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Stall cell prediction using a lifting-surface model

Frédéric Plante∗ Éric Laurendeau†

Polytechnique Montréal, Montréal, Québec, H3T 1J4, Canada

Julien Dandois ‡

DAAA, ONERA, Université Paris Saclay, 8 rue des Vertugadins, 92190 Meudon, France

This paper investigates the use of a lifting surface method towards the study of lift cells on
wings, thereby extending the lifting-line model proposed by Spalart. In particular, calculations
are made with a 3D Vortex-Lattice Method (VLM) coupled with two-dimensional sectional
lift versus angle of attack polar to include viscous effects. This viscous coupling allows to
capture pre- and post-stall regimes, making it a Non-Linear Vortex Lattice Method (NL-
VLM). Canonical cases are examined, such as infinite span wings and wings with elliptical lift
distributions coupledwithmanufactured lift-curves. To achieve these goals, numerical artifacts
are developed. One is to enable solutions over infinite span wings, while the other has been
traditionally used to stabilise the numerical scheme in the form of added numerical dissipation.
Various parametric studies are performed using Spalart’s model and our proposed NL-VLM
model. This paper identifies the limitations of both models. As found by Spalart, the lifting line
mode suffers from robustness issues without the addition of a Gaussian filter, and the number
of cells increases with the number of modes. In contrast the NL-VLM model converges with
and without the use of artificial dissipation, without affecting the number of stall cells.

I. Nomenclature

A,B = coefficients of the Fourier series of the circulation
Ai, j = coefficients of the VLM influence matrix
A′i, j = coefficients of the modified VLM influence matrix
b = wing span (m)
c = chord (m)
cf = Gaussian filter width
Cl = lift coefficient
Clα = derivative of Cl with respect to α
Clinv = inviscid lift coefficient
Clvis = viscous lift coefficient
k0 = wavenumber
N = number of mesh panels
®n = normal vector
ni = number of chordwise panels
nj = number of spanwise panels
P = VLM collocation point
®q = velocity induced by a vortex segment (m · s−1)
®r = distance vector (m)
Sre f = reference surface (m2)
T = spanwise period
®V∞ = freestream velocity (m · s−1)
w = downwash velocity (m · s−1)
y = spanwise coordinate (m)
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α = angle of attack
α3D = geometrical angle of attack
αe f f = effective angle of attack
αi = induced angle of attack
αinv = inviscid angle of attack
αt = twist angle
∆α = angle of attack correction
∆y = spanwise grid spacing (m)
ε = convergence tolerance
Γ = circulation
φ = velocity potential
λ = aspect ratio b2/Sre f
λt = twist period
µ = artificial viscosity coefficient
ω = relaxation factor
φ = velocity potential

II. Introduction

Three-dimensional flow features over wings in stall conditions have been experimentally observed since the 1970’s.
Experiments such as those of Moss and Murdin [1] and Gregory et al. [2] showed three-dimensional vortex structures

on essentially two-dimensional wings spanning the entire wind tunnel width. This phenomenon was later studied by
Winkelmann and Barlow [3] on a wing based on the Clark Y airfoil with free tips. This experiment showed "mushroom"
shaped flow structures over the entire span of the wing and an increasing number of these structures when the aspect
ratio of the wing increases. This phenomenon is now often called stall cells. Observations similar to the one of
Winkelmann and Barlow [3] were made by Schewe [4]. The number of stall cells increases with the aspect ratio of
the wings. Early studies speculated that the wind tunnel walls were responsible for these three-dimensional effects.
However, the observation of stall cells over the full span of high aspect ratio wings and wings with free tips discarded
the effect of the wind tunnel walls as the origin of stall cells. Experiments by Broeren and Bragg [5] investigated the
effect of the type of stall on the three-dimensional stall features. Their results suggest that a trailing edge type of stall is
a necessary condition for the appearance of these features. Other experiments by Dell’Orso and Amitay [6] showed
an effect of the Reynolds number on the stall cells and identified a transition between a two-dimensional stall to a
three-dimensional one with increasing Reynolds number.

This phenomenon has been observed in multiple numerical studies. Manni el al. [7] carried out Unsteady-Reynolds-
Averaged Navier-Stokes (URANS) simulations and Delayed Detached Eddy simulations (DDES) of a wing of aspect
ratio 10 at a Reynolds number of one million. Bertagnolio [8] obtained stall cells over a wind turbine airfoil with URANS
simulations. A previous study by the authors [9] studied the stall cells over a NACA4412 airfoil at a Reynolds number
of 350 000 and several sweep angles with URANS simulations, showing the convection of the stall cells on swept wings.
All these numerical studies point out the occurrence of stall cells without the application of any three-dimensional
disturbance from the geometry. This suggests that the stall cells are caused by an inherent flow instability and not the
boundary conditions.

