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In order to enable on-purpose robotic impact tasks, predicting joint-velocity jumps is essential to enforce controller feasibility and hardware integrity. We observe a considerable prediction error of a commonly-used approach in robotics compared against 250 benchmark experiments with the Panda manipulator. We reduce the average prediction error by 81.98% as follows: First, we focus on task-space equations without inverting the ill-conditioned joint-space inertia matrix. Second, before the impact event, we compute the equivalent inertial properties of the end-effector tip considering that a high-gains (stiff) kinematiccontrolled manipulator behaves like a composite-rigid body.

I. INTRODUCTION

W E aim at enabling robots to impact with the highest feasible velocity 1 . An impact-aware robot controller must embed predicted post-impact joint velocities to prevent violation of hardware limitations [START_REF] Wang | Impact-friendly robust control design with task-space quadratic optimization[END_REF]. To our best knowledge, existing prediction approaches are not well-assessed with a rich ground-truth, e.g., based on large impact-data collected from high-gain joint-velocity (or -position) controlled robots, we refer to as kinematic controlled robots.

The methodology proposed in the late 1980s [START_REF] Zheng | Mathematical modeling of a robot collision with its environment[END_REF] predicts the impact-induced joint-velocity jumps as the product of the inverted joint-space inertia matrix (JSIM) and the jointspace impulse, see also [START_REF] Grizzle | Models, feedback control, and open problems of 3d bipedal robotic walking[END_REF], [START_REF] Siciliano | Springer handbook of robotics[END_REF]. Unfortunately, this prediction scheme poorly matches the measurements collected from our benchmark experiments, see Fig. 1. We summarize three reasons that potentially explain such discrepancies: R1) Inaccurate impulse calculation: accurate task-space impulse calculation 2 is essential for solving the joint velocity jumps from momentum conservation; i.e., the momentum change is equal to the impulse. The classical approach relies on inaccurate calculation [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF]Fig. 9], which overestimates the normal impulse and does not account for contact friction effects [6, Eq. 4.8], [START_REF] Jia | Analysis and computation of two body impact in three dimensions[END_REF]. R2) Ill-conditioned JSIM: The computation is sensitive to the impulse-calculation error since it inverts the ill-conditioned JSIM. Featherstone [START_REF] Featherstone | Rigid body dynamics algorithms[END_REF] summarized that the condition number Figure 1: The predictions following [START_REF] Zheng | Mathematical modeling of a robot collision with its environment[END_REF] (green polygon) are substantially different from the measured joint velocity jumps ∆ q (red), which is defined in Sec. V-A. Computation without modeling high-stiffness aspects [START_REF] Lankarani | A poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematic chains[END_REF] also leads to significant errors (cyan). Our proposed prediction has the smallest error (dashed-blue).

of the JSIM grows within the range of O(N ) and O(N 4 ) for a serial robotic manipulator with N being the number of revolute joints. Therefore, the inverted JSIM amplifies errors associated with the impulse [START_REF] Featherstone | Rigid body dynamics algorithms[END_REF]Chapter 10.1]. R3) Unmodeled joint-stiffness behavior: Standard robot manipulators are mechanically stiff (not backdrivable) and kinematic-controlled to precisely track reference trajectories [4, Chapter 9].

The joint velocity jump prediction in [START_REF] Zheng | Mathematical modeling of a robot collision with its environment[END_REF], [START_REF] Grizzle | Models, feedback control, and open problems of 3d bipedal robotic walking[END_REF], [START_REF] Siciliano | Springer handbook of robotics[END_REF] does not account for either mechanical non-backdrivability or high-gain PD control (quasi-locked joints) in drivable ones. Both induces rather light-flexibilities of the joints as acknowledged in [START_REF] Youcef-Toumi | Impact and force control: Modeling and experiments[END_REF], [START_REF] Ferretti | Impact modeling and control for industrial manipulators[END_REF], and recently in [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF]Fig. 9].

Since three-dimensional impact dynamics models are not well-assessed for articulated robots [START_REF] Stronge | Impact mechanics[END_REF], [START_REF] Jia | Analysis and computation of two body impact in three dimensions[END_REF], we use the measured impulses, or compute the normal impulse with our improved calculation [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF] when the tangential impulse is negligible (R1). We formulate the momentum conservation in the task-space. Hence, our approach does not involve the jointspace formulation relying on the JSIM (R2). We modify the task-space impulse-to-velocity mapping considering the joints to be stiff at impact and therefore behaving as a compositerigid body (CRB) (R3), yet at a time flexible to allow potential post-impact contact mode as sliding/sticking.

