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Visual Abstract

Significance Statement

Functional connectivity (FC) and its dynamics are widely used as a proxy of brain function and dysfunction. Their
neuronal underpinnings remain unclear. Using connectome-based modeling, we link the fast temporal microscopic
neuronal scale to the slow emergent whole-brain dynamics. We show that cascades of neuronal activations sponta-
neously propagate in resting state-like conditions. The largest neuronal cascades result in the co-fluctuation of blood
oxygen level-dependent (BOLD) signals at pairs of brain regions, which in turn translate to stable brain states. Thus,
we provide a theoretical framework for the emergence and the dynamics of resting-state networks (RSNs). We verify
these predictions in empirical mouse functional magnetic resonance imaging (fMRI) and human EEG/fMRI datasets
measured in resting states conditions. Our work sheds light on themultiscalemechanisms of brain function.
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At rest, mammalian brains display remarkable spatiotemporal complexity, evolving through recurrent functional
connectivity (FC) states on a slow timescale of the order of tens of seconds. While the phenomenology of the
resting state dynamics is valuable in distinguishing healthy and pathologic brains, little is known about its
underlying mechanisms. Here, we identify neuronal cascades as a potential mechanism. Using full-brain net-
work modeling, we show that neuronal populations, coupled via a detailed structural connectome, give rise to
large-scale cascades of firing rate fluctuations evolving at the same time scale of resting-state networks
(RSNs). The ignition and subsequent propagation of cascades depend on the brain state and connectivity of
each region. The largest cascades produce bursts of blood oxygen level-dependent (BOLD) co-fluctuations at
pairs of regions across the brain, which shape the simulated RSN dynamics. We experimentally confirm these
theoretical predictions. We demonstrate the existence and stability of intermittent epochs of FC comprising
BOLD co-activation (CA) bursts in mice and human functional magnetic resonance imaging (fMRI). We then
provide evidence for the existence and leading role of the neuronal cascades in humans with simultaneous
EEG/fMRI recordings. These results show that neuronal cascades are a major determinant of spontaneous
fluctuations in brain dynamics at rest.

Key words: EEG/fMRI; network modeling; neuronal cascades; resting state

Introduction
At rest, functional magnetic resonance imaging (fMRI)

reveals the existence of periods during which blood oxy-
gen level-dependent (BOLD) activity is highly correlated
between specific brain regions, known as resting-state
networks (RSNs). RSNs are consistently observed across
several mammalian species including humans (Fox and
Raichle, 2007; Power et al., 2011) and non-human (Vincent et
al., 2007) primates, as well as in rats (Upadhyay et al., 2011;
Lu et al., 2012) and mice (Sforazzini et al., 2014; Stafford et
al., 2014; Gozzi and Schwarz, 2016; Grandjean et al., 2020).
Functional connectivity (FC) can be used to characterize
these strongly correlated functional communities of brain net-
work nodes. A growing body of research on mammalian spe-
cies emphasizes the dynamic nature of RSNs, showing that
large-scale FC patterns switch between stable and unstable
epochs at an infraslow pace (,0.1Hz; Tagliazucchi et al.,
2012b; Allen et al., 2014; Qin et al., 2015; Hindriks et al.,
2016; Grandjean et al., 2017; Preti and Van De Ville, 2017;
Gonzalez-Castillo and Bandettini, 2018). Dynamic FC (dFC;
Hutchison et al., 2013) measures FC fluctuations and pro-
vides a marker of healthy, aging, and diseased brains
(Damaraju et al., 2014; Rashid et al., 2014; Su et al., 2016; Du

et al., 2017; Preti et al., 2017; Battaglia et al., 2020). Our cur-
rent understanding of these phenomena rests on computa-
tional studies, performed at the whole-brain level, suggesting
that the RSN dynamics is an emergent property of the net-
work (Ponce-Alvarez et al., 2015), which operates near crit-
icality (Ghosh et al., 2008; Deco and Jirsa, 2012; Jirsa et al.,
2017). Nevertheless, the range of possible mechanistic
underpinnings remains vast and requires further narrowing
down. Here, we address this issue and investigate in silico
the potential neuronal mechanisms giving rise to whole-brain
network dynamics, generate predictions and test them in
vivo. We use The Virtual Brain (TVB), a neuroinformatics and
simulation platform, which allows connectome-based whole-
brain modeling of multiple species including humans (Sanz-
Leon et al., 2015) and mice (Melozzi et al., 2017). TVB in-
cludes a fixed number of network nodes (at least one per
brain region) and the physical connections that link them,
such as white matter tracts defined by diffusion tensor imag-
ing or axon projections obtained with virus injections (Sanz
Leon et al., 2013). A large number of neural mass models
(NMMs) are readily available in TVB, which produce activity of
neuronal populations and map on a range of brain imaging
modalities including BOLD fMRI, EEG, and MEG signals. We
here adapt a novel NMM, which has been previously derived
as the exact limit of an infinite number of all-to-all coupled
quadratic integrate-and-fire (QIF) neurons (Montbrió et al.,
2015; Fig. 1A). This analytic step allows to derive the average
firing rate and membrane potential of a mesoscopic neuronal
population, thus providing suitable neural mass variables
while keeping track of the internal spiking neural network or-
ganization, which is important to infer potential mechanisms
at the neuronal scale. Using this NMM, we report a mecha-
nism by which spontaneous local re-organizations of regional
spiking neural networks, can trigger global infra-slow fluctua-
tions, which we name neuronal cascades. The largest neu-
ronal cascades give rise to bursts of simulated BOLD
co-activations (BOLD-CAs) at pairs of brain regions across
the brain, which in turn account for stable long-lasting FC
states and their dynamics. We verify experimentally the link
between BOLD-CA and dFC in mouse fMRI and human
EEG-fMRI. On the simultaneous human EEG acquisition, we
discover the presence of neuronal cascades and we demon-
strate their role in driving the switching behavior of FC states.
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These findings provide the first evidence of a multiscale
mechanism underlying RSN dynamics which can be robustly
assessed in non-invasive brain imaging signals.

Materials and Methods
Empirical mouse connectome
The connectome used for the simulations was ex-

tracted using The Virtual Mouse Brain pipeline described
previously (Melozzi et al., 2017), which processes the
tracer experiments performed at the Allen Institute (Oh et
al., 2014). There, adult male C57Bl/6J mice are injected in
specific brain regions with a recombinant adeno-associ-
ated virus, which expresses the EGFP anterograde tracer.
In each experiment, the tracer migration signal is detected
by a serial two-photon tomography system. The antero-
grade tracing provides information about the axonal
projections starting at the injected site. We define the in-
jection density of the source region as the number of in-
fected pixels normalized by the total number of pixels in
the region. Similarly, the projection density is defined in
every region as the number of pixels detected in the target
region following an injection at the source, normalized by
the total number of pixels belonging to the target region.
The tracer-based connectome is built by averaging over

injection experiments performed in the right brain areas
and targeting regions in ipsilateral and contralateral hemi-
spheres. Through the Allen Connectivity Builder interface
in TVB we parceled the brain in 104 anatomic regions of
interest (ROIs; Table 1). Then, we defined the connection
strength between source region n and target region m,
i.e., the structural edge nm, as the ratio between the pro-
jection density at m and the injection density at n. The
tracer structural connectome W, with edges normalized
between 0 and 1 is shown in Figure 1D.

