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This paper provides a new intelligent technique for semisupervised data clustering problem that combines the Ant System (AS)
algorithmwith the fuzzy 𝑐-means (FCM) clustering algorithm. Our proposed approach, called F-ASClass algorithm, is a distributed
algorithm inspired by foraging behavior observed in ant colonyT.The ability of ants to find the shortest path forms the basis of our
proposed approach. In the first step, several colonies of cooperating entities, called artificial ants, are used to find shortest paths
in a complete graph that we called graph-data. The number of colonies used in F-ASClass is equal to the number of clusters in
dataset. Hence, the partition matrix of dataset founded by artificial ants is given in the second step, to the fuzzy 𝑐-means technique
in order to assign unclassified objects generated in the first step.The proposed approach is tested on artificial and real datasets, and
its performance is compared with those of𝐾-means,𝐾-medoid, and FCM algorithms. Experimental section shows that F-ASClass
performs better according to the error rate classification, accuracy, and separation index.

1. Introduction

How do ants optimize food search? How do social spiders
build communal nest? Why does a flock of birds fly in a v-
shaped formation? How do termites build collectively their
sophisticated nest structure? How do honey bee swarms
cooperatively select their new nesting site? How does firefly
flash its light in a wonderful pattern? How does a colony
coordinate its behavior? How is it possible for social insects
and animals to coordinate their actions and create complex
patterns?Howdo such agents perform complex tasks without
any direction and coordination between themselves? How
agents in colony perform a work locally for global goal
with sufficient flexibility as they are not controlled centrally?
Collective behaviors in swarms of insects or animals have
attached the attention of researches. They have proposed
several intelligent models to solve a wide range of complex
problems. This branch of artificial intelligence is addressed
as swarm intelligence. The key components of swarm intelli-
gence are self-organization, emergence, and stigmergy.

Self-organization is “a processwhereby pattern at the global
level of a system emerges solely from numerous interactions

among the lower-level components of the system. Moreover,
the rules specifying interactions among the system’s com-
ponents are executed using only local information, without
reference to the global pattern” [1]. In short it can be “a set
of dynamical mechanisms whereby structures appear at the
global level of a system from interactions of its lower-level
components” [2].

Emergence seems to be the explication of what self-
organizing systems produce. In this context the whole is not
just the sum of its parts; it gets a surplus meaning that it is not
captured by its part alone. The idea of emergence was firstly
developed in [3] to explain indirect task coordination in the
context of building behavior of termites. Grassé [3] showed
that the coordination of building activities does not depend
on the workers themselves but is mainly achieved by the nest
structure.

The underlying idea of this paper is to propose a new
approach to data clustering problem. We will show that
the use of fuzzy logic combined with swarm intelligence
technique yields robust results.

The remainder of the paper is organized as follows. In
Section 2, we present an overview of data clustering problem
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2 Advances in Fuzzy Systems

and swarm intelligence tools for data clustering. A general
description of our proposed approach called F-ASClass is
given in Section 3. Experimental results and comparisonwith
hard and fuzzy algorithms are reported in Section 4. Finally
concluding remarks are drawn in Section 5.

2. Literature Review

2.1. Problem Definition. Cluster analysis is a technique that
organizes data by abstracting underlying structure either as
a grouping of objects. Each group consists of objects that are
similar between themselves and dissimilar to objects of other
groups.

Each object corresponds to a vector of 𝑀 numerical
values which correspond to the𝑀 numerical attributes. The
relationships between objects are generated into a dissim-
ilarity matrix in which rows and columns correspond to
objects. As objects can be represented by points in numerical
space, the dissimilarity between two objects can be defined as
distance between the two corresponding points. Any distance
can be used as dissimilarity measures. The most commonly
used dissimilarity matrix is theMinkowskimetric:

𝑑
𝑟
(𝑂
𝑖
, 𝑂
𝑗
) =

𝑚

∑

𝑘=1

(𝑤
𝑘






𝑥
𝑖𝑘
, 𝑥
𝑗𝑘







𝑟

)

1/𝑟

, (1)

where 𝑤
𝑘
is a weighting factor that will be set to 1 thereafter.

According to the value of 𝑟 (𝑟 ≥ 1), the following measures
are obtained: Manhattan distance (𝑟 = 1), Euclidean distance
(𝑟 = 2), and Chebyshev distance (𝑟 = ∞). As mentioned in
[4], Euclidean distance is themost common of theMinkowski
metric.

2.2. Clustering Algorithms. The grouping step can be per-
formed in a number of ways. In [5] different approaches to
clustering data are described:

(i) Partitioning/Hierarchical Classification. Partitional
clustering technique identifies the partition that
optimizes a clustering criterion defined on a subset of
objects (locally) or over all of the objects (globally).
Hierarchical clustering technique builds a sequence
of nested partitions that are visualized, by example,
by a dendrogram.

(ii) Hard/Fuzzy Classification. A hard clustering algo-
rithm allocates each object to a single cluster during
its operations. Hence the clusters are disjoint. A fuzzy
clustering algorithm associates each object with every
cluster using a membership function. The output of
such algorithm is a clustering but not a partition.

(iii) Deterministic/Stochastic. Optimization in partitional
approach can be accomplished using traditional tech-
nique or through a random search of the state space
consisting of all possible labeling.

(iv) Supervised/Unsupervised Classification. An unsuper-
vised classification uses only the dissimilarity matrix.
No information on the object class is provided to the

method (objects are said unlabeled). In supervised
classification, objects are labeled while knowing their
dissimilarities. The problem is then to construct
hyperplanes separating objects according to their
class. The unsupervised classification objective is
different from that of the supervised case: in the first
case, the goal is to discover groups of objects while in
the second, known groups are considered and the goal
is to discover what makes them different or to classify
new objects whose class is unknown.

Our proposed technique presented in this paper, which
we call F-ASClass, belongs to fuzzy-semisupervised parti-
tional clustering technique. It uses fuzzy rules and stochas-
tic behavior to partition dataset into specified number of
clusters. For the present paper, it suffices to note that the
following techniques (𝐾-means, 𝐾-medoid, and FCM) are
used to improve F-ASClass algorithm. A comparative study
between us will be presented in Section 4.

𝐾-means algorithm is a hard-unsupervised learning
algorithm that appears to partition dataset into a specified
number of clusters. The technique presented in [6] consists
of starting with 𝑘 groups, each of which consists of a single
randomly selected object, and thereafter adding each new
object to its closest cluster center. After an object is added to
a group, the mean of that group is adjusted in order to take
account of the new added object. The algorithm is deemed to
have converged when the assignments no longer change.