We conducted 250 impact experiments with the seven degrees of freedom Panda manipulator for evaluation. The dataset comprises different impact configurations, various normal and tangential contact velocities. We repeat each condition ten times to eliminate the outliers. The proposed prediction:

• outperforms the classical approach, reducing the average prediction error by 81.98%; • is analytical, i.e., does not require the measured impulse.

The average prediction error remains on the same level whether the impulse is calculated or measured.

Interested readers can reproduce our results with the postprocessed data and the MATLAB scripts 3 .

II. RELATED WORK Impacts affect the robot joint velocities almost instantly [START_REF] Zheng | Mathematical modeling of a robot collision with its environment[END_REF]. Preemptive actions are necessary to avoid violating the hardware-dependent joint velocity bounds. Unlike specifying pre-and post-impact velocity references in joint space [START_REF] Rijnen | Control of humanoid robot motions with impacts: Numerical experiments with reference spreading control[END_REF] or planning impacts carefully [START_REF] Stouraitis | Multi-mode trajectory optimization for impact-aware manipulation[END_REF], it is generally more convenient to formulate quadratic optimization problems in taskspace to meet multiple control objectives and constraints [START_REF] Bouyarmane | Quadratic programming for multirobot and task-space force control[END_REF]. We preliminarily enabled on-purpose impacts to second order dynamic QP control schemes [START_REF] Wang | Impact-friendly robust control design with task-space quadratic optimization[END_REF], [START_REF] Wang | Impact-aware task-space quadratic-programming control[END_REF].

Most of the impact dynamics models focus on the velocity jumps in Cartesian space [START_REF] Stronge | Impact mechanics[END_REF], [START_REF] Jia | Batting an in-flight object to the target[END_REF], [START_REF] Faik | Modeling of impact dynamics: A literature survey[END_REF], e.g., batting a flying object [START_REF] Jia | Batting an in-flight object to the target[END_REF]. Solving the joint velocity jumps merely serves as an intermediate step concerning the momentum conservation in joint-space [START_REF] Zheng | Mathematical modeling of a robot collision with its environment[END_REF], [START_REF] Lankarani | A poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematic chains[END_REF], [START_REF] Khulief | Modeling of impact in multibody systems: an overview[END_REF]. Our literature review revealed that the algebraic equations for the joint-space velocity jumps proposed by [START_REF] Zheng | Mathematical modeling of a robot collision with its environment[END_REF] more than 30 years ago are still considered state-of-the-art, see e.g., the robotics textbook [START_REF] Siciliano | Springer handbook of robotics[END_REF] and the survey by [START_REF] Grizzle | Models, feedback control, and open problems of 3d bipedal robotic walking[END_REF]. They are used recently in [START_REF] Aouaj | Predicting the post-impact velocity of a robotic arm via rigid multibody models: an experimental study[END_REF], to extract the rigid impact component in the post-impact joint-velocity oscillatory-behavior (a corotational impact approach).

However, to the authors' best knowledge, the prediction of joint-space velocity jumps has not been confronted to groundtruth experiments with manipulators that are kinematiccontrolled. Also, our former QP controller extension was assessed in simulation only [START_REF] Wang | Impact-friendly robust control design with task-space quadratic optimization[END_REF].

Hereafter, we list some issues of the usual computation: a) Impulse calculation: Integrating an impact dynamics model into QP controllers is not trivial. Formulating optimization problems requires closed-form constraints and objectives that are not possible with friction. There exist analytical solutions only for the planar impacts [START_REF] Khulief | Modeling of impact in multibody systems: an overview[END_REF]. When the variables are constrained on a plane, the analytical solution exists because the post-impact contact mode is limited to rebounce, sliding, reverse sliding, and sticking [START_REF] Stronge | Impact mechanics[END_REF], [START_REF] Khulief | Modeling of impact in multibody systems: an overview[END_REF], [START_REF] Jia | Batting an in-flight object to the target[END_REF]. Without a numerical process, it is not possible to determine the tangential velocities for three-dimensional impacts [START_REF] Stronge | Impact mechanics[END_REF], [START_REF] Jia | Analysis and computation of two body impact in three dimensions[END_REF].