Neural mass model
The dynamics of a brain ROIs (i.e., a node in the struc-

tural network) is described by a NMM derived analytically
as the limit of infinitely all-to-all coupled u -neuron phase
oscillators, whose dynamics is equivalent to that of QIF
neurons (Fig. 1A ; Montbrió et al., 2015). The i-th neuron is
described by the equation

t c
_V iðtÞ ¼ V2

i ðtÞ1 h i 1 J�sðtÞ1 IðtÞ
if Vi � Vp then Vr  Vi: (1)

As the membrane potential reaches a peak value Vp, it re-
sets to Vr. The limit Vp ¼ �Vr !1 is considered. The

Figure 1. Connectome based modeling. A, The mean firing rate r and membrane potential V variables of the NMM are derived as
the limit of infinite all-to-all coupled QIF neurons. Applying the Balloon–Windkessel model to V n(t) we obtain the simulated BOLD
signal Bn(t) at node n. B, The phase plane of each decoupled node (Iext = 0) has a “down” stable fixed point and an “up” stable
focus (full dots). These points are defined at the intersection of the nullclines _r ¼ 0 (orange line) and _V ¼ 0 (green line) where the dy-
namics freezes. The empty circle marks an unstable fixed point. As the external current Iext is increased, the phase plane of the neu-
ral mass changes (see equations in Materials and Methods). In particular, the basin of attraction of the up state gradually becomes
larger than that of the down state, while the fixed points move farther apart. C, D, The mouse connectome and structural connectiv-
ity Wnm were imported from the tracer experiments of the Allen Institute. The 104 cortical ROIs (corresponding to network nodes)
are specified in Table 1. E, When the regions are coupled in a brain network, each node n receives an input current Iext which is the
sum of the other nodes’ firing rates, weighted by the structural connectivity. According to panel B, this input provokes a distortion
of the local phase plane at node n.
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parameter h i is the neuron excitability, and it enters as an het-
erogeneous current in the membrane potential. A time-de-
pendent current I(t) homogeneously affects all the neurons in
the neural mass. The synaptic activation s(t) of a single neu-
ron respects the equation Q � sðtÞ ¼

X

k

d ðt� tkÞ, being

Q ¼ ð1� t
d
dt
Þ and tk the arrival time of the presynaptic ac-

tion potential. The neuronal coupling among NQIF neurons

inside a neural mass is given by the average synaptic activa-

tion �sðtÞ ¼ 1
NQIF

XNQIF

j.1

sðtÞ scaled by the synaptic weight J.

Assuming a Lorentzian distribution of the membrane poten-
tials across the coupled neuronal population it is possible to
perform the NQIF !1 limit exactly according to the Ott–
Antonsen ansatz (Ott and Antonsen, 2008). Also, the het-
erogeneous currents are distributed according to a

Table 1: List of brain ROIs of the Allen Mouse Atlas considered in the simulations

ROI ID: ROI name: ROI ID: ROI name:
0 Right primary motor area 52 Left primary motor area
1 Right secondary motor area 53 Left secondary motor area
2 Right primary somatosensory area, nose 54 Left primary somatosensory area, nose
3 Right primary somatosensory area, barrel field 55 Left primary somatosensory area, barrel field
4 Right primary somatosensory area, lower limb 56 Left primary somatosensory area, lower limb
5 Right primary somatosensory area, mouth 57 Left primary somatosensory area, mouth
6 Right primary somatosensory area, upper limb 58 Left primary somatosensory area, upper limb
7 Right supplemental somatosensory area 59 Left supplemental somatosensory area
8 Right gustatory areas 60 Left gustatory areas
9 Right visceral area 61 Left Visceral area
10 Right dorsal auditory area 62 Left dorsal auditory area
11 Right primary auditory area 63 Left primary auditory area
12 Right ventral auditory area 64 Left ventral auditory area
13 Right primary visual area 65 Left primary visual area
14 Right anterior cingulate area, dorsal part 66 Left anterior cingulate area, dorsal part
15 Right anterior cingulate area, ventral part 67 Left anterior cingulate area, ventral part
16 Right agranular insular area, dorsal part 68 Left agranular insular area, dorsal part
17 Right retrosplenial area, dorsal part 69 Left retrosplenial area, dorsal part
18 Right retrosplenial area, ventral part 70 Left retrosplenial area, ventral part
19 Right temporal association areas 71 Left temporal association areas
20 Right perirhinal area 72 Left perirhinal area
21 Right ectorhinal area 73 Left ectorhinal area
22 Right main olfactory bulb 74 Left main olfactory bulb
23 Right anterior olfactory nucleus 75 Left anterior olfactory nucleus
24 Right piriform area 76 Left piriform area
25 Right cortical amygdalar area, posterior part 77 Left cortical amygdalar area, posterior part
26 Right field CA1 78 Left field CA1
27 Right field CA3 79 Left field CA3
28 Right dentate gyrus 80 Left dentate gyrus
29 Right entorhinal area, lateral part 81 Left entorhinal area, lateral part
30 Right entorhinal area, medial part, dorsal zone 82 Left entorhinal area, medial part, dorsal zone
31 Right subiculum 83 Left subiculum
32 Right caudoputamen 84 Left caudoputamen
33 Right nucleus accumbens 85 Left nucleus accumbens
34 Right olfactory tubercle 86 Left olfactory tubercle
35 Right substantia innominata 87 Left substantia innominata
36 Right lateral hypothalamic area 88 Left lateral hypothalamic area
37 Right superior colliculus, sensory related 89 Left superior colliculus, sensory related
38 Right inferior colliculus 90 Left inferior colliculus
39 Right midbrain reticular nucleus 91 Left midbrain reticular nucleus
40 Right superior colliculus, motor related 92 Left superior colliculus, motor related
41 Right periaqueductal gray 93 Left periaqueductal gray
42 Right pontine reticular nucleus, caudal part 94 Left pontine reticular nucleus, caudal part
43 Right pontine reticular nucleus 95 Left pontine reticular nucleus
44 Right intermediate reticular nucleus 96 Left intermediate reticular nucleus
45 Right central lobule 97 Left central lobule
46 Right culmen 98 Left culmen
47 Right simple lobule 99 Left simple lobule
48 Right ansiform lobule 100 Left ansiform lobule
49 Right paramedian lobule 101 Left paramedian lobule
50 Right copula pyramidis 102 Left copula pyramidis
51 Right paraflocculus 103 Left paraflocculus
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Lorentzian distribution with width at mid-height D and
peak location h . After the limit we can describe the activ-
ity in a neural mass n in terms of the average membrane
potential V n(t) and the average firing rate rn(t) (which cor-
responds to �sðtÞ in the limit t ! 0). The dynamics associ-
ated with a local network node is then described by the
following NMM equations:

t c _rnðtÞ ¼ D
p

1 2rnðtÞVnðtÞ; (2)

t c
_VnðtÞ ¼ V2

n ðtÞ1 h1JrnðtÞ � p 2r2nðtÞ1 IðtÞ: (3)

The synaptic weight J=14.5, the average neuronal ex-
citability h = – 4.6, the spread of the heterogeneous noise
distribution D = 0.7, and the characteristic time tc = 1 are
homogeneously tuned so that each decoupled node is in
a bistable regime with a “down” fixed point and an “up”
stable focus in the 2D phase space (Fig. 1B, Iext = 0).
Differently from standard NMMs, the chosen model quan-
tifies the internal amount of synchronization of the constit-
uent neurons by preserving the analytic form of the
Kuramoto parameter (Kuramoto, 2003)

ZnðtÞ ¼ j
X

i

expðiu iÞj ¼ KnðtÞexpðiu nðtÞÞ; (4)

during the thermodynamic limit. The phase-oscillator
representation (i.e., in terms of u i) of the QIF equations
can be achieved from Equation 1 by a change of varia-
bles Vi ¼ tanðu i=2Þ. Kn and u n are the average amount
of synchronization and the average phase of the neu-
rons in the node n. The real and imaginary components
of Zn are connected to the average membrane potential
Vn and firing rate rn of the neural population n via the
relation:

Zn ¼ 1�wp
n

11wp
n

; wn � p rn1iVn: (5)

Connectome-basedmodeling
The local model is then coupled over an empirically ex-

tracted connectome (Fig. 1C,D). The coupling term enters
as an additive current in the average membrane potential
equations (see also Fig. 1E):

IðtÞ ¼ G
X

m 6¼n
Wnmrmðt� t nmÞ: (6)

The global coupling parameter G sets the impact of the
connectivity matrix Wnm over the local dynamics. The
time delay tnm ¼ lnm=v is given by the tract length be-
tween nodes n and m divided by the average conduction
speed which we set to a realistic value v=4 m/s. Since
the firing rate is by definition greater than or equal to zero,
all the interactions are excitatory.
The numeric integration of the nodal equations over the

network is performed using TVB open-source neuroinfor-
matics platform (Sanz Leon et al., 2013). The solution of
the coupled system consists of a neuroelectric raw data-
set describing the evolution of the variables ðrnðtÞ;VnðtÞÞ

in each region n of the connectome. These variables are
our measure of microscopic activity. The sampling rate of
these neuroelectric variables is set to 1000Hz. The surro-
gate BOLD activity Bn(t) in each region is derived by filter-
ing the membrane potential with the Balloon–Windkessel
model (Friston et al., 2000; default values implemented in
TVB). We use a repetition time of 2 s so that the BOLD
rate is 0.5Hz.
Note that the conduction speed v is a function of the

physical tract lengths lnm of the empirical connectome
and of the resolution Dt of the simulated signal, which
physical interpretation is arbitrary. We impose it to be
Dt=1 ms. Accordingly, 2000 time steps correspond to 2
s= 1 BOLD point. All the dimensional arguments treated
in the text are based on this convention. In particular, we
adopted a nondimensional formalism for the NMM
Equation 2, where only the characteristic time constant tc
has the dimension of time.

