to zero.
More generally, we prove that with the assumptions that we made onQ,R1, R2,…Rg−1 andRg, thematrix H(x1(0),… , xg(0)) is invertible inMg(k′). Let t be a formal parameter, Q(t) = (u(t), v(t))
the formal point on C1

(

kJtK
) that corresponds to t = u − uQ and {R1(t),… , Rg(t)} the image of

Q(t) by IP , then Equation (14) becomes
H(X(t)) ⋅X′(t) = G(t) (15)

where X(t) = (x1(t),… , xg(t)) and G(t) = v−1
( g
∑

i=1
mijui−1

)

1≤j≤g
. Thus we have the following

proposition.
Proposition 20. The matrixH(X(t)) is invertible inMg

(

k′JtK
)

.

Proof. The matrixH(X(t)) is an alternant matrix, its determinant is given by

det (H(X(t))) =

∏

1≤i<j≤g

(

xj(t) − xi(t)
)

g
∏

i=1
yi(t)

which is invertible inMg
(

k′JtK
) because xi(0) ≠ xj(0) for all i, j ∈ {1,… , g} such that i ≠ j.

Corollary 21. Let p be a prime number. We assume that k is an extension of ℚp. Up to a change
of variables, Equation (15) fulfills all the assumptions of Equation (2), in particular it admits a
unique solution in k′JtK.

By Corollary 21, it is straightforward to make use of Algorithm 1 to solve Equation (15) when
k is an unramified extension of the field of p-adic numbers. This gives rise to an algorithm that
computes a rational representation of a given (l,⋯ ,l)-isogeny between Jacobians of hyprelliptic
curves of genus g, whose complexity is quasi-optimal with respect to l but not in g. Thus,
Algorithm 1 can only be used efficiently to compute isogenies of Jacobians of hyperelliptic curves
of small genus.

First Author et al.: Preprint submitted to Elsevier Page 18 of 30



Efficient computation of Cantor’s division polynomials

4. Solving alternant systems of differential equations
Let p be an odd prime number. In this section, we aim for effective resolution of Equation (15)

when it is defined over an unramified extension of ℚp. We re-examine the Newton scheme of
Algorithm 1 to make it quasi-linear in the dimension of the solution X(t). This will give a
quasi-optimal algorithm to compute rational representations of isogenies between Jacobians of
hyperelliptic curves over finite fields, after having possibly lifted the problem in the p-adics.

The three next subsections are concerned with preliminary material: we introduce the differen-
tial system that we want to solve, then we recall some computational results that will eventually be
used in our main algorithm exposed in Section 4.4.
4.1. The setup

We keep the same notation as Section 3.3 and we assume that p ≠ 2 and k is a finite field of
characteristic p. For i ∈ {1,… , g}, write Ri = (x(0)i , y

(0)
i ). We recall that the computation of the

rational representation associated with IP reduces to the problem of computing an approximation
of the following differential system whose unknown is X(t) = (x1(t),… , xg(t)) ∈ k′.

{

H(X(t)) ⋅X′(t) = G(t), X(0) = (x(0)1 ,⋯ , x(0)g ),
yj(t)2 = f2(xj(t)), yj(0) = y

(0)
j for j = 1,… , g

(16)

where G(t) ∈ kJtKg andH(X(t)) are the matrices defined by

G(t) = 1
v(t)

( g
∑

i=1
miju(t)i−1

)

1≤j≤g
and H(X(t)) =

(

xj(t)i−1

yj(t)

)

1≤i,j≤g

.

Based on the discussion in Section 1.1, we are sometimes obliged to lift Equation (16) to the p-adics.
Therefore, we will replace k by an unramified extensionK0 ofℚp and k′ by an unramified extension
K ofK0 of degree at mostO(g). Consequently, f1, f2 and the components ofG(t) have coefficients
in K0; moreover, X(t) ∈ KJtKg.

By Corollary 21, Equation (16) can be solved using the following Newton iteration
X2m+1(t) = Xm(t) +H(Xm(t))−1 ∫ (G −H(Xm(t)) ⋅X′

m(t)) dt.

Or, equivalently,
H(Xm(t)) ⋅ (X2m+1(t) −Xm(t)) = ∫ (G −H(Xm(t)) ⋅X′

m(t)) dt. (17)
A call from Algorithm 1 gives the desired result, but this is not optimal in g. As explained in

Section 1.1, this lack of efficiency is due to the fact that the components of the solution X(t) of
Equation (16) have coefficients defined over the field K , whose degree over K0 depends on g. Forthis reason, we work directly on the first Mumford polynomial

U (t, z) =
g
∏

j=1
(z − xj(t))

whose coefficients are defined over the ringK0JtK: we rewrite the Newton scheme (17) accordingly
and design fast algorithms for iterating it in quasi-linear time.
First Author et al.: Preprint submitted to Elsevier Page 19 of 30



