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Abstract 
 

To date, determining with high accuracy the optical parameters (extinction coefficient 

k and refractive index n) of a slab from the sole transmittance data requires an inverse 

method based on numerical iteration procedures. In this paper, we propose a new 

inverse analytical method of extracting (k, n) without numerical iterative processes. 

The high accuracy of this new inverse method is assessed, and as an application 

example, the optical parameters of CaF2 and Si substrates are determined in the IR 

spectral range of 4-8 µm. 
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Introduction 

 

The optical properties of a material depend on two main parameters: the refractive 

index n, which is related to the wave propagation velocity inside the material, and the 

extinction coefficient k, which is linked to the wave intensity attenuation due to absorption 

by the constitutive molecules of the material. Accurate knowledge of k and n over a 

wavelength range is of crucial importance for many optical applications, from laser 

windows and fiber optic systems1,2 (for which low-absorption materials are used) to thin-

film optical coatings, whose characteristics depend on the refractive indices of the 

substrates and the thin films deposited.3-5 

Since k and n cannot be simultaneously determined directly, a usual strategy consists 

of measuring two other parameters and then employing an inverse procedure to obtain k 

and n. Typical methods include the following spectrophotometry measurements:  

- the use of Kramers-Kronig analysis of transmittance T, which enables the calculation of 

a phase shift (): the knowledge of T and  allows then the extraction of (k, n).6,7 However, 

this requires a numerical iteration inversion and the measurement of T over a maximum 

possible wavelength range, 

- reflectance R and transmittance T of a single slab:8 numerical iteration procedures have 

first been proposed to solve the (R, T)→(k, n) inverse problem.9-11 Later, exact analytical 

solutions have been found and applied to the study of slabs.12-15 The main challenge lies 

here in the fact that measuring R and T at the same location is difficult.6 Moreover, 

materials with low refractive index yield weak reflection, thus the precise measurement 

of R appears tricky in this case,16,17 

- transmittance of several samples of the same material: this (T1, T2)→(k, n) method has 

been applied to one-layer structures (solid slabs18-20 or liquids in a simplified model17), as 

well as to three-layer structures to determine the optical parameters of liquids.21-24 In all 

the cases, the (T1, T2)→(k, n) inverse problem corresponds to a set of nonlinear equations, 

which are too complex to be solved mathematically; hence, numerical iterative techniques 

have been used. These methods are inherently confronted with difficulties, such as 

convergence towards several possible values16,22 or slow convergence speed.18,19 To 

overcome such difficulties, different strategies have been proposed recently, such as faster 

iterative algorithms20,22 or a combined transmittance-ellipsometry approach16,23,24 which 

also includes a numerical iterative step. 

In the one-layer structure, using highly accurate analytical expressions to solve the (T1, 

T2)→(k, n) inverse problem would represent an obvious advantage over numerical 

iteration processes. However, to date, there is no analytical inverse method, which allows 

k to be obtained with high accuracy, similar to what iterative calculations can achieve. 

The only well-known classical analytical inverse method (CAIM) allows the derivation 

of the absorption coefficient α (hence the extinction coefficient k), using9 

 α =
1

(𝑑2−𝑑1)
. ln (

𝑇1

𝑇2
) ⇒ 𝑘 =

λ

4π.(𝑑2−𝑑1)
. ln (

𝑇1

𝑇2
) (1) 

where T1 (resp. T2) is the transmittance for the sample with thickness d1 (resp. d2) at 

wavelength . 

 

However, Eq. (1) is only considered as a rough estimation,9 and for high-refractive-

index materials, it may at first sight result in relative errors on k and n reaching up to 45% 

or more.25  

In this study, after precisely specifying the accuracy of the CAIM, we proposed a novel 

method to obtain the extinction coefficient k and the refractive index n of a slab from T1 

and T2 measurements at normal incidence (Figure 1) by establishing analytical 

expressions, that yield highly accurate (k, n) values.  



3 

 

 

The accuracy of our new analytical inverse method (NAIM) was studied and assessed. 

As an application example, we then determined the optical parameters of CaF2 (low-

refractive-index material) and Si (high-refractive-index material) and compared their 

values with literature data.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Schematic view of two samples of thicknesses d1 and d2 (d2 > d1) of the same material, yielding 

transmittance T1 and T2 (T2 < T1). The coefficients Ri, Ti are the Fresnel intensity reflectance and 

transmittance coefficients of a single slab face at normal incidence. These Fresnel intensity coefficients 

(only drawn on the thickest sample for clarity) do not depend on the thickness of the slab. 

