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Abstract

We present a simple proof of the Riemann’s Hypothesis (RH) where
only undergraduate mathematics is needed.
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1 The Riemann Hypothesis

1.1 The importance of the Riemann Hypothesis

The prime number theorem gives us the average distribution of the primes.
The Riemann hypothesis tells us about the deviation from the average.
Formulated in Riemann’s 1859 paper[1], it asserts that all the ’non-trivial’
zeros of the zeta function are complex numbers with real part 1/2.

1.2 Riemann Zeta Function

For a complex number s where ℜ(s) > 1, the Zeta function is defined as
the sum of the following series:

ζ(s) =
+∞
∑

n=1

1

ns
(1)

In his 1859 paper[1], Riemann went further and extended the zeta function
ζ(s), by analytical continuation, to an absolutely convergent function in
the half plane ℜ(s) > 0, minus a simple pole at s = 1:

ζ(s) =
s

s− 1
− s

∫ +∞

1

{x}
xs+1

dx (2)

Where {x} = x− [x] is the fractional part and [x] is the integer part of x.
Riemann also obtained the analytic continuation of the zeta function to
the whole complex plane.
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Riemann[1] has shown that Zeta has a functional equation1

ζ(s) = 2sπs−1 sin
(πs

2

)

Γ(1− s)ζ(1− s) (4)

Where Γ(s) is the Gamma function. Using the above functional equa-
tion, Riemann has shown that the non-trivial zeros of ζ are located sym-
metrically with respect to the line ℜ(s) = 1/2, inside the critical strip
0 < ℜ(s) < 1. Riemann has conjectured that all the non trivial-zeros are
located on the critical line ℜ(s) = 1/2. In 1921, Hardy & Littlewood[2,3,
6] showed that there are infinitely many zeros on the critical line. In 1896,
Hadamard and De la Vallée Poussin[2,3] independently proved that ζ(s)
has no zeros of the form s = 1+ it for t ∈ R. Some of the known results[2,
3] of ζ(s) are as follows:

• ζ(s) has no zero for ℜ(s) > 1.

• ζ(s) has no zero of the form s = 1 + iτ . i.e. ζ(1 + iτ ) 6= 0, ∀ τ .
• ζ(s) has a simple pole at s = 1 with residue 1.

• ζ(s) has all the trivial zeros at the negative even integers s = −2k,
k ∈ N

∗.

• The non-trivial zeros are inside the critical strip: i.e. 0 < ℜ(s) < 1.

• If ζ(s) = 0, then 1 − s, s̄ and 1 − s̄ are also zeros of ζ: i.e. ζ(s) =
ζ(1− s) = ζ(s̄) = ζ(1− s̄) = 0.

Therefore, to prove the “Riemann Hypothesis” (RH), it is sufficient to
prove that ζ has no zero on the right hand side 1/2 < ℜ(s) < 1 of the
critical strip.

1.3 Proof of the Riemann Hypothesis

Let’s take a complex number s such that s = σ+ iτ . Unless we explicitly
mention otherwise, let’s suppose that 0 < σ < 1, τ > 0 and ζ(s) = 0.

We have from the Riemann’s integral above:

ζ(s) =
s

s− 1
− s

∫ +∞

1

{x}
xs+1

dx (5)

We have s 6= 1, s 6= 0 and ζ(s) = 0, therefore:

1

s− 1
=

∫ +∞

1

{x}
xs+1

dx (6)

Or in other terms:

1

σ + iτ − 1
=

∫ +∞

1

{x}
xσ+iτ+1

dx (7)

1This is slightly different from the functional equation presented in Riemann’s paper[1].
This is a variation that is found everywhere in the litterature[2,3,4]. Another variant using
the cos:

ζ(1− s) = 21−sπ−s cos
(πs

2

)

Γ(s)ζ(s) (3)
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Let’s denote the following functions:

ǫ(x) = {x} (8)

φ(x) = {x}
(

1− {x}
)

(9)

Ψ(x) =

∫ x

1

dx ǫ(x) (10)

To continue, we will need to prove some few lemmas.