Mouse and human empiric datasets
The empirical mouse fMRI dataset was imported from

the publicly available collection Grandjean (2020). For our
analysis, we used the cohort of 20 control wild-type (rest-
ing) animals registered in the subdataset (Mandino, et al.,
2019). The data were previously preprocessed according
to a common pipeline (https://github.com/grandjeanlab/
MouseMRIPrep), and registered on the Allen volumetric
atlas. In our analysis, we considered the activity in those
voxels corresponding to the imported Allen connectome
(Table 1). The empiric dataset did not distinguish between
specific parts (e.g., ventral and dorsal) of certain brain re-
gions (Anterior cingulate, Retrosplenial and Entorhinal
areas). A unique time series was associated with each of
these pairs of regions.
The empirical human EEG/fMRI dataset was acquired

and preprocessed at Charité-Universitätsmedizin Berlin
(Schirner et al., 2018) and made available in online reposi-
tory (https://osf.io/mndt8/; Schirner, 2018). In summary,
from a larger cohort (49 subjects, 18–80 years), 15 young-
est subjects (18–31 years) were selected based on the
quality of the EEG recording after correction of the MR
artifacts. For each subject, diffusion-weighted MRI, T1-
weighted MRI, and EEG-fMRI in resting-state paradigm
were obtained. The T1-weighted image was used to par-
cellate the cortical gray matter into 68 regions according
to the Desikan–Killiany atlas (Desikan et al., 2006). This
definition of regions was then used to estimate the struc-
tural connectivity from the dw-MRI data (Schirner et al.,
2015), and to extract the regional average time series
from the fMRI data. The EEG data (Easy-cap; 64 channels,
MR compatible) was treated with a high pass filter at
1.0Hz followed with MRI acquisition artifact removal
using Analyser 2.0 (v2.0.2.5859, Brain Products). The re-
sulting sensor-level time series was downsampled to
200Hz and low pass filtered to 30Hz before correction for
physiological artifacts (ballistocardiogram, muscle activ-
ity). Next, EEG source imaging was performed to obtain
projected activity on the cortical surface and averaged
within the 68 regions of the Desikan–Killiany parcellation.
See Schirner et al. (2018) for a detailed description of both
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fMRI and EEG processing. After the preprocessing, we
made a quality check of every subject data and excluded
BOLD points and associated EEG time windows [BOLD
time repetition (TR) = 1.94 s = 388 EEG samples] which
presented residual artifacts (at either EEG or fMRI level)
based on the following criteria: if any of the six time
series of the motion degrees of freedom (resulting from
the FSL MCFLIRT head movement correction step) pre-
sented a peak; if the EEG window contained fluctuations
simultaneously affecting most of the frequencies (time-
frequency analysis); and if the EEG presented fluctuations
above 7 SDs.
We finally selected 30 artifact-free trials of consecutive

EEG/fMRI acquisition (minimum duration 2min) across
the cohort.

Time-dependent FC
To quantify the temporal evolution of the brain FC, we

have employed two approaches: windowed dFC (dFCw),
and edge-dFC (dFCe). Let us denote by Bn(t) the regional
BOLD time-series for each node n=1...N. To compute the
dFCw (Allen et al., 2014), we first obtain the series of FC
matrices FC(w) at each sliding window w=1...Nw, defined
as the correlation matrices for the segments BnðtÞjtw1t

tw (we
fix the window size t = 60 s and window step 2 s). Next,
we correlate the vectorized upper triangular parts of the
FC(w) matrices at different time windows to obtain the
dFCw matrix:

dFCwðwi;wjÞ ¼ corr triuðFCðwiÞ; triuðFCðwjÞÞ
� �

: (7)

On the other hand, the computation of the dFCe starts
with the z-scored BOLD time series Bn (subtract the mean
and divide by the SD). The edge time series is then

computed as element wise multiplication along time for
each pair of regions EnmðtÞ ¼ BnðtÞ � BmðtÞ for n,m=1...N
(see Fig. 2A). Next, for each pair of time points t1, t2, we
compute the dFCe matrix elements (Fig. 2B) as the
correlation:

dFCeðti; tjÞ ¼ corrðEnmðtiÞ;EnmðtjÞÞ: (8)

A main difference among the dFC variants lies in the
scope of z-scoring of the time series Bn. In the case of
dFCe the z score zn is computed from the whole time se-
ries, whereas in the dFCw the z score is performed within
the Pearson correlation in each time window ½tw; tw1t �
separately.

Surrogate BOLDmodels
In order to compare our results below (Results, Neuronal

cascades subtend RSN dynamic) about the origin of the FC
dynamics with the null hypotheses of a random evolution
and of inter-regional stationarity of the FC, we build time-
shuffled and phase-randomized surrogates of the FC
dynamics, respectively. The time-shuffled surrogate is ob-
tained by randomizing the order of the instantaneous FCs
iFC(t), i.e., the columns of the edge CA time series Enm(t)
(see Fig. 2A). According to Hindriks et al. (2016) the phase
randomized surrogate is obtained by adding a uniformly dis-
tributed random phase to each frequency of the Fourier
transformed signal, and subsequently retrieving the phase
randomized signals by anti-Fourier transform. Importantly,
the phase shift is different at every time point but can be ap-
plied uniformly to all the brain regions (cross-spectrum pre-
served) or separately in every region (cross-spectrum not
preserved). Only in the first case the bursts of CA are not de-
stroyed but shifted (Extended Data Fig. 9-1A) and the static

Figure 2. Two regimes of dFC. A, Given two nodes n and m the edge CA signal Enm(t) (orange box) is defined as the product of the
z-scored BOLD signal Bn(t) and Bm(t). Averaging the BOLD-CA matrix over time we obtain the Pearson correlation across each pair
of brain regions n and m (in black box, right), defining the static FC. Each column of the BOLD-CA matrix represents an istantane-
ous realization of the FC (iFC). B, The elements (ti, tj) of the dFCe matrix are defined as the Pearson correlation between iFC(ti) and
iFC(tj). Note in panel A the presence of transient bouts of strong BOLD-CA (e.g., in the blue boxes). During these events, the iFC re-
mains relatively correlated for few consecutive time points, which gives rise to diagonal (yellow) blocks in the dFCe matrix. The
same CA burst (e.g., at ti) can re-occur in time after long periods of time (e.g., at tj), which gives rise to an off-diagonal dFCe block
(e.g., at the crossing of the dashed lines in panel B).
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FC is preserved. The coherent fluctuations around the sta-
tionary FC, however, are destroyed. For more details, see
also Prichard and Theiler (1994).

Results
We start by introducing the synthetic setup used to sim-

ulate the main feature of RSN dynamics, i.e., the intermit-
tent epochs of stable FC. To achieve recurrent functional
network activation we set the brain regions into a bistable
regime, where the mean membrane potentials can exhibit
a resting (down) and a depolarized (up) state (Hansen et
al., 2015). When the regions are suitably coupled over a
connectome, the local activity spontaneously fluctu-
ates between these states, which promotes system
metastability, i.e., the recurrent exploration of multiple
network configurations (Deco et al., 2017; Beim
Graben et al., 2019). In order to understand the mech-
anisms allowing the dynamic coordination of bistable
neural masses into multistable network re-configura-
tions, we looked in detail at the building blocks of our
simulation.

