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Let be an odd prime number. We propose an algorithm for computing rational representations of isogenies between Jacobians of hyperelliptic curves via -adic differential equations with a sharp analysis of the loss of precision. Consequently, after having possibly lifted the problem in the -adics, we derive fast algorithms for computing explicitly Cantor's division polynomials of hyperelliptic curves defined over finite fields.

Introduction

An important aspect in the study of principally polarized abelian varieties over finite fields is to design effective algorithms to calculate the number of points on these varieties. In 1985, Schoof proposed the first deterministic polynomial time algorithm for counting points on elliptic curves [START_REF] Schoof | Elliptic curves over finite fields and the computation of square roots mod[END_REF]. A few years later, improvements were made by computing kernels of isogenies, resulting in the Schoof-Elkies-Atkin algorihm which is sufficiently fast for practical purposes [START_REF] Atkin | The number of points on an elliptic curve modulo a prime[END_REF][START_REF] Morain | Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects algorithmiques[END_REF][START_REF] Schoof | Counting points on elliptic curves over finite fields[END_REF]. In 1990, Pila gave a generalization of the classical Schoof algorithm to abelian varieties and in particular Jacobians of curves over finite fields [START_REF] Pila | Frobenius maps of abelian varieties and finding roots of unity in finite fields[END_REF]. His algorithm remains impractical in the general case but improvements were made for varieties of small dimension, typically for Jacobians of genus 2 and 3 curves [START_REF] Gaudry | Counting points on hyperelliptic curves over finite fields[END_REF][START_REF] Gaudry | Construction of secure random curves of genus 2 over prime fields[END_REF][START_REF] Abelard | Counting points on hyperelliptic curves with explicit real multiplication in arbitrary genus[END_REF]. When the inputs are Jacobians of hyperelliptic curves, isogenies (for curves of low genus) and Cantor's division polynomials (for curves of arbitrary genus) are important ingredients to these algorithms. For this reason, a keen interest has been raised to compute them efficiently [START_REF] Bostan | Fast algorithms for computing isogenies between elliptic curves[END_REF][START_REF] Lairez | On -adic differential equations with separation of variables[END_REF][START_REF] Couveignes | Computing functions on jacobians and their quotients[END_REF][START_REF] Caruso | Fast computation of elliptic curve isogenies in characteristic two[END_REF][START_REF] Eid | Sur le calcul d'isogénies par résolution d'équations différentielles p-adiques[END_REF]. In this work, we tackle, in all generality, the problem of effective computation of isogenies between Jacobians of hyperelliptic curves to obtain fast algorithms that compute Cantor's division polynomials.

Isogenies and ( -adic) differential equations

A separable isogeny between Jacobians of hyperelliptic curves of genus defined over a field is characterized by its so called rational representation (see Section 3.2 for the definition); it is a compact writing of the isogeny and can be expressed by 2 rational fractions defined over a finite extension of . These rational fractions are related. In fields of characteristic different from 2, they can be determined by computing an approximation of the solution ( ) ∈ ′ , where ′ is a finite extension of of degree at most ( !), of a first order non-linear system of differential equations of the form

( ( )) ⋅ ′ ( ) = ( ) (1) 
where ∶ ′ → ′ is a well chosen map and ( ) ∈ ′ . This approach is a generalization of the elliptic curves case [START_REF] Lairez | On -adic differential equations with separation of variables[END_REF] for which Equation [START_REF] Schoof | Elliptic curves over finite fields and the computation of square roots mod[END_REF] is solved in dimension one.

Equation [START_REF] Schoof | Elliptic curves over finite fields and the computation of square roots mod[END_REF] was first introduced in [START_REF] Couveignes | Computing functions on jacobians and their quotients[END_REF] for genus two curves defined over finite fields of odd characteristic and solved in [START_REF] Kieffer | Computing isogenies from modular equations between Jacobians of genus 2 curves[END_REF] using a well-designed algorithm based on a Newton iteration; this allowed them to compute ( ) modulo ( ) in the case of an ( , )-isogeny for a cost of ̃ ( ) operations in then recover the rational fractions that defines the rational representation of the isogeny. This approach does not work when the characteristic of is positive and small compared to , in which case divisions by occur and an error can be raised while doing the computations. We take on this issue similarly as in the elliptic curve case [START_REF] Lercier | On Elkies subgroups of -torsion points in elliptic curves defined over a finite field[END_REF][START_REF] Caruso | Fast computation of elliptic curve isogenies in characteristic two[END_REF] by lifting the problem to the -adics. We will always suppose that the lifted Jacobians are also Jacobians for some hyperelliptic curves. It is relevant to assume this, even though it is not the generic case when is greater than 31 [START_REF] Oort | The canonical lifting of an ordinary jacobian variety need not be a jacobian variety[END_REF], since it allows us to compute efficiently the rational representation of the multiplication by an integer in which case the lifting can be done arbitrarily. After this process, we need to analyze the loss of -adic precision in order to solve Equation (1) without having a numerical instability. We extend the result of [START_REF] Lairez | On -adic differential equations with separation of variables[END_REF] to compute isogenies between Jacobians of hyperelliptic curves, by proving that the number of lost digits when computing an approximation of the solution of Equation ( 1) modulo ( ) , stays within (log ( )) (see Sections 2 and4).

Computing with -padic numbers

We introduce the computation model that we will use throughout this paper. Let be a prime number and a finite extension of the -adic field ℚ . We denote by the unique normalized extension to of the -adic valuation. We denote by  the ring of integers of , ∈  a fixed uniformizer of and the ramification index of the extension ∕ℚ . We naturally extend the valuation to quotients of  , the resultant valuation is also denoted by .

From an algorithmic point of view, -adic numbers behave like real numbers: they are defined as infinite sequences of digits that cannot be handled by computers. It is thus necessary to work with truncations. For this reason, several computational models were suggested to tackle these issues (see [START_REF] Caruso | Computations with -adic numbers[END_REF] for more details). In this paper, we use the fixed point arithmetic model at precision ( ), where ∈ ℕ * , to do computations in . More precisely, an element in is represented by an interval of the form + ( ) with ∈  ∕  . We define basic arithmetic operations on intervals in an elementary way

+ ( ) ± + ( ) = ( ± ) + ( ) , + ( ) × + ( ) = + ( ) .
For divisions we make the following assumption: for , ∈  ∕  , the division of + ( ) by + ( ) raises an error if ( ) > ( ), returns 0 + ( ) if = 0 in  ∕  and returns any representative + ( ) with the property = in  ∕  otherwise.

Matrix computation

We extend the notion of intervals to the -vector space , ( ): an element in , ( ) of the form + ( ) represents a matrix

+ ( ) with = ( ) ∈ ,  ∕  .
Operations in , ( ) are defined from those in :

+ ( ) ± + ( ) = ( ± ) + ( ) , + ( ) ⋅ + ( ) = ( ⋅ ) + ( ) .
For inversions, we use standard Gaussian elimination.

Proposition . [START_REF] Vaccon | Précision p-adique: applications en calcul formel, théorie des nombres et cryptographie[END_REF]Proposition 1.2.4 and Théorème 1.2.6] Let ∈ GL ( ) with entries known up to precision ( ). The Gauss-Jordan algorithm computes the inverse -1 of with entries known with the same precision as those of using ( 3 ) operations in .