Efficient computation of Cantor’s division polynomials

4.2. Computing Newton sums
We recall an efficient algorithm for the computation of the Newton sums of a polynomial. LetK0be an unramified extension of ℚp. Let P (t, z) be a monic polynomial of degree d with coefficients

in K0JtK such that P (0, z) is separable over K0 and x1(t), x2(t),⋯ , xd(t) its roots in KJtK, where K
denotes the splitting field of P (0, z). We define the i-th Newton sum si(t) of P by

si(t) =
d
∑

j=1
xj(t)

i ∈ K0JtK,

and we are interested in designing an efficient algorithm to compute it, only from the coefficients
of P .
Let P ∗ be the reciprocal polynomial of P , i.e. P ∗(t, z) =

d
∏

j=1
(1 − xj(t)z). It is well known that

the i-th coefficient of the power series expansion of (P ∗)′∕P ∗ in K0JtKJzK is equal to −si+1(t) (seefor instance [27, Lemma 2]). This gives Algorithm 2 to compute the first g Newton sums of the
polynomial P (t, z) modulo tn+1.

Algorithm 2: Newton Sums
NewtonSums (P , g, n)

Input : P ∈ K0JtK[z], g ∈ ℕ∗, n ∈ ℕ∗.
Output: The sequence s1(t) mod tn+1,⋯ , sg(t) mod tn+1.

f ∶= −(P ∗)′∕P ∗ mod (tn+1, zg) ; // f =
g−1
∑

i=0
fi(t)zi

return f0(t),⋯ , fg−1(t)

Proposition 22. Let P ∈ K0JtK[z] be a monic polynomial and g, n,N ∈ ℕ∗. When the procedure
NewtonSums runs with fixed point arithmetic at precision O(pN ), all the computations are done in
K0 and the result is correct at precision O(pN ). Moreover, Algorithm 2 performs at most Õ(ng)
operations in K0.

Proof. The fact that all the computations stay withinK0 is a direct consequence of the assumption
P ∈ K0JtK[z] and the fact that P ∗ is invertible in K0JtKJzK. In addition, it is easy to see that the
output of NewtonSums(P , g, n) is correct at precision O(pN ).
The inverse power series of P ∗ modulo (tn+1, zg) in K0JtKJzK is computed by the Newton iteration
Q ↦ Q(2 − QP ∗). Therefore, the complexity of the computation of f only depends on the
complexity of multiplying two bivariate polynomials of total degree n+ g. This can be done using
at most Õ(gn) operations in K0.

First Author et al.: Preprint submitted to Elsevier Page 20 of 30



Efficient computation of Cantor’s division polynomials

4.3. Hankel matrix-vector product
Let g ∈ ℕ∗. We recall that a g × g Hankel matrix A is a g × g matrix of the form

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a0 a1 a2 ⋯ ⋯ ag−1
a1 a2 ⋯ ⋯ ag
a2 ⋮
⋮ ⋮
ag−1 ⋯ ⋯ a2g−4 a2g−3 a2g−2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Matrix-vector multiplication for this type of matrix can be computed in O(M(g)) arithmetic
operations instead of O(g!), where ! ∈]2, 3] is a feasible exponent of matrix multiplication.
Proposition 23. Let n ∈ ℕ. Let K0 be an unramified extension of ℚp. Let A = (ai+j−2(t))i,j ∈
Mg(K0JtK) be a Hankel matrix and v = (v1(t),⋯ , vg(t)) ∈ K0JtKg. Let f and ℎ be the two
polynomials

f (t, z) = a0(t) + a1(t)z + a2(t)z2 +⋯ + a2g−3(t)z2g−3 + a2g−2(t)z2g−2

and

ℎ(t, z) = v1(t)zg−1 + v2(t)zg−2 +⋯ + vg(t).

Write f (t, z) ⋅ ℎ(t, z) mod (tn+1, z2g−1) =
2g−2
∑

i=0
wi(t)zi then

A ⋅ v mod tn+1 = (wg−1,⋯ , w2g−2).

Proof. Let i ∈ {1,… , g}. The (g − 2+ i)-th coefficient of the product R = f (t, z) ⋅ ℎ(t, z) is equal
to

Rg−2+i(t) =
g−2+i
∑

j=i−1
aj(t)vj+2−i(t) =

g
∑

j=1
ai+j−2(t)vj(t).

Therefore, Rg−2+i(t) is the i-th component of the product A ⋅ v.
Proposition 23 gives a quasi-linear algorithm to compute the matrix-vector product for Hankel

matrices.
Proposition 24. Let n ∈ ℕ. Let K0 be an unramified extension of ℚp. Let A = (ai+j−2(t))i,j ∈
Mg(K0JtK) be a Hankel matrix and v = (v1(t),⋯ , vg(t)) ∈ K0JtKg. When it is called on the input
(A, v, n), the algorithm HankelProd performs at most Õ(ng) operations in K0.

Proof. This is a direct consequence of Proposition 23.

First Author et al.: Preprint submitted to Elsevier Page 21 of 30



Efficient computation of Cantor’s division polynomials

Algorithm 3: Hankel matrix-vector product
HankelProd (A, v, n)

Input : A = (ai+j−2(t))i,j mod tn+1, v = (v1(t),⋯ , vg(t)) mod tn+1,
n ∈ ℕ.