Rules of single and coupled nodes dynamics
Let us first consider the dynamics of a single isolated

brain node (not connected to the network) where the
local NMM parameters are tuned to ensure bistability. If
there is no input current (Iext = 0), solving the model
equations (see Materials and Methods) resolves the dy-
namics of the node in terms of the mean firing rate r(t)
and mean membrane potential V(t). The motion trajecto-
ries are represented on the (r, V) phase plane (Fig. 1B,
left panel).
If, at a given time, a node takes a given ðrp;VpÞ value,

the direction of the arrow at these coordinates indicates
the direction of the flow, and where the node dynamics
will end up: either falling in the down stable state where
the neurons populating the NMM exhibit low firing rate
and strong (negative) membrane potential; or spiraling in
a damped oscillation into the up stable state, in which the
neurons display high average firing rate and low average
membrane potential. Thus, in the absence of noise, neu-
ronal activity of the node would rapidly freeze into a stable
up or down level of activity (Fig. 1B, full dots).
Introducing noise allows the stochastic exploration of

the phase space. If the noise is sufficiently large, a ran-
dom movement in the phase plane can provoke the sud-
den switch from up!down or down!up basins of
attraction (Fig. 1B, light blue and white shades, respec-
tively), therefore changing the r and V dynamic modality.
We now consider a non-null input current Iext, simulat-

ing a constant synaptic input. As Iext increases (Fig. 1B),
the two branches of the V-nullcline ( _V ¼ 0 lines) move
horizontally away from each other, while the r-nullcline
(_r ¼ 0 line) remains fixed. Correspondingly, the location of
the stable points in the phase plane shifts (at _V ¼ _r ¼ 0)
and their basins of attraction change in size. The separa-
trix, i.e., the line separating the up and down basins of at-
traction, is therefore a dynamical element: its location
depends on the amount of input that the node is receiving
at a given time.

If Iext is small, the separatrix is close to the up state (Fig.
1B, left) and the crossing of the separatrix via random
fluctuations is more probable in the up! down direction;
the node explores only the down state. Conversely, if the
separatrix is close to the down state when Iext is high (Fig.
1B, right), the node likely remains in the up state.
This property of the NMM is key to understand the sys-

tem’s dynamic. At a given time t the inputs received by
node n will shift the separatrix, and make it easier (or not)
for the node to change its activity as a function of noise
and of its current state [ðrp;VpÞ coordinates at time t].
Using this NMM, we simulate whole-brain dynamics in

a mouse brain avatar (Melozzi et al., 2017, 2019), the de-
tailed connectivity of which is imported from the tracer ex-
periments of the Allen Institute and is parcellated into
anatomic ROIs, associated with the network nodes (Fig.
1C; Oh et al., 2014). The communication between regions
is weighted by the structural links Wnm of the structural
connectivity (Fig. 1D). Thus, the input Iext of a node repre-
sents the synaptic drive from the firing rates rm of all them
nodes that are connected to node n (Fig. 1E; see
Materials and Methods). As an effect of the coupling, the
(projected) phase plane (rn, V n) at node n can be thought
of as a distorted version of the phase plane of a single iso-
lated node, where the location of the separatrix depends
on the structural role that region n plays in the network hi-
erarchy. Less connected regions receive a weak input
current In so that the local phase plane is slightly dis-
torted. Instead, regions with high centrality in the connec-
tome, or that are part of strongly connected structural
motifs, receive a strong input, which causes a greater dis-
tortion of the local phase plane, with consequences on
their activity.

CA bursts account for RSN dynamics
Once a working regime is chosen by the selection of

global and local model parameters, the raw outcome of
the simulation consists of a high time-resolution neuro-
electric signal: the average firing rate r and membrane po-
tential V for each node. As a convention, we refer to the
average firing rate activity as the simulated EEG data.
With a further processing step, we obtain a low time-reso-
lution simulated BOLD activity by filtering the membrane
potentials through the Balloon–Windkessel model (Friston
et al., 2000; Fig. 1A, right).
In order to compare simulated and empirical whole-

brain imaging data, we analyze the dynamic evolution of
functional brain patterns with dFC measures (Majeed et
al., 2011; Smith et al., 2012; Hutchison et al., 2013;
Lindquist et al., 2014; Karahanoğlu and Van De Ville,
2015; Shine et al., 2015). The most diffuse definition of
dFC, is based on a sliding window approach (Allen et al.,
2014). In brief, inside each time window, a static FC is
computed as the correlation matrix of the BOLD activities.
Then, the entries of the dFCw matrix are defined as the
correlation between the FCs at different windows (see
Materials and Methods). In typical empiric datasets, dFCw

matrices show non-trivial block structures; diagonal block
structures represent epochs of stable FC, while the off-
diagonal blocks mark the re-occurrence of correlated FC
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at distinct times. For our analysis, we introduce a dFC
measure derived in an edge-centric approach, where the
dynamics for the edge Enm is defined by the product of
the z-scored BOLD activities Bn and Bm at nodes n and m
(Faskowitz et al., 2020). The resulting edge CA time series
(Fig. 2A, orange box) tracks the temporal unfold of corre-
lations across node pairs.
In fact, averaging the edge CAs across time defines the

Pearson correlation across each pair n and m (Fig. 2A,
right, black box). The correlation for each couple of re-
gions (i.e., each edge) defines the static FC (Fig. 2A, right).
Thus, we can interpret the columns in Figure 2A, blue
boxes, as instantaneous realizations of the FC (iFC) at dif-
ferent times t. The dFCe (Fig. 2B) is defined (without the
use of sliding windows) by the Pearson correlation of the
iFCs at each couple of times ti and tj. On the one hand,
the window approach to dFC allows a more reliable mea-
sure of the correlations to the detriment of the resolution
over the temporal structure. On the other hand, the edge
approach is more sensitive to spurious correlations but,
crucially for our following analysis, it maintains the full
time resolution of the BOLD signals. Notably, the example
Figure 2A extracted from a regime of interest, reveals that
short duration bouts of strong BOLD-CAs (vertical stripes)
spontaneously appear in association with a non-trivial
dFCe. As a final remark, we also notice that the dFCe

blocks (Fig. 2B) occur in coincidence with the strongest
edge CAs, an observation that will have important conse-
quences in our final analysis.

Multiple pathways to simulate RSN dynamics
To search for regimes of dynamic resting-state activity,

we explore the parameter space by varying the global syn-
aptic couplingG and the noiseN, representing the impact of
the structure over the local dynamics, and the stochastic
currents simulating a generic environmental noise (thermo-
dynamic, chemical, synaptic...), respectively. Then, we look
for regions of the parameter space where a non-trivial func-
tional network dynamics emerge. We define the “switching
index,” i.e., the variance across all elements of the upper tri-
angular part of the dFCw matrix (Fig. 3) to quantify the tem-
poral irregularity of functional activity (roughly speaking, the
number of different dFCw block structures and how often
they switch between one another). We identify two regimes
giving rise to RSN dynamics, where the respective neuro-
electric correlates are qualitatively different.
In the first case, a weak structural coupling (low G) is in-

sufficient to promote any region into a high firing rate
state, because the excitatory drive received by any node
is relatively small. However, all regions can transiently
reach a high firing rate state because the stochastic drive
is strong. We refer to this as the monostable regime (Fig.
3, bottom left). In the second case, the stronger structural
coupling pushes a subset of regions into a strongly active
state leaving the remaining regions in the down state. A
weak stochastic drive ensures stable dynamics with few
regions jumping between the up and down states. We call
this the bistable regime (Fig. 3, bottom right).
In conclusion, the balance between the local dynamics

and the global connectivity (tuned by G), together with

appropriate levels of perturbation of the system (N),
allow the same NMM model to generate diverse large-
scale organizations qualitatively similar to those meas-
ured empirically.
Before moving on, let us notice that the block structures

in the dFCw (examples in Fig. 3, bottom panels) give the
impression that whole-brain dynamics is organized by a
sequence of transient but long-lasting stable periods of
correlated activity. However, the analysis of the corre-
sponding dFCe reveals that whole-brain dynamics is in
fact characterized by much smaller periods of CAs. Since
we want to compare resting-state dynamics to the
underlying fast neuronal activity, we are interested in
the highest temporal resolution available. Therefore,
unless differently specified, in the following analysis
we use dFCe. We also notice that when dFCw is used,
as the window slides in time, it will capture the tran-
sient edge CA bursts as long as the latter is present in
the window, giving rise to spurious long-lasting block
structures (e.g., see the different block organization
between dFCw and dFCe in Fig. 3, bottom right). Next,
we analyze the neuronal mechanisms underlying rest-
ing-state functional dynamics generated by the model.