Explanation of the stall cells as a globally unstable mode was proposed by Kitsios et al. [10], Rodriguez and
Theofilis [11], He et al. [12] and Zhang and Samtaney [13] for wings at a Reynolds number of a few hundreds to
a thousand. A similar study was carried out by Plante et al. [14] for wings based on the NACA4412 airfoil at an
intermediate Reynolds number of 350 000 with RANS modeling, for which a trailing edge stall behavior is observed.
This study showed that the stall cells predicted with a global stability analysis closely matched the prediction of the
non-linear URANS equations in [9].

An attempt to model the stall cells, or lift cells, was done by Spalart [15] using the lifting line theory coupled with a
manufactured sectional lift polar including a post-stall regime. This model will be further discussed in this paper. From
this model the stall cells can be linked to a negative slope in the Cl(α) curve. Such a conclusion was also reported in the
work of Gross et al. [16] where a criterion for the wavelength of the cells was proposed based on the lifting line theory.
The model of Spalart [15] included a free parameter in the form of a Gaussian filter width. This numerical element was
required to prevent the model from producing very high wavenumber modes. This study [15] suggests a simple inviscid
model can be used to explain the stall cells phenomenon and Spalart [15] proposed that a lifting surface model would be
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the next level of approximation. Filling this gap is one of the objectives of the present paper.
The lifting line model of Spalart [15] can be described as a Γ-based coupling since it proceeds by assuming a

circulation distribution allowing to compute the downwash for each wing station and the induced angle of attack.
This induced angle of attack is used to get the viscous lift coefficient of the wing sections. Finally, a new circulation
distribution is obtained with the Kutta-Joukowski theorem. This procedure is carried out until the solution reaches
steady state. A method of this type was also presented by Chattot [17].

Another approach is to use a α-based method such as the one of van Dam [18]. This method solves the lifting line
theory and the viscous effects are taken into account by a correction to the local angle of attack. Extension to this
method was presented by Gallay and Laurendeau [19] for an application as a preliminary design tool [20]. Solutions
presenting features similar to stall cells were obtained by Gallay and Laurendeau [19]. Similar solutions have also been
obtained with a coupling using a decambering approach by Paul and Gopalarathnam [21].

This paper aims to provide the next level of approximation to the lifting line model of Spalart [15], a lifting surface
model. It also characterizes the post-stall solutions obtained with a lifting surface model coupled with a viscous database
by an α-based method. The paper first presents the numerical methods used in this paper. The lifting line model of
Spalart [15] is recalled and the lifting surface model is introduced. A numerical procedure to include a periodicity
condition in the lifting surface model is also proposed. Section IV presents the verification of the models. Then, the
analyses of post-stall cases with the lifting line and lifting surface models are presented. The cases of infinite wings,
elliptic wings and rectangular wings are studied. Results for several aspect ratios and viscous lift polars are presented
and the effect of adding a numerical dissipation proposed by Gallay and Laurendeau [19] to the coupling is investigated.

III. Methodology
An inviscid, irrotational, and incompressible flow can be modeled by Laplace’s equation :

∇2φ = 0 (1)

with φ the velocity potential. Since this equation is linear, solutions can be sought in the form of the superposition of
elementary solutions (vortices, sinks, sources, doublets, etc.). A wide variety of methods were developed based on this
concept, of which the lifting line and lifting surface models.

A. Non-linear lifting line model
Spalart [15] proposed a model based on the lifting line theory for what he called lift cells. In the present study,

numerical experiments with this model are carried out and a lifting surface model will be compared to it. Hence the
model for an infinite wing is recalled here. The problem is formulated using a Fourier transform for the circulation Γ :

Γ(y) = cV∞
∞∑
j=0

Ajcos( j k0y) + Bj sin( j k0y) (2)

where y is the spanwise coordinate, k0 the wavenumber, c the wing chord and V∞ the freestream velocity. The downwash
velocity is :

w(y) = −
k0cV∞

4

∞∑
j=0

j Ajcos( j k0y) + jBj sin( j k0y) (3)

The circulation is related to the lift coefficient using the Kutta-Joukowsky relation :

Γ(y) = c
V∞
2

Cl(αe f f ) (4)

and under the small angle hypothesis :

αe f f (y) = α +
w(y)

V∞
(5)

To solve this model one can first assume a distribution for the Fourier coefficients A and B. This allows to compute
the downwash distribution and the effective angle of attack. In return this gives the circulation by interpolating the
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lift coefficient Cl(αe f f ) in a user given polar and applying the Kutta-Joukowski relation. Finally, the new A and B
coefficients can be obtained by the inverse Fourier transform :

Aj =
k0

πcV∞

∫ 2π/k0

0
Γ(y)cos( j k0y)dy (6)