The 𝐾-medoid algorithm described in [7] is based upon
the search of representative objects of each cluster (called
medoid), which should represent the various aspects of the
structure of the data. 𝐾-medoid algorithm is related to the
𝐾-means algorithm. The main difference between 𝐾-means
and 𝐾-medoid stands in calculating the cluster center. The
medoid is a statistic which represents that data member of a
dataset whose average dissimilarity to all the other members
of the set is minimal. Therefore a medoid unlike mean
is always a member of the dataset. It represents the most
centrally located data item of the dataset.

The fuzzy 𝑐-means (FCM) algorithm firstly presented in
[8] and improved in [9, 10] allows one samples to belong
to two or more one clusters. The first idea which aims to
characterize an individual objects’ similarity to all the clusters
was introduced in [11]. In this context, the similarity an object
shares with each cluster is represented with a membership
function whose values are between zero and one. Object in
datasetwill have amembership in every cluster;memberships
close to unity indicate a high degree of similarity between the
object and a cluster while memberships close to zero involve
little similarity between the object and that cluster.

FCMmethod differs from previously presented𝐾-means
and 𝐾-medoid algorithms by the fact that the centroid of a
cluster is the mean of all samples in the dataset, weighted
by their degree of belonging to the cluster. The degree of
belonging is presented by a function of the distance of
the sample from the centroid, which includes a parameter
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controlling for the highest weight given to the closest sample.
All these techniques are sensitive to initial condition.

Another fuzzy classification model is studied in [12]
which constructs the membership function on the basis of
available statistical data by using an extension of the well-
known contamination neighborhood. Reference [13] presents
a new fuzzy technique using an adaptive network of fuzzy
logic connectives to combine class boundaries generated by
sets of discriminant functions in order to address the “curse
of dimensionality” in data analysis and pattern recognition.

Reference [14] is intended to solve the problem of
dependence of clustering results on the use of simple and
predetermined geometrical models for clusters. In this con-
text, the proposed algorithm computes a suited convex hull
representing the cluster. It determines suitable membership
functions and hence represents fuzzy clusters based on the
adopted geometrical model that it is used during the fuzzy
data partitioning within an online sequential procedure in
order to calculate the membership function.

2.3. Swarm Intelligence Tools for Data Clustering Problem.
We start with an illustration of swarm intelligence tools that
have been developed to solve clustering problems: Particle
Swarm Optimization [15], Artificial Bee Colony [16], Firefly
algorithm [17], Fish swarm algorithm [18], and Ant Colony
Algorithm. In [19] the basic data mining terminologies are
linked with some of the works using swarm intelligence
techniques. A comprehensive review of the state-of-the-art
ant based clustering methods can be found in [20].

The first model of ants’ sorting behavior has been done
by Deneubourg et al. [21] where a population of ants are
randomly moving in a 2-dimensional grid and are allowed
to drop or load objects using simple local decision rules
and without any central control. The general idea is that
isolated items should be picked up and dropped at some
other locations where more items of that type are present.
Based on this existing work, Lumer and Faieta [22] have
extended it to clustering data problems. The idea is to
define dissimilarity between objects in the space of object
attributes. Each ant remembers a small number of locations
where it has successfully picked up an object. And so, when
deposing a new item this memory is used in order to bias
the direction in which the ant will move: ant tends to move
towards the location where it last dropped a similar item.
From these basic models, in [23] Monmarché has proposed
an ant based clustering algorithm, namely, AntClass which
introduces clustering in a population of artificial ants capable
to carry heaps of objects. Furthermore, this ant algorithm is
hybridized with the𝐾-means algorithm. In [24], a number of
modifications have been introduced on both LF andAntClass
algorithm and authors have proposed AntClust, which is an
ant based clustering algorithm for image segmentation. In
AntClust, a rectangular grid was replaced by a discrete array
of cells. Each pixel is placed in a cell and all cells of the array
are connected to the nest of ants’ colony. Each ant performs a
number of moves between its nest and the array and decides

with a probabilistic rule whether or not to drop its pixel. If
the ant becomes free, it searches for a new pixel to pick up
[24].

According to [25], another important real ant’s collective
behavior, namely, the chemical recognition system of ants,
was used to resolve an unsupervised clustering problem. In
[26], Azzag et al. considers another biologically observed
behavior in which ants are able to build mechanical structure
thanks to a self-assembling behavior. This can be observed
through the formation of drops constituted of ants or the
building of chains by ants with their bodies in order to link
leaves together.Themain idea here is to consider that each ant
represents a data and is initially placed on a fixed point, called
the support, which corresponds to the root of the tree. The
behavior of an ant consists of moving on already fixed ants to
fix itself to a convenient location in the tree. This behavior is
directed by the local structure of the tree and by the similarity
between data represented by ants. When all ants are fixed in
the tree, this hierarchical can be interpreted as a partitioning
of the data [26].

Bird flocks and schools clearly display structural order
and appear to move as single coherent entity [27]. In [28, 29],
it has been demonstrated that flying animal can be used to
solve data clustering problem. The main idea is to consider
that individuals represent data to cluster and that they move
following local behavior rule in a way; after few movements,
homogeneous individual clusters appear and move together.
In [30] Abraham et al. propose a novel fuzzy clustering
algorithm, called MPSO, which is based on a deviant variety
of the PSO algorithm.

Social phenomena also exists in the case of spiders: in
the Anelosimus eximius case, individuals live together, share
the same web, and cooperate in various activities such as
collective web building: spiders are gathered in small clusters
under the vegetal leaves included in the web and distributed
on the whole silky structure. In [31], the environment models
the natural vegetation and is implemented as a square grid
in which each position corresponds to a stake. Stakes can be
of different heights to model the environmental diversity of
the vegetation. Spiders are always situated on top of stakes
and behave according to three several independent items (a
movement item, a silk fixing item, and a return to web item).
This model was transposed to region detection in image.

In [32] Hamdi et al. propose a new swarm-based algo-
rithm for clustering, based on the existing work of [21, 23, 28]
which uses ants’ segregation behavior to group similar objects
together; birds’ moving behavior to control next relative
positions for a moving ant; and spiders’ homing behavior to
manage ants’ movements with conflicting situations.

In [33] we proposed using the stochastic principles of ant
colonies in conjunction with the geometric characteristics of
the bee’s honeycomb. This algorithm was called AntBee and
it was improved in [34]. In this context, we used fractal rules
to improve the convergence of the algorithm.

Another example of Ant Clustering algorithm, called
AntBee algorithm, is developed in [29]. The proposed
approach uses the stochastic principles of ant colonies in
conjunction with the geometric characteristics of the bee’s
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honeycomb and the basic principles of stigmergy. An
improved AntBee called FractAntBee was proposed [24] that
incorporated main characteristics of fractal theory.