Lemma 1.1. The function ǫ(x) is piecewise continuous on [0,+∞) and

its primitive function Ψ(x) is defined as follows:

Ψ(x) =
1

2

(

x− 1− φ(x)
)

(11)

Let’s consider two variables σ and τ such that 0 < σ < 1 and τ > 0 such

that s = σ + iτ is a zeta zero. Therefore:

∫ +∞

1

dx
Ψ(x)

x2+s
=

1

(s− 1)(1 + s)
(12)

And

∫ +∞

1

dx
φ(x)

x2+s
=

1

s(1− s)
(13)

Proof. We will need the function φ as you will see later that we need a
continuous function instead of a piecewise one like the function ǫ.
Let’s take x > 1 a real number. Let’s denote nx = ⌊x⌋ be the integer of
part of x. We have nx = x− {x}. Therefore, we can write the following:

Ψ(x) =

∫ x

1

ǫ(x)dx (14)

=

nx−1
∑

n=1

∫ n+1

n

{t}dt+
∫ x

nx

{t}dt (15)

=

nx−1
∑

n=1

∫ n+1

n

(t− n)dt+

∫ x

nx

(t− nx)dt (16)

=

nx−1
∑

n=1

1

2
+

1

2
(x− nx)

2 (17)

=
1

2

(

nx − 1 + {x}2
)

(18)

=
1

2

(

x− 1− {x}+ {x}2
)

(19)

This prove the equation (11). �

Let’s prove the second point of the lemma. Let’s define the integral
Iǫ(s) as follows:

Iǫ(s) =

∫ +∞

1

dx
ǫ(x)

x1+s
(20)
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The function x → ǫ(x)

x1+s
is integrable on [1,+∞) and thanks to the

integration by parts, we can write the following:

Iǫ(s) =

∫ +∞

1

dx
ǫ(x)

x1+s
(21)

=
[Ψ(x)

x1+s

]+∞

x=1
+ (1 + s)

∫ +∞

1

dx
Ψ(x)

x2+s
(22)

= (1 + s)

∫ +∞

1

dx
Ψ(x)

x2+s
(23)

Since, s is a zeta zero, from the equation (6), we have:

Iǫ(s) =
1

s− 1
(24)

Therefore

∫ +∞

1

dx
Ψ(x)

x2+s
=

1

(s− 1)(s+ 1)
(25)

Thanks to equation (11), we can write:

∫ +∞

1

dx
φ(x)

x2+s
=

∫ +∞

1

dx
(x− 1)

x2+s
− 2

∫ +∞

1

dx
Ψ(x)

x2+s
(26)

=
1

s
− 1

s+ 1
− 2

(s− 1)(s+ 1)
(27)

=
1

s(1− s)
(28)

�

Lemma 1.2. Let’s consider two variables σ and τ such that 0 < σ < 1,
τ > 0 and s = σ+ iτ is a zeta zero. Let’s define the sequence of functions

ψn such that ψ0(x) = φ(x) = {x}
(

1− {x}
)

and for each n ≥ 1:

ψn+1(x) =
1

x

∫ x

0

ψn(t) (29)

Therefore:

1. For each n ≥ 1:

∫ +∞

1

dx
ψn(x)

x2+s
=

1

s 2n
+

1

(1− s) 3n
(30)

2. For each n:

1

(n− 1)!

∫ +∞

1

dx

∫ x

1
dtψ0(t)

(

ln(x
t
)
)n−1

x3+s
=

1

s(1− s) (2 + s)n
(31)
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Proof. Let’s denote the integral A(s) as following:

A(s) =

∫ +∞

1

dx
ψ0(x)

x2+s
(32)

We use the integration by parts to write the following:

A(s) =

∫ +∞

1

dx
ψ0(x)

x2+s
(33)

=

[

1

x2+s

∫ x

0

dxψ0(x)

]+∞

1

+ (2 + s)

∫ +∞

1

dx
ψ1(x)

x2+s
(34)

= −
∫ 1

0

dxψ0(x) + (2 + s)

∫ +∞

1

dx
ψ1(x)

x2+s
(35)

= −
∫ 1

0

dxψ0(x)− (2 + s)

∫ 1

0

dxψ1(x) + (2 + s)2
∫ +∞

1

dx
ψ2(x)

x2+s
(36)

... (37)

= −
n
∑

k=0

(2 + s)k
∫ 1

0

dxψk(x) + (2 + s)n+1

∫ +∞

1

dx
ψn+1(x)

x2+s
(38)

We could do the above integration by parts. Because the functions ψk
are continuous functions. We also can prove that the functions ψk are
non-negative and bounded as we can prove that for each k for each x > 0
that:

0 < ψk(x) ≤ 1

4
(39)

This can be proven by recurrence using the fact that for each x ≥ 0:

0 ≤ ψ0(x) = {x}
(

1− {x}
)

≤ 1

4
(40)

Now, we need to calculate the integrals Ik for k ≥ 0:

Ik =

∫ 1

0

dxψk(x) (41)

For x ∈ (0, 1), we have:

ψ0(x) = x− x2 (42)

And

ψ1(x) =
x

2
− x2

3
(43)

Therefore, we can write for each k for x ∈ (0, 1):

ψk(x) =
x

2k
− x2

3k
(44)

Therefore, for each k ≥ 1:

Ik =
1

2k+1
− 1

3k+1
(45)
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Therefore, we can conclude:

A(s) =
1

s(1− s)
+ (2 + s)n+1

[

∫ +∞

1

dx
ψn+1(x)

x2+s
−
(

1

s 2n+1
+

1

(1− s) 3n+1

)]

(46)

Since 2+ s 6= 0 and 3− s 6= 0, we conculde the result of our lemma. �
Let’s now prove the second point of the lemma. For n ≥ 1, we write

thanks to the change of the order of integration:

ψn(x) =
1

x (n− 1)!

∫ x

0

dtψ0(t)
(

ln(
x

t
)
)n−1

(47)

=
1

x (n− 1)!

∫ 1

0

dtψ0(t)
(

ln(
x

t
)
)n−1

+
1

x (n− 1)!

∫ x

1

dtψ0(t)
(

ln(
x

t
)
)n−1

(48)

And then

∫ +∞

1

dx
ψn(x)

x2+s
=

1

(n− 1)!

∫ +∞

1

dx

∫ 1

0
dtψ0(t)

(

ln(x
t
)
)n−1

x3+s
+

1

(n− 1)!

∫ +∞

1

dx

∫ x

1
dt ψ0(t)

(

ln(x
t
)
)n−1

x3+s
(49)

We calculate the first term and deduce the lemma result. We can also
change the order of integration and directly calculate the integral:

1

(n− 1)!

∫ +∞

1

dx

∫ x

1
dtψ0(t)

(

ln(x
t
)
)n−1

x3+s
=

1

(n− 1)!

∫ +∞

1

dt ψ0(t)

∫ +∞

t

dx

(

ln(x
t
)
)n−1

x3+s
(50)

=
1

(2 + s)n

∫ +∞

1

dt
ψ0(t)

t2+s
(51)

And we conclude using the lemma 1.1

Lemma 1.3. Let’s consider f a continuous function over [1,+∞). Let’s φ
be a non-null positive function such that fφ and φ are integrable functions

over [1,+∞) with:

0 <

∫ +∞

1

dxφ(x) < +∞ (52)

And

∫ +∞

1

dxφ(x) f(x) < +∞ (53)

Therefore, there exists a c ∈ (1,+∞) such that:

∫ +∞

1

dxφ(x) f(x) = f(c)

∫ +∞

1

dxφ(x) (54)
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Proof. This is just the Mean value theorem for integrals on [1,+∞). Let’s
define the real λ as following:

λ =

∫ +∞

1
dxφ(x) f(x)

∫ +∞

1
dx φ(x)

(55)

We have by construction that:

∫ +∞

1

dxφ(x)
(

f(x)− λ
)

= 0 (56)

Therefore, if for each x > 1, we have f(x) > λ, then,we will have:

∫ +∞

1

dxφ(x)
(

f(x)− λ
)

> 0 (57)

Which is a contradiction. We will reach a similar contradiction if we
assume f(x) < λ for each x > 1. Therefore, there exists c ∈ (1,+∞) such
that f(c) = λ. �

Lemma 1.4. Let’s consider two variables σ and τ such that 0 < σ ≤ 1
2
,

τ > 0 and s = σ+ iτ is a zeta zero. Let’s define the sequence of functions

ψ̃n such that ψ̃0(x) =
ψ0(x)

x1−2σ =
{x}
(

1−{x}
)

x1−2σ and for each n ≥ 1:

ψ̃n+1(x) =
1

x

∫ x

0

ψ̃n(t) (58)

Where (ψk) is the sequence of functions defined in the lemma 1.2. There-

fore:

1. For each n:

∫ +∞

1

dx
ψ̃n(x)

x2+s
=

1

(1− s) (1 + 2σ)n
+

1

s (2 + 2σ)n
(59)

Where s is the complex conjugate of s.

2. For each n:

1

(n− 1)!