b) Ill-conditioning issue: The principle of momentum conservation is often specified in joint space, relying on the joint-space inertia matrix (JSIM). The JSIM inversion [START_REF] Zheng | Mathematical modeling of a robot collision with its environment[END_REF] amplifies the impulse calculation errors [START_REF] Featherstone | Rigid body dynamics algorithms[END_REF]Chapter 10.1] due to the well-known ill-conditioning issue of the JSIM [START_REF] Featherstone | An empirical study of the joint space inertia matrix[END_REF]. Real-robot experiments we conducted proved that incorporating the JSIM inversion for dynamically consistent null-space projections does not significantly show, in practice, theoreticalconceptual superiority [START_REF] Dietrich | An overview of null space projections for redundant, torque-controlled robots[END_REF], [START_REF] Fonseca | Task-space admittance controller with adaptive inertia matrix conditioning[END_REF]. That is why a recent line of research proposed alternative orthogonal null-space projectors that do not rely on the inverted JSIM [START_REF] Dehio | Enabling impedance-based physical human-multi-robot collaboration: Experiments with four torque-controlled manipulators[END_REF].

c) Unmodeled joint-stiffness behavior: Early works since the 1990s focus on contact-force modeling for one degreeof-freedom set-up [START_REF] Youcef-Toumi | Impact and force control: Modeling and experiments[END_REF], or control designs to damp the postimpact oscillations [START_REF] Ferretti | Impact modeling and control for industrial manipulators[END_REF], [START_REF] Xu | Experimental study of contact transition control incorporating joint acceleration feedback[END_REF] using compliant models. Textbook impact mechanics usually assume impacts between two free-flying objects [START_REF] Stronge | Impact mechanics[END_REF], [START_REF] Jia | Analysis and computation of two body impact in three dimensions[END_REF]. Unfortunately, most existing jointvelocity-jump predictions do not explicitly account for the joint stiffness at impact, or even consider under-actuated pendulums [START_REF] Lankarani | A poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematic chains[END_REF], [START_REF] Ganguly | Contact-space resolution model for a physically consistent view of simultaneous collisions in articulated-body systems: theory and experimental results[END_REF]. We preliminarily concluded that the CRB assumption is essential for task-space velocity-to-impulse calculation for a kinematic-controlled robot [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF]. Otherwise, merely fulfilling the joint motion constraint [START_REF] Lankarani | A poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematic chains[END_REF], [START_REF] Khulief | Modeling of impact in multibody systems: an overview[END_REF] underestimates the equivalent momentum at the manipulator contact point [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF]Fig. 9]. We therefore adopt the CRB assumption from [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF] for the task-space impulse-to-velocity mapping.

III. BACKGROUND

The well-known equations of motion (EOM) for a fixedbase manipulator with D degrees of freedom are given as M q + N = J f + τ , where N ∈ R D gathers the centrifugal, Coriolis, and gravitational forces, τ ∈ R D denotes the joint actuation torques and f ∈ R 3 denotes the external force applied on a contact point. We denote the positive-definite JSIM as M ∈ R D×D , and the translation (linear) part of the contact point Jacobian as J ∈ R 3×D .

Problem statement: How to accurately predict the impactinduced joint velocity jumps ∆ q * , given prior knowledge of the (pre-)impact robot configuration, i.e., (i) the joint positions q, velocities q, (ii) the equations of motion, (iii) the contact point location with its associated J and (iv) an impact dynamics model that predicts the task-space impulse ι ∈ R 3 ι = Impact dynamics model(q, ∆v),

where we compute the task-space velocity jump ∆v ∈ R 3 based on the coefficient of restitution c r ∈ [0, 1] and the preimpact velocity v -:

∆v = -(1 + c r )v -.
We assume that:

1) The impact force is dominant relatively to other forces. Consequently, generalized forces such as the centrifugal forces or motor command torques during impact are negligible [6, Chapter 8.1.1].

2) The contact area is tiny compared to the robot dimensions such that a point contact model is appropriate [START_REF] Chatterjee | A new algebraic rigid-body collision law based on impulse space considerations[END_REF].

3) The impact induces significant impulsive contact forces and negligible contact moments [START_REF] Stronge | Impact mechanics[END_REF], [START_REF] Chatterjee | A new algebraic rigid-body collision law based on impulse space considerations[END_REF]. 4) The robot manipulator is fully actuated under kinematic control with high gains. 5) The manipulator has a minimum of three degrees of freedom. It impacts at the end-effector, and the joint configuration at impact is not in a singular configuration. In the rest of the paper, we represent the contact velocity v and the impulse ι in the contact frame F p . The origin of F p locates at the contact point. The z-axis aligns with the impact normal. The x-axis and y-axis span the tangential plane.