A generative mechanism for slow cascades of
neuronal activations
Functional dynamics and the underlying neuronal activ-

ity fundamentally differ in their intrinsic time scales.
Neuronal fluctuations typically evolve at the milliseconds
scale. RSN dynamics unfolds in the order of tens of sec-
onds. In this section, studying the results of our simula-
tion, we reveal a potential mechanism by which local
neuronal perturbations can generate a slow cascade of
activation across the brain network, thus approaching the
temporal scale of RSN dynamics.
To do so, we introduce a framework to interpret the si-

mulated firing rate dynamics and its dependence on the
structural connectome. We focus on the bistable regime
where the low noise level allows a clearer visualization of
the dynamic mechanisms in act. The hypotheses devel-
oped here will be later tested on the monostable regime
as well as in empiric data. We identify five main categories
of nodes based on their simulated firing rate activity:

• (D) down regions (Fig. 4A, light blue) display a low fir-
ing rate state throughout the duration of the simula-
tion, as the up state is practically unreachable by
noise-driven fluctuations. According to the section
above, Rules of single and coupled nodes dynamics,
the separatrix lies close to the up state (Fig. 4B, top).
Their low firing rate regime (Fig. 4B, bottom) makes
them poor communicators in the network hierarchy.

• (U) up regions (Fig. 4A, light red) always show a high
firing rate (Fig. 4B, bottom), constantly providing in-
puts to their targets. The separatrix is close to the
down state and is never reached (Fig. 4B, top).

• (J) jumping regions (Fig. 4A, green) undergo regular
local transitions, dwelling for a relatively long time in
both low-firing and high-firing rate states (Fig. 4B, bot-
tom). In the projected phase space of these regions,
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the separatrix lies midway between the up and down
states (Fig. 4B, top). Therefore, they have the same
probability to jump from up to down and vice versa
Note that the timing of the (J) jumps defines a new
slow time scale for the system. The fact that these
jumps occur on a regular basis during the simulation
ensures that this time scale is ever-present in the
large-scale network dynamics.

• (D*) down-up regions (Fig. 4A, dark blue in network
plot) have a stable activity around the down state fixed
point but, in rare occasions, manage to reach the up
state stable focus for a certain transient time.

• (U*) up-down regions (Fig. 4A, dark red in network plot)
have a stable activity around the up state but are occasion-
ally driven into a short-lived excursion to the down state.

The topographic organization of the firing rate classes
shows the influence of the connectome in organizing
whole-brain dynamics (Fig. 4A, regions labels in Table 1).
Nodes receive different inputs as a function of the location
in the connectome, which grants a different jumping prob-
ability and therefore a different role in network dynamics.
A stochastic jump is a functionally important event for
the network, as it corresponds to a sudden firing rate in-
crease or decrease, which greatly influences the activity of
downstream nodes. Thus, since the nodes of class (J) can
jump regularly, we expect them to have a major role on
whole-brain dynamics. A principal component analysis
(PCA) of the regions’ firing rates shows that nodes (J) are the
main contributors to the first three principal components,
explaining most of the system variance (explained variance
ratio.0.59; see Extended Data Fig. 4-1A).

Figure 3. Two qualitatively distinct regimes of non-trivial functional dynamics. For every couple of global parameters (G, N) we cal-
culated the dFC in a sliding window approach (dFCw; as in Materials and Methods) and in an edge-centric approach (dFCe; as in
Fig. 2A,B). The “switching index” of each dFCw matrix was evaluated as the variance of the respective upper triangular elements.
We find two regimes of activity, named monostable and bistable, where qualitatively distinct neuroelectric organizations give rise to
large-scale functional dynamics characterized by a non-vanishing switching index. In both regimes, the dFCw and dFCe display off-
diagonal blocks, demonstrating a correlation between the functional activity at distinct times. The low global coupling G in the
monostable regime (bottom left) does not guarantee a strong communication between the brain network regions, which most of the
time populate the low firing rate (“down”) state. A strong noise N pushes the brain regions in the high firing rate (“up”) state for short
transients. A higher value of the global coupling in the bistable regime (bottom right) promotes a subgroup of regions in the high fir-
ing rate (up) state. Low levels of noise perturb the equilibrium of the system provoking localized switching in both up !down and
down!up directions (e.g., at t=200 ms).
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Another key element of the simulated network dynam-
ics is the occurrence of rare events, identified by large de-
viations, e.g., above 3 SDs s away from baseline firing
rate (Fig. 4C, black lines). Given their regular jumping, the
activity of regions (J) never grows above 3 s (Fig. 4C , bi-
modal distribution of standardized firing rate in green).
The same holds for (D) and (U) regions. In contrast, we
find that the regions in classes (D*) and (U*), occasionally
grow above 3 s during their rare jumps across the separa-
trix (Fig. 4C, dark blue and dark red distribution, respec-
tively). Our simulation shows that these rare events can
trigger cascades of transitions across the separatrix of a
subset of regions (e.g., Fig. 4D). The propagation of a cas-
cade depends on the structural location of the source
node. Let us consider the case of a node with jumping po-
tential, which is also a hub for the network (i.e., with high
centrality; van den Heuvel and Sporns, 2013). Its local re-
shaping will have a wide influence throughout the net-
work. However, the hubness of a jumping node does not
guarantee the crossing of the separatrix by its target re-
gions. If the hub is connected to a very stable subset of
regions, following a jump of the hub, most of the separa-
trix lines in the targets will be slightly shifted, but not
enough to allow any crossing. In contrast, if there exists a
subset of strongly connected nodes with jumping poten-
tial, the jump of one will have strong effects within such
subnetwork. In order to illustrate this point, let us consider

that a group of nodes from class (U*), have very strong
links binding them. Then, the occasional jump down of
one of these nodes will strongly shift the separatrix of the
other (U*) nodes toward the up stable focus, increasing
their probability of jumping down. Then, many (U*) nodes
will be dragged down one after the other, facilitating the
next jumps, producing a cascade effect (as in Fig. 4D).
During this event, the (J) nodes get also involved, inter-
rupting for some time their regular control over the net-
work. A windowed analysis of the first principal
component of the firing rate activity shows that the nodes
in the *-classes are driving the system during these rare
events (Extended Data Fig. 4-1B).
The cascade effects quickly drag the system away

from its standard state, establishing short epochs of
increased deviations from baseline activity (the aver-
age firing rate in classes D* and/or U* deviates from
baseline; Fig. 5A, top). In our simulation we mark four
of these epochs (I, II, III, IV; Fig. 5A, bottom; Fig. 4D re-
fers to Epoch I) which are separated by long periods of
standard activity.
Summarizing, we have described how the jumps of the

firing rate at local sites are extremely relevant for the un-
folding of the neuronal activity throughout the brain, as
they provoke the largest perturbations in the system. If
jumps happen with a certain regularity, they will generate
a slow time scale in the system. This slow rhythm in our

Figure 4. Mechanisms of cascade generation in the synthetic model. A, Different regions have a different fate depending on their lo-
cation in the connectome. We classified the regions in five classes (D, U, J, D*, U*) according to their activity. B, Example explora-
tion of the projected 2D phase space (top) and firing rates activity (bottom) of the “up-U” (light red), “down-D” (light blue), and
“jumping-J” (green) regions. C, Distribution of the standardized firing rates in different classes. Class (J) regions have two modes
but never cross the63 s threshold (black lines). Class (U*) (dark blue) and class (D*) (dark red) regions dwell most of the time in the
up and down states, respectively. Only in important rare occasions the *-regions cross the threshold to jump on the other side, sub-
stantially deviating from their baseline activity. The leading role of the *-regions as compared with the other classes is shown using
PCA in Extended Data Figure 4-1A,B. D, Example of a cascade: when the (U*) node 63 jumps into the down state, it first drags
down the node 62 (with which it shares the strongest structural link in the network). After them, other strongly connected nodes fol-
low the trend.
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simulations can be traced back to a small subset of re-
gions (J) which transit between the up and the down
states. These regions lead the baseline evolution of the
entire system, acting as homeostatic agents which keep
the system dynamics stable. On rare but important occa-
sions this control weakens, which allows the propagation
of a large cascade of activity. Such cascade effect takes
place when a sudden local transition brings a typically
stable region [(U*) or (D*)] away from baseline activity and
induces other regions to reorganize. The cascade goes on
until the noise and the structural pressure take the system

back to its normal evolution, e.g., through the normalizing
action of the jumping regions (J). We then explore whether
such rare deviations from baseline activity account for
resting-state brain dynamics.