Main result

We are interested in designing fast algorithms that solve Equation [START_REF] Schoof | Elliptic curves over finite fields and the computation of square roots mod[END_REF]. In a first step, we arrive at a generic algorithm for solving the differential system. Its complexity depends on the complexity of matrix multiplication and the composition ( ( )). Let MM( , ) be the number of arithmetical operations required to compute the product of two × matrices containing polynomials of degree bounded by . Our first theorem is the following.

Theorem A (See Theorem 3 and Proposition 4). Let be a prime number and ≥ 1 be an integer. Let be a finite extension of ℚ and  be its ring of integers. There exists an algorithm that takes as input:

• two positive integers and ,

• an analytic map ∶  →  of the form ( 1 ( ), ⋯ , ( )) = ( ( ( ))) with ∈  and (0) ∈ GL ( ),

• a vector ( ) ∈  , and, assuming that the unique solution of the differential equation

( ( )) ⋅ ′ ( ) = ( ) is in 
, outputs an approximation of this solution modulo ( , +1 ) for a cost MM( , ) + C ( ) operations in  , where C ( ) denotes the algebraic complexity of an algorithm computing the composition ( ( )) mod +1 , at precision

( ) with = max( , 3) + ⌊log ( )⌋ if = 2, = max( , 2) + ⌊log ( )⌋ if = 3 and = + ⌊log ( )⌋ otherwise.
It is important to know that one can do a bit better for = 2 and 3 if we follow the same strategy as [START_REF] Lairez | On -adic differential equations with separation of variables[END_REF], in this case is equal to max( , 2) + ⌊log ( )⌋ if = 2 and + ⌊log ( )⌋ otherwise. For the sake of simplicity, we will not prove this here.

The field in the algorithm of Theorem A is generally given with a uniformizing parameter to avoid the calculation of its ring of integers. However, for the computation of isogenies, this ring is already known since the extension can always be chosen to be unramified.

If the integer is assumed to be small then the function C ( ) depends only on the number of arithmetical operations required to compute the composition of two power series modulo +1 . In the general case, Kedlaya and Umans bound [START_REF] Kedlaya | Fast polynomial factorization and modular composition[END_REF] allows us to obtain C ( ) = ̃ ( ). In our context, the composition ( ( )) mod +1 is easy to compute since only includes univariate rational fractions of radicals of constant degree, therefore C ( ) = M( ), where M( ) is the number of arithmetical operations required to compute the product of two polynomials of degrees bounded by . Moreover, MM( , ) = M( ), hence if is small, the algorithm in Theorem A requires at most ̃ ( ⋅ [ ∶ ℚ ]) operations in ℤ to compute ( ) mod +1 .

If is arbitrary then the algorithm of Theorem A requires at most ̃ ( ⋅ [ ∶ ℚ ]) operations in ℤ , where ∈]2, 3] is a feasible exponent of matrix multiplication. This complexity can be reduced to ̃ ( ⋅ [ ∶ ℚ ]) operations in ℤ if is given by a structured matrix. In the case of the computation of a rational representation of an isogeny over an unramified extension 0 of ℚ , the field can be chosen to be an extension of 0 of degree at most ( ) and is given by an alternant matrix. Therefore, the algorithm of Theorem A performs at most ̃ ( 2 ⋅ [ 0 ∶ ℚ ]) operations in ℤ to compute an approximation of ( ) mod +1 ; but this is not optimal in since is defined over 0 . In order to remedy this problem, we work directly on the first Mumford coordinate of a rational representation of , i.e. the degree monic polynomial whose roots are the components of the solution ( ), which has the decisive advantage to be defined over the base field 0 . Consequently, we obtain a fast algorithm for computing a rational representation of in quasi-linear time. This is the main result of Section 4.

Theorem B (See Theorem 30 and Proposition 31). Let be an odd prime number. Let 0 be an unramified extension of ℚ and  0 the ring of integers of 0 . There exists an algorithm that takes as input:

• three positive integers , and ,

• a monic polynomial 0 ( ) = ∏ =1 ( -(0) ) ∈  0 [ ] such that 0 ( ) mod is separable, • a polynomial 0 ∈  0 [ ] of degree -1 such that ( (0) ) mod ≠ 0 for all ∈ {1, … , }, • a polynomial ∈  0 [ ] of degree ( ) such that 0 divides -2 0 in  0 [ ],
• a vector ( ) ∈  0 , and, assuming that the unique solution ( ) of the differential equation

( ( )) ⋅ ′ ( ) = ( ), (0) = ( (0) 1 , ⋯ , (0) ), ( ) 2 = ( ( )), (0) = 0 ( (0) ) for = 1, … ,
where ( ( )) is the matrix defined by

( ( )) = ( ) -1 ( ) 1≤ , ≤
, is in  , where denotes the splitting field of 0 , outputs a polynomial ( ,

) = ∏ =1 ( -( )) ∈  0 [ ] such that ( 1 ( ), … , ( ))
is an approximation of this solution modulo ( , +1 ) for a cost ̃ ( ) operations in  0 , at precision ( +⌊log (2 -1)⌋ ), with = max( , 2)+ ⌊log ( )⌋ if = 3 and = + ⌊log ( )⌋ otherwise.

Computing Cantor's division polynomials

Cantor's division polynomials are defined as being the numerators and denominators of the components of a rational representation of the multiplication by an integer endomorphism. They were first introduced for elliptic curves and later were described for hyperelliptic curves by Cantor [START_REF] Cantor | On the analogue of the division polynomials for hyperelliptic curves[END_REF]. They are crucial in point counting algorithms on elliptic and hyperelliptic curves. Classical algorithms for computing a rational representation of the multiplication endomorphism are usually based on Cantor's paper [START_REF] Cantor | On the analogue of the division polynomials for hyperelliptic curves[END_REF] and Cantor's algorithm for adding points on Jacobians (see for example [START_REF] Abelard | Comptage de points de courbes hyperelliptiques en grande caractéristique : algorithmes et complexité[END_REF]). Although, they exhibit acceptable running time in practice, their theoretical complexity has not been well studied yet and experiments show that they become much slower when the degree or the genus get higher.

Using the algorithm of Theorem B, we derive a fast algorithm to compute Cantor's division polynomials over finite fields of odd characteristic. Our final result is then the following.

Theorem C (See Theorem 34). Let an odd prime number and > 1 an integer. Let be an integer greater than and coprime to . Let ∶ 2 = ( ) be a hyperelliptic curve of genus defined over a finite field of characteristic . There exists an algorithm that computes Cantor -division polynomials of , performing at most ̃ ( 2 2 ) operations in .

Solving a system of -adic differential equations: the general case

In this section, we give a proof of Theorem A by solving the nonlinear system of differential equations (1) in an extension of ℚ for all prime numbers . We use the computational model introduced in Section 1.2 in our algorithm exposed in Section 2.1 and the proof of its correctness is presented in Section 2.2. Throughout this section the letter refers to a fixed prime number and corresponds to a fixed finite extension of ℚ . We denote by  the ring of integers of , ∈  a fixed uniformizer and the ramification index of the extension ∕ℚ .

The algorithm

Let be a positive integer, be the ring of formal series over in . We denote by ( ) the ring of square matrices of size over a field . Let f = , ∈ and f be the map defined by

f ⟶ 1 ( ), … , ( ) ⟼ ( ) . Given f ∈ and = ( 1 , … , ) ∈ , we consider the following differential equation in = ( 1 , … , ),
We will always look for solutions of [START_REF] Atkin | The number of points on an elliptic curve modulo a prime[END_REF] in in order to ensure that f • is well defined. We further assume that f (0) is invertible in ( ). The next proposition guarantees the existence and the uniqueness of a solution of the differential equation ( 2). Proposition 1. Assuming that f (0) is invertible in ( ), the system of differential equations (2) admits a unique solution in .