Bj =
k0

πcV∞

∫ 2π/k0

0
Γ(y)sin( j k0y)dy (7)

The model is then iterated up to the point where the solution reaches a steady state. Spalart proposed to apply a
Gaussian filter to the inverse Fourier transform so that :

Aj =
k0

πcV∞
e−(c f c jk0)

2
∫ 2π/k0

0
Γ(y)cos( j k0y)dy (8)

Bj =
k0

πcV∞
e−(c f c jk0)

2
∫ 2π/k0

0
Γ(y)sin( j k0y)dy (9)

where cf is the filter width. This filter reduces the amplitude of the high wavenumber and has the effect of smoothing
out the distribution of the circulation. However, this also means that two values of the circulation and thus of the lift
coefficient are obtained simultaneously. The first one is obtained from equation 4 with the lift coefficient interpolated in
the lift polar and the other is the one obtained from equation 2. This will be analyzed in section V.A.

B. Lifting surface model - Vortex Lattice Method
Another approach to solve the Laplace’s equation is the Vortex Lattice Method (VLM), which is a well known lifting

surface model. This method uses vortex ring elements [22] to model a lifting surface and the velocity induced at a point
P by a segment of a vortex ring is given by the Biot-Savart equation :

®q1,2 =
Γ

4π
®r1 × ®r2

| ®r1 × ®r2 |
2 r0 ·

(
®r1

| ®r1 |
−
®r2

| ®r2 |

)
(10)

The numerical setup is shown in fig. 1. The wing is meshed with a structured grid of ni by nj cells (N = ni × nj

cells) and every line segment of the grid is a vortex segment of intensity Γi and the wake is meshed with a vortex ring of
semi-infinite length. The latter has the same circulation as the last chordwise vortex ring. The model is closed with a
boundary condition to impose a velocity tangential to the lifting surface and one solves for the circulations Γ. This
result in a linear system of equation of the form :

A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N
...

...
. . .

...

AN ,1 AN ,2 . . . AN ,N


©«
Γ1

Γ2
...

ΓN

ª®®®®®¬
= −®V∞ · ®n (11)

with Aa,b the influence coefficient for the velocity induced on the panel a by the panel b. The influence of the
semi-infinite trailing vortex are added to the influence of the trailing edge vortex ring since it has the same circulation.
As such the matrix A is square. This method is suitable for simulation of finite span wings. In order to eliminate the
effect of the wing tip, one can carry out the simulations on a very large aspect ratio wing. However, the stall cells have
an aspect ratio of the order of the chord length. Hence, meshing a wing of a large aspect ratio with a small spanwise
resolution results in a large number of mesh cells. Since the cost of the VLM simulation increases with the square of
the number of mesh cells the cost of such simulations can become computationally prohibitive. For this reason, an
assumption of periodicity is proposed. To do so, a wing of very large aspect ratio is assumed and the values of Γ are
taken to be periodic with a period T meshed with nj spanwise panels. Hence :

Γ(kn j+j)ni+i = Γjni+i (12)

with k ∈] − ∞,∞[. This is illustrated in fig. 2
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Fig. 1 VLM computational setup.

Using these assumptions, a modified influence matrix A′ can be computed with the influence coefficient :

A′a,b =
∞∑

k=−∞

Aa,b+kN (13)

Since the influence coefficient is proportional to the inverse of the distance between two panels, in practice the
values of k can be restricted to a finite number of panels. Finally, by assuming that the wing is infinite the (knj + j)ni + i
equations are identical. Hence the problem is restricted to N equations :

A′1,1 A′1,2 . . . A′1,N
A′2,1 A′2,2 . . . A′2,N
...

...
. . .

...

A′
N ,1 A′

N ,2 . . . A′N ,N


©«
Γ1

Γ2
...

ΓN

ª®®®®®¬
+ ®V∞ · ®n = 0 (14)

To account for viscous and compressibility effects, the Non-Linear Vortex Lattice Method (NL-VLM) [19, 20, 23–25]
is used. This method applies a correction to the local angle of attack of the VLM sections in order to get a local lift
coefficient Clinv equal to a two-dimensional lift coefficient Clvis , which is provided by Reynolds-Averaged Navier-Stokes
(RANS) simulations, experimental data, or as in this paper by manufactured lift curves. They are called manufactured
lift curves because they are given by an analytical formula chosen to present some specific features. The viscous
correction concept is illustrated in fig. 3. Due to the thin airfoil theory the sectional lift coefficient of the VLM is :

Clinv = 2παinv (15)
αinv = α3D + αi + ∆α (16)

with α3D the geometrical angle of attack, αi the induced angle of attack and ∆α the viscous correction. The viscous
coupling is done for the spanwise grid section j as :
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Fig. 2 Infinite wing Vortex Lattice Method with periodicity assumption.