Output: The product A ⋅ v mod tn+1.

f ∶= a0 + a1z + a2z2 +⋯ + a2g−3z2g−3 + a2g−2z2g−2;
ℎ ∶= v1zg−1 + v2zg−2 +⋯ + vg;

w ∶= fℎ mod (tn+1, z2g−1) ; // w =
2g−2
∑

i=0
wizi

return wg−1,⋯ , w2g−2

4.4. The alternant differential system
We go back to the system of differential equations (16). We will make use of Equation (17) to

construct its solution by successive approximations.
Let m ≥ 0 be an integer and n = 2m + 1. We suppose that we are given an approximation

Um(t, z) =
g
∏

j=1
(z − x(m)j (t)) ∈ K0JtK[z] of the polynomial U (t, z) modulo tm+1, such that the vector

Xm = (x
(m)
1 (t),… x(m)g (t)) satisfies Equation (16) modulo tm. In order to compute an approximation

Un(t, z) of U (t, z)modulo tn+1 from Um(t, z), we use Equation (17) and perform the three following
steps:

1. ComputeH(Xm(t)) ⋅X′
m(t) modulo tn+1.

2. Compute Fm(t) = ∫ (G −H(Xm(t)) ⋅X′
m(t)) dt. mod t

n+1

3. Compute Un by solving linear systemH(Xm(t)) ⋅ (Xn(t) −Xm(t)) = Fm(t) modulo tn+1.
Once step 1 is carried out, step 2 can be executed using at most Õ(ng) operations inK0, becausethe components of the vectorH(Xm(t)) ⋅X′

m(t) are defined overK0. The following construction willshow that the vector Xm will not be of any use to perform steps 1 and 3 but only the polynomial
Um(t, z).

Write f2(z) =
g−1
∑

j=1
fjzj . Let s(m)i (t) ∈ K0JtK be the i-th Newton sum of Um(t, z) and

r(m)i (t) =
1
i
ds(m)i (t)
dt

=
g
∑

j=1

dx(m)j (t)
dt

⋅ x(m)j (t)
i−1
∈ K0JtK. (18)

LetWm(t, z) =
g−1
∑

i=0
w(m)
i (t) z

i ∈ K0JtK[z] be the degree g − 1 polynomial such that

Wm(t, z)2 =
1

f2(z)
mod (tn+1, Um(t, z))

First Author et al.: Preprint submitted to Elsevier Page 22 of 30



Efficient computation of Cantor’s division polynomials

with the initial conditionWm(0, x
(0)
j ) = y

(0)
j , for all j ∈ {1,… , g}.

Set Vm(t, z) = f2(z) ⋅Wm(t, z) mod (tn+1, Um(t, z)) and, for j ∈ {1,… , g}, let y(m)j (t) be the power
series Vm(t, x(m)j (t)). By construction, we have

Wm(t, x
(m)
j (t)) ⋅ y

(m)
j (t) ≡ 1 mod tn+1

and
y(m)j (t) ≡ yj(t) mod tm+1,

for all j ∈ {1,… , g}.
Proposition 25. The productH(Xm(t)) ⋅X′

m(t) satisfy the following relation:

H(Xm(t)) ⋅X′
m(t) mod tn+1 =

⎛

⎜

⎜

⎜

⎜

⎝

r(m)1 r(m)2 ⋯ r(m)g
r(m)2 r(m)3 r(m)g+1
⋮
r(m)g r(m)g+1 ⋯ r(m)2g−1

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

w0(t)
w1(t)
⋮

wg−1(t)

⎞

⎟

⎟

⎟

⎠

Proof. This is a direct consequence of the fact that 1∕y(m)j (t) mod t
n+1 =

g−1
∑

i=0
w(m)
i (t)x

(m)
j (t)

i, for all
j ∈ {1,… , g}.
Corollary 26. Step 1 can be carried out using at most Õ(ng) operations in K0.

Proof. Approximations of the Newton sums s(m)i (t) modulo tn+1 can be computed from the
polynomial Um(t, z) and using Algorithm 2. By Proposition 22, this can be done using at most
Õ(ng) operations in K0. The power series r(m)i (t) can be computed using Equation (18) and the
polynomialWm(t, z) is constructed from the classical Newton scheme for extracting square roots.
By Proposition 25, the productH(Xm(t)) ⋅X′

m(t) mod t
n+1 is a Hankel matrix-vector product that

can be computed using Algorithm 3. By Proposition 24, this can be done using at most Õ(ng)
operations in K0.