Neuronal cascades activate distinct RSN
The previous analysis focused on the simulated (high time

resolution) neuronal activity. We now look at the simulated
(low time resolution) BOLD, which signals are characterized
by collective CA (Fig. 5A, middle). Interestingly, these events
are aligned to the large deviations from baseline of the firing

Figure 5. RSN formation. A, top, The standardized firing rate activity in the (U*) and (D*) classes (class-specific average; dark red
and dark blue, respectively) is characterized by peaks (the strongest are marked as I, II, III, IV) occurring in correspondence of cas-
cades similar to Figure 4D. A, middle, During a cascade, we also observe a peak of BOLD-CAs, appearing as vertical strips. Many,
but not all, edges are recruited. A, bottom, The blocks in the dFCe matrix appear in correspondence of CA events, showing that
these bursts generate stable epochs of FC correlated in time. B, In each selected epoch (I, II and III, IV), the large firing rate cas-
cades trigger the jump of other nodes away from baseline activity (circled in black) and promote specific functional hubs at the
BOLD level, represented by colored nodes in the network plots. A functional hub is defined by the components of the first leading
eigenvector (linear combination of brain regions explaining most of the variance in the data; eigenvalue l . 0.41) associated to the
iFCs at times tI; tII; tIII, and tIV, respectively. The most representative hub regions are depicted in yellow. Gray regions have been ex-
cluded as they do not contribute substantially. Only the edges with the highest CAs are displayed. Importantly, CA events generated
from neuronal cascades at specific sites support distinct functional networks which are not correlated among themselves (e.g., no
off-diagonal dFCe block between I and III).
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rate activity of the (U*) class or the (D*) regions (Fig. 5A, top,
Segments I, II and III, IV, respectively). When looking at the
corresponding dFCe matrix (Fig. 5A, bottom), we also note
that the most stable dFCe blocks correspond to the largest
BOLD-CA events. This observation is not a triviality, since a
higher CA does not imply a stronger correlation. The pres-
ence of off-diagonal blocks in the dFCe shows that CA pat-
terns are correlated when generated either by the (U*) or in
the (D*) regions. In this example, the CA patterns generated
by the jumps of distinct classes are not correlated. Each CA
pattern defines the upper triangular part of an iFC (as in Fig.
2A). Figure 5B displays, for each selected epoch, the edges
with the highest CA values. The functional hubs, a subset of
regions with a central role in the functional dynamics, are
defined in each epoch by the iFC’s leading eigenvector
(Melozzi et al., 2017), and represented as different colors in
the brain network plots (from red to yellow in a scale of im-
portance). We highlight with a black rim the nodes whose
firing rate deviated from baseline activity above a threshold
(fixed at 3 s ). Notice that while the cascade generates at
certain network locations (black rims), the dynamics of the
RSN establishes a new emergent phenomenon at the large
scale (colored nodes). The same perturbation can re-occur
spontaneously eliciting similar functional networks corre-
lated at distinct times, as it is marked by the off-diagonal
blocks of the dFCe (Network Plots I, II or III, IV).
Summarizing, neuronal perturbations starting at different
locations in the connectome elicit different BOLD-CA
events, which result in distinct functional networks.

Neuronal cascades and BOLD-CAs in empiric data
In the previous sections, we described how the large

spontaneous deviations from baseline activity play a key
role in the simulated system dynamics by activating spe-
cific large-scale functional networks. Here, we hypothe-
size that a qualitatively similar network behavior takes
place in empiric resting-state data (see Discussion). To
test this, we provide a working definition of neuronal cas-
cades as a global measure of such long-lasting perturba-
tions of the neuroelectric activity (see Discussion). For
illustrating the pipeline, we use an example trial from an
EEG/fMRI resting-state human dataset (see Materials and
Methods). First, we binarize the firing rate activity in every
brain region by assigning a unitary value when its activity
exceeds63 s (Fig. 6A). Then, we define the magnitude of
the deviations from baseline by summing the binarized EEG
over the regions (Fig. 6B, top, gray line). Finally, we convolve
the obtained signal with a Gaussian kernel (width=1.94 s =
BOLD TR) and we downsample it to the same time resolu-
tion of the BOLD signals to allow comparison. The resulting
neuronal cascade signal (Fig. 6B, top, blue line) is character-
ized by bumps which describe a long-lasting increase in the
magnitude of non-standard perturbations (e.g., above 3 s ).
Neuronal cascades should not be confused with the con-
cept of neuronal avalanches (Beggs and Plenz, 2003), which
consist of consecutive deviations from baseline activity of a
subset of brain regions or localized neuronal groups (Fig.
6A, bottom, example of a neuronal avalanche in the red
box). The number of regions in the subset defines the size of

Figure 6. Neuronal cascades and neuronal avalanches. A, Standardized EEG activity extracted from a resting-state human EEG/
fMRI dataset (top). The activity is binarized assigning a unitary/null value every time the activity in a region is above/below a certain
threshold (e.g., 63 s ; black lines). The obtained binary raster plot (bottom) is characterized by intermittent epochs of deviations
from baseline activity. Neuronal avalanches are defined as consecutive deviations from baseline activity (e.g., red box). B, We ex-
tract the global magnitude of the deviations from baseline (top, gray signal) by summing the binary EEG raster plot over the ROIs.
This signal is convoluted with a Gaussian kernel [width = 1 BOLD TR] and downsampled to obtain the same resolution of the BOLD
activity, which defines the neuronal cascades signal (blue). Neuronal cascades can be thought of as clustering of high magnitude
avalanches, whose occurrence in time is not homogeneous (bottom).
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an avalanche, while the duration of the consecutive activa-
tions defines its lifetime (up to few hundreds of milliseconds
in empiric data). Neuronal cascades are a global measure
that describes a slower process on the order of tens of sec-
onds. In Figure 6B, bottom panel, each red dot marks the
occurrence of an avalanche of a certain size (dot size repre-
sents the duration). Remarkably, neuronal avalanches accu-
mulate in correspondence with the largest neuronal
cascades. Thus, we can think of the neuronal cascades as
the clustering of neuronal avalanches. This first major result
proves that the probability of observing strong brain fluctua-
tions (including neuronal avalanches) is not constant in time,
but increases during neuronal cascade peaks, which occur
at an infra-slow time scale. Also, our simulation shows local-
ized increases in cascade activity, which are shorter in the
noisy monostable regime and more prolonged in the bista-
ble regime (Fig. 7A).
At the level of fMRI, another in silico prediction is the

presence of strong BOLD-CA events and their co-occur-
rence in coincidence with off-diagonal dFCe blocks. We
verify the presence of BOLD-CA events in synthetic,

empiric mouse fMRI and in human EEG/fMRI datasets
(Fig. 7B, central panels), suggesting that temporally inho-
mogeneous bursts constitute a generic dynamic modality
of real(istic) brain networks. To show the relation with
dFCe, we first extract from the BOLD-CA signals the root
sum squared (RSS) time series, which quantifies the am-
plitude of all edge CAs at each time point (Fig. 7B, green
lines, top panels). Then, we partition the RSS signal in CA
events and nCA non-events (respectively above and
below the 98th percentile of the RSS values). We show
that the correlation between any two events is statistically
higher than the correlation between events and non-
events as well as between couples of non-events (Fig.
8A). The results hold for synthetic and empiric results,
which were pooled over several experimental trials. Since
the correlation between CA patterns at different times corre-
spond to the off-diagonal elements of the dFCe matrix (as
shown in Fig. 2A,B), we conclude that bursts of BOLD-CA
events account for the highest off-diagonal values in the
dFCe in experimental datasets, as predicted by the model.
In Figure 8B, we show an example of empiric human dFCe

Figure 7. Neuronal cascades drive the functional dynamics. A, Example of neuronal cascades in the monostable and bistable syn-
thetic regime and for a representative subject of the empiric EEG/fMRI human dataset. B, The BOLD-CA in simulated and empiric
mouse and human datasets (middle panels) are characterized by sudden collective events involving large network parts (vertical
stripes). The root sum square of BOLD-CA across all edges (RSS, green lines, top panels) defines the global CA amplitude signal for
each dataset. Concurrently, the dFCe matrices (bottom panels) display both diagonal and off-diagonal blocks, remarking the non-
trivial re-occurrence of the same stable functional network at distinct times (see Fig. 2B). At a visual inspection, the BOLD-CA
events happen in coincidence with dFCe blocks and, most notably, the neuronal cascades and RSS signals (blue and green lines in
panels B, C, respectively) co-fluctuate in most instances.
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(top), and the same matrix where times are sorted accord-
ingly to increasing RSS. Green lines represent different per-
centiles (50th, 75th, and 95th) of the RSS. Notice that, in line
with the results above, the non-trivial temporal correlations
(yellow off-diagonal dFCe elements) involve those time
frames with the highest network CAs.