∫ +∞

1

dx

∫ x

1
dt ψ̃0(t)

(

ln(x
t
)
)n−1

x3+s
=

1

s(1− s) (2 + s)n
(60)

Where s is the complex conjugate of s.

3. For each n:

∫ +∞

1

dx
cos(τ ln (x))

∫ x

1
dt ψ̃0(t)

(

ln(x
t
)
)n−1

x3+σ
=

1

c1−2σ
n

∫ +∞

1

dx
2 cos2( τ

2
ln (x))

∫ x

1
dtψ0(t)

(

ln(x
t
)
)n−1

x3+σ
(61)

− 1

c1−2σ

∫ +∞

1

dx

∫ x

1
dtψ0(t)

(

ln(x
t
)
)n−1

x3+σ
(62)

Where cn > 1 and c > 1 are real numbers.
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4. Let’s define the sequence zn as follows:

zn =
cos(α− βn) − cos(α+βn)

c1−2σ

cos(α− βn) − cos(α+βn)

c
1−2σ
n

(63)

Let’s assume α ∈ (0, π
2
) and β ∈ (0, π

2
). Let’s assume further that

the sequence (cn) converges to c but its terms are different from c
such that for each n ≥ 1, there exist an integer k ≥ n such that

ck 6= c. Therefore, we can always find an integer n such that zn < 0.

Proof. The first point can be proved simply by using integration by parts
exactly like the proof in the lemma 1.2. Let’s denote the integral Ã(s) as
following:

Ã(s) =

∫ +∞

1

dx
ψ̃0(x)

x2+s
(64)

Therefore we can write:

Ã(s) =

∫ +∞

1

dx
ψ̃0(x)

x2+s
(65)

=

[

1

x2+s

∫ x

0

dx ψ̃0(x)

]+∞

1

+ (2 + s)

∫ +∞

1

dx
ψ̃1(x)

x2+s
(66)

= −
∫ 1

0

dx ψ̃0(x) + (2 + s)

∫ +∞

1

dx
ψ̃1(x)

x2+s
(67)

= −
∫ 1

0

dx ψ̃0(x)− (2 + s)

∫ 1

0

dx ψ̃1(x) + (2 + s)2
∫ +∞

1

dx
ψ̃2(x)

x2+s
(68)

... (69)

= −
n
∑

k=0

(2 + s)k
∫ 1

0

dx ψ̃k(x) + (2 + s)n+1

∫ +∞

1

dx
ψ̃n+1(x)

x2+s
(70)

Since 0 < σ ≤ 1
2
, the functions ψ̃k are continuous functions, bounded and

also non-negative as for each k for each x ≥ 0 that:

0 ≤ ψ̃k(x) ≤ 1 (71)

To prove the point of the lemma, we need to calculate the integrals Ĩk for
k ≥ 0:

Ĩk =

∫ 1

0

dx ψ̃k(x) (72)

For x ∈ (0, 1), we have:

ψ̃0(x) = x2σ − x1+2σ (73)

And

ψ̃1(x) =
x2σ

1 + 2σ
− x1+2σ

2 + 2σ
(74)
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Therefore, we can write for each k for x ∈ (0, 1):

ψ̃k(x) =
x2σ

(1 + 2σ)k
− x1+2σ

(2 + 2σ)k
(75)

Therefore, for each k ≥ 1:

Ĩk =
1

(1 + 2σ)k+1
− 1

(2 + 2σ)k+1
(76)

Therefore after simplification:

Ã(s) =
1

s(1− s)
+ (2 + s)n+1

[

∫ +∞

1

dx
ψ̃n+1(x)

x2+s
−
(

1

(1− s) (1 + 2σ)n+1
+

1

s (2 + 2σ)n+1

)]

(77)

Since s is also a zeta zero. So from the lemma 1.1, we can write:

Ã(s) =

∫ +∞

1

dx
ψ0(x)

x2+s+1−2σ
=

∫ +∞

1

dx
ψ0(x)

x3−s
=

1

s(1− s)
(78)

Since 2 + s 6= 0, we conclude the first point of the lemma. �

The proof of the second point is also very similar to the proof of the
second point in the lemma 1.2. �

Let’s now prove the third point of the lemma. Let’s n ≥ 1. Write the
following:

∫ +∞

1

dx
cos(τ ln (x))

∫ x

1
dt ψ̃0(t)