According to [35], a novel approach to image segmen-
tation based on Ant Colony System (ACS) is proposed. In
ACS algorithm an artificial ant colony is capable of solving
the traveling salesman problem [36]. As in ACO for the TSP,
in ACO-based algorithms for clustering, each ant tries to find
a cost-minimizing path, where the nodes of the path are the
data points to be clustered. Like in the TSP, the cost ofmoving
from data point 𝑥

𝑖
to 𝑥
𝑗
is the distance 𝑑(𝑖, 𝑗) between these

points, measured by some appropriate dissimilarity metric.
Thus, the next point to be added to the path tends to be similar
to the last point on the path. An important way inwhich these
algorithms deviate from ACO algorithms is that the ants do
not necessarily visit all data points [37].

3. Proposed Methodology

In ASClass algorithm, we have assumed that a graph 𝐺 =

{𝑂
1
, . . . , 𝑂

𝑛
} of 𝑛 object has been collected by the domain

expert where each object is a vector of 𝑘 numerical values
V
1
, . . . , V

𝑘
. For measuring the similarity between objects we

will use in the following Euclidean distance between two
vectors, denoted by𝐷, which is used for edges in graph𝐺 [38].
The complete set of parameters of ourmodel will be presented
in Section 3.3.

Initially all the objects will be scattered randomly on the
graph𝐺; each node in the graph represents an object𝑂 in the
datasets.The edge that connects two objects in the graph-data
represents ameasure of dissimilarity between these objects in
the database. A class is represented by a route connecting a set
of objects. In ASClass we chose to use more than one colony
of ants, the number of colonies needed here is equal to the
number of classes in the database. Initially, for each colony,
𝑚 artificial ants are placed on a selected object, called “nest-
object.” For each cluster we randomly chose one and only one
“nest-object.” The simulation model is detailed in Figure 1.

The objective is to find the shortest route between the
given objects and return to nest-object, while keeping in
mind that each object can be connected to the path only
once. The path traced by the ant represents a cluster in the
dataset. Figure 2 shows a possible result of ASClass algorithm
execution on the graph of Figure 1. It may be noted that, at the
end of algorithm, each colony gives a collective traced-path
that represent a cluster in the partition.

For each colony, an artificial agent possesses three behav-
ioral rules:

(i) a movement item inspired by ant foraging behavior;
(ii) an object fixing item inspired by the collective weav-

ing in social spiders;
(iii) a return to web item.

3.1. Movement Item. An artificial ant 𝑘 is an agent which
moves from an object 𝑖 to an object 𝑗 on a dataset graph. It

Colony of ants

?

?

Artificial ant

?

Nest-object of cluster 1

Nest-object of cluster 2

Nest-object of cluster 3

Figure 1: Graph used in ASClass algorithm [38].

Figure 2: Results of ASClass algorithm on graph used in Figure 1:
tree clusters are drawn; each of them is created by a colony of ants in
the ASClass algorithm.
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decides which object to reach among the objects it can access
from its current position.The agent selects the object tomove
on according to a probability density 𝑃

𝑖𝑗
depending on the

trail accumulated on edges and on the heuristic value, which
was chosen here to be a dissimilarity measures.

𝑃
𝑘

𝑖𝑗
(𝑡) =

[𝜏
𝑖𝑗
]

𝛼

[𝜂
𝑖𝑗
]

𝛽

∑
𝑙∈𝑁
𝑘

𝑖

[𝜏
𝑖𝑙
]
𝛼

[𝜂
𝑖𝑙
]
𝛽

if 𝑗 ∈ 𝑁
𝑘

𝑖
. (2)

𝛼 and 𝛽 are two parameters which determine the relative
influence of the pheromone trail and the dissimilarity mea-
sures and 𝑁

𝑖
is the set of objects which ant 𝑘 has not yet

connected to its tour.

3.2. Object Fixing Item. When an ant reaches an object it can
fix it on its path according to a contextual probability 𝑃fix; if a
decision is made, ants draw a new edge between the current
object and the last fixed object; otherwise, it returns to web
and updates itsmemory (it decides to delete the object among
the objects it can access from its current position).

The probability to fix the object to the path is defined as

𝑃fix
𝑘

𝑖
(𝑡) =

{

{

{

2𝑓 (𝑂
𝑖
) if 𝑓 (𝑂

𝑖
) < 𝑘fix

1 if otherwise,
(3)

where 𝑘fix is constant.
𝑓(𝑂
𝑖
) is measure of the average similarity of the object𝑂

𝑖

with the objects𝑂
𝑗
forming the path created by the ant 𝑘 and

it is calculated as follows:

𝑓 (𝑂
𝑖
) = max

{

{

{

1

𝑁
𝑇𝐾

∑

𝑂𝑗∈𝑇𝑘

1 −

𝑑 (𝑂
𝑖
, 𝑂
𝑗
)

𝜃

; 0

}

}

}

, (4)

where 𝜃 is a scaling factor determining the extent towhich the
dissimilarity between two objects is taken into account and
𝑁
𝑇𝑘

is the number of objects forming the tour constructed by
the ant 𝑘.

At each time step, if an ant decides to fix new objects, it
updates the pheromone trail on the arcs it has crossed in its
tour. This is achieved by adding a quantity Δ𝜏

𝑖𝑗
to its arc and

it is defined as follows:

Δ𝜏
𝑘

𝑖𝑗
(𝑡) =

{

{

{

1

𝐶
𝑘

if edge (𝑖, 𝑗) belongs to 𝑇
𝑘

0 otherwise,

𝜏
𝑖𝑗
= 𝜏
0
+

𝑚

∑

𝑘=1

Δ𝜏
𝑘

𝑖𝑗
(𝑡) ∀ (𝑖, 𝑗) ∈ 𝑇

𝑘
,

(5)

where 𝐶
𝑘
is the length of the tour 𝑇

𝑘
built by the ant 𝑘 and 𝜏

0

is constant.

After all ants have constructed their tours, the pheromone
trails are lowered. This is done by the following rules:

𝜏
𝑖𝑗
= (1 − 𝜌) 𝜏

𝑖𝑗
, (6)

where 0 < 𝜌 < 1 and it is the pheromone trail evaporation.
Equation (6) becomes

𝜏
𝑖𝑗
= 𝜏
0
+

𝑚

∑

𝑘=1

Δ𝜏
𝑘

𝑖𝑗
(𝑡) + (1 − 𝜌) 𝜏

𝑖𝑗
∀ (𝑖, 𝑗) ∈ 𝑇

𝑘
. (7)

3.3. Return toWeb Item. If the decision ismade, ant returns to
the last fixed object and selects the objet tomove on according
to its updated memory.

This process is achieved for each colony. At the end of
process we obtain 𝐶 routes which represent the 𝐶 clusters in
the datasets.