 

Determination of the accuracy of the classical analytical inverse method (CAIM) 

 
Test procedure to establish the accuracy of an inverse method 

 

To obtain the accuracy of a (T1, T2)→(k, n) inverse method, two different thicknesses 

(d1 and d2) were used as references. The two thicknesses should not be too close to each 

other so that the transmittance curves may appear better separated. Besides, optical 

windows with thicknesses below 10mm are easy to carry out experiments with (and are 

easily commercially available). Therefore d1 = 2mm and d2 = 8mm were selected as the 

thickness references for the analysis. 

Next, we describe a test procedure (summarized in Figure 2) that will be applied in the 

subsequent sections. First (step 1), for a given wavelength , assigning k values in the 

range [10-7-10-3] and n values in the range [1.4 - 4.0] allows the calculation of the intensity 

reflectance coefficient Ri (using the Fresnel equations) and the attenuation coefficient α 

expressed as follows:  

 𝑅𝑖 =
(𝑛−1)2+𝑘2

(𝑛+1)2+𝑘2       and        α =
4π.𝑘

λ
 (2) 

 

The transmission T of the slab (of thickness d) is then given by the exact analytical 

expression below, which takes into account the multiple reflection contributions at the 

front and back air/sample interfaces:8,12  

  𝑇 =
(1−𝑅𝑖)2.𝑒−α.𝑑

1−𝑅𝑖2.𝑒−2.α.𝑑  (3) 

 

Hence (step 2) transmittances T1 and T2 can be computed with arbitrary precision using 

Eq. (3), which corresponds to the direct problem. Once T1 and T2 are known, trying to 

solve the (T1, T2)→(k, n) inverse problem leads to the following set of two nonlinear 

equations, where Ri and α are the two unknowns:  

 {
𝑇1 =

(1−𝑅𝑖)2.𝑒−α.𝑑1

1−𝑅𝑖2.𝑒−2.α.𝑑1

𝑇2 =
(1−𝑅𝑖)2.𝑒−α.𝑑2

1−𝑅𝑖2.𝑒−2.α.𝑑2

 (4) 
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This set of equations (Eq. (4)) appears too complex to be solved analytically; thus, 

approximate values of Ri and α have to be computed, which then yield (by solving Eq. 

(2)) approximate values kap and nap (step 3). Finally, (step 4) kap may be compared to k 

(through percent error PEk), and nap may be compared to n (through absolute error n), 

as follows:  

 𝑃𝐸𝑘 = 100. |
𝑘𝑎𝑝−𝑘

𝑘
|       ∆𝑛 = |𝑛𝑎𝑝 − 𝑛| (5) 

 

 

 

 

 

 

 
 

 

 

Figure 2. Schematic view of the steps to study the accuracy of approximate values (kap, nap) of (k, n) 

 

 

Application: determination of the accuracy of the classical analytical inverse method 

 

Starting from the following analytical expression of the transmittance:8  

 𝑇 =
(1−𝑅𝑖)2.𝑒

−
4π.𝑘.𝑑

λ

1−𝑅𝑖2.𝑒
−

8π.𝑘.𝑑
λ

 (6) 

 

the denominator may be approximated by 1 if 𝑅𝑖 ≪ 1 (this is the case for low-refractive 

index materials such as glasses), or if 𝑒−
8π.𝑘.𝑑

λ ≪ 1 (which happens if the material is highly 

absorbent at the considered wavelength and thickness). Under these assumptions, Eq. (6) 

may be simplified as: 

 𝑇 = (1 − 𝑅𝑖)2. 𝑒−
4π.𝑘.𝑑

λ  (7) 

 

Thus, the k parameter is easy to obtain and corresponds to the classical analytical inverse 

method (CAIM):9 

 𝑘 =
λ

4π.(𝑑2−𝑑1)
. ln (

𝑇1

𝑇2
) (8) 

 

Once k is known, Ri can be computed using Eqs. (6) or (7), using the T1 data for the less 

thick sample (d1). Note that deducing Ri in terms of k and T using Eq. (6) yields a much 

more accurate Ri value than that obtained using Eq. (7). Hence only Eq. (6) is considered 

here: this 2nd order equation can be solved analytically, yielding the only acceptable 

solution for Ri (satisfying 𝑅𝑖 < 1): 

 𝑅𝑖 =
1−𝑇1.√1+

1

𝑇1.𝑌1
−

𝑌1
𝑇1

1+𝑇1.𝑌1
   with   𝑌1 = 𝑒−

4π.𝑘.𝑑1
λ  (9) 

 

From Ri, the refractive index n can be obtained by solving Eq. (2), yielding the following 

formula:  