We now explain how to compute Un from the linear systemH(Xm(t)) ⋅ (Xn(t) −Xm(t)) = Fm(t)modulo tn+1. The following proposition and its proof give a construction over K0JtK of an approx-
imation of the interpolating polynomial of the data {(x(m)1 (t), x

(n)
1 (t) − x

(m)
1 (t)),… , (x(m)g (t), x

(n)
g (t) −

x(m)g (t))} modulo tn+1.
Proposition 27. Let m ≥ 0 be an integer and n = 2m + 1. There exists a polynomial ℎm(t, z) ∈
KJtK[z] of degree g −1 such that x(n)j (t) = ℎm(t, x

(m)
j (t)) + x

(m)
j (t) mod t

n+1 for all j ∈ {1,… , g}.

Proof. We give a construction of ℎm using the approach in [28, Section 5]. Let Dm(t, z) be the
polynomial defined by

Dm(t, z) = x
(m)
1 (t)z

g + x(m)2 (t)z
g−1 +⋯ + x(m)g−1(t)z

2 + x(m)g (t)z.

First Author et al.: Preprint submitted to Elsevier Page 23 of 30



Efficient computation of Cantor’s division polynomials

Write
Um(t, z) ⋅Dm(t, z) = q

(m)
2g (t)z

2g + q(m)2g−1(t)z
2g−1 +⋯ + q(m)1 (t)z + q(m)0 (t)

and
Qm(t, z) = q

(m)
2g (t)z

g−1 + q(m)2g−1(t)z
g−2 +⋯ + q(m)g+2(t)z + q

(m)
g+1(t).

For all j = 1,⋯ , g we have the following relation

x(n)j (t) − x
(m)
j (t) =

Qm(t, x
(m)
j (t))

)zUm(t, x
(m)
j (t))

⋅ y(m)j (t),

where )zUm denotes the partial derivative of Um with respect to variable z. Hence, we take ℎm to
be equal to

ℎm(t, z) =
Qm(t, z)
)zUm(t, z)

⋅ Vm(t, z) mod (tn+1, Um(t, z)).

We end up with the computation of Un using a Newton scheme. Write Un = Um + Tm,where Tm ∈ tm+1K0JtK[z]. By Propostion 27, the polynomial Un(t, z) can be constructed from
the following relations

Un(t, ℎm(t, x
(m)
j (t)) + x

(m)
j (t)) mod tn+1 = 0, for all j ∈ {1,… , g}. (19)

Equation (19) can be rewritten as follows:
Un(t, x

(m)
j (t)) + ℎm(t, x

(m)
j (t)) ⋅ )zUn(t, x

(m)
j ) ≡ 0 mod tn+1, for all j ∈ {1,… , g}. (20)

Using the fact that Um(t, x(m)j (t)) = 0 for all j ∈ {1,… , g}, we get
Tm(t, x

(m)
j (t)) + ℎm(t, x

(m)
j (t)) ⋅ )zUm(t, x

(m)
j ) ≡ 0 mod tn+1, for all j ∈ {1,… , g}. (21)

Repeating the above calculations in the reverse direction, we obtain the next proposition.
Proposition 28. Let m ≥ 0 be an integer and n = 2m+1. Let Tm ∈ tm+1K0JtK[z] be the polynomial
defined by

Tm(t, z) = ℎm(t, z) ⋅ )zUm(t, z) mod (tn+1, Um).

Then, Un = Um + Tm is an approximation of U (t, z) modulo tn+1.

Corollary 29. Step 3 can be performed using at most Õ(ng) operations in K0.

Proof. This is a direct consequence of Propositions 27 and 28.
We summarize all the steps that we performed to solve Equation (16) in Algorithm 4.

First Author et al.: Preprint submitted to Elsevier Page 24 of 30



Efficient computation of Cantor’s division polynomials

Algorithm 4: Alternant Differential System Solver
AlternantSystem (G, f2, U0, V0, n)

Input : G mod tn, f2 mod tn, U0(z) =
g
∏

j=1
(z − x(0)j ) a separable polynomial, V0(z)

such that V0(x
(0)
j ) = y

(0)
j for all j = 1,… g.

Output: The polynomial U mod tn+1 whose roots form the solution of Equation (16)
if n = 0 then

return U0 mod t, 1∕V0 mod (t, U0)

m ∶= ⌈

n−1
2 ⌉;

Xm,Wm ∶= AlternantSystem(G, f2, U0, V0, m);
Wm ∶= (Wm∕2) ⋅ (−f2 ⋅W 2

m + 3) mod (t
n+1, Um);

Vm ∶= f2 ⋅Wm mod (tn+1, Um);
s(m)1 ,… , s(m)2g−1 ∶= NewtonSums(Um, 2g − 1, n);
for j ∶= 1 to 2g − 1 do

r(m)i ∶= (ds(m)i ∕dt)∕i;

Hp(m)1 ,… ,Hp(m)g ∶= HankelProd((r(m)i+j−1)i,j , (w
(m)
0 ,… , w(m)g−1), n);

for i ∶= 1 to g do
F (m)i = ∫ (Gi −Hp

(m)
i ) dt mod tn+1;

Dm ∶= F
(m)
1 zg + F (m)2 zg−1 +⋯ + F (m)g−1z

2 + F (m)g z mod tn+1;
Write Um ⋅Dm = q

(m)
2g z

2g + q(m)2g−1z
2g−1 +⋯ + q(m)1 z + q(m)0 mod tn+1;