All notations used in ASClass algorithm are shown as
follows:

𝜏
𝑖𝑗
(𝑡): the amount of pheromone on edge which

connects city 𝑖 to city 𝑗 at time 𝑡.
𝛼: parameter that control the relative importance of
the trail intensity 𝜏

𝑖𝑗
.

𝛽: parameter that control the visibility 𝜂
𝑖𝑗
.

𝜂
𝑖𝑗
: the visibility.

𝜌: the coefficient of decay.
𝑁
𝑇𝑘
: the number of objects forming the tour con-

structed by the ant 𝑘.

𝐽
𝑘: set of objects which ant 𝑘 has not yet connected to
its tour.
𝑃
𝑖𝑗
(𝑡): transition probability from object 𝑖 to object 𝑗.

𝜃: scaling factor.
𝑄: constant.
𝐿
𝑘
: the length of the tour built by the 𝑘th ant.

𝑘fix: constant.
𝑚: number of ants in colony.

Its general principle is defined as shown in Algorithm 1.

3.4. Improvements of ASClass Algorithm. In studying the
asymptotic behavior of ASClass algorithm, we make the
convenient assumption: there are still some objects which are
not assigned to any cluster when theASClass algorithm stops.
We called these objects Outliers. This phenomenon is caused
by the fact that an object can belong to two or more clusters
(the same object can be added by several colonies to their
paths). Solutions that we propose in this paper are presented
in the following.

3.4.1. First Solution: ASClassi Algorithms. In order to find
partition for unclassifiable objects (Outliers), we propose
applying, respectively, 𝐾-means algorithm, 𝐾-medoid algo-
rithm, and FCM algorithm on dataset of Outliers samples.
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Initialize randomly the 𝑛 objects in a 2D environment
Choose randomly the nest-object for each cluster, we assume 𝑂init this object.
For each nest-object determine the cluster,
𝐶init ← 𝐶(𝑂selected)

End For
For each cluster determine the number of objects
𝑁𝑏(𝐶init)

End For
For all colony do
For 𝑇 = 1 to 𝑇max do
𝑂current ← 𝑂selected
For all ants do
Repeat
𝑖 ← 𝑂current
Choose in the list 𝐽𝑘

𝑖
(list of objects not visited) an object 𝑗 according to the below formula:

𝑃
𝑘

𝑖𝑗
(𝑡) =

{
{
{

{
{
{

{

[𝜏
𝑖𝑗
]

𝛼

[𝜂
𝑖𝑗
]

𝛽

∑
𝑙∈𝐽
𝑘

𝑖

[𝜏
𝑖𝑙
]
𝛼

[𝜂
𝑖𝑙
]
𝛽

if 𝑗 ∈ 𝐽
𝑘

𝑖

0 if 𝑗 ∉ 𝐽
𝑘

𝑖

𝑂current ← 𝑗

Until (𝑁 − 𝐽
𝑘

𝑖
) = 𝑁𝑏(𝐶init)

Place a quantity of pheromone on the route according to the following equation:

Δ𝜏
𝑘

𝑖𝑗
(𝑡) =

{

{

{

𝑄

𝐿
𝑘

(𝑡) if edge (𝑖, 𝑗) belongs to 𝑇
𝑘

0 otherwise
End for
Evaporate the tracks using the following equation:

𝜏
𝑖𝑗
= 𝜏
0
+

𝑚

∑

𝑘=1

Δ𝜏
𝑘

𝑖𝑗
(𝑡) + (1 − 𝜌) 𝜏

𝑖𝑗
∀ (𝑖, 𝑗) ∈ 𝑇

𝑘

End for
End for

Algorithm 1

Table 1: Hybrid ASClass𝑖 algorithms.

Index Algorithm 𝐴 (second step) Proposed models
1 𝐾-means ASClass1

2 𝐾-medoid ASClass2

3 FCM ASClass3

Our proposed method ASClass, presented in the previous
section, can also be used as an initialization step for these
algorithms. As can be seen in Table 1, we called, respectively,
ASClass1, ASClass2, and ASClass3 our proposed versions of
ASClass.

The ASClassi procedure consists of simply starting with
𝑘 groups. The initialization part is identical to ASClass.
We are able to show in Figure 3 that the output of first
step consists of classified and unclassified objects. Classified
samples are represented by different symbol (red, green, and
blue). Unclassified ones are represented by black point.

As can be seen in Figure 4, unclassified objects resulting
at the first step (black point) are given as input parameter to
ASClassi, in the second step.

Cluster 3

Outliers 

Cluster 1

Cluster 2

ASClass algorithm

Figure 3: Step 1 of both ASClassi and F-ASClass algorithms.

Cluster 3

Outliers 

Cluster 1

Cluster 2

Algorithm A Fusion process

Figure 4: Step 2 of ASClassi algorithms.
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Cluster 1

Cluster 2
Cluster 3

FCM algorithm

Figure 5: Step 2 of F-ASClass algorithm.

Algorithm𝐴 (different values of 𝐴 are given in Table 1) is
applied on dataset of unclassified objects to reassigning them
to the appropriate cluster. 𝐴 algorithm create new clusters
with the same specified number 𝐾. These clusters will be
merged with existing clusters created at the first step.

3.4.2. Second Solution: F-ASClass Algorithm. The result of the
partition founded by ASClass in the first step is given as input
parameter to FCM algorithm in the second step. An element
𝑢
𝑖𝑗
of partition matrix represents the grade of membership of

object 𝑥
𝑖
in cluster 𝑐

𝑗
. Here, 𝑢

𝑖𝑗
is a value that described the

membership of object 𝑖 to class.
We will initialize the partition matrix (membership

matrix) given to FCM function by 1 according to classified
object and 𝑓𝑧 according to unclassified objects.

For the classified objects, if object 𝑖 is in class 𝑗 𝑢
𝑖𝑗
= 1;

otherwise 𝑢
𝑖𝑗
= 0. For the unclassified objects, 𝑢

𝑖𝑗
= 𝑓𝑧 for

all class 𝑗 (𝑗 = 1, 2, 3, . . . , 𝐾), meaning that an unclassified
object 𝑖 has the same membership to all class 𝑗. The sum of
membership values across classes must equal one.

𝑓𝑧 =

1

𝐾

. (8)

Figure 5 shows that the output of the first step (see Figure 3)
will be given as input parameter in the second step.

4. Experimental Results

4.1. Artificial and Real Data. To evaluate the contribution
of our method, we use several numerical datasets, includ-
ing artificial and real databases from the Machine Learn-
ing Repository [39]. Concerning the artificial datasets, the
databases art1, art2, art3, art5, and art6 are generated with
Gaussian laws and with various difficulties (classes overlay,
nonrelevant attributes, etc.), and art4 data is generated with
uniform law. The general information about the databases is
summarized in Table 2. For each data file, the following fields
are given: the number of objects (𝑁), the number of attributes
(𝑁Att), and the number of clusters expected to be found in the
datasets (𝑁

𝐶
).