 𝑛 =
1+𝑅𝑖

1−𝑅𝑖
+ √

4.𝑅𝑖

(1−𝑅𝑖)2 − 𝑘2 ≈
1+√𝑅𝑖

1−√𝑅𝑖
 (10) 

Figure 3 shows the accuracy of the CAIM for determining k and n.  
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Figure 3. Using the classical method (CAIM) leads to the following quantified errors (a) PEk percent 

error on the determination of k (b) PEk percent error on k, for two values of n (1.5 and 4), for  = 3µm 

(solid curves) and for  = 8µm (dashed curves) (c) n absolute error on the determination of n (d) n 

absolute error on n for two values of n, for  = 3µm  (solid curves) and for  = 8µm (dashed curves) 

 

Concerning the accuracy of the CAIM in determining the coefficient k, it can first be 

noted that the highest percent error values, reaching ~ 30% (Figure 3a, black arrow), occur 

for high refractive indices and low extinction coefficients. Moreover, for a given 

refractive index n (Figure 3b), all the PEk percent error curves appear constant for low k 

values, then decrease for increasing values of k. Hence the maximum of a PEk curve, 

denoted max(PEk), is defined, and depends on the n value (fig 3b); it can be seen that 

max(PEk) increases with n: max(PEk)  0.3% for n = 1.5, and max(PEk)  30% for n = 

4. In addition, changing the considered wavelength  only shifts the PEk curves 

horizontally (Figure 3b,  = 3 µm and  = 8 µm): the curve maximum stays at the same 

value (black arrows); hence, max(PEk) does not depend on  and can be defined as the 

global maximum percent error on k of the CAIM for a given n. In concrete cases, n and k 

depend on , hence the k() and n() curves can be viewed as particular (k, n) sets whose 

maximum percent error on k is most often lower than (or in the worst case, equal to) 

max(PEk), using the highest n value of n().  

Concerning the accuracy of the CAIM in deriving the refractive index n (Figure 3c,d), 

it can be observed that for a given value of n, all the n curves (Figure 3d) go through a 

maximum, which is higher for high refractive indices n. Hence the n curve maximum, 

denoted max(n), is defined and depends on the n value. For n = 1.5, max(n)  0.001, 
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which corresponds to an accuracy of one unit on the 3rd decimal place. However, for n = 

4, max(n) reaches  0.1 (error of one unit on the 1rst decimal place). This underlines that 

the CAIM appears unsuitable for high-refractive-index materials. A change in  also 

shifts the n curves only horizontally (Figure 3d,  = 3 µm for the solid curve and  = 8 

µm for the dashed curve); hence, max(n) does not depend on  or k, and can be defined 

as the global maximum absolute error on n of the CAIM for a given n. 

 

Hereafter, a new analytical expression for k is established, whose much higher accuracy 

allows (through Eqs. (9-10)) derivation of n with a much higher accuracy. 

 

 

New analytical expression for the extinction coefficient k 

 

Mathematical modeling  

 

Starting from the following analytical expression of the transmission T:  

 𝑇 =
(1−𝑅𝑖)2.𝑒−α.𝑑

1−𝑅𝑖2.𝑒−2.α.𝑑
 (11) 

 

And taking the logarithm of both sides leads to:  

 ln(𝑇) = ln((1 − 𝑅𝑖)2) − α. 𝑑 − ln(1 − 𝑅𝑖2. 𝑒−2.α.𝑑) (12) 

 

The last term can be rewritten, by using, for x such that 0<x<1, the approximation:  

 − ln(1 − 𝑥) ≈ 𝑥   ⇒    − ln(1 − 𝑅𝑖2. 𝑒−2.α.𝑑) ≈ 𝑅𝑖2. 𝑒−2.α.𝑑 (13) 

 

A simpler expression is thus obtained: 

 ln(𝑇) ≈ ln((1 − 𝑅𝑖)2) − α. 𝑑 + 𝑅𝑖2. 𝑒−2.α.𝑑 (14) 

 

In Eq. (14), the last term appears complex to handle. First, 𝑒−2.α.𝑑 may be expressed in 

terms of T. For this, we use Eq. (11) again, assuming that in Eq. (11) 𝑒−2.α.𝑑 ≈ 1 (valid in 

the transparent region). This yields: 

 𝑇 ≈
(1−𝑅𝑖)2

1−𝑅𝑖2 . 𝑒−α.𝑑 =
1−𝑅𝑖

1+𝑅𝑖
. 𝑒−α.𝑑 (15) 

Therefore, we have  

 𝑒−2.α.𝑑 ≈ (
1+𝑅𝑖

1−𝑅𝑖
)