Remark 3.1: We handle velocity and wrench transforms in line with the geometric approach stated in [START_REF] Murray | A mathematical introduction to robotic manipulation[END_REF]. The notation Ad is the abbreviation of adjoint transform [27, Lemma 2.13 on page 56], which is associated with rigid body motion g ∈ SE(3). We use Ad g to transform twists from one coordinate to another. For instance, we transform the wrench W p ∈ R 6 measured from the contact point frame F p to the centroidal frame F c :

W c = Ad gpc W p = Ad g -1 cp W p = R cp 0 p cp R cp R cp W p .

A. The usual approach

Integrating the EOM over the impact duration δt leads to the impulse-momentum conservation in joint space:

M ∆ q = J ι (2)
where ι ∈ R 3 is δt 0 f dt. We have ∆τ = 0, ∆N = 0 due to assumption 1. The usual approach [START_REF] Zheng | Mathematical modeling of a robot collision with its environment[END_REF], [START_REF] Grizzle | Models, feedback control, and open problems of 3d bipedal robotic walking[END_REF], [START_REF] Siciliano | Springer handbook of robotics[END_REF] predicts ∆ q by left multiplying (2) with M -1 :

∆ q = M -1 J ι. ( 3 
)
which is the product of M -1 and the joint-space impulse J ι.

The impulse ι in (3) is unknown. Left multiplying (3) by J yields:

J∆ q = ∆v = JM -1 J ι, (4) 
where the product JM -1 J is positive-definite and invertible due to assumption 5. The classical approach predicts the taskspace impulse as [START_REF] Zheng | Mathematical modeling of a robot collision with its environment[END_REF], [START_REF] Grizzle | Models, feedback control, and open problems of 3d bipedal robotic walking[END_REF], [START_REF] Siciliano | Springer handbook of robotics[END_REF]:

ι c = (JM -1 J ) -1 ∆v. (5) 
Substituting the calculated impulse ( 5) into (3), the predicted joint velocity jump is:

∆ q * c = M -1 J ι c = M -1 J (JM -1 J ) -1 ∆v. ( 6 
)
which is equivalently written in a weighted least-squares form:

∆ q * c = arg min ∆ q J∆ q -∆v 2 M . (7) 

B. The inaccurate impulse issue

We showed in our earlier work [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF]Fig. 9] that the impulse calculation ( 5) is inaccurate as it overestimates the normal impulse ι n . Even more problematic, the calculation (5) does not fulfill Coulomb's friction cone since it does not take the friction coefficient µ into account.

Example 1: When the impact is frictionless µ = 0, the tangential impulse is zero [7, Sec. 2.4]. Given the joint positions q corresponding to the impact configurations in Fig. 2(a), 2(c), 2(e) and the coefficient of restitution c r = 0 and µ = 0, equation (5) predicts:

ι 1 =   0.4301 -0.2018 1.0993   ι 2 =   0.2783 0.4041 1.3776   ι 3 =   0.4952 -0.9224 2.1325   . (8)
where the reference contact velocity expressed in the endeffector coordinates is: [0, 0, 0.18] m/s. It is obvious that the tangential impulses in [START_REF] Featherstone | Rigid body dynamics algorithms[END_REF] do not match µ = 0.

C. The ill-conditioning issue

Implementing the JSIM inversion in practice leads to critical numerical issues. The inversion amplifies errors of ι in 

D. Unmodeled stiffness issue

We clarified in our earlier work that the impulse calculation is not accurate without considering stiffness behavior [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF]. However, the classical approach (7) merely imposes the joint motion constraint J∆ q = ∆v ⇔ J∆ q -∆v = 0, [START_REF] Ferretti | Impact modeling and control for industrial manipulators[END_REF] without modifying the task-space impulse-to-velocity mapping:

∆v = JM -1 J ι, (11) 
which is embeded in the intermediate step [START_REF] Siciliano | Springer handbook of robotics[END_REF]. Given the same task-space impulse, (11) predicts the same contact velocity jump for (1) a high-gain joint-position-controlled robot, and

(2) a compliant pure joint-torque-controlled robot.

IV. NOVEL PREDICTION OF JOINT VELOCITY JUMPS

In response to the above issues, we (i) adopt the improved impulse calculation relying on the CRB assumption [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF], see Sec. IV-A; (ii) avoid the JSIM inversion by solving ∆ q from momentum conservation equations in the task-space, see Sec. IV-B; and (iii) modify the task-space impulse-to-velocity mapping assuming the robot is a composite-rigid body prior to the impact, see Sec. IV-C.