Art1 dataset is the type of data most frequently used
within previous work on ant based clustering algorithm [22,
23].

Table 2: Main characteristics of artificial and real databases used in
our tests.

Datasets 𝑁Att 𝑁 𝐾 Class distribution
Art1[4, 400] 2 400 4 (100, 100, 100, 100)

Art2[2, 1000] 2 1000 2 (500, 500)

Art3[4, 400] 2 1100 4 (500, 50, 500, 50)

Art4[2, 200] 2 200 2 (100, 100)

Art5[9, 900] 2 900 9 (100, 100, . . . , 100)

Art6[4, 400] 8 400 4 (100, 100, 100, 100)

Iris[3, 150] 4 150 3 (50, 50, 50)

Thyroid[3, 215] 5 215 3 (150, 35, 30)

Pima[2, 768] 8 768 2 (500, 268)

The data are normalized in [0, 1], the measure of sim-
ilarity is based on Euclidian distance, and the algorithms
parameters used in our tests were always the same for all
databases and all algorithms.

As can be seen in Table 2, Fisher’s Iris dataset contains 3
classes of 50 instances where each class refers to a type of Iris
plant. An example of class discovery ofASClass on Iris dataset
is shown in Figure 7.

Five versions of the ASClass algorithm were coded and
tested with test data in order to determine accuracy or results.
One implementation presented basic features of ASClass
without improvements. ASClass1, ASClass2, and ASClass3
are improvements versions of the basic ASClass in which we
propose applying, respectively, the first solution described in
Section 3.4.1. F-ASClass is a fuzzy-ant clustering solutions
described in Section 3.4.2.

4.2. Evaluation Functions. The quality of the clustering
results of the different algorithms on the test sets are com-
pared using the following performances measures. The first
performance measure is the error classification (Ec) index. It
is defined as

Ec = 1 −

∑
𝐾

𝑘=1
Recall

𝑘

𝐾

,

Recall
𝑘
=

𝑛
𝑘𝑘

𝑛
𝑘

.

(9)

The second measure used in this paper is the accuracy
coefficients. It determines the ratio of correctly assigned
objects:

Accuracy =
∑
𝐾

𝑘=1
𝑛
𝑘𝑘

𝑁

, (10)

where 𝑛
𝑘𝑘

is the number of objects of the 𝑘th class correctly
classified, 𝑛

𝑘
is the number of objects in cluster 𝐶

𝑘
, and𝑁 is

the total number of objects in dataset. Not ass represents the
percentage of not assigned objects in the predicted partition.
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Table 3: Error classification and accuracy coefficients found on Iris
dataset. Average on 20 trials, 100 iterations per trial.

Datasets 𝑚 Ec Accuracy Not ass

Iris[3, 150]

5 0.310 0.663 28.70%
10 0.320 0.651 28.13%
20 0.309 0.662 30.43%
30 0.275 0.696 28.37%
40 0.292 0.667 29.43%
50 0.249 0.724 26.80%
100 0.251 0.729 28.70%

Moreover, we will use separation index. It is defined in
[40] as

𝑆 =

∑
𝐾

𝑖=1
∑
𝑁

𝑗=1
(𝜇
𝑖𝑗
)

2 




𝑂
𝑗
− 𝜐
𝑖







2

𝑁 ∗min
𝑖,𝑗






𝑂
𝑗
− 𝜐
𝑖







2
. (11)

In [5] 𝑢
𝑖𝑗
is defined as follows: 𝑢

𝑖𝑗
(𝑖 = 1, . . . , 𝐾; 𝑗 =

1, . . . , 𝑁) is the membership of any fuzzy partition. The
corresponding hard partition of 𝑢

𝑖𝑗
is defined as 𝑤

𝑖𝑗
fl 1

if argmax
𝑖
{𝑢
𝑖𝑗
}; 𝑤
𝑖𝑗

fl 0 otherwise. Cluster should be well
separated; thereby a smaller 𝑆 indicates the partition in which
all the clusters are overall compact and separate to each other.

The centroid of 𝑖 is represented by the parameter 𝜐
𝑖
.

4.3. Results. This section is divided into two parts. First, we
study the behavior of ASClass with respect to the number of
ants in each colony using Iris dataset. Second, we compare F-
ASClass with the 𝐾-means, 𝐾-medoid, FCM, and ASClassi
(𝑖 = 1, 2, 3), using test datasets presented in Table 2. This
comparison can be done on the basis of average classification
error and average value of accuracy.

4.3.1. Parameters Setting of ASClass Algorithm. We propose
studying the speed to find the optimal solution, defined as the
number of iterations, as a function of the number of ants in
ASClass. So we evaluate the performance of ASClass varying
the number of ants from 5 to 100, given a fixed number of
iterations (100 iterations per trial).

Results presented in Figures 6(a)–6(g) show that the
length of the best tour made by each colony of ants is
improved very fast in the initial phase of the algorithm. Once
the second phase has been reckoned, new good solutions start
to appear but a phenomenon of local optima is discovered in
the last phase. In this stage, the system ceased to explore new
solutions and therefore will not be improved any more. This
process called, in the literature of ACO algorithms, unipath
behavior and it would indicate the situation in which the ants
follow the same path and so create the same cluster. This
was due to a much higher quantities of artificial pheromones
deposed by ants following that path than on all the others.

On one hand, we can observe from Table 3 that the best
results with ASClass (corresponds to the smallest value of
error of classification, Ec = 0.249, and the largest value of
accuracy, Ac = 0.729) are obtained when the number of ants
is equal to 50 (number of samples in each cluster = 50). It is
clear here that the number of ants improve the efficiency of
solution quality: a run with 100 ants is more search effective
than with 5 ants. This can be explained by the importance of
communication in colony through trail in using many ants
(in case of 100 ants). This propriety, called synergistic effect,
makes ASClass attractiveness on its ability of finding quickly
an optimal solution.

As a semisupervised clustering algorithm, we can use
confusion matrix as a visualization tool to evaluate the
performance of ASClass. It contains information about the
number per class of well classifies and mislabeled samples.
Furthermore, it contains information about the capability of
system to not mislabel one cluster as another. An example of
confusion matrix on Iris dataset is shown in Figures 8(a)–
8(g).

It is important to note that Iris dataset presents the
following characteristic: one cluster is linearly separable from
the other two; the latter are not linearly separable from each
other. We have presented this characteristic in Figure 7.
Results presented in Figures 8(a)–8(g) prove that ASClass
may be capable of identifying this characteristic.

