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To date, determining with high accuracy the optical parameters (extinction coefficient k and refractive index n) of a slab from the sole transmittance data requires an inverse method based on numerical iteration procedures. In this paper, we propose a new inverse analytical method of extracting (k, n) without numerical iterative processes. The high accuracy of this new inverse method is assessed, and as an application example, the optical parameters of CaF2 and Si substrates are determined in the IR spectral range of 4-8 µm.

Introduction

The optical properties of a material depend on two main parameters: the refractive index n, which is related to the wave propagation velocity inside the material, and the extinction coefficient k, which is linked to the wave intensity attenuation due to absorption by the constitutive molecules of the material. Accurate knowledge of k and n over a wavelength range is of crucial importance for many optical applications, from laser windows and fiber optic systems [START_REF] Piombini | Absorption measurements of layers or materials: how to calibrate ?[END_REF][START_REF] Tran | Heavy Metal Fluoride Glasses and Fibers: A review[END_REF] (for which low-absorption materials are used) to thinfilm optical coatings, whose characteristics depend on the refractive indices of the substrates and the thin films deposited. [START_REF] Schulz | Part IV : Applications of optical thin films and coatings[END_REF][START_REF] Stenzel | Thin Films, Substrates, and Multilayers[END_REF][START_REF] Dobrowolski | Optical properties of films and coatings[END_REF] Since k and n cannot be simultaneously determined directly, a usual strategy consists of measuring two other parameters and then employing an inverse procedure to obtain k and n. Typical methods include the following spectrophotometry measurements: -the use of Kramers-Kronig analysis of transmittance T, which enables the calculation of a phase shift (): the knowledge of T and  allows then the extraction of (k, n). [START_REF] Poelman | Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review[END_REF][START_REF] Palmer | Multiply subtractive Kramers-Kronig analysis of optical data[END_REF] However, this requires a numerical iteration inversion and the measurement of T over a maximum possible wavelength range, -reflectance R and transmittance T of a single slab: [START_REF] Stenzel | Thick Slabs and Thin Films[END_REF] numerical iteration procedures have first been proposed to solve the (R, T)→(k, n) inverse problem. [START_REF] Stenzel | Determination of optical parameters for amorphous thin film materials on semi-transparent substrates from transmittance and reflectance measurements[END_REF][START_REF] Khashan | A new method of finding the optical constants from the reflectance and transmittance spectrograms of its slab[END_REF][START_REF] Khashan | Determination of the optical constants of quartz and polymethyl-methacrylate glasses in a wide spectral range: 0.2-3µm[END_REF] Later, exact analytical solutions have been found and applied to the study of slabs. [START_REF] Nichelatti | Complex refractive index of a slab from reflectance and transmittance: analytical solution[END_REF][START_REF] El-Zaiat | Spectral dispersion of linear optical properties for Sm2O3 doped B2O3-PbO-Al2O3 glasses[END_REF][START_REF] El-Zaiat | Determination of the complex refractive index of a thick slab material from its spectral reflectance and transmittance at normal incidence[END_REF][START_REF] El-Zaiat | Dispersive parameters for complex refractive index of p-and n-type silicon from spectrophotometric measurements in spectral range 200-2500 nm[END_REF] The main challenge lies here in the fact that measuring R and T at the same location is difficult. [START_REF] Poelman | Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review[END_REF] Moreover, materials with low refractive index yield weak reflection, thus the precise measurement of R appears tricky in this case, [START_REF] Li | A New Method for Determining the Optical Constants of Highly Transparent Solids[END_REF][START_REF] Tuntomo | Optical constants of liquid hydrocarbon fuels[END_REF] -transmittance of several samples of the same material: this (T1, T2)→(k, n) method has been applied to one-layer structures (solid slabs [START_REF] Li | Measured optical constants of ZnSe glass from 0.83 µm to 2.20µm by a novel transmittance method[END_REF][START_REF] Qi | Optical properties of zinc selenide slabs at 373 and 423 K in the wavelength 2-15 µm[END_REF][START_REF] Hu | Comparison of transmittance and reflection methods for solving optical constants optical glass[END_REF] or liquids in a simplified model [START_REF] Tuntomo | Optical constants of liquid hydrocarbon fuels[END_REF] ), as well as to three-layer structures to determine the optical parameters of liquids. [START_REF] Li | Optical Properties of Sodium Chloride Solution Within the Spectral Range from 300 to 2500 nm at Room Temperature[END_REF][START_REF] Ai | Temperature Dependence of Optical Constants for Chinese Liquid Hydrocarbon Fuels in the Near-Infrared (NIR) Region from Room Temperature to 400 K[END_REF][START_REF] Wang | Infrared optical constants of liquid palm oil and palm oil biodiesel determined by the combined ellipsometry-transmission method[END_REF][START_REF] Li | Visible-to-near-infrared optical properties of protein, lipid and carbohydrate in both solid and solution state at room temperature[END_REF] In all the cases, the (T1, T2)→(k, n) inverse problem corresponds to a set of nonlinear equations, which are too complex to be solved mathematically; hence, numerical iterative techniques have been used. These methods are inherently confronted with difficulties, such as convergence towards several possible values [START_REF] Li | A New Method for Determining the Optical Constants of Highly Transparent Solids[END_REF][START_REF] Ai | Temperature Dependence of Optical Constants for Chinese Liquid Hydrocarbon Fuels in the Near-Infrared (NIR) Region from Room Temperature to 400 K[END_REF] or slow convergence speed. [START_REF] Li | Measured optical constants of ZnSe glass from 0.83 µm to 2.20µm by a novel transmittance method[END_REF][START_REF] Qi | Optical properties of zinc selenide slabs at 373 and 423 K in the wavelength 2-15 µm[END_REF] To overcome such difficulties, different strategies have been proposed recently, such as faster iterative algorithms [START_REF] Hu | Comparison of transmittance and reflection methods for solving optical constants optical glass[END_REF][START_REF] Ai | Temperature Dependence of Optical Constants for Chinese Liquid Hydrocarbon Fuels in the Near-Infrared (NIR) Region from Room Temperature to 400 K[END_REF] or a combined transmittance-ellipsometry approach [START_REF] Li | A New Method for Determining the Optical Constants of Highly Transparent Solids[END_REF][START_REF] Wang | Infrared optical constants of liquid palm oil and palm oil biodiesel determined by the combined ellipsometry-transmission method[END_REF][START_REF] Li | Visible-to-near-infrared optical properties of protein, lipid and carbohydrate in both solid and solution state at room temperature[END_REF] which also includes a numerical iterative step.