Neuronal cascades subtend RSN dynamics
Based on the theoretical results of the previous sec-

tions (summarized in Fig. 5), neuronal cascades should
give rise to BOLD-CAs. In fact, a visual inspection of simu-
lated and empiric data suggests the co-occurrence of neu-
ronal cascades (blue lines in Fig. 7A) and BOLD-CA (RSS;
Fig. 7B, green lines). Remarkably, a similar correspon-
dence is present in an EEG/fMRI resting-state human data-
set (best trial shown in Fig. 7), all the more since the
simulations are done using a mouse connectome. To char-
acterize this correspondence, we correlate the cascades
signal with the BOLD-CAs amplitude profile. In both the
monostable and the bistable regimes, the two measures
are significantly correlated (r ; 0.54 and r ; 0.91, respec-
tively). In Figure 9A, top, we report the correlations be-
tween the cascades and the BOLD-CA amplitudes across
several trials of a human cohort (see Materials and
Methods for trial selection). The correlation is conducted

by shifting the RSS time series of a given time-lag. A peak
of correlation appears naturally between the two measures
when the BOLD signal is shifted backwards by two time
points (3.88 s; Fig. 9A, bottom, blue line). Therefore, as ex-
pected, the EEG neuronal cascade signal precedes the
BOLD-CAs by a few seconds. Notice that, in general, a
shift forward of the BOLD activity results in a rapid loss of
correlation.
Finally, to prove the statistical significance of our obser-

vations, we build surrogate BOLD signals and we com-
pare the associated CA amplitudes to the neuronal
cascade signal in each trial. In particular, we compare the
observed cross-correlation profile (Fig. 9A, bottom, blue
line) with the profiles extracted by correlation of neuronal
cascades and surrogate CA amplitudes of three kinds:
time-shuffled (example of cross-correlation profile in Fig.
9A, green line), phase-randomized, cross-spectrum pre-
served (example in Fig. 9A, orange line), and phase-
randomized, cross-spectrum not preserved (example in
Fig. 9A, purple line).
In all the surrogates, the functional dynamics is dis-

rupted (see Materials and Methods). In the first two mod-
els, the static FC is preserved but its dynamic evolution is
made trivial. Namely, the time-shuffled model consists of
random FC jumps around a fixed pattern, while in the

Figure 8. A, The largest BOLD-CAs events (CA, above the 98th percentile of the RSS; Fig. 4C, green line) are distinguished from
non-events (nCA, below threshold). We report the synthetic and empiric correlations between iFCs at times within CA events (left in
every panel), between CA events and non-events nCA (center of panels), within non-events nCA (right of panels). These correlations
are by definition the off-diagonal values of the dFCe matrix (see Fig. 2A,B). The distribution of the correlations within events is wider
and explains the greatest off-diagonal correlation values of the dFCe across all the synthetic and empiric datasets. This principle is
explicitly shown in panel B, where the original dFCe extracted from an empiric human trial (top) was sorted according to increasing
RSS (bottom), leading to the clustering of high correlations toward high CA times. This shows that most of the non-trivial temporal
correlations involve CA times falling in the last quartile of the RSS (above the 75th percentile, central green line). Thus, the strongest
CA events drive the dynamics of FC.

Research Article: New Research 14 of 19

September/October 2021, 8(5) ENEURO.0283-21.2021 eNeuro.org



phase surrogate (cross-spectrum preserved), stationarity
is strictly imposed by destroying any coherent fluctuation
around the static FC. In fact, the latter corresponds to pre-
serving the static correlations across node pairs, i.e., the
average of the edge CA signals. These two surrogates
also preserve the original fat-tail distribution of the BOLD-
CA amplitudes (RSS values), and therefore supports
bursty CA events (Extended Data Fig. 9-1A,B). When the
cross-spectrum is not preserved, the static FC is corrupted
and the CA amplitude distribution is normalized. For each
surrogate type, we compute 1000 cross-correlation profiles.
The distribution of their mean, maximum, and variance
(averaged across all the trials) is shown in Figure 9B. The ob-
served values are always significant when compared with
the Phase-randomized surrogate with cross-spectrum not
preserved. The observed mean values lie between the ran-
dom (time-shuffled) and the ordered (phase-randomized)
scenario (Battaglia et al., 2020). Only the Phase-randomized
surrogate, where the cross-spectrum is preserved, reaches
the peaks of correlation of the observed data, and the

significance of the observed maximum is p=0.108. The var-
iance of the correlation profile is always significant
(p,0.001) as compared with all the surrogate models. The
result holds in several instances at the single-subject level
(Extended Data Fig. 9-1C). We conclude that neuronal cas-
cades drive BOLD-CAs dynamics thus shaping whole brain
resting-state FC.

Discussion
Cognitive function requires the coordination of neural

activity across many scales, from neurons and circuits to
large-scale networks (see Betzel and Bassett, 2017, and
references within). As such, it is unlikely that an explana-
tory framework focused on any single scale will yield a
comprehensive theory of brain activity, cognitive function
or brain disease. Fast time scales evolve within the quasi-
stationary constraints imposed by slow time scales. As
the latter changes, the organization of the former must
change consequently. Similarly, local neuronal events can

Figure 9. A, top, Correlation between the cascade magnitude and the BOLD-CA amplitude (Fig. 4B,C, blue and green lines) for dif-
ferent time lags in several EEG/fMRI trials extracted from a Human cohort of resting subjects. Negative lag is associated with a shift
backward of the BOLD signal. A, bottom, The cross-correlation averaged across trials shows a clear trend (blue line). The peak of
correlation at lag –2 sampling points (1 pt = 1.94 s), as well as the rapid fall for positive lags, confirms that the EEG precedes the
BOLD activity by few seconds. The same profile is evaluated by comparing the largest cascades with the BOLD-CA signals ex-
tracted from 1000 time-shuffled (example in green), 1000 phase-randomized (cross-spectrum preserved, example in orange), and
1000 phase-randomized (cross-spectrum not preserved, example in red) BOLD surrogates for every subject (see Extended Data
Fig. 9-1A,B for surrogate properties). B, The distribution of the mean, maximum, and variance of the cross-correlations for each sur-
rogate model is displayed and compared with the empiric values. In particular, the variance plot shows a clear significance of the re-
sults (single subject results in Extended Data Fig. 9-1C).
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trigger large-scale complex responses (Houweling and
Brecht, 2008; Huber et al., 2008). We demonstrated this
principle along the organization of the fast neuroelectric
correlates of the slowly evolving large-scale dFC patterns
for two mammalian species. Large neuronal cascades,
defined by collective deviations of the simulated EEG sig-
nals away from baseline activity, can emerge as BOLD-
CA events, i.e., strong simultaneous fluctuations at pairs
of regions across the brain network. In turn, the intermit-
tent set of BOLD-CA events underlies specific stable FC
epochs. Thus, we suggest that large neuronal cascades
have an organizational role in the resting-state brain
dynamics.
In this work, we have adopted a theory-driven approach

to reproduce qualitatively the resting state FC, analyze its
dynamics and trace it back to its neuronal correlates. The
NMM used to simulate regional dynamics maps the activ-
ity of an infinite number of all-to-all coupled neurons,
each described by a simple phase-oscillator equation,
into the mean-field firing rate and membrane potential
variables (Montbrió et al., 2015). Although not giving full
access to biophysical processes, as when using detailed
single neuron models, the model we used preserves im-
portant information about the microscopic neural network
organization of a simulated brain region (e.g., the neuronal
synchrony; see Materials and Methods). The low compu-
tational load enables the simulation of fMRI-like sessions
in TVB. Our results prove that FC fluctuations can be self-
generated on a connectome by random sudden changes
in the local neural network organization. In our setup, the
analysis of more spatially fine grained neural dynamics, e.
g., in the form of cell assemblies Buzsáki (2010), is not ac-
cessible. Future applications allow the possibility of in-
cluding synaptic dynamics (Taher et al., 2020), adaptation
(Gast et al., 2020), excitatory versus inhibitory populations
(Montbrió et al., 2015; Laing, 2017; Dumont and Gutkin,
2019), among others. The use of these models estab-
lishes a new venue to address multiscale phenomena,
maintaining, to a certain extent, the co-existence of
microscopic and macroscopic scales of organization
(Coombes and Byrne, 2019).
To simulate the spontaneous emergence of dynamic