It is clear to see that for all examples in Figures 8(a)–
8(g), the illustrated results show that all predicted samples of
cluster 1 are correctly assigned as cluster 1. Besides no instance
of cluster 1 is misclassified as class 2 and class 3. However,
a large number of predicted samples of cluster 2 may be
misclassified into cluster 3 and a few number aremisclassified
into cluster 1. In case of cluster 3, there are some samples
misclassified into cluster 2 and no one is misclassified into
cluster 1.

As can be seen in Figures 8(a)–8(g), which represent
confusion matrix for only clustered data, the confusion
matrix did not contain the total 150 instances distribution of
Iris data: in the case of ASClass, there are still some objects
which are not assigned to any cluster when the algorithm
stops.

4.3.2. Comparative Analysis. In order to compare the effec-
tiveness of our proposed improvements of ASClass, we apply
them to datasets presented inTable 2.We also use tree indexes
of cluster validity: error classification (Ec), accuracy, and
separation (𝑆) coefficient. “The index should make good
intuitive sense, should have a basis in theory, and should be
readily computable” [4].

Note that underline bold face indicates the best and bold
face indicates the second best. In 𝐾-means, 𝐾-medoid, and
FCM algorithms the predefined input number of clusters 𝐾
is set to the known number of classes in each dataset.

Tables 4 and 5 contain, respectively, the mean, standard
deviations, mode, minimal, and maximal value of error
rate of classification and the accuracy obtained by the four
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Figure 6: Results obtained by ASClass algorithm obtained on Iris dataset (a) 𝑚 = 5; (b) 𝑚 = 10; (c) 𝑚 = 20; (d) 𝑚 = 30; (e) 𝑚 = 40; (f)
𝑚 = 50; (g)𝑚 = 100.
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Table 4: Mean, standard deviation, mode, min, and max values of error rate achieved by each clustering algorithm (𝐾-means, 𝐾-medoid,
FCM, and ASClass) over 20 trials on dataset presented in Table 2.

Datasets Algorithm Mean Std Mode Min Max

Art1[4, 400]

𝐾-means 0.806 0.180 0.947 0.5225 0.9950
𝐾-medoid 0.773 0.158 0.760 0.5150 0.9750

FCM 0.555 1.139 × 10−16 0.555 0.5550 0.5550
ASClass 0.471 0 0.471 0.4713 0.4713

Art2[2, 1000]

𝐾-means 0.548 0.490 0.980 0.020 0.980
𝐾-medoid 0.404 0.482 0.020 0.020 0.980

FCM 0.980 2.278 × 10
−16 0.980 0.980 0.980

ASClass 0.039 0 0.039 0.039 0.039

Art3[4, 100]

𝐾-means 0.749 0.227 0.585 0.222 0.989
𝐾-medoid 0.810 0.141 0.549 0.549 0.995

FCM 0.644 0 0.644 0.644 0.644
ASClass 0.507 8.183 × 10−16 0.508 0.506 0.508

Art4[2, 200]

𝐾-means 0.450 0.510 0 0 1
𝐾-medoid 0.572 0.494 1 0 1

FCM 0.985 2.278 × 10−16 0.985 0.985 0.985
ASClass 0.015 0 0.015 0.015 0.015

Art5[9, 900]

𝐾-means 0.908 0.065 0.873 0.802 0.990
𝐾-medoid 0.883 0.133 0.985 0.455 0.996

FCM 0.905 2.278 × 10−16 0.905 0.905 0.905
ASClass 0.4766 0 0.476 0.476 0.476

Art6[4, 400]

𝐾-means 0.641 0.273 0.750 0 1
𝐾-medoid 0.827 0.176 1 0.427 1

FCM 0.750 0 0.750 0.750 0.750
ASClass 0.089 0.002 0.088 0.085 0.095

Iris[3, 150]

𝐾-means 0.576 0.336 0.480 0.113 1
𝐾-medoid 0.710 0.229 0.126 0.126 1

FCM 0.746 2.278 × 10−16 0.746 0.746 0.746
ASClass 0.257 5.695 × 10−17 0.257 0.257 0.257

Thyroid[3, 215]

𝐾-means 0.774 0.166 0.922 0.239 0.922
𝐾-medoid 0.594 0.261 0.666 0.128 0.952

FCM 0.847 2.278 × 10−16 0.847 0.847 0.847
ASClass 0.476 0 0.476 0.476 0.476

Pima[2, 768]

𝐾-means 0.461 0.125 0.371 0.371 0.628
𝐾-medoid 0.504 0.116 0.616 0.325 0.641

FCM 0.650 1.139 × 10−16 0.650 0.650 0.650
ASClass 0.543 0.008 0.538 0.530 0.565

Unlabeled Iris dataset
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Figure 7: Two-dimensional projection of Iris dataset onto first two
principal components.

automatic clustering algorithms (𝐾-means,𝐾-medoid, FCM,
and ASClass).

In Tables 6 and 7, we report, respectively, the mean,
standard deviations, mode, minimal, and maximal values of
the value of error rate of classification and accuracy obtained
by the four automatic clustering algorithms (ASClass1,
ASClass2, ASClass3, and F-ASClass).

Table 8 contains, respectively, the mean, standard devi-
ations, mode, minimal, and maximal value of separation
obtained by all fuzzy approaches: FCM, ASClass3 and F-
ASClass.

In general, the comparative results presented in Table 4
indicate that our proposed algorithm generates more com-
pact clusters as well as lower error rates than the other
clustering algorithms. The only exception is on the Pima
dataset where ASClass does not achieve the minimum error
rates.
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Figure 8: Confusion matrix obtained with ASClass on Iris dataset for 100 iterations. (a) 𝑚 = 5; (b) 𝑚 = 10; (c) 𝑚 = 20; (d) 𝑚 = 30; (e)
𝑚 = 40; (f)𝑚 = 50; (g)𝑚 = 100.

Table 5 also conforms to the fact that ASClass algorithm
remains clearly and consistently superior to the other three
techniques in terms of the clustering accuracy. The only
exception is also seen on Pima dataset where the best value
is generated by the 𝐾-means algorithm.

In Tables 6 and 7 we report, respectively, the mean,
standard deviations, mode, minimal, and maximal values of

error rate classification and accuracy obtained by ASClass1,
ASClass2, ASClass3, and F-ASClass algorithms. It is clear
from these tables that F-ASClass algorithm can minimize
the value error classification and maximize accuracy for
all datasets. The only exception is for Art3 and Pima
datasets. The best values on error rate classification for these
both datasets are given by ASClass1. The best value for
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Table 5: Mean, standard deviation, mode, min, and max values of accuracy classification achieved by each clustering algorithm (𝐾-means,
𝐾-medoid, FCM, and ASClass) over 20 trials on dataset presented in Table 2.