Proof. We are looking for a vector 2) can be written as

( ) = ∞ ∑ =1 that satisfies Equation (2). Since (0) = 0 and f (0) is invertible in , then f ( ) is invertible in . So Equation (
′ ( ) = f ( ( )) -1 ⋅ ( ). (3) 
Equation ( 3) applied to 0, gives the non-zero vector 1 . Taking the -derivative of Equation ( 3) with respect to and applying the result to 0, we observe that the coefficient only appears on the hand left side of the result, so each component of is a polynomial in the components of the 's for < with coefficients in . Therefore, the coefficients exist and are all uniquely determined.

We construct the solution of Equation (2) using a Newton scheme. We recall that for

= ( 1 , … , ) ∈
, the differential of f with respect to is the function

f ( ) ∶ ⟶ ℎ ⟼ f ( )(ℎ) = ′ ⋅ ℎ 1≤ , ≤ . ( 4 
)
We fix ∈ ℕ and we consider an approximation of modulo . We want to find a vector ℎ ∈ , such that + ℎ is a better approximation of . We compute

f + ℎ = f + f ( )(ℎ) (mod 2
) . Therefore we obtain the following relation

f + ℎ ⋅ + ℎ ′ -= f ⋅ ′ + f ⋅ ℎ ′ + f ( )(ℎ) ⋅ ′ - (mod 2 -1 ) .
So we look for ℎ such that

f ⋅ ℎ ′ + f ( )(ℎ) ⋅ ′ = -f ⋅ ′ + (mod 2 -1 ) . ( 5 
)
It is easy to see that the left hand side of Equation ( 5) is equal to

f ⋅ ℎ ′ , therefore
integrating each component of Equation ( 5) and multiplying the result by

f -1 gives the following expression for ℎ ℎ = f -1 ∫ -f ⋅ ′ (mod 2 ), (6) 
where ∫ , for ∈ , denotes the unique vector ∈ such that ′ = and (0) = 0. This formula defines a Newton operator for computing an approximation of the solution of Equation ( 2). Reversing the above calculations leads to the following proposition. Proposition 2. We assume that f (0) is invertible in ( ). Let ≥ 0 be an integer, = 2 + 1 and ∈ a solution of Equation (2) mod +1 . Then,

= + f -1 ∫ -f ⋅ ′ is a solution of Equation (2) mod +1 .
It is straightforward to turn Proposition 2 into an algorithm that solves the non-linear system (2). We make a small optimization by integrating the computation of f ( ) -1 in the Newton scheme.

Algorithm 1: Differential Equation Solver

DiffSolve ( , f, )

Input : , f mod such that f (0) is invertible in ( ). Output: The solution of Equation (2) mod +1 , f ( ) mod ⌈ ∕2⌉ if = 0 then return 0 mod , f (0) -1 mod ∶= ⌈ -1 2 ⌉; , ∶= DiffSolve( , f, ); ∶= 2 - ⋅ f ( ) ⋅ mod +1 return + ∫ -f ⋅ ′ mod +1
According to Proposition 2, Algorithm 1 runs correctly when its entries are given with an infinite -adic precision; however it could stop working if we use the fixed point arithmetic model. The next theorem guarantees its correctness in this type of model.

Theorem 3. Let , ∈ ℕ, ∈ 1 ℤ * , ∈  and f ∈  . We assume that f (0) is invertible in
 and that the components of the solution of Equation (2) have coefficients in  . Then, the procedure DiffSolve runs with fixed point arithmetic at precision ( ), with = max( , 3)+⌊log ( )⌋ if = 2, = max( , 2)+⌊log ( )⌋ if = 3 and = +⌊log ( )⌋ otherwise, all the computations are done in  and the result is correct at precision ( ).

We give a proof of Theorem 3 at the end of Section 2.2. Right now, we concentrate on the complexity of Algorithm 1. Recall that MM( , ) is the number of arithmetical operations required to compute the product of two × matrices containing polynomials of degree and M( ) ∶= MM(1, ), therefore M( ) is the number of arithmetical operations required to compute the product of two polynomials of degree . According to [START_REF] Bostan | Algorithmes efficaces en calcul formel[END_REF]Chapter 8], the two functions M(.) and MM( , .) (in the worst case) are related by the following formula

MM( , ) = ( M( )) (7) 
where ∈ [2, 3[ is the exponent of matrix multiplication. Furthermore, we recall that C ( ) denotes the algebraic complexity for computing • mod for an analytic map ∶ → of the form = f where f ∈ . We assume that M( ) and C ( ) satisfy the superadditivity hypothesis

M( 1 + 2 ) ≥ M( 1 ) + M( 2 ), C ( 1 + 2 ) ≥ C ( 1 ) + C ( 2 ), (8) 
for all 1 , 2 ∈ ℕ.

Using Equation [START_REF] Gaudry | Construction of secure random curves of genus 2 over prime fields[END_REF] we deduce the following relation

(MM( , 1 + 2 )) ≥ MM( , 1 ) + MM( , 2 ). (9) 
Proposition 4. Algorithm 1 performs MM( , ) + C f ( ) operations in . Proof. Let D denote the algebraic complexity of Algorithm 1, then we have the following relation

D( ) ≤ D ⌈ -1 2 ⌉ + MM( , ) + C f ( ) .
Noticing that does not change at each iteration and using Equations ( 8) and ( 9), we find D( ) = MM( , ) + C f ( ) and the result is proved.

Remark 1. If the map f includes random univariate rational fractions of radicals of constant degrees, the algebraic complexity C f ( ) is equal to 2 M( ) . Standard algorithms allow us to take M( ) ∈ ̃ ( ). Therefore, Algorithm 1 outputs the solution of Equation (2) mod +1 for a cost of ̃ ( ) operations in  .

Corollary 5. When performed with fixed point arithmetic at precision ( ), the bit complexity of Algorithm 1 is MM( , ) + C f ( ) ⋅ A( ; ) where A( ; ) denotes an upper bound on the bit complexity of the arithmetic operations in  ∕  .

Precision analysis

The goal of this subsection is to prove Theorem 3. The proof relies on the the theory of "differential precision" developed in [START_REF] Caruso | Tracking -adic precision[END_REF][START_REF] Caruso | Vaccon, -adic stability in linear algebra[END_REF]. We study the solution ( ) of Equation ( 2) when ( ) varies, with the assumption f (0) is invertible in  . Proposition 1 showed that Equation (2) has a unique solution ( ) ∈ . Moreover, if we examine the proof of Proposition 1, we see that the + 1 first coefficients of the vector ( ) depends only on the first coefficients of . This gives a well-defined function

∶ ∕ ( ) ⟶ ∕ +1 ⟼ ( )
for a given positive integer . In addition, the proof of Proposition 1 states that for ∈ ∕ ( ) , ( ) can be expressed as a polynomial in (0), ′ (0), … , ( -1) (0) with coefficients in , therefore is locally analytic. Proposition 6. For ∈ ∕ ( ) , the differential of with respect to is the following function

( ) ∶ ∕ ( ) ⟶ ∕ +1 ⟼ f ( ) -1 ⋅ ∫ .
Proof. We differentiate the equation f ( ) ⋅ ( ) ′ = with respect to . We obtain the following relation

f ( ) ⋅ ( )( ) ′ + f ( ) ( )( ) ⋅ ( ) ′ = (10) 
where f ( ) is the differential of f at ( ) defined in [START_REF] Schoof | Counting points on elliptic curves over finite fields[END_REF]. Making use of the relation

f ( ) ⋅ ( )( ) ′ = f ( ) ⋅ ( )( ) ′ + f ( ) ( )( ) ⋅ ( ) ′ , Equation (10) becomes f ( ) ⋅ ( )( ) ′ = .
Integrating the above relation and multiplying by f ( ) -1 we get the result.