Qm ∶= q
(m)
2g z

g−1 + q(m)2g−1z
g−2 +⋯ + q(m)g+2z + q

(m)
g+1 mod tn+1;

Tm ∶= −Qm ⋅ Vm mod (tn+1, Um);
return Um + Tm mod tn+1,Wm mod tn+1

Theorem 30. Let K0 be an unramified extension of ℚp. Let n, g ∈ ℕ, N ∈ ℕ∗, G ∈ K0JtK
g,

f2 ∈ K0JtK[z] of degree O(g), U0 =
g
∏

j=1
(z − x(0)j ) ∈ K0[z], V0 ∈ K0[z] of degree g − 1 such

that V0(x
(0)
j ) mod p ≠ 0 and U0 divides f2 − V 2

0 in K0JtK[z]. We assume that U0 is separable
over the the residue field of K0 and that the polynomial U (t, z), whose roots form a solution of
Equation (16), have coefficients in K0JtK. Then, the procedure AlternantSystem runs with fixed
point arithmetic at precision O(pM+⌊logp(2g−1)⌋), with M = max(N, 2) + ⌊logp(n)⌋ if p = 3 and
M = N + ⌊logp(n)⌋ otherwise. All the computations are done in K0 and the result is correct at
precision O(pN ).

Proof. The proof is similar to the proof of Theorem 3.
Proposition 31. When performed with fixed point arithmetic at precisionO(pM ), the bit complexity
of Algorithm 4 is Õ

(

ng ⋅ A(K0;M)
)

, where A(K0;M) denotes an upper bound on the bit
complexity of the arithmetic operations in K0∕p

MK0 .

First Author et al.: Preprint submitted to Elsevier Page 25 of 30



Efficient computation of Cantor’s division polynomials

Proof. Let D denote the algebraic complexity of Algorithm 4, then we have the following relation
D(n) ≤ D

(⌈n − 1
2

⌉)

+ Õ (ng) .

Solving the recurrence, we find D(n) = Õ (ng). Therefore, the bit complexity of Algoritmh 4 is
Õ
(

ng ⋅ A(K0;M)
).

5. Fast computation of the multiplication by-l maps
Thanks to Algorithm 4, we now have fast algorithms for computing rational representations

of separable isogenies between Jacobians of hyperelliptic curves defined over fields of odd
characteristic, after having possibly lifted the two curves and the normalization matrix to the p-
adics. In this section, we are interested in the computation of a rational representation of the
multiplication by an integer. It is therefore necessary to know in advance some bounds on the
degrees of its components.

It has been proved that the degrees of the components of a rational representation of the
multiplication-by-l are bounded by O(l2), only for curves of genus 2 and 3 [21, Chapter 4]. In
the general case, it has been shown that these degrees are bounded by Og(l3)2 [21, Theorem 4.13],
although experiments show that they are only quadratic in l.

In Section 5.1, we use the results of Section 3.2 to reduce the bound to O(gl2). Consequently,
we derive from Algorithm 4 a quasi-optimal algorithm to compute a rational representation of the
multiplication by an integer.
5.1. Cantor l-division polynomials

Let C ∶ y2 = f (x) be a hyperelliptic curve of genus g over a finite field k and l > g an integer
coprime to the characteristic of k.
Let P ∈ C(k). For a generic point Q = (x, y) on C , the Mumford representation of the element
l[Q − P ] in the Jacobian of C can be written as follows

l[Q − P ] =

(

Xg +
g−1
∑

i=1

di(x)
dg(x)

Xi, y
g−1
∑

i=1

ei(x)
eg(x)

Xi

)

,

where the numerators d0,… , dg−1, e0,… , eg−1 are polynomials in k[x] and the denominators dg and
eg are monic polynomials in k[x]. Therefore,

(

d0
dg
,… , dg−1

dg
, e0
eg
,… , eg−1

eg

)

is a rational representation
of the multiplication-by-l map.
Definition 32. The 2g + 2 polynomials d0,… , dg, e0,… eg are called Cantor’s l-division polyno-
mials.

Since the multiplication-by-l endomorphism is a separable (l2,… ,l2)-isogeny, we can then
apply Propositions 16 and 19 and Remark 3 in order to obtain bounds on the degrees of the Cantor’s
l-division polynomials. This gives the following result.
Proposition 33. The degrees of the polynomials d0,… , dg are bounded by gl2. Moreover,

2the notation Og means that we are hiding the terms that depend on g

First Author et al.: Preprint submitted to Elsevier Page 26 of 30



Efficient computation of Cantor’s division polynomials

• if P is a Weierstrass point, then the degrees of e0,… , eg are bounded by
{ 3

2
gl2 + g + 1 if deg(f ) = 2g + 1
2gl2 + g + 1 otherwise

• if P is not a Weierstrass point, then the degrees of e0,… , eg are bounded by
{

3gl2 + g + 1 if deg(f ) = 2g + 1
4gl2 + g + 1 otherwise

Remark 5. The bounds obtained in Propostion 33 are not optimal. In fact, the experiments carried
out by Abelard in his thesis [21, Section 4.2] show that Cantor l-division polynomials have degrees
slightly smaller than the bounds that we have obtained in Propostion 33.
The next theorem and its proof give an efficient algorithm to compute Cantor’s division polynomi-
als.
Theorem 34. Let p an odd prime number and g > 1 an integer. Let l be an integer greater than g
and coprime to p. Let C ∶ y2 = f (x) be a hyperelliptic curve of genus g defined over a finite field
k of odd characteristic p. There exists an algorithm that computes Cantor l-division polynomials
of C , performing at most Õ(l2g2) operations in k.