αk
e f f , j =

Clkinv , j

2π
− ∆αk

j (17)

∆αk+1
j = ∆αk

j + ω
Clvis (α

k
e f f , j
) − Ck

linv , j

2π
− µ

(
∆αk

j−1 − 2∆αk
j + ∆α

k
j+1

)
(18)

with ω a relaxation factor and µ a dissipation coefficient to smooth the solution in the spanwise direction. Clvis (αe f f , j)
is the lift coefficient provided by a Cl(α) curve to correct the VLM. This lift coefficient relation can vary from one
spanwise section to the other. However, for this study, it is assumed to be constant. These equations and the VLM
system of equations are coupled and result in a non-linear system. Hence, the ∆α are first initialized at zero for the first
solution of the VLM system to get the Clinv of each section. Then subiterations between the VLM and the coupling are
carried out up to the point where

��Clvis − Clinv

�� < ε with ε a given tolerance. ∆α is added to the VLM as a rotation of
the vector ®n normal to the panel. Thus only the right-hand side of the VLM system of equations is modified during
subiterations and the influence matrix is inverted only once. The lift polar provided for the viscous coupling can include
the post stall angle of attack, thus allowing to model three-dimensional wings in the post-stall regime.

Cl

α

Clα,inv = 2π

Cl0,inv

Cl0,vis , 0

Clα,vis < 2π

αinv αe f f

∆α

Clinv = Clvis

Fig. 3 Viscous coupling applied to the VLM model.
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IV. Numerical verification
This section provides numerical verification of the VLM method, in particular with respect to the periodicity

assumption and the viscous coupling. A classic test case for a VLM code is the verification that Cl = 2πα for a wing of
infinite aspect ratio, which is equivalent to a two-dimensional thin airfoil. The same case with the NL-VLM should
return the lift of the user provided viscous lift curve. Hence, simulations are carried out for a wing of the aspect ratio
1 × 1012 with 100 panels in the spanwise direction and one panel in the chordwise direction. No artificial dissipation
is used. Fig. 4 shows the solution of the VLM and the NL-VLM coupled to the manufactured lift polar proposed by
Spalart [15] :

Cl(α) = 2πα + 0.5(1.2 − 2πα)(1 + er f ((α − 0.28)/0.02)) (19)

One can observe that the linear VLM correctly reproduces the thin airfoil theory with Cl(α) = 2πα. When this
VLM is coupled to a viscous polar, the two-dimensional lift coefficient prescribed by the polar is obtained. Note that the
results are matching pre and post-stall regions.

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10  12  14  16  18  20

C
l

α(°)

Cl=2πα
Cl=2πα+0.5(1.2-2πα)(1-erf((α-0.28)/0.02))

VLM
NL-VLM, Cl=2πα+0.5(1.2-2πα)(1-erf((α-0.28)/0.02))

Fig. 4 Infinite wing solution of the NL-VLM

Now that the non-linear coupling is verified, the periodicity assumption should be verified, a nontrivial task. To do
so, simulations are carried out on wings with a periodic twist distribution of the form :

αt (y) = αt0 + αt1cos(2πy/λt ) (20)

with αt the twist, αt0 the mean twist, αt1 the amplitude of the twist modulation and λt the twist period. Wings of large
aspect ratio with 1 chordwise cell, a spanwise spacing ∆y = 0.1, α = 5.0◦, αt0 = 0.0◦, αt1 = 10.0◦ and λt = 5.0 are
computed. Fig. 5 shows the lift distribution for wings of aspect ratio 50, 100 and 200. As one can see the solution
around y/c = 0.0 is nearly periodic, thus it will be used to verify the computation with the periodicity assumption.

Fig. 6 shows the solution of the same problem using the periodicity assumption proposed in this study. The
computation is carried out with one (b/c = 5) and three (b/c = 15) twist periods between the periodicity conditions.
The spanwise periodic VLM allows to recover the solution of the large aspect ratio wing, at a significantly lower
computational cost since only one and three twist periods are meshed. The lift coefficient with 10 chordwise panels is
also shown, which does not change the lift coefficient. Fig. 7 shows the Γ distribution with 1 and 10 spanwise cells. As
one can see, the grid has an effect on the Γ distribution but not on the sectional lift distribution.

In conclusion, the proposed NL-VLM model is able to model infinite wing with an assumption on the periodicity of
the solution. This method is also able to take into account viscous effects, including the post-stall regime.
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Fig. 5 Effect of the span on the lift distribution of wing with periodic twist.
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Fig. 6 Solution of the wing with periodic twist using the periodicity assumption.