In the one-layer structure, using highly accurate analytical expressions to solve the (T1, T2)→(k, n) inverse problem would represent an obvious advantage over numerical iteration processes. However, to date, there is no analytical inverse method, which allows k to be obtained with high accuracy, similar to what iterative calculations can achieve. The only well-known classical analytical inverse method (CAIM) allows the derivation of the absorption coefficient α (hence the extinction coefficient k), using [START_REF] Stenzel | Determination of optical parameters for amorphous thin film materials on semi-transparent substrates from transmittance and reflectance measurements[END_REF] α = 1

(𝑑 2 -𝑑 1 )
. ln (

𝑇 1 𝑇 2 ) ⇒ 𝑘 = λ 4π.(𝑑 2 -𝑑 1 )
. ln (

𝑇 1 𝑇 2 ) (1) 
where T1 (resp. T2) is the transmittance for the sample with thickness d1 (resp. d2) at wavelength .

However, Eq. ( 1) is only considered as a rough estimation, [START_REF] Stenzel | Determination of optical parameters for amorphous thin film materials on semi-transparent substrates from transmittance and reflectance measurements[END_REF] and for high-refractiveindex materials, it may at first sight result in relative errors on k and n reaching up to 45% or more. [START_REF] Kotlikov | A spectrophotometric method for determination of the optical constants of materials[END_REF] In this study, after precisely specifying the accuracy of the CAIM, we proposed a novel method to obtain the extinction coefficient k and the refractive index n of a slab from T1 and T2 measurements at normal incidence (Figure 1) by establishing analytical expressions, that yield highly accurate (k, n) values.