A. Impulse calculation

We calculate the normal impulse ι n ∈ R [5, Eq. 32] as:

ι n = -(1 + c r ) v - n n W n , (12) 
where n ∈ R 3 is the surface normal at impact, W ∈ R 3×3 is the widely applied IIM in the impact dynamics literature [START_REF] Stronge | Impact mechanics[END_REF], [START_REF] Jia | Analysis and computation of two body impact in three dimensions[END_REF], [START_REF] Khulief | Modeling of impact in multibody systems: an overview[END_REF], [START_REF] Jia | Batting an in-flight object to the target[END_REF]. We derive two variants of IIM in Sec. IV-C.

B. Momentum conservation in the task-space

Given the equivalent inertia matrix I eq ∈ R 6×6 , the Newton-Euler's equations at the contact point are [27, Eq. 4.16][8, Eq. 2.68]:

I eq v ẇ + v w × * I eq v w = f m , (13) 
where w ∈ R 3 is the rotational velocity, m ∈ R 3 is the rotational moment, and we adopt the six-dimensional cross product × * [START_REF] Featherstone | Rigid body dynamics algorithms[END_REF]. Integrating (13) over the impact duration δt, and neglecting the centrifugal and Coriolis forces concerning assumption 1, yields

I eq ∆v ∆w = ι 0 , (14) 
where δt 0 mdt = 0 (assumption 3). Define W as the 3 × 3 corner matrix of I eq -1 , we left-multiply I eq -1 to ( 14):

∆v = W ι. ( 15 
)
Substituting the joint motion constraint (10) into (15) yields

J∆ q = W ι. (16) 
Now, we obtain ∆ q * in a least-squares form

∆ q * = arg min ∆ q J∆ q -W ι 2 = J (JJ ) -1 W ι, (17) 
which does not rely on the critical JSIM inversion.

C. Imposing the composite-rigid-body assumption

We compute the equivalent inertia matrix I eq at the contact point based on the CRB assumption. Defining the centroidal frame F c between the inertial frame F O and the contact frame F p , the body velocity4 V Op ∈ R 6 associated with the rigid motion g Op (t) ∈ SE(3) writes [27, Proposition 2.15]:

V Op = Ad -1 gcp V Oc + V cp , (18) 
where V cp is the relative velocity [START_REF] Orin | Centroidal dynamics of a humanoid robot[END_REF]. According to the CRB assumption, we impose zero relative velocity V cp = 0. Thus, we approximate:

∆V Op ≈ Ad -1 gcp ∆V Oc ( 19 
)
where Ad -1 gcp transforms V Oc from F c to F p . Given the centroidal inertia [START_REF] Orin | Centroidal dynamics of a humanoid robot[END_REF] crb I ∈ R 6×6 , the centroidal momentum is:

crb I∆V Oc = Ad g -1 cp ι 0 , where Ad g -1 cp ∈ R 6×6 transforms ι 0 from F p to F c . Substituting ∆V Oc = crb I -1 Ad g -1 cp ι 0 into (19), we have ∆V Op ≈ Ad -1 gcp crb I -1 Ad g -1 cp ι 0 .
The linear part of V Op is the contact velocity v in its body coordinates 5 v Op ∈ R 3 . Thus, we extract the linear part (the upper-left 3 × 3 matrix) of

Ad -1 gcp crb I -1 Ad g -1 cp = R cp -R cp p cp 0 R cp 1 m 1 3×3 0 0 I -1 R cp 0 p cp R cp R cp to have the IIM W crb ∈ R 3×3 : ∆v Op = ( 1 m 1 3×3 -R cp p cp I -1 p cp R cp ) Wcrb ι, (20) 
where I ∈ R 3×3 is the CRB moment of inertia, and R cp ∈ R 3×3 , p cp ∈ R 3 are the rotation and translation respectively, between the COM and the contact point. The skew-symmetric matrix p cp ∈ R 3×3 represents the cross product as matrix multiplication.

We calculate ι * crb by substituting W = W crb into [START_REF] Rijnen | Control of humanoid robot motions with impacts: Numerical experiments with reference spreading control[END_REF]. Then we predict ∆ q * crb by substituting both ι = ι * crb and W = W crb into (17):

∆ q * crb = arg min ∆ q J∆ q -W crb ι * crb 2 = J (JJ ) -1 W crb ι * crb . (21 
) Other models relying on joint-space (generalized) momentum conservation [START_REF] Lankarani | A poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematic chains[END_REF], [START_REF] Khulief | Modeling of impact in multibody systems: an overview[END_REF] derive the IIM without the CRB assumption:

J∆ q = JM -1 J Wgm ι, (22) 
which happens to be the same as the intermediate step ( 4) of the classical approach.