We now introduce some norms on ∕ ( ) and ∕ ( ) . We set = ∕ ( ) and = ∕ +1 ; for instance, is a function from to . First, we equip the vector space ∶= ∕ ( ) with the usual Gauss norm

‖ 0 + 1 + ⋯ + -1 -1 ‖ = max | | 0 | | , | | 1 | | , … , | | -1 | | . We endow
with the norm obtained by the restriction of the induced norm ‖.‖ on : for every

( ) = ( ) ∈ , ‖ ( )‖ = max ‖ ‖ ( ) ‖ ‖ .
On the other hand, we endow with the following norm: for every ( ) = ( ) ∈ ,

‖ ( )‖ = ‖ ‖ ‖ ‖ ∫ ( ) ‖ ‖ ‖ ‖ = max ‖ ‖ ‖ ‖ ∫ ( ) ‖ ‖ ‖ ‖ . Lemma 7. Let ∈  ∕( ) . If there exists a vector ( ) ∈  ∕ ( ) such that ‖ ‖ < 1 then is not invertible in  ∕( ) .
Proof. Write = ( ( )) , and ( ) = ( 1 ( ), … , ( )). By definition, the norm ‖ ‖ is equal to

‖ ‖ = max ‖ ‖ ‖ ‖ ‖ ‖ ∑ ‖ ‖ ‖ ‖ ‖ ‖ .
Therefore, the condition ‖ ‖ < 1 is equivalent to the following inequality

‖ ‖ ‖ ‖ ‖ ‖ ∑ ‖ ‖ ‖ ‖ ‖ ‖ < 1 (11) 
for all = 1, … , . Let be the residue field of . Equation [START_REF] Couveignes | Computing functions on jacobians and their quotients[END_REF] implies that ∑ = 0 in . Hence, the reduction of in ∕( ) is not invertible and is not invertible in  ∕( ) .

Lemma 8. Let ∈  ∕ ( ) . We assume that ( ) ∈  ∕ ( ) , then ( ) ∶ ⟶ is an isometry.

Proof. The assumptions

( ) ∈  ∕ ( ) and f (0) ∈ GL  guarantee the invertibility of f ( ) in  . Let ∈ such that ‖ ‖ = 1.
Using the fact that ( ( )) -1 ∫ ∈  ∕ ( ) and applying Lemma 7, we get

‖ ( )( )‖ = ‖ ( ( )) -1 ∫ ‖ = 1.
We define the following function:

∶ × ⟶ Hom( , ) ( , ) ⟼ ↦ f ( ) -1 ⋅ ∫ .
By Proposition 6, the map is equal to •( , id), where id denotes the identity map on .

Lemma 9. Let ∈ ℝ such that < -2 log -1 , then Λ ≥2 ( ) < .
Proof. One checks easily that Λ(id)( ) = and, by Lemma 9, Λ( )( ) ≥ 0 for all ∈ ℝ * + . Applying [24, Proposition 2.5], we get Proof. As a direct consequence of [23, Proposition 3.12] and Lemma 9, we have the following formula

Λ ≥2 ( ) ≤ 2 + log -1 for all ≤ - log -1 . Therefore, Λ ≥2 ( ) < if < -2 log - 1 
+ ( ) = ( ) + ( ) ( ) ,
for all < -2 -1 . The result follows from Lemma 8.

We end this section by giving a proof of Theorem 3.

Correctness proof of Theorem 3. Let , f and be the input of Algorithm 1. We first prove by induction on ≥ 1 the following equation

f ⋅ ′ = mod ( , ).
Let be a positive integer and = 2 + 1. Let =f ⋅ ′ . From the relation

= + f -1 ∫ mod ( +1 , ) ,
we derive the two formulas

f ⋅ = f ⋅ + ∫ mod ( +1 , ) (12) 
and

f ⋅ ′ = f ⋅ ′ + f ′ ⋅ - + mod ( , ) = + f ′ ⋅ - mod ( , ) = - f ′ ⋅ f -1 ∫ mod ( , ) .
Using the fact that the first coefficients of vanish, we get

f ⋅ ′ = f ⋅ ′ + f f -1 ∫ ⋅ ′ mod ( , ) . (13) 
In addition, one can easily verifies

f f -1 ∫ ⋅ ′ = f ′ ⋅ f -1 ∫ Hence, Equation (13) becomes f ⋅ ′ = mod ( , ).
Now, we define = f ⋅ ′ so that we have = and ‖ -‖ ≤ -. Therefore, ‖ -‖ ≤ -+⌊log ( )⌋ . By Proposition 10, we have that = ( ) mod ( +1 , ).

Thus

= ( ) mod ( +1 , ).

Jacobians of curves and their isogenies

Throughout this section, the letter refers to a fixed field of characteristic different from two. Let ̄ be a fixed algebraic closure of . In Section 3.1, we briefly recall some basic elements about principally polarized abelian varieties and ( , … , )-isogenies between them; the notion of rational representation is discussed in Section 3.2. Finally, for a given rational representation, we construct a system of differential equations that we associate with it.

( , ⋯ , )-isogenies between abelian varieties

Let be an abelian variety of dimension over and ∨ be its dual. To a fixed line bundle  on , we associate the morphism  defined as follows

 ∶ ⟶ ∨ ⟼ *  ⊗  -1
where denotes the translation by and *  is the pullback of  by . We recall from [START_REF] Milne | Abelian varieties[END_REF] that an isogeny between two abelian varieties is a surjective homomorphism of abelian varieties of finite kernel. The degree of an isogeny is the number of preimages of a generic point in its codomain.

A polarization of is an isogeny ∶ ⟶ ∨ , such that over ̄ , is of the form  for some ample line bundle  on ̄ ∶= ⊗ Spec( ̄ ). When the degree of a polarization of is equal to 1, we say that is a principal polarization and the pair ( , ) is a principally polarized abelian variety. We assume in the rest of this subsection that we are given a principally polarized abelian variety ( , ). The Rosati involution on the ring End( ) of endomorphsims of corresponding to the polarization is the map End( ) ⟶ End( )

⟼ -1 • ∨ • .
The Rosati involution is crucial for the study of the division algebra End( ) ⊗ ℚ, but for our purpose, we only state the following result.

Proposition 11. [START_REF] Milne | Abelian varieties[END_REF]Proposition 14.2] For every ∈ End( ) fixed by the Rosati involution, there exists, up to algebraic equivalence, a unique line bundle  on such that  = • . In particular, taking to be the identity endomorphism denoted "1", there exists a unique line bundle  1 such that  1 = .

The notion of algebraic equivalence is defined as follows. We say that two line bundles  1 and  2 on are algebraically equivalent if they can be connected by a third line bundle, i.e. if there exist a connected scheme , two closed points 1 , 2 ∈ and a line bundle

 on × , such that  | ×{ 1 } ≃  1 and  | ×{ 2 } ≃  2 .
We say that two divisors on are algebraically equivalent if their corresponding line bundles are.

Using Proposition 11, we give the definition of an ( , … , )-isogeny.