The accuracy of our new analytical inverse method (NAIM) was studied and assessed. As an application example, we then determined the optical parameters of CaF2 (lowrefractive-index material) and Si (high-refractive-index material) and compared their values with literature data. 

Determination of the accuracy of the classical analytical inverse method (CAIM)

Test procedure to establish the accuracy of an inverse method

To obtain the accuracy of a (T1, T2)→(k, n) inverse method, two different thicknesses (d1 and d2) were used as references. The two thicknesses should not be too close to each other so that the transmittance curves may appear better separated. Besides, optical windows with thicknesses below 10mm are easy to carry out experiments with (and are easily commercially available). Therefore d1 = 2mm and d2 = 8mm were selected as the thickness references for the analysis.

Next, we describe a test procedure (summarized in Figure 2) that will be applied in the subsequent sections. First (step 1), for a given wavelength , assigning k values in the range [10 -7 -10 -3 ] and n values in the range [1.4 -4.0] allows the calculation of the intensity reflectance coefficient Ri (using the Fresnel equations) and the attenuation coefficient α expressed as follows:

𝑅𝑖 = (𝑛-1) 2 +𝑘 2 (𝑛+1) 2 +𝑘 2 and α = 4π.𝑘 λ (2) 
The transmission T of the slab (of thickness d) is then given by the exact analytical expression below, which takes into account the multiple reflection contributions at the front and back air/sample interfaces: [START_REF] Stenzel | Thick Slabs and Thin Films[END_REF][START_REF] Nichelatti | Complex refractive index of a slab from reflectance and transmittance: analytical solution[END_REF] 

𝑇 = (1-𝑅𝑖) 2 .𝑒 -α.𝑑 1-𝑅𝑖 2 .𝑒 -2.α.𝑑 (3)
Hence (step 2) transmittances T1 and T2 can be computed with arbitrary precision using Eq. ( 3), which corresponds to the direct problem. Once T1 and T2 are known, trying to solve the (T1, T2)→(k, n) inverse problem leads to the following set of two nonlinear equations, where Ri and α are the two unknowns:

{ 𝑇 1 = (1-𝑅𝑖) 2 .𝑒 -α.𝑑 1 1-𝑅𝑖 2 .𝑒 -2.α.𝑑 1 𝑇 2 = (1-𝑅𝑖) 2 .𝑒 -α.𝑑 2 1-𝑅𝑖 2 .𝑒 -2.α.𝑑 2 (4) 
This set of equations (Eq. ( 4)) appears too complex to be solved analytically; thus, approximate values of Ri and α have to be computed, which then yield (by solving Eq. ( 2)) approximate values kap and nap (step 3). Finally, (step 4) kap may be compared to k (through percent error PEk), and nap may be compared to n (through absolute error n), as follows: 

𝑃𝐸𝑘 = 100. | 𝑘 𝑎𝑝 -𝑘 𝑘 | ∆𝑛 = |𝑛 𝑎𝑝 -𝑛| (5) 

Application: determination of the accuracy of the classical analytical inverse method

Starting from the following analytical expression of the transmittance:

8 𝑇 = (1-𝑅𝑖) 2 .𝑒 - 4π.𝑘.𝑑 λ 1-𝑅𝑖 2 .𝑒 - 8π.𝑘.𝑑 λ (6) 
the denominator may be approximated by 1 if 𝑅𝑖 ≪ 1 (this is the case for low-refractive index materials such as glasses), or if 𝑒 -8π.𝑘.𝑑 λ ≪ 1 (which happens if the material is highly absorbent at the considered wavelength and thickness). Under these assumptions, Eq. ( 6) may be simplified as: 𝑇 = (1 -𝑅𝑖) [START_REF] Tran | Heavy Metal Fluoride Glasses and Fibers: A review[END_REF] . 𝑒 -4π.𝑘.𝑑 λ (7) Thus, the k parameter is easy to obtain and corresponds to the classical analytical inverse method (CAIM): [START_REF] Stenzel | Determination of optical parameters for amorphous thin film materials on semi-transparent substrates from transmittance and reflectance measurements[END_REF] 𝑘 = λ 4π.(𝑑 2 -𝑑 1 )