For comparison, we substitute W = W gm into (12) for ι * gm . Note that ι * gm is different from ι c , see [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF]Fig. 9]. Then, we substitute W = W gm and ι = ι * gm into [START_REF] Faik | Modeling of impact dynamics: A literature survey[END_REF] to obtain another prediction:

∆ q * gm = arg min ∆ q J∆ q -W gm ι * gm 2 = J (JJ ) -1 W gm ι * gm .
(23) We refer to ∆ q * gm as the generalized-momentum solution.

V. DATA ACQUISITION

We collected a large amount of impact data with the FrankaEmika Panda robot in order to thoroughly evaluate and compare the three predictions ∆ q * c , ∆ q * crb , ∆ q * gm . Specifying the contact velocities in the inertial frame F O , we conducted two types of impact experiments: 1) Commanding v x = v y = 0 m/s, the robot end-effector impacted with three different joint postures shown in Fig. 2(a), 2(c), 2(e) and 5 reference normal contact velocities: v n = 0.08, 0.10, 0.12, 0.15, 0.18 m/s. 2) Commanding the normal contact velocity v n = 0.12 m/s, the robot applied an increasing tangential velocity v y = 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12 m/s with the end-effector while keeping v x = 0 m/s. When the impact took place, the joint postures in all the situations were close to Fig. 2(a).

Repeating each configuration ten times, we collected 150 experiments in the first case and another 100 experiments in the second case 6 . We compute ∆ q * c , ∆ q * crb , ∆ q * gm utilizing the mean measurement q • , q• of the ten repetitions in each configuration 7 , and compared to the corresponding mean measurement ∆ q• . The q • , q• , and ∆ q• were consistent within the repetitions. The standard deviation of q • , q• are 0.000954 rad and 0.0042 rad/s, respectively. The standard deviation of measured ∆ q• is higher, yet still small, see Fig. 9.

We measured the ground-truth impulse with an ATI-mini45 force-torque sensor. It can capture the impact dynamics with a sampling rate of 25000 Hz without low-pass filtering. We apply the average measured impulse from ten identical experiments to remove the random effects.

The friction coefficient for all experiments is µ = 0.1123. The impulse ι fulfills Coulomb's friction cone [START_REF] Stronge | Impact mechanics[END_REF], [7, Eq. 4.8]:

ι 2 x + ι 2 y ≤ µι z . ( 24 
)
Regardless of the joint configurations or contact velocities, the impact duration was about 15 ms on average, and 25 ms at maximum for the Panda robot [5, Fig. 6]. The control cycle was 1 ms. Upon contact detection, the controller immediately pulled back the end-effector along the contact normal. 6 We presented the contact-force profiles of the 150 experiments in our earlier work [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF] for normal impulse calculation. In this paper, we present the joint velocity jumps ∆ q collected from the same 150 experiments. The data of the other 100 experiments have been specifically collected for this article. 7 We apply the Panda robot model documented at https://github.com/ jrl-umi3218/mc panda.

A. Measuring the joint velocity jumps

The impact-detection time is 3 to 5 ms by thresholding the joint torque error [5, Sec. VI]. In order to measure the joint velocity jumps ∆ q• , we search for in a conservative time window, covering 5 ms before and 20 ms after the impact detection; see Fig. 3.

Figure 3: For impact configuration in Fig. 2(a), we plot the measured (redsolid) and desired joint velocities (blue-solid) before and after the impact detection (black-dashed). Please note the correspondence with joint 3 in Fig. 2(b). The prior knowledge of the impact duration δt is important. Otherwise, we could find a different ∆ q• in a larger time interval. Due to the space limit, we document the same plot for the other joints online: https://gite.lirmm.fr/yuquan/fidynamics/-/wikis/Impact-Example-One.

We plot the mean of the measured ∆ q• in Fig. 8. Given the increasing reference normal contact velocities 0.08, 0.10, 0.12, 0.15, 0.18 m/s, the magnitude of ∆ q• i for i = 1 . . . , D increases without changing the sign (jump direction).