Definition 12. Let ( 1 , 1 ) and ( 2 , 2 ) be two principally polarized abelian varieties of dimension over and ∈ ℕ * . An ( , … , )-isogeny between 1 and 2 is an isogeny ∶ 1 ⟶ 2 such that *  1 We now suppose that is the Jacobian of a genus curve over . We will always make the assumption that there is at least one -rational point on . Let be a positive integer and fix ∈ . We define ( ) to be the symmetric power of and ( ) to be the map

( ) ⟶ ≃ ( ) ( 1 , … , ) ⟼ [ 1 + ⋯ -].
If = 1 then the map (1) is called the Jacobi map with origin . We write for the map (1) . The image of ( ) is a closed subvariety of which can be also written as summands of ( ). Let Θ be the image of ( -1) , it is a divisor on and when is replaced by another point, Θ is replaced by a translate. We call Θ the theta divisor associated with .

Remark 2. If is the Jacobian of a curve and Θ its theta divisor, then  1 = (Θ), where (Θ) is the sheaf associated to the divisor Θ.

Using Remark 2, Definition 12 for Jacobian varieties gives the following Proposition 13. Let ∈ ℕ * , 1 and 2 be the Jacobians of two algebraic curves over and Θ 1 and Θ 2 be the theta divisors associated to 1 and 2 respectively. If an isogeny ∶ 1 ⟶ 2 is an ( , … , )-isogeny then * Θ 2 is algebraically equivalent to Θ 1 .

Proof. For all ∈ 1 , the theorem of squares [START_REF] Milne | Abelian varieties[END_REF]Theorem 5.5] gives the following relation * 

1 1 ⊗  1 1 -1 = *  1 1 ⊗  1 1 -1 ⊗ = *  1 1 ⊗ ⊗ ( 1 1 ) ⊗ -1 .
Meaning that,

( 1 1 ) ⊗ =  1 .
From Proposition 11, we deduce that the line bundle  

Rational representation of an isogeny between Jacobians of hyperelliptic curves

We focus on computing an isogeny between Jacobians of hyperelliptic curves. Let 1 (resp. 2 ) be a genus hyperelliptic curve over , 1 (resp. 2 ) be its associated Jacobian and Θ 1 (resp. Θ 2 ) be its theta divisor. We suppose that there exists a separable isogeny ∶ 1 ⟶ 2 . Let ∈ 1 be a Weierstrass point, let We assume that 1 (resp. 2 ) is given by the singular model 2 = 1 ( ) (resp. 2 = 2 ( )), where 1 (resp. 2 ) is a polynomial of degree 2 + 1 or 2 + 2. Set = ( , ) ∈ 1 and ( ) = {( 1 , 1 ), … , ( , )}. We use the Mumford's coordinates to represent the element ( ): it is given by a pair of polynomials ( ( ), ( )) such that

( ) = + 1 -1 + ⋯ + where = (-1) ∑ 1≤ 1 < 2 <⋯< ≤ 1 2 ⋯ and 
( ) = 1 -1 + ⋯ + = -1 ∑ =0 -1 ∏ =0, ≠ - - .
The tuple ( 1 , ⋯ , , 1 , ⋯ , ) consists of rational functions (on 1 ) in and and it is called a rational representation of . We recall that the degree of a rational function on a curve , denoted by deg( ), is the number of its zeros (or poles).

Lemma 15.

Let ∶ 1 → ℙ 1 be a rational function on 1 .

1. If ( , ) is invariant under the hyperelliptic involution of 1 then there exists a rational fraction in such that Proof. This is a generalization of [START_REF] Kieffer | Computing isogenies from modular equations between Jacobians of genus 2 curves[END_REF]Lemma 4.25]. Note that if deg( 2 ) = 2 + 1, then has a pole of order two along the divisor {( 1 , … , -1 , ∞) ; ∈ 2 } which is algebraically equivalent to Θ 2 .

( , ) = ( ) and deg( ) ≤ deg( )∕2.

Otherwise, we can always find two rational fractions and in such that

Lemma 18 [START_REF] Matsusaka | On a characterization of a Jacobian variety[END_REF]Appendix]). The divisor ( 1 ) of 1 is algebraically equivalent to Θ - 

( ) ⋅ Θ 2 = .
Since is an ( , … , )-isogeny, Proposition 13 gives that * Θ 2 is algebraically equivalent to Θ 1 . Moreover, up to algebraic equivalence,

* ( ) = | ker( )| ( ) = ( ).
Using Lemma 18, we obtain * ( )

⋅ * Θ 2 = +1 . As * ( ) ⋅ * Θ 2 = deg( ) ( ) ⋅ Θ 2 = ( ( ) ⋅ Θ 2 ,
the result follows.

Associated differential equation

We assume that char( ) ≠ 2. We generalize [11, § 6.2] by constructing a differential system modeling the map = • of Proposition 14. The map is a morphism of varieties, it acts naturally on the spaces of holomorphic differentials 0 ( 2 , Ω 1 A basis of 0 ( 1 , Ω 1 ) is given by

1 = ; ∈ {0, … , -1} .
The Jacobi map of 2 induces an isomorphism between the spaces of holomorphic differentials associated to 2 and 2 , so 0 ( 2 , Ω 1 2) is of dimension , it can be identified with the space 0 ( 2 , Ω 1 2 ) (here the symmetric group acts naturally on the space 0 ( 2 , Ω 1 2)). With this identification, a basis of 0 ( 2 , Ω ) is chosen to be equal to

2 = ∑ =1 ; ∈ {0, … , -1} .
Let ( ) 0≤ , ≤ ∈ GL ( ̄ ) be the matrix of * with respect of these two bases, we call it the normalization matrix.

Remark 4. Let 1 and 2 be two points on 1 . The two morphisms 1 and 2 satisfy the following relation

1 = 2 + ([ 2 -1 ]
). Therefore, the linear maps * Let = ( , ) ∈ 1 be a non-Weierstrass point different from and ( ) = { 1 , … , } such that ( ) contains distinct points and does not contain neither a point at infinity nor a Weierstrass point. The points may be defined over an extension ′ of of degree equal to ( !). Let be a formal parameter of 1 at , then we have the following diagram

Spec ′ 2 1 ( ) 2 ↦( ( ))
For all = 1, … , , the pull back of . This gives the differential system

And the pull back of

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 1 1 + ⋯ + = 11 + 12 ⋅ + ... + 1 ⋅ -1 , 1 ⋅ 1 1 + ⋯ + ⋅ = 21 + 22 ⋅ + ... + 2 ⋅ -1 , ⋮ ⋮ -1 1 ⋅ 1 1 + ⋯ + -1 ⋅ = 1 + 2 ⋅ + ... + ⋅ -1 , 2 1 = 2 ( 1 ), ⋯ , 2 = 2 ( ) . (14) 
Equation ( 14) has been initially constructed and solved in [START_REF] Couveignes | Computing functions on jacobians and their quotients[END_REF] for = 2. In this case, the normalization matrix and the initial condition ( 1 (0), 2 (0)) are computed using algebraic theta functions. In a more practical way, we refer to [START_REF] Kieffer | Computing isogenies from modular equations between Jacobians of genus 2 curves[END_REF] for an easy computation of the initial condition ( 1 (0), 2 (0)) of Equation ( 14) and for solving the differential system using a Newton iteration. However, in this case, the normalization matrix is determined by differentiating modular equations. There is a slight difference in Equation ( 14) between the two cases, especially 1 (0) and 2 (0) are different in the first, and equal in the second. Let be the -squared matrix defined by

( 1 , … ) = -1 1 1≤ , ≤
.