2

. 𝑇2 (16) 

 

Replacing then Eq. (16) in Eq. (14) leads to: 

 ln(𝑇) ≈ ln((1 − 𝑅𝑖)2) − α. 𝑑 + 𝑅𝑖2. (
1+𝑅𝑖

1−𝑅𝑖
)

2

. 𝑇2 (17) 

 

The set of equations for the two thicknesses d1 and d2 can thus be written as follows: 

 {
ln(𝑇1) ≈ ln((1 − 𝑅𝑖)2) − α. 𝑑1 + 𝑅𝑖2. (

1+𝑅𝑖

1−𝑅𝑖
)

2

. 𝑇1
2

ln(𝑇2) ≈ ln((1 − 𝑅𝑖)2) − α. 𝑑2 + 𝑅𝑖2. (
1+𝑅𝑖

1−𝑅𝑖
)

2

. 𝑇2
2
 (18) 

 

 

The coefficient α (and consequently k) can be retrieved by subtracting the two preceding 

expressions: 

 𝑘 =
λ

4π
. α =

λ

4π.(𝑑2−𝑑1)
. [ln(𝑇1/𝑇2) − (𝑅𝑖2. (

1+𝑅𝑖

1−𝑅𝑖
)

2

) . (𝑇1
2 − 𝑇2

2)] (19) 
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It then remains to find an expression for Ri, which may be precise enough to be used in 

Eq. (19). For this, assuming 𝑒−2.α.𝑑 ≈ 1 (valid in the transparent region), Eq. (12) can be 

simplified: 

 ln(𝑇) = ln((1 − 𝑅𝑖)2) − α. 𝑑 − ln(1 − 𝑅𝑖2) (20) 

 

which leads to :  

 ln(𝑇) = ln (
1−𝑅𝑖

1+𝑅𝑖
) − α. 𝑑 (21) 

 

Then using T1 and T2, the following set of equations is obtained: 

 {
ln(𝑇1) = ln (

1−𝑅𝑖

1+𝑅𝑖
) − α. 𝑑1

ln(𝑇2) = ln (
1−𝑅𝑖

1+𝑅𝑖
) − α. 𝑑2

 (22) 

 

Eliminating α from the two equations, we have: 

 ln (
1−𝑅𝑖

1+𝑅𝑖
) =

𝑑2.ln(𝑇1)−𝑑1.ln(𝑇2)

𝑑2−𝑑1
 (23) 

 

Thus, Ri can be expressed as follows: 

 𝑅𝑖 =
1−𝑒−𝐶

1+𝑒−𝐶 = tanh(𝐶/2)   with  𝐶 =
𝑑1.ln(𝑇2)−𝑑2.ln(𝑇1)

𝑑2−𝑑1
> 0 (24) 

 

Therefore the final simple expression of k as a function of T1, T2, d1, d2 is:  

 𝑘 =
λ

4π.(𝑑2−𝑑1)
. [ln(𝑇1/𝑇2) − 𝑁. (𝑇1

2 − 𝑇2
2)] (25) 

with 

 𝑁 = (𝑒𝐶 . 𝑡𝑎𝑛ℎ(𝐶/2))
2
   and   𝐶 =

𝑑1.ln(𝑇2)−𝑑2.ln(𝑇1)

𝑑2−𝑑1
  

 

To get n, Eqs. (9) and (10) are used.  

 

Accuracy of the new analytical inverse method (NAIM) 

 

Figure 4 shows the comparative accuracies of the NAIM and the CAIM for  = 3µm. 

The accuracies of both methods are shown for a low refractive index (n = 1.5, Figure 4a,b), 

which is interesting because many types of glasses have refractive indices close to this 

value. For k, the new method leads to a maximum percent error of 0.001% (Figure 4a), 

which is more than two orders of magnitude better than the classical method ( 0.3%). 

For n, Figure 4b shows that the new method yields an accuracy of ±0.00001, which is two 

decades better than the classical method (max(n)  0.001).  

The accuracies of the NAIM and the CAIM are also shown for silicon, which is a high-

refractive-index material (n = 3.4, Figure 4c,d). For k, the new method (Figure 4c) results 

in a maximum percent error of 1.5% (compared to  20% with the classic method). For 

n (Figure 4d), the accuracy reaches ±0.004, which is 25 times better than that of the 

classical method (±0.1).  
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Figure 4. Comparative accuracies of the CAIM and the NAIM in the determination of (k,n); (a) PEk for n 

= 1.5 (b) n for n = 1.5 (c) PEk for n = 3.4, and (d) n for n = 3.4; the dotted line represents an absolute 

error of 1 digit on the second decimal place of n. 