B. Prediction error definitions

We define the absolute prediction error e ∆ q ∈ R 7 as:

e ∆ q * = ∆ q * -∆ q• , (25) 
We plot the predictions: ∆ q * c (6), ∆ q * crb (21), and ∆ q * gm (23), in Fig. 10, Fig. 11, and Fig. 12, respectively. To compare the different options by a scalar measure, we define the average prediction error ē∆ q ∈ R:

ē∆ q = 1 D D i=1 ∆ qi -∆ q• i . (26) 

VI. COMPARISON RESULTS AND DISCUSSION

The first set of experiments reveal that:

• Given the average prediction error (26), our proposed prediction ∆ q * crb outperforms ∆ q * c by 81.98%. We list the numeric values in Table . I and plot them in Fig. 4. We also plot the absolute prediction error (25) of each joint in Fig. 10, Fig. 11, and Fig. 12, respectively. • The proposed prediction ∆ q * crb applies to non-zero tangential velocities, see Sec. VI-B1. We apply the impulse calculation [START_REF] Rijnen | Control of humanoid robot motions with impacts: Numerical experiments with reference spreading control[END_REF] for ∆ q * crb and ∆ q * gm with W = W crb and W = W gm , respectively. We ignore the tangential component of ι c for ∆ q * c due to the discussion in Sec. III-B. The contact mode was sliding in all the experiments due to the discussion in Sec. VI-B2.

Table I. Average prediction error [START_REF] Chatterjee | A new algebraic rigid-body collision law based on impulse space considerations[END_REF] of ∆ q * crb , ∆ q * c , and ∆ q * gm . All the values share the same unit: rad/s, and are plotted in Fig. 4.

Reference: 0.08 m/s 0.10 m/s 0.12 m/s 0.15 m/s 0.18 m/s

The proposed solution average error ē∆ q * crb (21) Fig. 2 

A. Robustness to impulse-calculation errors

We denote the measured impulse as ι • . According to our former benchmark experiments [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF]Fig. 9], ι * crb is most-closeto ι • . Further, ι * gm is less than the measured impulse ι • while ι c overestimates. Concerning the impulse calculation errors, we substituted the measured impulse ι • (instead of the predicted impulse) into the different approaches for comparison. We denote the predictions after the substitution as: ∆ q * c (ι • ) (6), ∆ q * gm (ι • ) (23), and ∆ q * crb (ι • ) (21). The substitution introduced a considerable impulse correction for the classical prediction ∆ q * c and the solution without considering high-stiffness behaviours ∆ q * gm . Given the errors on the left side of Fig. 5, the accuracy of ∆ q * c (ι • ) or ∆ q * gm (ι • ) decreases. Compared to ∆ q * gm (ι • ), the performance decrease of ∆ q * c (ι • ) is even worse due to the high condition number of the JSIM.

∆ q * crb (ι • ) keeps a similar average error concerning the right side of Fig. 5. Since the only difference between computing ∆ q * crb and ∆ q * gm is the choice of W = W crb or W = W gm , we conclude ∆ q * crb outperforms because of the CRB assumption.

B. Contact mode and pre-impact tangential velocities Figure 5: We compare ∆ q computed with the measured or calculated impulse for impact configuration two in Fig. 2(c). Left: When the reference contact velocity is 0.18 m/s, we plot the predicted ∆ q by each joint. Right: The average error of ∆ q * crb (ι • ) remains on the same level regardless of the impulse calculation error. We plot the measured ∆ q• by joint, given the reference vn = 0.12 m/s, vx = 0 m/s, and vy increasing from 0.03 m/s to 0.12 m/s. Note that there is a discrepency between the measured vy and its reference. Figure 7: Left: The mean post-impact velocity v + for impact configuration two in Fig. 2(c). Right: The vector field of the tangential velocity v ⊥ during the impact event. We marked the two invariant directions by pink arrows. The pink-dashed-pink arrow converges to the origin, and the cyan-dashed-pink arrow diverges from it. As the origin is not stable, the post-impact contact mode is always sliding regardless of the initial tangential velocity.

1) Non-zero pre-impact tangential velocities: Despite (12) cannot predict the tangential impulse, the prediction ∆ q * crb is robust to pre-impact tangential velocities in our experiments when the friction coefficient µ = 0.1123.

Given v x = 0 m/s, v n = 0.12 m/s, and various v y , we show the mean ∆ q• in Fig. 6. In the rightmost figure of Fig. 4, the average prediction errors [START_REF] Chatterjee | A new algebraic rigid-body collision law based on impulse space considerations[END_REF] remain at the same level as the other experiments.

2) Sliding contact: We compute the post-impact tangential velocities v +

x , v + y using the measured joint velocity jump ∆ q• and the kinematics [START_REF] Ferretti | Impact modeling and control for industrial manipulators[END_REF]. Given v +

x , v + y are non-zero in Fig. 7, the contact mode was sliding at and after the impact. The robot is able to slide because the manipulator is mounted on a fixedbase, during the impact event the joint motion is compliant to the rigid wall despite the robot is high-gain controlled.