Datasets Algorithm Mean Std Mode Min Max

Art1[4, 400]

𝐾-means 0.193 0.180 0.052 0.052 0.477
𝐾-medoid 0.226 0.158 0.050 0.025 0.485

FCM 0.445 1.139 × 10−16 0.445 0.445 0.445
ASClass 0.352 1.708 × 10−16 0.352 0.352 0.352

Art2[2, 1000]

𝐾-means 0.452 0.490 0.020 0.020 0.980
𝐾-medoid 0.596 0.482 0.980 0.020 0.980

FCM 0.020 3.559 × 10−18 0.020 0.020 0.020
ASClass 0.965 4.556 × 10−16 0.965 0.965 0.965

Art3[4, 100]

𝐾-means 0.279 0.236 0.049 0.002 0.702
𝐾-medoid 0.201 0.195 0.344 9.090 × 10−4 0.674

FCM 0.066 1.423 × 10−19 0.066 0.066 0.066
ASClass 0.661 0.001 0.660 0.660 0.662

Art4[2, 200]

𝐾-means 0.550 0.510 1 0 1
𝐾-medoid 0.427 0.494 0 0 1

FCM 0.015 8.898 × 10−16 0.015 0.015 0.015
ASClass 0.984 1.139 × 10−16 0.984 0.984 0.984

Art5[9, 900]

𝐾-means 0.091 0.065 0.126 0.010 0.197
𝐾-medoid 0.116 0.133 0.014 0.003 0.544

FCM 0.094 4.271 × 10−17 0.094 0.094 0.094
ASClass 0.493 2.278 × 10−16 0.493 0.493 0.493

Art6[4, 400]

𝐾-means 0.358 0.273 0.250 0 1
𝐾-medoid 0.172 0.176 0 0 0.572

FCM 0.250 0 0.250 0.250 0.250
ASClass 0.918 0.002 0.918 0.912 0.921

Iris[3, 150]

𝐾-means 0.424 0.336 0.520 0 0.886
𝐾-medoid 0.289 0.229 0 0 0.873

FCM 0.253 5.695 × 10−17 0.253 0.253 0.253
ASClass 0.745 0 0.745 0.745 0.745

Thyroid[3, 215]

𝐾-means 0.212 0.281 0.032 0.032 0.888
𝐾-medoid 0.448 0.341 0.697 0.023 0.944

FCM 0.074 0 0.074 0.074 0.074
ASClass 0.650 1.139 × 10−16 0.650 0.650 0.650

Pima[2, 768]

𝐾-means 0.550 0.164 0.668 0.332 0.668
𝐾-medoid 0.505 0.158 0.334 0.320 0.686

FCM 0.333 1.139 × 10−16 0.3333 0.333 0.333
ASClass 0.454 0.005 0.456 0.438 0.464

accuracy is given by ASClass2 for Art3 and by ASClass1 for
Pima.

Moreover, F-ASClass appears to be the most stable algo-
rithm by having the lowest value of standard deviation for all
indexes validity on all datasets.

Both ASClass1 and ASClass2 are unable to find new
partition for Art4 dataset where the number of unclassified
objects is too low (unclassified objects = 3). However both
ASClass3 and F-ASClass can be executed on small datasets.

This feature proves that fuzzy-hybrid techniques are more
efficient than hard-hybrid technique.

Table 8 shows that the most partition is made by F-
ASClass and the second best value is given by ASClass3; thus
a smallest 𝑆 indeed indicates a valid optimal partition. As
can be seen in (11), the more separate the clusters, the larger
(‖𝑂
𝑗
−𝑂
𝑖
‖
2) and the smaller 𝑆. Thus, the fuzzy clustering rule

used in F-ASClass is to modify the compactness measure by
minimizing 𝑆.
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Table 6: Average on 20 trials. Mean, standard deviation, mode, min, and max values of error rate achieved by each clustering (ASClass1,
ASClass2, ASClass3, and F-ASClass) algorithm over 20 trials on dataset presented in Table 2.

Datasets Algorithm Mean Std Mode Min Max

Art1[4, 400]

ASClass1 0.678 0.096 0.7625 0.434 0.782
ASClass2 0.686 0.095 0.755 0.462 0.790
ASClass3 0.585 2.278 × 10−16 0.585 0.585 0.585
F-ASClass 0.545 0 0.545 0.545 0.545

Art2[2, 1000]

ASClass1 0.140 0.017 0.148 0.106 0.173
ASClass2 0.144 0.035 0.084 0.084 0.195
ASClass3 0.145 5.695 × 10−17 0.146 0.146 0.146
F-ASClass 0.020 0 0.020 0.020 0.020

Art3[4, 100]

ASClass1 0.609 0.071 0.616 0.409 0.703
ASClass2 0.633 0.070 0.689 0.473 0.705
ASClass3 0.619 1.139 × 10−16 0.619 0.619 0.619
F-ASClass 0.676 1.139 × 10−16 0.675 0.675 0.675

Art4[2, 200]

ASClass1 — — — — —
ASClass2 — — — — —
ASClass3 0.020 0 0.020 0.020 0.020
F-ASClass 0.015 0 0.015 0.015 0.015

Art5[9, 900]

ASClass1 0.664 0.033 0.701 0.591 0.706
ASClass2 0.669 0.031 0.694 0.603 0.708
ASClass3 0.707 2.278 × 10−16 0.707 0.707 0.707
F-ASClass 0.523 0 0.523 0.523 0.523

Art6[4, 400]

ASClass1 0.178 0.031 0.155 0.092 0.207
ASClass2 0.175 0.025 0.207 0.114 0.207
ASClass3 0.179 8.542 × 10−17 0.179 0.179 0.179
F-ASClass 0 0 0 0 0

Iris[3, 150]

ASClass1 0.335 0.050 0.293 0.273 0.420
ASClass2 0.345 0.060 0.313 0.240 0.426
ASClass3 0.306 0 0.306 0.306 0.306
F-ASClass 0.106 4.271 × 10−17 0 0 0.004

Thyroid[3, 215]

ASClass1 0.504 0.111 0.350 0.350 0.678
ASClass2 0.536 0.121 0.564 0.313 0.678
ASClass3 0.573 1.139 × 10−16 0.573 0.573 0.573
F-ASClass 0.196 5.695 × 10−17 0.196 0.196 0.196

Pima[2, 768]

ASClass1 0.518 0.038 0.538 0.456 0.582
ASClass2 0.537 0.034 0.501 0.480 0.594
ASClass3 0.551 0 0.551 0.551 0.551
F-ASClass 0.650 1.139 × 10−16 0.650 0.650 0.650

5. Conclusion

We have presented in this paper a new fuzzy-swarm-
algorithm called F-ASClass for data clustering in a knowledge
discovery context. F-ASClass introduces new fuzzy-heuristic
for the ant colony inspired from the spider web construction.
We have also proposed using several colonies of ants; the

number of colonies in F-ASClass depended on the number
of clusters in databases to be classified. Fuzzy rules are intro-
duced to find a partition for unclassified objects generated
by the work of artificial ants. The experimental results show
that the proposed algorithm is able to achieve an interesting
result with respect to the well-known clustering algorithm,
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Table 7: Mean, standard deviation, mode, min, and max values of accuracy classification achieved by each clustering algorithm (ASClass1,
ASClass2, ASClass3, and F-ASClass) over 20 trials on dataset presented in Table 2.