(

ln(x
t
)
)n−1

x3+σ
=

∫ +∞

1

dx
2 cos2( τ

2
ln (x))

∫ x

1
dt ψ̃0(t)

(

ln(x
t
)
)n−1

x3+σ
(79)

−
∫ +∞

1

dx

∫ x

1
dt ψ̃0(t)

(

ln(x
t
)
)n−1

x3+σ
(80)

=

∫ +∞

1

dt ψ̃0(t)

∫ +∞

t

dx
2 cos2( τ

2
ln (x))

(

ln(x
t
)
)n−1

x3+σ
(81)

−
∫ +∞

1

dt ψ̃0(t)

∫ +∞

t

dx

(

ln(x
t
)
)n−1

x3+σ
(82)

=

∫ +∞

1

dt
ψ0(t)

t2+σ+1−2σ

∫ +∞

1

dx
2 cos2( τ

2
ln (tx))

(

ln(x)
)n−1

x3+σ
(83)

−
∫ +∞

1

dt
ψ0(t)

t2+σ+1−2σ

∫ +∞

1

dx

(

ln(x)
)n−1

x3+σ
(84)

=

∫ +∞

1

dt
ψ0(t)

t2+σ+1−2σ

∫ +∞

1

dx
2 cos2( τ

2
ln (tx))

(

ln(x)
)n−1

x3+σ
(85)

− (n− 1)!

(2 + σ)n

∫ +∞

1

dt
ψ0(t)

t2+σ+1−2σ
(86)

Since the functions t → ψ0(t)

t2+σ

∫ +∞

1
dx

2 cos2( τ

2
ln (tx))

(

ln(x)
)

n−1

x3+σ
and t →

ψ0(t)

t2+σ
are non-negative and integrable on [1,+∞), we apply the lemma
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1.3, to write the following:

∫ +∞

1

dx
cos(τ ln (x))

∫ x

1
dt ψ̃0(t)

(

ln(x
t
)
)n−1

x3+σ
=

1

c1−2σ
n

∫ +∞

1

dt
ψ0(t)

t2+σ

∫ +∞

1

dx
2 cos2( τ

2
ln (tx))

(

ln(x)
)n−1

x3+σ
(87)

− 1

c1−2σ

∫ +∞

1

dt
ψ0(t)

t2+σ

∫ +∞

1

dx

(

ln(x)
)n−1

x3+σ
(88)

Where cn > 1 and c > 1 are real numbers.
We change the order of integration back to the original form and con-

clude:

∫ +∞

1

dx
cos(τ ln (x))

∫ x

1
dt ψ̃0(t)

(

ln(x
t
)
)n−1

x3+σ
=

1

c1−2σ
n

∫ +∞

1

dx
2 cos2( τ

2
ln (x))

∫ x

1
dtψ0(t)

(

ln(x
t
)
)n−1

x3+σ
(89)

− 1

c1−2σ

∫ +∞

1

dx

∫ x

1
dtψ0(t)

(

ln(x
t
)
)n−1

x3+σ
(90)

�

Let’s prove now the last point of the lemma. We proceed by contra-
diction. Therefore for each n ≥ 1:

zn =
cos(α− βn)− cos(α+βn)

c1−2σ

cos(α− βn)− cos(α+βn)

c
1−2σ
n

> 0 (91)

Therefore

(

cos(α− βn)− cos(α+ βn)

c1−2σ

)(

cos(α− βn) +
cos(α+ βn)

c1−2σ
n

)

> 0 (92)

Therefore

An cos
2(βn)− Cn sin(βn) cos(βn) +Bn > 0 (93)

Where

An =
[

1− 2 sin2(α)
][

1− 1

ccn

]

+
[ 1

cn
− 1

c

]

(94)

Bn = sin2(α)
[

(1− 1

ccn
)− (

1

cn
− 1

c
)
]

(95)

Cn = sin(2α)
[

1 +
1

ccn

]

(96)

• Case sin(βn) cos(βn) > 0 . Therefore for each n ≥ 1:

(

A2
n +C2

n

)

cos4(βn) +
(

2AnBn −C2
n

)

cos2(βn) +B2
n > 0 (97)

So we calculate the delta of the second degree equation above:

∆n = C2
n

(

C2
n − 4Bn

(

An +Bn
)

)