. ln (

𝑇 1 𝑇 2 ) ( 8 
)
Once k is known, Ri can be computed using Eqs. ( 6) or ( 7), using the T1 data for the less thick sample (d1). Note that deducing Ri in terms of k and T using Eq. ( 6) yields a much more accurate Ri value than that obtained using Eq. ( 7). Hence only Eq. ( 6) is considered here: this 2 nd order equation can be solved analytically, yielding the only acceptable solution for Ri (satisfying 𝑅𝑖 < 1):

𝑅𝑖 = 1-𝑇 1 .√1+ 1 𝑇1.𝑌 1 - 𝑌 1 𝑇 1 1+𝑇 1 .𝑌 1 with 𝑌 1 = 𝑒 -4π.𝑘.𝑑 1 λ (9)
From Ri, the refractive index n can be obtained by solving Eq. ( 2), yielding the following formula:

𝑛 = 1+𝑅𝑖 1-𝑅𝑖 + √ 4.𝑅𝑖 (1-𝑅𝑖) 2 -𝑘 2 ≈ 1+√𝑅𝑖 1-√𝑅𝑖 (10) 
Figure 3 shows the accuracy of the CAIM for determining k and n. Concerning the accuracy of the CAIM in determining the coefficient k, it can first be noted that the highest percent error values, reaching ~ 30% (Figure 3a, black arrow), occur for high refractive indices and low extinction coefficients. Moreover, for a given refractive index n (Figure 3b), all the PEk percent error curves appear constant for low k values, then decrease for increasing values of k. Hence the maximum of a PEk curve, denoted max(PEk), is defined, and depends on the n value (fig 3b); it can be seen that max(PEk) increases with n: max(PEk)  0.3% for n = 1.5, and max(PEk)  30% for n = 4. In addition, changing the considered wavelength  only shifts the PEk curves horizontally (Figure 3b,  = 3 µm and  = 8 µm): the curve maximum stays at the same value (black arrows); hence, max(PEk) does not depend on  and can be defined as the global maximum percent error on k of the CAIM for a given n. In concrete cases, n and k depend on , hence the k() and n() curves can be viewed as particular (k, n) sets whose maximum percent error on k is most often lower than (or in the worst case, equal to) max(PEk), using the highest n value of n().

Concerning the accuracy of the CAIM in deriving the refractive index n (Figure 3c,d), it can be observed that for a given value of n, all the n curves (Figure 3d) go through a maximum, which is higher for high refractive indices n. Hence the n curve maximum, denoted max(n), is defined and depends on the n value. For n = 1.5, max(n)  0.001, which corresponds to an accuracy of one unit on the 3 rd decimal place. However, for n = 4, max(n) reaches  0.1 (error of one unit on the 1 rst decimal place). This underlines that the CAIM appears unsuitable for high-refractive-index materials. A change in  also shifts the n curves only horizontally (Figure 3d,  = 3 µm for the solid curve and  = 8 µm for the dashed curve); hence, max(n) does not depend on  or k, and can be defined as the global maximum absolute error on n of the CAIM for a given n.

Hereafter, a new analytical expression for k is established, whose much higher accuracy allows (through Eqs. (9-10)) derivation of n with a much higher accuracy.

New analytical expression for the extinction coefficient k Mathematical modeling

Starting from the following analytical expression of the transmission T:

𝑇 = (1-𝑅𝑖) 2 .𝑒 -α.𝑑 1-𝑅𝑖 2 .𝑒 -2.α.𝑑 (11)
And taking the logarithm of both sides leads to:

ln(𝑇) = ln((1 -𝑅𝑖) 2 ) -α. 𝑑 -ln(1 -𝑅𝑖 2 . 𝑒 -2.α.𝑑 ) (12) 
The last term can be rewritten, by using, for x such that 0<x<1, the approximation:

-ln(1 -𝑥) ≈ 𝑥 ⇒ -ln(1 -𝑅𝑖 2 . 𝑒 -2.α.𝑑 ) ≈ 𝑅𝑖 2 . 𝑒 -2.α.𝑑 (13) 
A simpler expression is thus obtained: ln(𝑇) ≈ ln((1 -𝑅𝑖) 2 ) -α. 𝑑 + 𝑅𝑖 2 . 𝑒 -2.α.𝑑 (14) In Eq. ( 14), the last term appears complex to handle. First, 𝑒 -2.α.𝑑 may be expressed in terms of T. For this, we use Eq. ( 11) again, assuming that in Eq. ( 11) 𝑒 -2.α.𝑑 ≈ 1 (valid in the transparent region). This yields: 𝑇 ≈

(1-𝑅𝑖) [START_REF] Tran | Heavy Metal Fluoride Glasses and Fibers: A review[END_REF] 1-𝑅𝑖 2 . 𝑒 -α.𝑑 = 1-𝑅𝑖 1+𝑅𝑖

. 𝑒 -α.𝑑 (15) Therefore, we have

𝑒 -2.α.𝑑 ≈ ( 1+𝑅𝑖 1-𝑅𝑖 ) 2 . 𝑇 2 (16) 
Replacing then Eq. ( 16) in Eq. ( 14) leads to:

ln(𝑇) ≈ ln((1 -𝑅𝑖) 2 ) -α. 𝑑 + 𝑅𝑖 2 . ( 1+𝑅𝑖 
1-𝑅𝑖 ) 2 . 𝑇 2 (17) 
The set of equations for the two thicknesses d1 and d2 can thus be written as follows:

{ ln(𝑇 1 ) ≈ ln((1 -𝑅𝑖) 2 ) -α. 𝑑 1 + 𝑅𝑖 2 . ( 1+𝑅𝑖 
1-𝑅𝑖 ) 2 . 𝑇 1 2 ln(𝑇 2 ) ≈ ln((1 -𝑅𝑖) 2 ) -α. 𝑑 2 + 𝑅𝑖 2 . ( 1+𝑅𝑖 
1-𝑅𝑖 ) 2 . 𝑇 2 2 ( 18 
)
The coefficient α (and consequently k) can be retrieved by subtracting the two preceding expressions:

𝑘 = λ 4π . α = λ 4π.(𝑑 2 -𝑑 1 )
.

[ln(𝑇 1 /𝑇 2 ) -(𝑅𝑖 2 . (

1-𝑅𝑖 ) 2 ) . (𝑇 1 2 -𝑇 2 2 )] 1+𝑅𝑖 
It then remains to find an expression for Ri, which may be precise enough to be used in Eq. (19). For this, assuming 𝑒 -2.α.𝑑 ≈ 1 (valid in the transparent region), Eq. ( 12) can be simplified:

ln(𝑇) = ln((1 -𝑅𝑖) 2 ) -α. 𝑑 -ln(1 -𝑅𝑖 2 ) (20)
which leads to :

ln(𝑇) = ln ( 1-𝑅𝑖 1+𝑅𝑖 ) -α. 𝑑 (21) 
Then using T1 and T2, the following set of equations is obtained:

{ ln(𝑇 1 ) = ln ( 1-𝑅𝑖 1+𝑅𝑖 ) -α. 𝑑 1 ln(𝑇 2 ) = ln ( 1-𝑅𝑖 1+𝑅𝑖 ) -α. 𝑑 2 (22) 
Eliminating α from the two equations, we have:

ln ( 1-𝑅𝑖 1+𝑅𝑖 ) = 𝑑 2 .ln(𝑇 1 )-𝑑 1 .ln(𝑇 2 ) 𝑑 2 -𝑑 1 (23) 
Thus, Ri can be expressed as follows:

𝑅𝑖 = 1-𝑒 -𝐶 1+𝑒 -𝐶 = tanh(𝐶/2) with 𝐶 = 𝑑 1 .ln(𝑇 2 )-𝑑 2 .ln(𝑇 1 ) 𝑑 2 -𝑑 1 > 0 (24) 
Therefore the final simple expression of k as a function of T1, T2, d1, d2 is:

𝑘 = λ 4π.(𝑑 2 -𝑑 1 )
.