We suppose that = 2. If the initial condition ( 1 (0), 2 (0)) of Equation ( 14) satisfies 1 (0) ≠ 2 (0), then the matrix ( 1 (0), 2 (0)) is invertible in 2 ( ′ ). Otherwise, its determinant is equal to zero. More generally, we prove that with the assumptions that we made on , 1 , 2 , … -1 and , the matrix ( 1 (0), … , (0)) is invertible in ( ′ ). Let be a formal parameter, ( ) = ( ( ), ( )) the formal point on 1 that corresponds to = -and { 1 ( ), … , ( )} the image of ( ) by , then Equation ( 14) becomes

( ( )) ⋅ ′ ( ) = ( ) (15) 
where

( ) = ( 1 ( ), … , ( )) and ( ) = -1 ∑ =1 -1 1≤ ≤
. Thus we have the following proposition.

Proposition 20. The matrix ( ( )) is invertible in

′ .
Proof. The matrix ( ( )) is an alternant matrix, its determinant is given by

det ( ( ( ))) = ∏ 1≤ < ≤ ( ) -( ) ∏ =1 ( ) which is invertible in ′ because (0) ≠ (0) for all , ∈ {1, … , } such that ≠ .
Corollary 21. Let be a prime number. We assume that is an extension of ℚ . Up to a change of variables, Equation (15) fulfills all the assumptions of Equation (2), in particular it admits a unique solution in ′ .

By Corollary 21, it is straightforward to make use of Algorithm 1 to solve Equation ( 15) when is an unramified extension of the field of -adic numbers. This gives rise to an algorithm that computes a rational representation of a given ( , ⋯ , )-isogeny between Jacobians of hyprelliptic curves of genus , whose complexity is quasi-optimal with respect to but not in . Thus, Algorithm 1 can only be used efficiently to compute isogenies of Jacobians of hyperelliptic curves of small genus.

Computing Newton sums

We recall an efficient algorithm for the computation of the Newton sums of a polynomial. Let 0 be an unramified extension of ℚ . Let ( , ) be a monic polynomial of degree with coefficients in 0 such that (0, ) is separable over 0 and 1 ( ), 2 ( ), ⋯ , ( ) its roots in , where denotes the splitting field of (0, ). We define the -th Newton sum ( ) of by

( ) = ∑ =1 ( ) ∈ 0 ,
and we are interested in designing an efficient algorithm to compute it, only from the coefficients of .

Let * be the reciprocal polynomial of , i.e. * ( ,

) = ∏ =1 (1 -( ) ).
It is well known that the -th coefficient of the power series expansion of ( * ) ′ ∕ * in 0 is equal to -+1 ( ) (see for instance [START_REF] Bostan | From Newton sums to coefficients: complexity issues in characteristic[END_REF]Lemma 2]). This gives Algorithm 2 to compute the first Newton sums of the polynomial ( , ) modulo +1 . [ ] be a monic polynomial and , , ∈ ℕ * . When the procedure NewtonSums runs with fixed point arithmetic at precision ( ), all the computations are done in  0 and the result is correct at precision ( ). Moreover, Algorithm 2 performs at most ̃ ( ) operations in 0 .

Proof. The fact that all the computations stay within  0 is a direct consequence of the assumption ∈  0 [ ] and the fact that * is invertible in  0 . In addition, it is easy to see that the output of NewtonSums( , , ) is correct at precision ( ). The inverse power series of * modulo ( +1 , ) in 0 is computed by the Newton iteration ↦ (2 - * ). Therefore, the complexity of the computation of only depends on the complexity of multiplying two bivariate polynomials of total degree + . This can be done using at most ̃ ( ) operations in 0 .

Hankel matrix-vector product

Let ∈ ℕ * . We recall that a × Hankel matrix is a × matrix of the form

= ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 0 1 2 ⋯ ⋯ -1 1 2 ⋯ ⋯ 2 ⋮ ⋮ ⋮ -1 ⋯ ⋯ 2 -4 2 -3 2 -2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ .
Matrix-vector multiplication for this type of matrix can be computed in ( ( )) arithmetic operations instead of ( ), where ∈]2, 3] is a feasible exponent of matrix multiplication.

Proposition 23. Let ∈ ℕ. Let 0 be an unramified extension of ℚ . Let = ( + -2 ( )) , ∈ ( 0 ) be a Hankel matrix and = ( 1 ( ), ⋯ , ( )) ∈ 0 . Let and ℎ be the two polynomials

( , ) = 0 ( ) + 1 ( ) + 2 ( ) 2 + ⋯ + 2 -3 ( ) 2 -3 + 2 -2 ( ) 2 -2 and ℎ( , ) = 1 ( ) -1 + 2 ( ) -2 + ⋯ + ( ). Write ( , ) ⋅ ℎ( , ) mod ( +1 , 2 -1 ) = 2 -2 ∑ =0 ( ) then ⋅ mod +1 = ( -1 , ⋯ , 2 -2 ).
Proof. Let ∈ {1, … , }. The ( -2 + )-th coefficient of the product = ( , ) ⋅ ℎ( , ) is equal to

-2+ ( ) = -2+ ∑ = -1 ( ) +2-( ) = ∑ =1 + -2 ( ) ( ).
Therefore, -2+ ( ) is the -th component of the product ⋅ .

Proposition 23 gives a quasi-linear algorithm to compute the matrix-vector product for Hankel matrices.

Proposition 24. Let ∈ ℕ. Let 0 be an unramified extension of ℚ . Let = ( + -2 ( )) , ∈ ( 0 ) be a Hankel matrix and = ( 1 ( ), ⋯ , ( )) ∈ 0

. When it is called on the input ( , , ), the algorithm HankelProd performs at most ̃ ( ) operations in 0 .

Proof. This is a direct consequence of Proposition 23. Input : = ( + -2 ( )) , mod +1 , = ( 1 ( ), ⋯ , ( )) mod +1 , ∈ ℕ. Output: The product ⋅ mod +1 .

∶= 0 + 1 + 2 2 + ⋯ + 2 -3 2 -3 + 2 -2 2 -2 ; ℎ ∶= 1 -1 + 2 -2 + ⋯ + ; ∶= ℎ mod ( +1 , 2 -1 ) ; // = 2 -2 ∑ =0 return -1 , ⋯ , 2 -2

The alternant differential system

We go back to the system of differential equations ( 16). We will make use of Equation ( 17) to construct its solution by successive approximations.

Let ≥ 0 be an integer and = 2 + 1. We suppose that we are given an approximation

( , ) = ∏ =1 ( -( ) ( )) ∈ 0 [ ] of the polynomial ( , ) modulo +1
, such that the vector = ( ( ) 1 ( ), … ( ) ( )) satisfies Equation ( 16) modulo . In order to compute an approximation ( , ) of ( , ) modulo +1 from ( , ), we use Equation ( 17) and perform the three following steps:

1. Compute ( ( )) ⋅ ′ ( ) modulo +1 . Once step 1 is carried out, step 2 can be executed using at most ̃ ( ) operations in 0 , because the components of the vector ( ( ))⋅ ′ ( ) are defined over 0 . The following construction will show that the vector will not be of any use to perform steps 1 and 3 but only the polynomial ( , ).