= sin2(2α)
( 1

cn
− 1

c

)2

> 0 (98)
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Since the assumption on the sequence (cn) and c, we have the delta
∆n > 0. Therefore, the two different solutions of the equation(97)
are xn1 and xn2 :

xn1 =
C2
n − 2AnBn −

√
∆n

2
(

A2
n + C2

n

) (99)

xn2 =
C2
n − 2AnBn +

√
∆n

2
(

A2
n + C2

n

) > xn1 (100)

We also have both xn1 and xn2 are in the interval (0, 1). Therefore
for the equation (97) to be verified for each n, we need cos2(βn)
to be bigger than xn2 or smaller than xn1 . Since α ∈ (0, π

2
), β ∈

(0, π
2
), the sequence (cn) terms and c are different, we have xn1 < xn2

and therefore we can always find n0 such cos2(βn0) ∈ (xn0

1 , xn0

2 ).
And therefore

(

A2
n0

+C2
n0

)

cos4(βn0)+
(

2An0
Bn0

−C2
n0

)

cos2(βn0)+
B2
n0
< 0. Which is a contradiction.

• Case sin(βn) cos(βn) < 0. The same analysis can be done here.

This ends the proof of our lemma. �

Lemma 1.5. Let’s consider two variables σ and τ such that 0 < σ < 1
and τ > 0 such that s = σ + iτ is a zeta zero. Therefore:

σ =
1

2
(101)

Proof. Let’s suppose that σ < 1
2
. From the lemmas 1.2 and 1.4, we can

write the following for n ≥ 1:

1

(n− 1)!

∫ +∞

1

dx

∫ x

1
dt ψ0(t)

(

ln(x
t
)
)n−1

x3+s
=

1

s(1− s) (2 + s)n
(102)

And

1

(n− 1)!

∫ +∞

1

dx

∫ x

1
dt ψ̃0(t)

(

ln(x
t
)
)n−1

x3+s
=

1

s(1− s) (2 + s)n
(103)

Where s is the complex conjugate of s. And

∫ +∞

1

dx
cos(τ ln (x))

∫ x

1
dt ψ̃0(t)

(

ln(x
t
)
)n−1

x3+σ
=

1

c1−2σ
n

∫ +∞

1

dx
2 cos2( τ

2
ln (x))

∫ x

1
dtψ0(t)

(

ln(x
t
)
)n−1

x3+σ
(104)

− 1

c1−2σ

∫ +∞

1

dx

∫ x

1
dtψ0(t)

(

ln(x
t
)
)n−1

x3+σ
(105)

Where cn > 1 and c > 1 are real numbers. We also can write:
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∫ +∞

1

dx
cos(τ ln (x))

∫ x

1
dtψ0(t)

(

ln(x
t
)
)n−1

x3+σ
=

∫ +∞

1

dx
2 cos2( τ

2
ln (x))

∫ x

1
dt ψ0(t)

(

ln(x
t
)
)n−1

x3+σ
(106)

−
∫ +∞

1

dx

∫ x

1
dt ψ0(t)

(

ln(x
t
)
)n−1

x3+σ
(107)

Let’s write the following:

1

s(1− s)
=

e−iα

‖s(1− s)‖ (108)

1

2 + s
=

e−iβ

‖2 + s‖ (109)

Where α ∈ (0, π) and β ∈ (0, π). Without loss of generality, we can
assume α and β are in (0, π

2
) since 0 < σ < 1

2
and τ > 0.

Therefore, we can write:

1

(2 + s)n
=

e−iβn

‖2 + s‖n (110)

Therefore, when we combine the equations (102-107) and get the fol-
lowing:

Xn =
1

(n− 1)!

∫ +∞

1

dx
2 cos2( τ

2
ln (x))

∫ x

1
dtψ0(t)

(

ln(x
t
)
)n−1

x3+σ
(111)

=
1

‖s(1− s)‖‖2 + s‖n
cos(α− βn)− cos(α+βn)

c1−2σ

1

c
1−2σ
n

− 1
c1−2σ

(112)

And

Yn =
1

(n− 1)!