Proof. Let p be the characteristic of k and d = [k ∶ Fp]. For the sake of simplicity, we will assume
that C admits a Weierstrass point over k. The algorithm performs the following steps:

1. Pick a Weierstrass point P ∈ C(k).
2. Chose a point Q ∈ C(k) different from P such that l[Q − P ] is generic.
3. Lift C arbitrarily as C̃ ∶ y2 = f̃ (x) over an unramified extension K0 of ℚp of degree d with

a p-adic precision equal to 1 + ⌊logp(2gl2)⌋ + ⌊logp(2g − 1)⌋.
4. Lift P as P̃ and Q as Q̃ over K0 such that P̃ , Q̃ ∈ C̃(K0).
5. Solve the differential equation (16) by applying Algorithm 4 to the following input:

• n = 2gl2,
• f2 = f̃ ,
• U0(z): the first Mumford coordinate of l[Q̃ − P̃ ],
• V0(z): the second Mumford coordinate of l[Q̃ − P̃ ],
• G(t), given by the following relation

G = l
v(t)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
u(t)
u(t)2
⋮

u(t)g−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where u(t) = t + xQ̃ and v(t) =√

f (u(t)) such that v(0) = yQ̃.
First Author et al.: Preprint submitted to Elsevier Page 27 of 30



Efficient computation of Cantor’s division polynomials

Let U (t, z) be the reduction of the output of the algorithm in k.
6. Reconstruct from U (t, z) the g + 1 polynomials d0,… , dg.
7. Recover the polynomials e0,… , eg from d0,… , dg and the equation of C .

The time complexity of the algorithm depends mainly on the complexity of steps 5,6 and 7.
According to Proposition 31, step 5 can be carried out for a cost of Õ(g2l2) operations in k.
The g + 1 polynomials d0,… , dg are obtained by reconstructing (for example) d0∕dg using Padé
approximants from the constant coefficient of U then multiplying the other coefficients of U by dgto recover d1,… , dg−1. Therefore, step 6 requires Õ(g2l2) operations in k as well. Step 7 is executedas follows: we make use of the polynomials d0,… , dg to increase the t-adic approximation of the
polynomial U (t, z) to 2 deg(e0). We compute, using a Newton iteration, the degree g polynomial
V (t, z) such that V (0, z) = V0(z) and

V (z, t)2 ≡ f (z) mod (t2 deg(e0), U (t, z)).

We reconstruct (for example) the rational fraction e0∕eg from the constant coefficient of V . The
polynomials e1,… , eg−1 are obtained by multiplying eg with the non-constant coefficients of V .
This can also be carried out using Õ(g2l2) operations in k.
5.2. Experiments

We made an implementation of both Algorithm 4 and the Padé approximant step using the
HALF-GCD algorithm given in [29] with the MAGMA computer algebra system [30] to compute
Cantor l-division polynomials in F5 for hyperelliptic curves. Our implementation is available
at [31] . Timings are detailed in Figures 1 and 2. All the calculations were done in the ring ℤ5with a fixed precision which is equal to 1+⌊log5(2gl2)⌋+⌊log5(2g−1)⌋. The observed timings fit
rather well with the expected time complexity, which is Õ(l2g2): Figure 2 (resp. Figure 1) shows
that the time complexity of our algorithm is almost linear in g2 (resp. in l2).

References
[1] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math. Comp. 44 (170) (1985) 483–494. doi:

10.2307/2007968.
URL https://doi.org/10.2307/2007968

[2] A. O. L. Atkin, The number of points on an elliptic curve modulo a prime, manuscript, Chicago IL (1988).
[3] F. Morain, Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects algorithmiques, Journal de Théorie des Nombres

de Bordeaux 7 (1) (1995) 255–282.
URL http://www.jstor.org/stable/43972443

[4] R. Schoof, Counting points on elliptic curves over finite fields, Journal de Théorie des Nombres de Bordeaux 7 (1) (1995) 219–254.
URL www.numdam.org/item/JTNB_1995__7_1_219_0/

[5] J. Pila, Frobenius maps of abelian varieties and finding roots of unity in finite fields, Mathematics of Computation 55 (1990) 745–763.
[6] P. Gaudry, R. Harley, Counting points on hyperelliptic curves over finite fields, in: W. Bosma (Ed.), Algorithmic Number Theory, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2000, pp. 313–332.
[7] P. Gaudry, É. Schost, Construction of secure random curves of genus 2 over prime fields, in: C. Cachin, J. L. Camenisch (Eds.), Advances in