Compute

Write 2 ( ) = -1 ∑ =1
. Let ( ) ( ) ∈ 0 be the -th Newton sum of ( , ) and

( ) ( ) = 1 ( ) ( ) = ∑ =1 ( ) ( ) ⋅ ( ) ( ) -1 ∈ 0 . ( 18 
) Let ( , ) = -1 ∑ =0 ( ) ( ) ∈ 0 [ ] be the degree -1 polynomial such that ( , ) 2 = 1 2 ( ) mod ( +1 , ( , ))
with the initial condition (0, (0) ) = (0) , for all ∈ {1, … , }. Set ( , ) = 2 ( ) ⋅ ( , ) mod ( +1 , ( , )) and, for ∈ {1, … , }, let ( ) ( ) be the power series ( , ( ) ( )). By construction, we have ( , ( ) ( )) ⋅ ( ) ( ) ≡ 1 mod +1 and ( ) ( ) ≡ ( ) mod +1 , for all ∈ {1, … , }.

Proposition 25. The product ( ( )) ⋅ ′ ( ) satisfy the following relation:

( ( )) ⋅ ′ ( ) mod +1 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ ( ) 1 ( ) 2 ⋯ ( ) ( ) 2 ( ) 3 
( ) +1 ⋮ ( ) ( ) +1 ⋯ ( ) 2 -1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎝ 0 ( ) 1 ( ) ⋮ -1 ( ) ⎞ ⎟ ⎟ ⎟ ⎠ Proof. This is a direct consequence of the fact that 1∕ ( ) ( ) mod +1 = -1 ∑ =0 ( ) ( ) ( ) ( ) , for all ∈ {1, … , }.

Corollary 26.

Step 1 can be carried out using at most ̃ ( ) operations in 0 .

Proof. Approximations of the Newton sums ( ) ( ) modulo +1 can be computed from the polynomial ( , ) and using Algorithm 2. By Proposition 22, this can be done using at most ̃ ( ) operations in 0 . The power series ( ) ( ) can be computed using Equation [START_REF] Vaccon | Précision p-adique: applications en calcul formel, théorie des nombres et cryptographie[END_REF] and the polynomial ( , ) is constructed from the classical Newton scheme for extracting square roots. By Proposition 25, the product ( ( )) ⋅ ′ ( ) mod +1 is a Hankel matrix-vector product that can be computed using Algorithm 3. By Proposition 24, this can be done using at most ̃ ( ) operations in 0 .

We now explain how to compute from the linear system ( ( )) ⋅ ( ( ) -( )) = ( ) modulo +1 . The following proposition and its proof give a construction over 0 of an approximation of the interpolating polynomial of the data {( ( ) 1 ( ), ( ) 1 ( ) -( ) 1 ( )), … , ( ( ) ( ), ( ) ( ) -( ) ( ))} modulo +1 . Proposition 27. Let ≥ 0 be an integer and = 2 + 1. There exists a polynomial ℎ ( , ) ∈  [ ] of degree -1 such that ( ) ( ) = ℎ ( , ( ) ( )) + ( ) ( ) mod +1 for all ∈ {1, … , }.

Proof. We give a construction of ℎ using the approach in [28, Section 5]. Let ( , ) be the polynomial defined by

( , ) = ( ) 1 ( ) + ( ) 2 ( ) -1 + ⋯ + ( ) -1 ( ) 2 + ( ) ( ) .
Proof. Let D denote the algebraic complexity of Algorithm 4, then we have the following relation

D( ) ≤ D ⌈ -1 2 ⌉ + ̃ ( ) .
Solving the recurrence, we find D( ) = ̃ ( ). Therefore, the bit complexity of Algoritmh 4 is ̃ ⋅ A( 0 ; ) .

Fast computation of the multiplication by-maps

Thanks to Algorithm 4, we now have fast algorithms for computing rational representations of separable isogenies between Jacobians of hyperelliptic curves defined over fields of odd characteristic, after having possibly lifted the two curves and the normalization matrix to theadics. In this section, we are interested in the computation of a rational representation of the multiplication by an integer. It is therefore necessary to know in advance some bounds on the degrees of its components.

It has been proved that the degrees of the components of a rational representation of the multiplication-by-are bounded by (2 ), only for curves of genus 2 and 3 [21, Chapter 4]. In the general case, it has been shown that these degrees are bounded by ( 3 ) 2 [21, Theorem 4.13], although experiments show that they are only quadratic in .

In Section 5.1, we use the results of Section 3.2 to reduce the bound to ( 2 ). Consequently, we derive from Algorithm 4 a quasi-optimal algorithm to compute a rational representation of the multiplication by an integer.

Cantor -division polynomials

Let ∶ 2 = ( ) be a hyperelliptic curve of genus over a finite field and > an integer coprime to the characteristic of . Let ∈ ( ). For a generic point = ( , ) on , the Mumford representation of the element

[ -] in the Jacobian of can be written as follows

[ -] = + -1 ∑ =1 ( ) ( ) , -1 ∑ =1 ( ) ( ) ,
where the numerators 0 , … , -1 , 0 , … , -1 are polynomials in [ ] and the denominators and are monic polynomials in [ ]. Therefore, 0 , … , -1 , 0 , … , -1 is a rational representation of the multiplication-by-map.

Definition 32. The 2 + 2 polynomials 0 , … , , 0 , … are called Cantor's -division polynomials.

Since the multiplication-by-endomorphism is a separable ( 2 , … , 2 )-isogeny, we can then apply Propositions 16 and 19 and Remark 3 in order to obtain bounds on the degrees of the Cantor's -division polynomials. This gives the following result.

Proposition 33. The degrees of the polynomials 0 , … , are bounded by 2 . Moreover,

• if is a Weierstrass point, then the degrees of 0 , … , are bounded by The next theorem and its proof give an efficient algorithm to compute Cantor's division polynomials.

Theorem 34. Let an odd prime number and > 1 an integer. Let be an integer greater than and coprime to . Let ∶ 2 = ( ) be a hyperelliptic curve of genus defined over a finite field of odd characteristic . There exists an algorithm that computes Cantor -division polynomials of , performing at most ̃ ( 2 2 ) operations in .

Proof. Let be the characteristic of and = [ ∶ ]. For the sake of simplicity, we will assume that admits a Weierstrass point over . The algorithm performs the following steps:

1. Pick a Weierstrass point ∈ ( ).

2. Chose a point ∈ ( ) different from such that [ -] is generic.

3. Lift arbitrarily as ̃ ∶ 2 = ̃ ( ) over an unramified extension 0 of ℚ of degree with a -adic precision equal to 1 + ⌊log (2 2 )⌋ + ⌊log (2 -1)⌋.

4. Lift as ̃ and as ̃ over 0 such that ̃ , ̃ ∈ ̃ ( 0 ).

5.

Solve the differential equation ( 16) by applying Algorithm 4 to the following input:

• = 2 2 ,
• 2 = ̃ ,

• 0 ( ): the first Mumford coordinate of [ ̃ -̃ ],

• 0 ( ): the second Mumford coordinate of [ ̃ -̃ ],

• ( ), given by the following relation 

= ( ) ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 1 ( ) ( ) 2 ⋮ ( ) -1

.

  Proposition 10. Let ( ) (resp. ( )) be the closed ball in (resp. in ) of center 0 and radius . Under the assumption of Lemma 8, we have for all <

2 =  1 ,
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  • if is not a Weierstrass point, then the degrees of 0 , … , are bounded by The bounds obtained in Propostion 33 are not optimal. In fact, the experiments carried out by Abelard in his thesis[START_REF] Abelard | Comptage de points de courbes hyperelliptiques en grande caractéristique : algorithmes et complexité[END_REF] Section 4.2] show that Cantor -division polynomials have degrees slightly smaller than the bounds that we have obtained in Propostion 33.
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	Remark 5.	