Fig. 7 Circulation distribution over the periodic wing with 1 and 10 chordwise panels.
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V. Analysis of the lift cell

A. Lifting line - Infinite Wing
This section investigates the infinite wing lifting line model proposed by Spalart [15]. Fig. 8 shows the lift coefficient

and the effective angle of attack used for interpolation in the lift polar proposed by Spalart [15] (eq. 19, polar 1). Two
curves are shown for the lift coefficient. One is the lift coefficient interpolated from the lift polar at the effective angle of
attack, The other is computed from the circulation Γ computed with the smoothed Aj and Bj Fourier coefficients. This
analysis is done for a wing with an aspect ratio of 10, at an angle of attack of 16◦ and with a filter width cf = 0.23. A
thousand points are used to discretize the wing and 200 terms are kept in the Fourier series. The latter is very large
considering the fact that the Gaussian filter reduces the impact of modes with high wavenumbers. As one can see, the
solution of our implementation reproduces the one of Spalart [15]. However, the Gaussian filter causes a large deviation
of the lift coefficient from the one interpolated inside the lift polar. Nonetheless, the global lift coefficient is the same up
to 10−6. Hence the filter reduces the sharp features of the lift distribution with a very small impact on the integrated lift
force. One can also observe that the minimum lift coefficient is 1.2, which is the asymptotic value of the manufactured
lift polar at high angles of attack. For this reason, the effective angle of attack can reach higher values with no effect on
the lift coefficient. The maximal sectional lift coefficient corresponds to interpolation in the lift polar at the maximum
lift coefficient angle of attack (15◦). Hence, with this model the spanwise solution alternates between regions where the
lift coefficient is interpolated in the post-stall regime and in the pre-stall regime. The solution is in the stall regime
(negative slope of the Cl(α) curve) only for a narrow band of sections.

 1

 1.25

 1.5

 1.75

C
l

Interpolated lift
Smoothed lift

Spalart 2014

 14
 15
 16
 17
 18
 19

 0  1  2  3  4  5  6  7  8  9  10

α
eff

(°
)

y/c

Fig. 8 Lift distribution and effective angle of attack of Spalart’s lifting line model.

As stated by Spalart [15] this model has a bias towards the high wavenumber modes. Hence the Gaussian filter is
necessary to obtain a converged solution or the number of modes must be limited. Fig. 9 shows the result with several
number of Fourier modes and without the Gaussian filter. The lift cells phenomenon is only observed when the number
of modes is at least 2. In this case, two cells are obtained. An interesting point is the fact that the number of cells
increases with the number of modes and the model bifurcates towards the highest wavenumber possible. For a higher
number of modes the model fails to converge without the Gaussian filter. This figure also shows the fact that the lift
distribution is smoothed out, even though the Gaussian filter is not used. In fact the Fourier Series is unable to closely
follow the Γ distribution. Hence, in the iterative process the Fourier series gives a smooth distribution of w. Then sharp
features in the lift distribution are found when interpolating inside the lift polar and fitting a Fourier Series in the Γ
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results in a smooth distribution.
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Fig. 9 Lift distribution of Spalart’s lifting line model without the Gaussian filter.

As mentioned above, the lift coefficient cannot go below 1.2 in the high effective angle of attack range because it is
the asymptotic value of the lift distribution. Test with a polar without an asymptotic value shows the fact that the model
cannot stabilize to a steady-state solution if the slope of the lift curve remains negative.

B. Lifting surface - Elliptic wing
To apply the NL-VLM model to a finite wing problem, first the case of a wing with an elliptic chord distribution

is investigated. This test case presents the advantage that the downwash should be constant on the wing and thus
the effective angle of attack should also be constant. This means that the stall should occur at every wing section
simultaneously. The elliptic wing is defined with a unitary chord at the root and the aspect ratio λ = b2/Sre f . The lift
polar used for the viscous coupling is the one given in equation 19. Figs. 10 and 11 shows the effect of the artificial
dissipation term on the lift and effective angle of attack distribution respectively. Simulations are done at an angle of
attack of 18◦. The NL-VLM model is able to converge to a solution in the post-stall regime without adding a dissipation
term. However, as one can see in fig. 11, the effective angle of attack of some of the sections is unrealistically large.
This is explained by the fact that the lift coefficient provided by the polar is constant for angles of attack higher than
19◦ (this angle of attack as well as the maximum lift coefficient angle are shown in this graph). Hence, the NL-VLM
model can increase the angle of attack correction to impact the linear VLM system of equations without impacting the
viscous lift coefficient, which stays constant at 1.2. By comparing fig. 10 and fig. 11, one can observe that the parts of
the lift distribution equal to 1.2 correspond to the sections where the effective angle of attack is greater than 19◦. The
other sections of the wing have an effective angle of attack lower than 15◦ (the maximum lift coefficient angle). One
can also observe that no wing section has an effective angle of attack in the region where Clα is negative. This means
that the parts of fig. 10 where the lift coefficient is between 1.2 and 1.6 are in fact not stalled in the lift polar. This
seems to indicate that the NL-VLM model does not allow a wing section to see a negative Clα . Since an elliptic wing is
considered, for which the whole wing stalls together, the NL-VLM forces some section to get un-stalled and other to be
fully stalled.