Cryptology - EUROCRYPT 2004, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 239–256.
[8] S. Abelard, Counting points on hyperelliptic curves with explicit real multiplication in arbitrary genus, Journal of Complexitydoi:10.1016/

j.jco.2019.101440.
URL https://hal.inria.fr/hal-01905580

[9] A. Bostan, F. Morain, B. Salvy, E. Schost, Fast algorithms for computing isogenies between elliptic curves, Math. Comp. 77 (263) (2008)
1755–1778. doi:10.1090/S0025-5718-08-02066-8.
URL https://doi.org/10.1090/S0025-5718-08-02066-8

First Author et al.: Preprint submitted to Elsevier Page 28 of 30

https://doi.org/10.2307/2007968
http://dx.doi.org/10.2307/2007968
http://dx.doi.org/10.2307/2007968
https://doi.org/10.2307/2007968
http://www.jstor.org/stable/43972443
http://www.jstor.org/stable/43972443
www.numdam.org/item/JTNB_1995__7_1_219_0/
https://hal.inria.fr/hal-01905580
http://dx.doi.org/10.1016/j.jco.2019.101440
http://dx.doi.org/10.1016/j.jco.2019.101440
https://hal.inria.fr/hal-01905580
https://doi.org/10.1090/S0025-5718-08-02066-8
http://dx.doi.org/10.1090/S0025-5718-08-02066-8
https://doi.org/10.1090/S0025-5718-08-02066-8


Efficient computation of Cantor’s division polynomials

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000

Ti
me
 (
s)

ell2

Total time
Rational Reconstruction
Differential Equation

(a) g = 4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2000 4000 6000 8000 10000

Ti
me
 (
s)

ell2

Total time
Rational Reconstruction
Differential Equation

(b) g = 5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2000 4000 6000 8000 10000

Ti
me
 (
s)

ell2

Total time
Rational Reconstruction
Differential Equation

(c) g = 8

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2000 4000 6000 8000 10000

Ti
me
 (
s)

ell2

Total time
Rational Reconstruction
Differential Equation

(d) g = 11
Timings obtained with magma V2.25-7 on a laptop with an intel processor E5-2687WV4@3.00ghz

Figure 1: Computation of the multiplication-by-l map over F5 for l ∈ {g + 1,… , 101} and such that
gcd(l, 5) = 1

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500

Ti
me

 (
s)

g2

Total time
Rational Reconstruction

Differential Equation

Timings obtained with magma V2.25-7 on a laptop with an intel processor E5-2687WV4@3.00ghz

Figure 2: Computation of the multiplication-by-31 map over F5 for g ∈ {2,… , 30}.

First Author et al.: Preprint submitted to Elsevier Page 29 of 30



Efficient computation of Cantor’s division polynomials

[10] P. Lairez, T. Vaccon, On p-adic differential equations with separation of variables, in: Proceedings of the 2016 ACM International Symposium
on Symbolic and Algebraic Computation, ACM, New York, 2016, pp. 319–323.

[11] J.-M. Couveignes, T. Ezome, Computing functions on jacobians and their quotients, LMS Journal of Computation and Mathematics 18 (1)
(2015) 555–577. doi:10.1112/S1461157015000169.

[12] X. Caruso, E. Eid, R. Lercier, Fast computation of elliptic curve isogenies in characteristic two, working paper or preprint (Mar. 2020).
URL https://hal.archives-ouvertes.fr/hal-02508825

[13] E. Eid, Sur le calcul d’isogénies par résolution d’équations différentielles p-adiques, Ph.D. thesis, thèse de doctorat dirigée par Lercier, Reynald
et Caruso, Xavier Mathématiques et leurs interactions Rennes 1 2021 (2021).
URL http://www.theses.fr/2021REN1S012

[14] J. Kieffer, A. Page, D. Robert, Computing isogenies from modular equations between Jacobians of genus 2 curves, working paper or preprint
(Jan. 2020).
URL https://hal.archives-ouvertes.fr/hal-02436133

[15] R. Lercier, T. Sirvent, On Elkies subgroups of l-torsion points in elliptic curves defined over a finite field, J. Théor. Nombres Bordeaux 20 (3)
(2008) 783–797.
URL http://jtnb.cedram.org/item?id=JTNB_2008__20_3_783_0

[16] F. OORT, T. SEKIGUCHI, The canonical lifting of an ordinary jacobian variety need not be a jacobian variety, J. Math. Soc. Japan 38 (3)
(1986) 427–437. doi:10.2969/jmsj/03830427.
URL https://doi.org/10.2969/jmsj/03830427

[17] X. Caruso, Computations with p-adic numbers, Les cours du CIRM 5 (1). doi:10.5802/ccirm.25.
URL https://ccirm.centre-mersenne.org/item/CCIRM_2017__5_1_A2_0

[18] T. Vaccon, Précision p-adique: applications en calcul formel, théorie des nombres et cryptographie, Ph.D. thesis, University of Rennes 1
(2015).