[ln(𝑇 1 /𝑇 2 ) -𝑁. (𝑇 1 2 -𝑇 2 2 )] (25) 
with 𝑁 = (𝑒 𝐶 . 𝑡𝑎𝑛ℎ(𝐶/2)) [START_REF] Tran | Heavy Metal Fluoride Glasses and Fibers: A review[END_REF] and 𝐶 = 𝑑 1 .ln(𝑇 2 )-𝑑 2 .ln(𝑇 1 )

𝑑 2 -𝑑 1
To get n, Eqs. ( 9) and ( 10) are used.

Accuracy of the new analytical inverse method (NAIM)

Figure 4 shows the comparative accuracies of the NAIM and the CAIM for  = 3µm. The accuracies of both methods are shown for a low refractive index (n = 1.5, Figure 4a,b), which is interesting because many types of glasses have refractive indices close to this value. For k, the new method leads to a maximum percent error of 0.001% (Figure 4a), which is more than two orders of magnitude better than the classical method ( 0.3%). For n, Figure 4b shows that the new method yields an accuracy of ±0.00001, which is two decades better than the classical method (max(n)  0.001).

The accuracies of the NAIM and the CAIM are also shown for silicon, which is a highrefractive-index material (n = 3.4, Figure 4c,d). For k, the new method (Figure 4c) results in a maximum percent error of 1.5% (compared to  20% with the classic method). For n (Figure 4d), the accuracy reaches ±0.004, which is 25 times better than that of the classical method (±0.1). 

Application example: determination of (k, n) for CaF2 and Si

The transmittance of CaF2 and Si optical samples (circular slabs) was measured at normal incidence in the 4-8µm IR range, using a Spectrum 400 FT-IR spectrometer (Perkin Elmer Company) with a MCT detector; the resolution was set to 4 cm -1 (the transmittance curves are shown in the Supplemental Material S1, and the raw data are available as supplemental files). The possible sources of transmittance uncertainties are multiple (e.g. detector nonlinearity, defocusing effects, etc…). [START_REF] Kaplan | Testing the radiometric accuracy of Fourier transform infrared transmittance measurements[END_REF][START_REF] Deutsch | Absorption coefficient of infrared laser window materials[END_REF] In our case, the accuracy of the FTIR instrument was estimated at ±0.1% (similar to literature data [START_REF] Bowie | Measurement of the Sensitivity and Photometric Accuracy of FT-IR Spectrometers[END_REF] ). Moreover, in opaque regions, we observed that the transmittance noise level and the systematic errors were lower than 0.1%. Hence T = 0.2% was taken as an estimate of the standard deviation of the measured transmittance.

Figure 5a,b shows the determined (k, n) parameters of CaF2 optical windows (thickness d1 = 2.00mm and d2 = 8.00mm, supplier: Crystran Company, UK). In the 4-8µm range, k increases with wavelength from 310 -7 to 110 -5 . These values are quantitatively in very good agreement with recently published data. [START_REF] Li | Temperature-dependent optical constants of highly transparent solids determined by the combined double optical pathlength transmission-ellipsometry method[END_REF] The n values (Figure 5b), which decrease with the wavelength from about 1.41 to 1.36, are also in very good agreement with literature data. [START_REF] Li | Temperature-dependent optical constants of highly transparent solids determined by the combined double optical pathlength transmission-ellipsometry method[END_REF][START_REF] Malitson | A Redetermination of Some Optical Properties of Calcium Fluoride[END_REF] The standard deviation of transmittance chosen (T = 0.2%) yields uncertainties of ±0.01 for n. For k, the error results in the highly transparent region (k < 10 -6 ) may be further lowered using thicker samples. Figure 5c,d shows the determined (k, n) parameters of FZ-Si optical windows (thickness d1 = 2.06mm and d2 = 10.01mm, supplier : ATS Company, China). The thickness d2 considered here is a little higher than 8mm, but it has been verified that the results shown in Fig. 4c,d remain valid. In the 4-8µm range, using the NAIM leads to an extinction coefficient k (Figure 5c) which increases with the wavelength from 510 -7 to ~310 -5 , with an abrupt change around  = 6.5µm. For n (Figure 5d), using the NAIM results in a refractive index n which decreases slightly from 3.41 to 3.38, which is in good agreement with literature data. [START_REF] Chandler-Horowitz | High-accuracy, midinfrared (450 cm -1 ≤≤4000 cm -1 ) refractive index values of silicon[END_REF] The small difference with the published data (≤0.02 absolute difference with reference 31 at 5µm) may be attributed to the different quality of our FZ-Si samples, or to the accuracy limit of the transmittance measurements: [START_REF] Kaplan | Testing the radiometric accuracy of Fourier transform infrared transmittance measurements[END_REF][START_REF] Deutsch | Absorption coefficient of infrared laser window materials[END_REF][START_REF] Bowie | Measurement of the Sensitivity and Photometric Accuracy of FT-IR Spectrometers[END_REF] indeed, the chosen standard deviation of transmittance (T = 0.2%) yields uncertainties of ±0.02 for n.