Even though a solution can be obtained without the artificial viscosity term, this term smooth out the sharp
discontinuity in the effective angle of attack distribution. The main effect of the smoothing is observed in fig. 11 where
the very large effective local angles of attack decrease. As such the smoothing allows to correct the unrealistic effective
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angle of attack. As is the case for the lifting line model of Spalart [15], adding this dissipation term creates two spanwise
lift distributions. The first one is computed in the VLM system and the second one is the lift coefficient interpolated
at the effective angle of attack. This is shown in fig. 12. Without the dissipation, the two ways of computing the lift
coefficient return the same result. However, when adding the dissipation, lift distributions with peaks similar to the ones
of Spalart [15] are obtained. It is interesting to note that artificial dissipation was added by Chattot [17] as a numerical
artifact to stabilize the Γ coupling algorithm without knowing its effect on the stabilization of the physical properties of
the flow.
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Fig. 10 Effect of the dissipation coefficient µ on the lift distribution (elliptic wing, λ = 16.0, α = 18◦, polar 1).
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Fig. 11 Effect of the dissipation coefficient µ on the effective angle of attack (elliptic wing, λ = 16.0, α = 18◦,
polar 1).

Fig. 13 shows the distribution of the circulation Γ on wings at several angles of attack and using an artificial
dissipation with µ = 0.2. The wing is in the pre-stall regime for the angle of attack of 17◦ because the downwash causes
the wing to be at a constant effective angle of attack lower than 15◦. One can observe the cellular patterns in the solution
for the angle of attack of 18◦ and 19◦. For the angle of attack of 20◦, the cells no longer occur because the wing is
completely stalled. Fig. 14 shows the distribution of the lift coefficient multiplied by the local chord for several aspect
ratios and geometrical angles of attack. The lift coefficient is multiplied by the local chord to highlight the elliptic
distribution of the lift force. As one can see, the elliptic lift distribution is obtained for low aspect ratios and low angles
of attack. For the other aspect ratios, lift cells are observed. This is caused by the fact that the downwash is constant
along the span and stronger for the lower aspect ratios. Thus, the wings with a low aspect ratio reach the stall condition
at a higher angle of attack. Two curves are used to highlight the boundaries of the region of the local lift polar where
Clα is negative (Cl = 1.2 and Cl = 1.6). As soon as the effective angle of attack becomes higher than the maximum lift
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Fig. 12 Effect of the dissipation coefficient µ on the lift coefficient interpolated at the effective angle of attack
(elliptic wing, λ = 16.0, α = 18◦, polar 1).

coefficient angle, lift cells occur. Also, the number of cells increases with the aspect ratio. When the wings of aspect
ratio 16 and 20 reach the stall conditions they respectively have 3 and 4 lift cells. Hence, the variation of the number of
cells appears to increase linearly with the aspect ratio for angles of attack slightly past the maximum lift coefficient
angle. As the angle of attack is further increased the lift cells break down into smaller cells, up to the point where the
wing is fully stalled and Clc = 1.2 (the asymptotic value of the manufactured lift polar) for the entire wing.

Fig. 13 Circulation distribution at several angle of attack (elliptic wing, λ = 16.0, polar 1).

The lift polar is another variable in the NL-VLM model. To characterize this effect, one can design a series of lift
polar with different post-stall behavior based on the formulation of Spalart [15] :

Cl(α) = Clα,0α + 0.5(Cl0 − Clα,1α)(1 + er f ((α − α0)/α1)) (21)

with the parameters given in table 1. Fig. 15 shows these lift polars. The polar 2 is designed to remove the asymptotic
behavior of the original lift polar (polar 1). The polar 3 is selected to increase the negative slope of the lift polar, while
the polars 4 and 5 decrease this slope.