∫ +∞

1

dx

∫ x

1
dtψ0(t)

(

ln(x
t
)
)n−1

x3+σ
(113)

=
1

‖s(1− s)‖‖2 + s‖n
cos(α− βn)− cos(α+βn)

c
1−2σ
n

1

c
1−2σ
n

− 1
c1−2σ

(114)

We can also calculate Xn and Yn in another way as follows:

Xn =
U0

(2 + σ)n
+

cos(α+ βn)

‖s(1− s)‖‖2 + s‖n (115)

And

Yn =
U0

(2 + σ)n
(116)

Where

U0 =

∫ +∞

1

dt
ψ0(t)

t2+σ
(117)

The sequence ( 1
cn

)n≥1 is bounded. From the equations (113) and

(116), we deduce that the limit of ( 1
cn

)n≥1 is 1
c
< 1. We will distinguish

between two cases.
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1. Case 1: There exists n0 ∈ N such that for each n ≥ n0: cn = c. We
have from the equations (111-116) that for n ≥ n0:

Xn
Yn

= 1 +
(2 + σ)n cos(α+ βn)

U0‖s(1− s)‖‖2 + s‖n =
cos(α− βn)− cos(α+βn)

c1−2σ

cos(α− βn)− cos(α+βn)

c
1−2σ
n

(118)

Therefore since cn = c, we can write:

1 +
(2 + σ)n cos(α+ βn)

U0‖s(1− s)‖‖2 + s‖n =
cos(α− βn) − cos(α+βn)

c1−2σ

cos(α− βn) − cos(α+βn)

c1−2σ

= 1 (119)

Since σ > 0, therefore for each n ≥ n0:

cos(α+ βn) = cos(α) cos(βn)− sin(α) sin(βn) = 0 (120)

Since β ∈ (0, π
2
), therefore

sin(α) = cos(α) = 0 (121)

Which is a contradiction.

2. Case 2: For each n0 ∈ N there exists n ≥ n0: cn 6= c.

We have from the equation (118):

Xn
Yn

=
cos(α− βn) − cos(α+βn)

c1−2σ

cos(α− βn) − cos(α+βn)

c
1−2σ
n

(122)

Since 0 < σ < 1
2

and τ > 0, we have α ∈ (0, π
2
), β ∈ (0, π

2
),

sin(α) 6= 0 and cos(α) 6= 0. And since the sequence (cn) terms
and c are different, from the lemma 1.4, we can find n0 such that
cos(α− βn0)− cos(α+βn0)

c
1−2σ
n0

> 0 and cos(α− βn0)− cos(α+βn0)

c1−2σ < 0 or

cos(α− βn0)− cos(α+βn0)

c
1−2σ
n0

< 0 and cos(α− βn0)− cos(α+βn0)

c1−2σ > 0.

Therefore, in such case, we will have
Xn0

Yn0

< 0. Which means either

Xn0
< 0 or Yn0

< 0. Which is a contradiction.

We can also write the sequence (Xn

Yn
) as follows:

Xn
Yn

=
A cos(βn) +B sin(βn)

An cos(βn) +Bn sin(βn)
(123)

Where the sequences (An) and (Bn) converge respectively to the
limits A and B.

An = cos(α)
(

1− 1

c1−2σ
n

)

, Bn = sin(α)
(

1 +
1

c1−2σ
n

)

(124)

A = cos(α)
(

1− 1

c1−2σ

)

, B = sin(α)
(

1 +
1

c1−2σ

)

(125)

From the equation (118), we deduce that the sequence (Xn

Yn
) con-

verges to 1. And therefore the sequence ( A cos(βn)+B sin(βn)
An cos(βn)+Bn sin(βn)

) con-

verges to 1. But sin(α) 6= 0 and cos(α) 6= 0, the sequence ( A cos(βn)+B sin(βn)
An cos(βn)+Bn sin(βn)

)
cannot converge. Hence the contradiction.
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In constrast, in case α = 0 or α = π
2
, we will have Xn

Yn
=

1− 1

c
1−2σ

1− 1

c
1−2σ
n

always

non-negative. And since sin(α) = τ(1−2σ)
(

σ(1−σ)+τ2
)2

+(τ(1−2σ))2
< 1, α cannot

be π
2
. Therefore α should be zero and:

σ =
1

2
(126)

In case of σ > 1
2
. We work with 1− s that is also a zeta zero and here

we have 1−σ < 1
2
. And we will reach the same contradiction by following

the same steps above. Therefore, σ can only be 1
2
. This ends the proof of

the Riemann Hypothesis. �.

1.4 Conclusion

We saw that if s is a zeta zero, then real part ℜ(s) can only be 1
2
. Therefore

the Riemann’s Hypothesis is true: The non-trivial zeros of ζ(s) have real

part equal to 1
2
. In the next article, we will try to apply the same method

to prove the Generalized Riemann Hypothesis (GRH).
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