[19] K. S. Kedlaya, C. Umans, Fast polynomial factorization and modular composition, SIAM J. Comput. 40 (6) (2011) 1767–1802. doi:
10.1137/08073408X.
URL https://doi.org/10.1137/08073408X

[20] D. G. Cantor, On the analogue of the division polynomials for hyperelliptic curves. 1994 (447) (1994) 91–146. doi:doi:10.1515/crll.
1994.447.91.
URL https://doi.org/10.1515/crll.1994.447.91

[21] S. Abelard, Comptage de points de courbes hyperelliptiques en grande caractéristique : algorithmes et complexité, Ph.D. thesis, thèse de
doctorat dirigée par Gaudry, Pierrick et Spaenlehauer, Pierre-Jean Informatique Université de Lorraine 2018 (2018).
URL http://www.theses.fr/2018LORR0104

[22] A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy, É. Schost, Algorithmes efficaces en calcul formel, 2017.
[23] X. Caruso, D. Roe, T. Vaccon, Tracking p-adic precision, LMS J. Comput. Math. 17 (suppl. A) (2014) 274–294. doi:10.1112/

S1461157014000357.
URL https://doi.org/10.1112/S1461157014000357

[24] X. Caruso, D. Roe, T. Vaccon, p-adic stability in linear algebra, in: ISSAC’15—Proceedings of the 2015 ACM International Symposium on
Symbolic and Algebraic Computation, ACM, New York, 2015, pp. 101–108.

[25] J. S. Milne, Abelian varieties, in: Arithmetic geometry, Springer, 1986, pp. 103–150.
[26] T. Matsusaka, On a characterization of a Jacobian variety, 1959.
[27] A. Bostan, L. González-Vega, H. Perdry, É. Schost, From Newton sums to coefficients: complexity issues in characteristic p, in: MEGA’05,

2005, eighth International Symposium on Effective Methods in Algebraic Geometry, Porto Conte, Alghero, Sardinia (Italy), May 27th – June
1st.

[28] E. Kaltofen, L. Yagati, Improved sparse multivariate polynomial interpolation algorithms, in: Symbolic and algebraic computation (Rome,
1988), Vol. 358 of Lecture Notes in Comput. Sci., Springer, Berlin, 1989, pp. 467–474. doi:10.1007/3-540-51084-2\_44.
URL https://doi.org/10.1007/3-540-51084-2_44

[29] E. Thomé, Algorithmes de calcul de logarithmes discrets dans les corps finis, Ph.D. thesis, École polytechnique (2003).
[30] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (3-4) (1997) 235–265,

computational algebra and number theory (London, 1993). doi:10.1006/jsco.1996.0125.
URL http://dx.doi.org/10.1006/jsco.1996.0125

[31] E. Eid, Package Equadif_Solver, https://github.com/eeid95/HyperellipticIsogeny (2022).

First Author et al.: Preprint submitted to Elsevier Page 30 of 30

http://dx.doi.org/10.1112/S1461157015000169
https://hal.archives-ouvertes.fr/hal-02508825
https://hal.archives-ouvertes.fr/hal-02508825
http://www.theses.fr/2021REN1S012
http://www.theses.fr/2021REN1S012
https://hal.archives-ouvertes.fr/hal-02436133
https://hal.archives-ouvertes.fr/hal-02436133
http://jtnb.cedram.org/item?id=JTNB_2008__20_3_783_0
http://jtnb.cedram.org/item?id=JTNB_2008__20_3_783_0
https://doi.org/10.2969/jmsj/03830427
http://dx.doi.org/10.2969/jmsj/03830427
https://doi.org/10.2969/jmsj/03830427
https://ccirm.centre-mersenne.org/item/CCIRM_2017__5_1_A2_0
http://dx.doi.org/10.5802/ccirm.25
https://ccirm.centre-mersenne.org/item/CCIRM_2017__5_1_A2_0
https://doi.org/10.1137/08073408X
http://dx.doi.org/10.1137/08073408X
http://dx.doi.org/10.1137/08073408X
https://doi.org/10.1137/08073408X
https://doi.org/10.1515/crll.1994.447.91
http://dx.doi.org/doi:10.1515/crll.1994.447.91
http://dx.doi.org/doi:10.1515/crll.1994.447.91
https://doi.org/10.1515/crll.1994.447.91
http://www.theses.fr/2018LORR0104
http://www.theses.fr/2018LORR0104
https://doi.org/10.1112/S1461157014000357
http://dx.doi.org/10.1112/S1461157014000357
http://dx.doi.org/10.1112/S1461157014000357
https://doi.org/10.1112/S1461157014000357
https://doi.org/10.1007/3-540-51084-2_44
http://dx.doi.org/10.1007/3-540-51084-2_44
https://doi.org/10.1007/3-540-51084-2_44
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
https://github.com/eeid95/HyperellipticIsogeny