 
 

Application example: determination of (k, n) for CaF2 and Si 

 

The transmittance of CaF2 and Si optical samples (circular slabs) was measured at 

normal incidence in the 4-8µm IR range, using a Spectrum 400 FT-IR spectrometer 

(Perkin Elmer Company) with a MCT detector; the resolution was set to 4 cm-1 (the 

transmittance curves are shown in the Supplemental Material S1, and the raw data are 

available as supplemental files). The possible sources of transmittance uncertainties are 

multiple (e.g. detector nonlinearity, defocusing effects, etc…).26,27 In our case, the 

accuracy of the FTIR instrument was estimated at ±0.1% (similar to literature data28). 

Moreover, in opaque regions, we observed that the transmittance noise level and the 

systematic errors were lower than 0.1%. Hence T = 0.2% was taken as an estimate of the 

standard deviation of the measured transmittance. 

Figure 5a,b shows the determined (k, n) parameters of CaF2 optical windows (thickness 

d1 = 2.00mm and d2 = 8.00mm, supplier: Crystran Company, UK). In the 4-8µm range, k 

increases with wavelength from 310-7 to 110-5. These values are quantitatively in very 

good agreement with recently published data.29 The n values (Figure 5b), which decrease 

with the wavelength from about 1.41 to 1.36, are also in very good agreement with 

literature data.29,30 The standard deviation of transmittance chosen (T = 0.2%) yields 

uncertainties of  ±0.01 for n. For k, the error results in the highly transparent region (k < 

10-6) may be further lowered using thicker samples. 
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Figure 5. Determination of (k, n) of CaF2 and FZ-Si windows using the NAIM (a) Extinction 

coefficient k of CaF2 (NAIM), and k data from Reference 29 (b) Refractive index n of CaF2 

(NAIM), and n data from References 29 and 30 (c) Extinction coefficient k of FZ-Si (NAIM) (d) 

Refractive index n of FZ-Si (NAIM), and n data from Reference 31. 

 

 

 

Figure 5c,d shows the determined (k, n) parameters of FZ-Si optical windows 

(thickness d1 = 2.06mm and d2 = 10.01mm, supplier : ATS Company, China). The 

thickness d2 considered here is a little higher than 8mm, but it has been verified that the 

results shown in Fig. 4c,d remain valid. In the 4-8µm range, using the NAIM leads to an 

extinction coefficient k (Figure 5c) which increases with the wavelength from 510-7 to 

~310-5, with an abrupt change around  = 6.5µm. For n (Figure 5d), using the NAIM 

results in a refractive index n which decreases slightly from 3.41 to 3.38, which is in good 

agreement with literature data.31  

The small difference with the published data (≤0.02 absolute difference with reference 

31 at 5µm) may be attributed to the different quality of our FZ-Si samples, or to the 

accuracy limit of the transmittance measurements:26-28 indeed, the chosen standard 

deviation of transmittance (T = 0.2%) yields uncertainties of  ±0.02 for n. 

 

It can be noted that the errors arising from the new analytical calculation of n from 

transmittances  T1 and T2 are negligible (≤ 0.00001 for CaF2 and ≤ 0.004 for Si), compared 

to the errors in n (±0.01 for CaF2 and ±0.02 for Si) owing to the experimental measurement 
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uncertainties on T1 and T2. Thus two limitations of the present method may be considered: 

for highly transparent samples, T1 and T2 may be too close to each other to be well-

separated (hence thicker samples may be used, in a reasonable range to explore). 

Conversely, for regions with very high absorption, the transmittance is too low to be 

measured by FTIR; in this case, our method cannot be used, and alternative methods (e.g., 

reflectance spectroscopy,32,33 ellipsometry16) are effective for measuring high k values (> 

10-3). 

 

 

Conclusions 
 

In this study, we proposed a new analytical inverse method (NAIM) to extract the 

optical constants (k, n) of a solid material with high accuracy from transmittance data of 

samples with two different thicknesses (in the range 2-10mm), without any numerical 

iterative process. To this end, we established easy-to-use analytical expressions for k and 

n. Given transmittance data, the NAIM is used to solve the (T1, T2)→(k, n) inverse problem 

with high accuracy (e.g. 0.00001 for n in the case n = 1.5, and 0.004 for n in the case n = 

3.4). As an illustrative example, the (k, n) optical parameters of two materials (CaF2 and 

FZ-Si) were determined straightforwardly in the 4-8µm IR spectral range, and the results 

obtained are in very good agreement with published data. Hence this new method may be 

a useful alternative for deriving the optical constants of solid materials with high accuracy. 
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