Figs. 16 and 17 show the lift coefficient and the effective angle of attack computed with this selection of lift polars.
In every case the grid is refined in both topological directions to obtain a grid independent solution and the size of the
mesh changes from one case to the other. As one can see by comparing the solutions with the polar 1 and 2, adding a
positive slope as the angle of attack goes to infinity helps to remove the non-physically large effective angles of attack,
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Fig. 14 Lift coefficient distribution of several aspect ratios at several angles of attack (elliptic wing, polar 1).

which is an effect similar to adding the artificial dissipation. However, this does not change the number of lift cells and
significantly affect the amplitude of the latter. This further emphasizes the fact that having Clα = 0 causes the viscous
correction and the VLM system of equation to become decoupled. On the other hand, changing the slope of the lift
polar in the post stall regime significantly changes the number of cells. Decreasing this slope increases the number
of cells, while increasing it decreases the number of cells. The criterion found by Gross et al. [16] predict that the
wavelength of the cells increases with the norm of the lift slope, if the latter is negative. This tendency is the same as the
one observed here. Another interesting point is the fact that a typical leading edge stall will exhibit a sharp reduction of
the lift coefficient for angles of attack just past the maximum lift angle. This could be assimilated to an infinite slope
which will result in very large wavelengths. Moreover, the range of angles of attack for which the stall cells are observed
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Polar Cl0 α0 α1 Clα,0 Clα,1

Polar 1 1.20 0.28 0.02 2π 2.0π
Polar 2 0.72 0.28 0.02 2π 1.5π
Polar 3 0.72 0.28 0.01 2π 1.5π
Polar 4 0.72 0.28 0.03 2π 1.5π
Polar 5 0.72 0.28 0.04 2π 1.5π

Table 1 Parameters of the lift polar.
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Fig. 15 Selection of manufactured lift curves.

requires the effective angle of attack to be in the negative Clα area. This region of the lift curve becomes smaller as the
lift slope is increased. If this region becomes infinitely small, the elliptic wing will jump from the pre-stall regime to
the post-stall one without the occurence of the stall cells phenomenon. This can explain the fact that the stall cells are
usually observed for wings with a trailing edge type of stall which is characterized by lift curves similar to the one used
in this paper, as reported by Broeren and Bragg [5].

C. Lifting surface - Rectangular Wing
Rectangular wings with a Clark Y airfoil section and free tips were studied by Winkelmann and Barlow [3]. To

compare with them, the case of a rectangular wing is now studied with the lift polar 5 of the previous section. The
simulations are done with a symmetry plane at the root, 8 cells in the chordwise direction and a spanwise grid spacing
of 0.025c. Fig. 18 shows the solution at an angle of attack of 18.4◦ for aspect ratios of 3, 6, 9 and 12. As observed
by Winkelmann and Barlow [3] the number of lift cells is proportional to the aspect ratio of the wing. However, the
aspect ratio of 3 is small for a Vortex Lattice Method and no cells are observed. For the other aspect ratios the number
of cells is lower than the one observed by Winkelmann and Barlow [3], who clearly had 2 cells for an aspect ratio
of 6, while only one is observed here. This discrepancy can be explained by the lift polar used in the NL-VLM. For
this reason, a new lift polar is designed to reproduce the experimental lift polar of the Clark Y airfoil at a Reynolds
number of 400 000 [26]. The parameter of the manufactured lift polar are selected to reproduce the Clmax and early
post-stall behavior. The lift polar is extended and a positive slope is added in the high angle of attack range, to get a
better conditioning of the NL-VLM. The new lift curve is (polar 6) :
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Fig. 16 Effect of the lift polar on the lift distribution (elliptic wing, λ = 16.0, α = 18◦).
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Fig. 17 Effect of the lift polar on the effective angle of attack (elliptic wing, λ = 16.0, α = 18◦).

Cl(α) = 0.35 + 1.8πα + 0.5(0.22 − 1.6πα)(1 + er f ((α − 0.28)/0.15)) (22)

This lift curve is shown in fig. 20 and the spanload of the rectangular wings at an angle of attack of 18.4◦ (the same
as in the experiments of Winkelmann and Barlow [3]) is shown in fig. 21. The number of cells is reported in table 2.
The values obtained with this new polar are closer to the experimental one. This confirms that the lift polar is the main
parameter which has an influence on the solution of the NL-VLM and that the phenomenon observed in the experiment
is linked to an instability present in an inviscid model.

D. Lifting surface - Infinite wing
Finally, the solution of the lifting surface model with the hypothesis of periodicity in the spanwise direction is

investigated. Fig. 22 shows the effect of the angle of attack on the solution for a meshed domain of a span of 2. This
figure shows the solution with a mesh of 101 by 1 cells and the influence matrix is built using 300 periods on both sides
of the simulated domain. The lift polar 5 of table 1 is used. This case reproduces an infinite wing. Hence, as long as the
solution stays two-dimensional the induced angle of attack is zero and the wing will stall at the same angle of attack as
the one of the prescribed lift polar. As one can see, the solutions of fig. 22 are two-dimensional for angles of attack
below the stall angle (15◦) and at very high angles of attack (greater than 19◦). In both conditions Clα > 0. For angles
of attack between these two values, stall cells occur. Hence, the stall cells occur in cases where Clα < 0. However, the
solution is not periodic within the computational domain. This is explained by the fact that the periodicity assumption
is only imposed between the two edges of the computational domain. Thus, the interior of the domain remains free.
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λ Winkelmann and Barlow [3] Polar 5 Polar 6
3 1 0 0
6 2 1 2
9 3 to 5 2 5
12 5 to 6 4 7

Table 2 Number of stall cells compared to the experiments.
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Fig. 18 Effect of the aspect ratio on the lift coefficient distribution (rectangular wing, α = 18.4◦, polar 5).
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Fig. 19 Effect of the aspect ratio on the effective angles of attack (rectangular wing, α = 18.4◦, polar 5).