It can be noted that the errors arising from the new analytical calculation of n from transmittances T1 and T2 are negligible (≤ 0.00001 for CaF2 and ≤ 0.004 for Si), compared to the errors in n (±0.01 for CaF2 and ±0.02 for Si) owing to the experimental measurement uncertainties on T1 and T2. Thus two limitations of the present method may be considered: for highly transparent samples, T1 and T2 may be too close to each other to be wellseparated (hence thicker samples may be used, in a reasonable range to explore). Conversely, for regions with very high absorption, the transmittance is too low to be measured by FTIR; in this case, our method cannot be used, and alternative methods (e.g., reflectance spectroscopy, 32,33 ellipsometry [START_REF] Li | A New Method for Determining the Optical Constants of Highly Transparent Solids[END_REF] ) are effective for measuring high k values (> 10 -3 ).

Conclusions

In this study, we proposed a new analytical inverse method (NAIM) to extract the optical constants (k, n) of a solid material with high accuracy from transmittance data of samples with two different thicknesses (in the range 2-10mm), without any numerical iterative process. To this end, we established easy-to-use analytical expressions for k and n. Given transmittance data, the NAIM is used to solve the (T1, T2)→(k, n) inverse problem with high accuracy (e.g. 0.00001 for n in the case n = 1.5, and 0.004 for n in the case n = 3.4). As an illustrative example, the (k, n) optical parameters of two materials (CaF2 and FZ-Si) were determined straightforwardly in the 4-8µm IR spectral range, and the results obtained are in very good agreement with published data. Hence this new method may be a useful alternative for deriving the optical constants of solid materials with high accuracy.

Figure 1 .

 1 Figure 1. Schematic view of two samples of thicknesses d1 and d2 (d2 > d1) of the same material, yielding transmittance T1 and T2 (T2 < T1). The coefficients Ri, Ti are the Fresnel intensity reflectance and transmittance coefficients of a single slab face at normal incidence. These Fresnel intensity coefficients (only drawn on the thickest sample for clarity) do not depend on the thickness of the slab.

Figure 2 .

 2 Figure 2. Schematic view of the steps to study the accuracy of approximate values (kap, nap) of (k, n)

Figure 3 .

 3 Figure 3. Using the classical method (CAIM) leads to the following quantified errors (a) PEk percent error on the determination of k (b) PEk percent error on k, for two values of n (1.5 and 4), for  = 3µm (solid curves) and for  = 8µm (dashed curves) (c) n absolute error on the determination of n (d) n absolute error on n for two values of n, for  = 3µm (solid curves) and for  = 8µm (dashed curves)
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 4 Figure 4. Comparative accuracies of the CAIM and the NAIM in the determination of (k,n); (a) PEk for n = 1.5 (b) n for n = 1.5 (c) PEk for n = 3.4, and (d) n for n = 3.4; the dotted line represents an absolute error of 1 digit on the second decimal place of n.
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 5 Figure 5. Determination of (k, n) of CaF2 and FZ-Si windows using the NAIM (a) Extinction coefficient k of CaF2 (NAIM), and k data from Reference 29 (b) Refractive index n of CaF2 (NAIM), and n data from References 29 and 30 (c) Extinction coefficient k of FZ-Si (NAIM) (d) Refractive index n of FZ-Si (NAIM), and n data from Reference 31.
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