Datasets Algorithm Mean Std Mode Min Max

Art1[4, 400]

ASClass1 0.321 0.096 0.2375 0.2175 0.565
ASClass2 0.313 0.095 0.245 0.210 0.5375
ASClass3 0.415 5.695 × 10−17 0.415 0.415 0.415
F-ASClass 0.455 5.695 × 10−17 0.455 0.455 0.455

Art2[2, 1000]

ASClass1 0.859 0.017 0.852 0.826 0.894
ASClass2 0.855 0.035 0.805 0.805 0.915
ASClass3 0.854 4.556 × 10−16 0.854 0.854 0.854
F-ASClass 0.980 2.27 × 10−16 0.980 0.980 0.980

Art3[4, 100]

ASClass1 0.476 0.086 0.430 0.390 0.680
ASClass2 0.483 0.101 0.384 0.384 0.663
ASClass3 0.397 1.139 × 10−16 0.619 0.619 0.619
F-ASClass 0.466 2.278 × 10−16 0.466 0.466 0.466

Art4[2, 200]

ASClass1 — — — — —
ASClass2 — — — — —
ASClass3 0.980 2.278 × 10−16 0.980 0.980 0.980
F-ASClass 0.985 2.278 × 10−16 0.985 0.985 0.985

Art5[9, 900]

ASClass1 0.335 0.033 0.293 0.293 0.408
ASClass2 0.330 0.031 0.305 0.291 0.396
ASClass3 0.292 1.139 × 10−16 0.292 0.292 0.292
F-ASClass 0.476 0 0.476 0.476 0.476

Art6[4, 400]

ASClass1 0.821 0.031 0.792 0.792 0.907
ASClass2 0.824 0.025 0.792 0.792 0.885
ASClass3 0.820 8.542 × 10−17 0.179 0.179 0.179
F-ASClass 1 0 1 1 1

Iris[3, 150]

ASClass1 0.664 0.050 0.706 0.580 0.726
ASClass2 0.655 0.060 0.580 0.573 0.760
ASClass3 0.693 0 0.693 0.693 0.693
F-ASClass 0.893 1.139 × 10−16 0.893 0.893 0.893

Thyroid[3, 215]

ASClass1 0.592 0.052 0.595 0.493 0.674
ASClass2 0.567 0.055 0.544 0.493 0.665
ASClass3 0.544 1.139 × 10−16 0.544 0.544 0.544
F-ASClass 0.906 1.139 × 10−16 0.906 0.906 0.906

Pima[2, 768]

ASClass1 0.473 0.021 0.447 0.447 0.505
ASClass2 0.468 0.024 0.450 0.433 0.509
ASClass3 0.441 0 0.441 0.441 0.441
F-ASClass 0.333 1.139 × 10−16 0.333 0.333 0.333

𝐾-means, 𝐾-medoid, and FCM and our proposed hybrid
algorithms, ASClass, ASClass1, ASClass2, and ASClass3.

In the future, we will propose a new approach, called F-
CIC or “Fuzzy-Collective Intelligence of Colonies,” to master
the complexity. In this context we will propose new fuzzy
rules to manage communication between colonies. However,

the remarkable success of our fuzzy-metaheuristic proposed
in this paper can serve as a starting point for new approach
in engineering and computer science. In our approach basic
principles of swarm intelligence are still present but again
untimely we will propose using a good improvement with
fuzzy rules and fractal theory.
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Table 8: Mean, standard deviation, mode, min, and max values of separation index achieved by each clustering algorithm (FCM, ASClass3,
and F-ASClass) over 20 trials on dataset presented in Table 2.

Datasets Algorithm Mean Std Mode Min Max

Art1[4, 400]
FCM 0.003 4.449 × 10−19 0.003 0.003 0.003

ASClass3 3.013 × 10−5 6.026 × 10−4 0 0 0.012
F-ASClass 6.212 × 10−6 1.242 × 10−4 0 0 0.002

Art2[2, 1000]
FCM 0.001 4.449 × 10−19 0.001 0.001 0.001

ASClass3 3.436 × 10−6 1.086 × 10−4 0 0 0.003
F-ASClass 1.256 × 10−6 3.972 × 10−5 0 0 0.001

Art3[4, 100]
FCM 0.001 4.449 × 10−19 0.001 0.001 0.001

ASClass3 4.383 × 10−6 1.453 × 10−4 0 0 0.004
F-ASClass 1.180 × 10−6 3.913 × 10−5 0 0 0.001

Art4[2, 200]
FCM 0.009 3.559 × 10−18 0.009 0.009 0.009

ASClass3 3.771 × 10−5 5.333 × 10−4 0 0 0.007
F-ASClass 3.525 × 10−5 4.985 × 10−4 0 0 0.007

Art5[9, 900]
FCM 0.001 0 0.001 0.001 0.001

ASClass3 4.017 × 10−6 1.205 × 10−4 0 0 0.003
F-ASClass 1.207 × 10−6 3.623 × 10−5 0 0 0.001

Art6[4, 400]
FCM 0.002 8.898 × 10−19 0.002 0.002 0.002

ASClass3 8.116 × 10−6 1.623 × 10−4 0 0 0.003
F-ASClass 4.203 × 10−6 8.407 × 10−5 0 0 0.001

Iris[3, 150]
FCM 0.006 1.779 × 10−18 0.006 0.006 0.006

ASClass3 9.837 × 10−5 0.001 0 0 0.014
F-ASClass 3.171 × 10−5 3.884 × 10−4 0 0 0.004

Thyroid[3, 215]
FCM 0.0089 3.559 × 10−18 0.008 0.008 0.008

ASClass3 3.857 × 10−4 0.005 0 0 0.082
F-ASClass 2.470 × 10−5 3.623 × 10−4 0 0 0.005

Pima[2, 768]
FCM 0.012 5.339 × 10−18 0.012 0.012 0.012

ASClass3 2.863 × 10−5 7.935 × 10−4 0 0 0.021
F-ASClass 6.369 × 10−6 1.765 × 10−4 0 0 0.004
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