For impacts between two free-flying objects, sliding happens if the friction coefficient is smaller than the stick coefficient μ [6, Eq. 4.12] [7, Sec. 5], i.e., the friction is not enough to sustain the contact. Using the joint configuration in Fig. 2(c) as an example, we have:

µ = 0.1123 ≤ μ = 0.1895, ( 27 
)
where μ is computed by substituting W crb into [START_REF] Stronge | Impact mechanics[END_REF]Eq. 4.12].

Assuming the robot is a composite-rigid body, we visualize the tangential-velocity vector field (phase plane) on the right side of Fig. 7 according to [START_REF] Jia | Analysis and computation of two body impact in three dimensions[END_REF]. As the origin is not stable, the post-impact contact mode would be sliding regardless of the initial tangential velocities.

VII. CONCLUSION

Predicting joint velocity jumps is paramount to achieve the highest feasible contact velocity while fulfilling the hardware resilience bounds. Our approach (i) uses our improved normal impulse calculation [START_REF] Wang | On inverse inertia matrix and contact-force model for robotic manipulators at normal impacts[END_REF]; (ii) avoids inverting the illconditioned JSIM by formulating momentum conservation equations in task space; and (iii) modifies the task-space impulse-to-velocity mapping to account for a high-gain (stiff) joint behavior in pre-and at impact, while allowing flexibility in post-impact. As a result, from benchmarking 250 impact experiments our proposed prediction ∆ q * crb (21) reduces the average prediction error by 81.98% w.r.t the existing approach.

Future work is dedicated to tangential impulse calculation and impact propagation in robotic structures.
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 2 Figure 2: Comparison of different approaches when the reference-tangentialcontact velocity is zero and reference-normal-contact velocity is 0.18 m/s. We identify each ∆ qi in Fig. 2(b), 2(d), and 2(f) offline; see the experiment configurations in Sec. V. proportion to the high condition number of the JSIM; see the sources of numerical errors reported by Featherstone [8, Chapter 10.1], [20, Sec. 2]. The high condition number of M is an underlying property of the mechanism itself. Inline with the analysis in [20], we obtain the following values on the order of O(D 4 ) with D = 7 for the impact configurations shown in Fig. 2(a), 2(c), 2(e): 2.9444 × 10 3 , 3.1586 × 10 3 , and 3.9909 × 10 3 . (9)Similar, large condition numbers are reported for the KUKA LBR iiwa manipulator with seven joints[START_REF] Fonseca | Task-space admittance controller with adaptive inertia matrix conditioning[END_REF] Fig. 8].
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 4 Figure 4: From left to right, the average prediction error (26) of the impact configurations in Fig. 2(a), 2(c), 2(e), and the last one corresponds to the second set of experiments with non-zero tangential velocities.

  (a) 0.0165 0.0323 0.0409 0.0455 0.0464 Fig. 2(c) 0.0313 0.0293 0.0334 0.0509 0.0642 Fig. 2(e) 0.0321 0.0327 0.0547 0.0428 0.0752 The classical solution average error ē∆ q * c (6) Fig. 2(a) 0.0653 0.0863 0.1109 0.1417 0.1799 Fig. 2(c) 0.1020 0.1509 0.1871 0.2887 0.3672 Fig. 2(e) 0.2231 0.3149 0.3726 0.4382 0.5748 The generalized-momentum average solution ē∆ q * gm (23) Fig. 2(a) 0.0549 0.0379 0.0409 0.0572 0.0741 Fig. 2(c) 0.0689 0.0840 0.0817 0.1378 0.1459 Fig. 2(e) 0.0924 0.1255 0.1569 0.1820 0.2584

Figure 6 :

 6 Figure6: We plot the measured ∆ q• by joint, given the reference vn = 0.12 m/s, vx = 0 m/s, and vy increasing from 0.03 m/s to 0.12 m/s. Note that there is a discrepency between the measured vy and its reference.
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  only requires analytical computation. It is robust to impulse-calculation errors, Sec. VI-A. The second set of experiments reveal that:
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https://gite.lirmm.fr/yuquan/fidynamics/-/wikis/ Predicting-Impact-Induced-Sudden-Change-of-Joint-Velocities

V Oi is noted by V b Oi in[START_REF] Murray | A mathematical introduction to robotic manipulation[END_REF]. We omit the subscript b since we only use body velocities.

Note that representing a quantity in a far-away coordinate frame introduces another source of numerical error [8, Chapter 10.1].
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From left to right, we plot the measured joint velocity jump ∆ q• of the impact configurations Fig. 2(a), 2(c), 2(e). Each data point denotes the mean ∆ q• of 10 impact experiments with the same joint configurations and reference contact velocities.