Indeed, the dimension of the moduli scheme  is equal to 3 -3, while the subspace of hyperelliptic curves in it has dimension

-1.

f • ⋅ ′ = .(2)

, … , , 1 , … , . In the case of an ( , … , )-isogeny, we adapt the proof of[11, § 6.1] in order to obtain bounds in terms of and .

the notation means that we are hiding the terms that depend on

2. The rational fractions ( ) and ( ) verify the following relations

Since, ( , )+ ( , -) and ( , )-( , -) are invariant under the hyperelliptic involution and have degrees bounded by 2 deg( ), then ( ) is a rational fraction of degree bounded by deg( ) and ( ) is a rational fraction of degree bounded by deg( ) + + 1 (Note that is a rational fraction of degree bounded by 2 + 2).

Proposition 16. The functions 1 , … , can be seen as rational fractions in and have the same degree bounded by deg( 1 )∕2. Moreover, the rational functions 1 ∕ , … , ∕ can also be expressed as rational fractions in of degrees bounded by deg( 1 )∕2 + + 1, … , deg( )∕2 + + 1 respectively.

Proof. It is a direct consequence of Lemma 15 and using the fact that ( , -) = -( , ). In order to determine the isogeny , it suffices to compute its rational representation (because is a group homomorphism), so we need to have some bounds on the degrees of the rational functions

Solving alternant systems of differential equations

Let be an odd prime number. In this section, we aim for effective resolution of Equation (15) when it is defined over an unramified extension of ℚ . We re-examine the Newton scheme of Algorithm 1 to make it quasi-linear in the dimension of the solution ( ). This will give a quasi-optimal algorithm to compute rational representations of isogenies between Jacobians of hyperelliptic curves over finite fields, after having possibly lifted the problem in the -adics.

The three next subsections are concerned with preliminary material: we introduce the differential system that we want to solve, then we recall some computational results that will eventually be used in our main algorithm exposed in Section 4.4.

The setup

We keep the same notation as Section 3.3 and we assume that ≠ 2 and is a finite field of characteristic . For ∈ {1, … , }, write = ( (0) , (0) ). We recall that the computation of the rational representation associated with reduces to the problem of computing an approximation of the following differential system whose unknown is

where ( ) ∈ and ( ( )) are the matrices defined by

Based on the discussion in Section 1.1, we are sometimes obliged to lift Equation ( 16) to the -adics. Therefore, we will replace by an unramified extension 0 of ℚ and ′ by an unramified extension of 0 of degree at most ( ). Consequently, 1 , 2 and the components of ( ) have coefficients in  0 ; moreover, ( ) ∈  . By Corollary 21, Equation ( 16) can be solved using the following Newton iteration

Or, equivalently,

A call from Algorithm 1 gives the desired result, but this is not optimal in . As explained in Section 1.1, this lack of efficiency is due to the fact that the components of the solution ( ) of Equation ( 16) have coefficients defined over the field , whose degree over 0 depends on . For this reason, we work directly on the first Mumford polynomial

whose coefficients are defined over the ring 0 : we rewrite the Newton scheme (17) accordingly and design fast algorithms for iterating it in quasi-linear time.

Write

). For all = 1, ⋯ , we have the following relation

where denotes the partial derivative of with respect to variable . Hence, we take ℎ to be equal to

We end up with the computation of using a Newton scheme. Write = + , where

By Propostion 27, the polynomial ( , ) can be constructed from the following relations ( , ℎ ( , ( ) ( )) + ( ) ( )) mod +1 = 0, for all ∈ {1, … , }.

Equation ( 19) can be rewritten as follows:

( , ( ) ( )) + ℎ ( , ( ) ( )) ⋅ ( , ( ) ) ≡ 0 mod +1 , for all ∈ {1, … , }.

Using the fact that ( , ( ) ( )) = 0 for all ∈ {1, … , }, we get

Repeating the above calculations in the reverse direction, we obtain the next proposition.

Proposition 28. Let ≥ 0 be an integer and = 2 + 1. Let ∈ +1 0 [ ] be the polynomial defined by

Then, = + is an approximation of ( , ) modulo +1 .

Corollary 29.

Step 3 can be performed using at most ̃ ( ) operations in 0 .

Proof. This is a direct consequence of Propositions 27 and 28.

We summarize all the steps that we performed to solve Equation ( 16) in Algorithm 4. ( -(0) ) a separable polynomial, 0 ( ) such that 0 ( (0) ) = (0) for all = 1, … . Output: The polynomial mod +1 whose roots form the solution of Equation ( 16)

We assume that 0 is separable over the the residue field of 0 and that the polynomial ( , ), whose roots form a solution of Equation [START_REF] Oort | The canonical lifting of an ordinary jacobian variety need not be a jacobian variety[END_REF], have coefficients in  0 . Then, the procedure AlternantSystem runs with fixed point arithmetic at precision ( +⌊log (2 -1)⌋ ), with = max( , 2) + ⌊log ( )⌋ if = 3 and = + ⌊log ( )⌋ otherwise. All the computations are done in  0 and the result is correct at precision ( ).

Proof. The proof is similar to the proof of Theorem 3.

Proposition 31. When performed with fixed point arithmetic at precision ( ), the bit complexity of Algorithm 4 is ̃

⋅ A( 0 ; ) , where A( 0 ; ) denotes an upper bound on the bit complexity of the arithmetic operations in  0 ∕  0 .

Let ( , ) be the reduction of the output of the algorithm in .

6. Reconstruct from ( , ) the + 1 polynomials 0 , … , .

7. Recover the polynomials 0 , … , from 0 , … , and the equation of .

The time complexity of the algorithm depends mainly on the complexity of steps 5,6 and 7.

According to Proposition 31, step 5 can be carried out for a cost of ̃ ( 2 2 ) operations in .

The + 1 polynomials 0 , … , are obtained by reconstructing (for example) 0 ∕ using Padé approximants from the constant coefficient of then multiplying the other coefficients of by to recover 1 , … , -1 . Therefore, step 6 requires ̃ ( 2 2 ) operations in as well.

Step 7 is executed as follows: we make use of the polynomials 0 , … , to increase the -adic approximation of the polynomial ( , ) to 2 deg( 0 ). We compute, using a Newton iteration, the degree polynomial ( , ) such that (0, ) = 0 ( ) and

( , ) 2 ≡ ( ) mod ( 2 deg( 0 ) , ( , )).

We reconstruct (for example) the rational fraction 0 ∕ from the constant coefficient of . The polynomials 1 , … , -1 are obtained by multiplying with the non-constant coefficients of . This can also be carried out using ̃ ( 2 2 ) operations in .

Experiments

We made an implementation of both Algorithm 4 and the Padé approximant step using the HALF-GCD algorithm given in [START_REF] Thomé | Algorithmes de calcul de logarithmes discrets dans les corps finis[END_REF] with the MAGMA computer algebra system [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] to compute Cantor -division polynomials in 5 for hyperelliptic curves. Our implementation is available at [START_REF] Eid | Package Equadif_Solver[END_REF] . Timings are detailed in Figures 1 and2. All the calculations were done in the ring ℤ 5 with a fixed precision which is equal to 1 + ⌊log 5 (2 2 )⌋ + ⌊log 5 (2 -1)⌋. The observed timings fit rather well with the expected time complexity, which is ̃ ( 2 2 ): Figure 2 (resp. Figure 1) shows that the time complexity of our algorithm is almost linear in 2 (resp. in 2 ).