Moreover, multiple solutions cannot be ruled out. Fig. 23 shows the effective angle of attack distribution for these cases.
As was observed previously, there is no section with an effective angle of attack where Clα is negative. The polar used
has a positive slope as the angle of attack goes to infinity. For this reason, the effective angle of attack remains in a
realistic range.

A free parameter of the model is the number of periods considered in the infinite wing assumption. The greater this
number, the smaller are the influence coefficients which are neglected in the infinite wing assumption. Fig. 24 shows the
effect of this parameter for the same case. One can observe that the number of periods must be greater than 100 to
remove the truncation effect, and a constant solution is obtained if one refines this parameter. A study of the mesh
refinement in the spanwise direction has been carried out, with no significant variation on the solution.

One can now study the effect of the size of the computational domain on the lift cells. To do so, the span of the
domain is increased and the number of grid cells is increased to keep the size of the grid cells constant. The number
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Fig. 20 Manufactured lift curve for the Clark Y airfoil based on the experiments [26].
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Fig. 21 Effect of the aspect ratio on the lift coefficient with the experimental lift curve (rectangular wing,
α = 18.4◦, polar 6).

of periodicity is adapted to keep the neglected influence coefficients at a distance of 600c. This criterion is selected
because the influence coefficients decay with the distance and using a constant number of periodicity would result in a
large computational cost for the larger mesh, since the influence coefficients of these cells must be computed. Fig. 25
shows the effect of the aspect ratio. As expected the number of lift cells increases with the aspect ratio. This relation is
linear. However, when the aspect ratio is high, the solution becomes noisy in the middle of the computational domain.
This effect remains unexplained.

Finally, one can add the artificial viscosity term. This effect is shown in fig. 26 and 27. As it was the case for the
finite wing, this parameter has the effect of smoothing out the effective angle of attack and the lift distribution but the
solution remains similar.

VI. Conclusion
A lifting surface model is applied towards the study of stall cells, thereby extending the lifting line model of

Spalart [15]. To this end, the non-linear Vortex Lattice Method proposed by Gallay and Laurendeau [19] is used.
Contrary to the model of Spalart, this model does not use a spectral transformation so that solutions can be non-periodic
within the bound of the computational domain. This lifting surface model uses an α-based coupling with a lift polar
to include viscous and compressibility effects and an artificial viscosity is added to smooth out discontinuity in the
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Fig. 22 Effect of the angle of attack on the lift distribution (infinite wing, λ = 2.0, polar 5).
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Fig. 23 Effect of the angle of attack on the sectional effective angle of attack distribution (infinite wing, λ = 2.0,
polar 5).

solution. The NL-VLM model is first verified and characterized for canonical cases. In particular, the paper introduces
a mathematical modification to compute infinite wings by including a periodicity condition. This allows to simulate
infinite wings with a spanwise grid refinement sufficient to simulate phenomenon with a size of the order of the chord
length. The case of elliptic, rectangular and infinite wings in the post-stall regimes are analyzed. For all these cases, an
instability is observed as soon as the slope of the lift versus angle of attack relation is negative. This behavior is expected
from the analyses presented by Spalart [15] and Gross et al. [16]. Contrary to the model of Spalart, which requires
the use of a smoothing factor to obtain a converged solution, the NL-VLM converges to a solution without adding the
artificial dissipation. Adding this term smooths out the solution, but does not change the number of stall cells. Another
observation is the fact that adding a dissipation to the NL-VLM model results in two lift distributions. The first one
being the one of the viscous coupling and the other the one of the inviscid model. Without dissipation, these two lifts
are the same. A similar behavior is observed with the model of Spalart. Finally, solutions are in qualitative agreement
to the results of Winkelmann and Barlow [3] on a rectangular wing without the need of adding any particular filter.
The lifting surface model allows to include parameters like the sweep angle, taper ratio and twist. As such, this model
provides a low-cost model for the prediction of the wavelength of the stall cells, which could be used in wing design.
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Fig. 24 Effect of the number of spanwise period on the lift distribution (infinite wing, λ = 2.0, polar 5).
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Fig. 25 Effect of the aspect ratio on the lift distribution (infinite wing, polar 5).
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