functional networks we tuned each neuronal population
into a bistable regime. We expect similar results to hold
for other models supporting local bistability. In our case,
we can directly interpret the two stable states as two con-
figurations of the spiking neural networks. Varying the
global couplings, we discovered two regions of the pa-
rameter space, defining the monostable and the bistable
regimes, where the large-scale organization is dynamical,
but qualitatively different. In both regimes, the neuronal
activity is characterized by up and down states, which
occurrence was observed both in vitro (Plenz and
Kitai, 1998; Cossart et al., 2003) and in vivo under sev-
eral conditions such as anesthesia, slow-wave sleep,
quiet waking and also during perceptual task across
several species (Steriade et al., 1993; Luczak et al.,
2007; Vyazovskiy et al., 2011; Engel et al., 2016;
Jercog et al., 2017). The functional dynamics in the
two regimes also differs, e.g., in terms of the statistical
properties of the BOLD-CA events (Fig. 8A) or in the

life-time of the stable FC states (i.e., the size of the
dFC blocks in Fig. 7B, bottom).
The generation of a variety of dynamic regimes from

changes in the global “environmental” parameters is in
keeping with the degeneracy principle, according to
which multiple models and/or parameter settings capture
the neuronal variability (Marder and Taylor, 2011), and it is
expected also in biological systems. For example, sleep
deprivation, which alters brain and body function (Medic
et al., 2017), is associated with changes in the speed of
the FC evolution (Lombardo et al., 2020). Accordingly,
distinct features of the dFC should correspond to a differ-
ent underlying neuroelectric organization (and perhaps to
distinct mechanisms of communication across brain re-
gions; Battaglia and Brovelli, 2020). The transition be-
tween wakefulness and sleep brain states offers an
example of sudden change of the whole-brain dynamics
associated with the microscopic neuroelectric re-organi-
zation (Larson-Prior et al., 2009; Boly et al., 2012;
Tagliazucchi et al., 2016; El-Baba et al., 2019).
While the debate over the actual nature of FC dynamics

is still ongoing (Hindriks et al., 2016; Laumann et al., 2017;
Liégeois et al., 2017), several evidences were provided in
favor of the dFC as a legitimate measure of the functional
evolution (Preti et al., 2017). Here, we found that a large
part of the functional information is condensed in large
BOLD-CA events, in keeping with previous results
(Zamani Esfahlani et al., 2020; see Fig. 5A). The occur-
rence of the BOLD-CA events cannot be ascribed to the
spectral properties of the BOLD signals nor to motion arti-
facts (Zamani Esfahlani et al., 2020), which supports a
genuine phenomenon. Our results provide an in silico
support to a burst-based system dynamics where corre-
lated CA events subtending RSNs occur intermittently
and are separated by long low-activity periods. These re-
sults are in accordance with previous works showing that
the relevant information about the major RSNs is carried
by the largest fluctuations of the fMRI BOLD signals
(Tagliazucchi et al., 2012a; Liu and Duyn, 2013; Allan et
al., 2015; Cifre et al., 2017; Gutierrez-Barragan et al.,
2019). The spontaneous bursts of BOLD-CA highlight re-
curring sets of network edges, which subtend special
RSNs. How the system is organized around these prefer-
ential sets and what triggers the sudden co-fluctuations
remain to be determined. Our analysis remarks the central
role of the structural connectivity in this process, in line
with a recent work suggesting that CA are shaped by
structural modules (Pope et al., 2021). Here, we suggest
that large neuronal cascades generated by sudden neuro-
nal re-organization in source regions may play a central
role in driving the exploration of the connectome and in
determining the large-scale FC dynamics.
During the BOLD-CA events, the evolution of the FC

slows down, as shown by the high correlation between
functional states at consecutive times (Fig. 7B, bottom
panels). An emergent stable FC elicited by a BOLD-CA
event can persist for several seconds. The same state can
re-appear after a few minutes in coincidence with another
CA. In many dynamical systems, slowdowns and large-
scale events are typically observed at the transition
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between different states (or phases), i.e., at the critical
point (Scheffer et al., 2009). Critical dynamic systems are
characterized by other typical properties, including the
presence of fluctuations at all spatiotemporal scales
(Cocchi et al., 2017). Historically, the hallmark of a critical
organization of the brain activity came from the observa-
tion of neuronal avalanches whose size and duration fit a
power-law (Beggs and Plenz, 2003; for a “critical” look at
brain criticality see Beggs and Timme, 2012).
In order to compare the fast EEG and the slower

BOLD signals, we focused on the slow unfolding of the
EEG deviations from baseline activity. In other words,
instead of focusing on the size and duration of the neu-
ronal avalanches, we analyzed their collective occur-
rence at the resolution of seconds, which we refer to
as neuronal cascades (Fig. 6). We showed that the
cascade magnitude is correlated to the BOLD-CA am-
plitude (Fig. 9A). In particular, in the empiric human da-
taset we observe a rapid drop of this correlation when
the BOLD activity is shifted backward with respect to
the EEG signal. This fact makes our result more robust
since we expect a change of the BOLD activity to hap-
pen after a sustained neuroelectric activity.
Notice that in the empiric data set, not all the neuro-

nal cascades give rise to BOLD-CAs, and not all the
BOLD-CAs are preceded by large neuronal cascades.
In general, we should expect a non-trivial interaction
between these phenomena and other infraslow proc-
esses. For example, a growing corpus of evidence re-
lates the slow functional and neuroelectric dynamics
with other physiological and cognitive infraslow proc-
esses such as neuromodulation (Shine et al., 2016),
visceral (heart and gut) inputs (Azzalini et al., 2019),
and cognitive performance (Monto et al., 2008).
In the cases in which neuronal cascades and BOLD-

CA events co-occur, we can hypothesize that the sta-
ble FC state evoked by a CA event is related to the
specific structural channels in which the neuronal cas-
cade spreads. In fact, we showed in the simulated data
that the largest neuronal cascades underlie specific
functional patterns (Fig. 5), depending on the location
of the onset. Also, the observation that the same cas-
cade appears at regular intervals (see for example the
three peaks at second ;100, ;200, and ;300 in Fig.
5A) suggests that the re-occurrence of the same stable
patterns in time can be traced back to the increased
probability of the same cascade to occur following a
first large event, in the same way an after-shock fol-
lows the main earthquake. It is interesting to note that,
as in our model, correlated bursty events associated
with memory effects are observed in many natural sys-
tems (Karsai et al., 2012).
The above hypotheses require further exploration of

larger empirical datasets. In the model, we have shown
that the multiscale mechanistic origin of large cas-
cades can be understood ultimately by the interplay
between the local neuronal organization, the stochas-
tic nature of its sudden re-organization and the struc-
tural constraints it obeys. The present work provides a
new understanding of whole-brain functional dynamics,

which is shaped by neuronal cascades giving rise to large
BOLD-CA. Since most neurologic disorders are character-
ized by complex reorganizations at the neuronal scale, it
will be interesting to determine whether specific alterations
in neuronal cascades sign specific neurologic disorders,
and explain the already identified alterations in whole-brain
dynamics.
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Karahanoğlu FI, Van De Ville D (2015) Transient brain activity disen-
tangles fMRI resting-state dynamics in terms of spatially and tem-
porally overlapping networks. Nat Commun 6:1–10.

Karsai M, Kaski K, Barabási AL, Kertész J (2012) Universal features
of correlated bursty behaviour. Sci Rep 2:397–397.

Kuramoto Y (2003) Chemical oscillations, waves, and turbulence.
North Chelmsford: Courier Corporation.

Laing CR (2017) Phase oscillator network models of brain dynamics.
In: Computational models of brain and behavior, pp 505–517.
Hoboken: Wiley.

Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle
ME (2009) Cortical network functional connectivity in the descent
to sleep. Proc Natl Acad Sci USA 106:4489–4494.

Laumann TO, Snyder AZ, Mitra A, Gordon EM, Gratton C, Adeyemo
B, Gilmore AW, Nelson SM, Berg JJ, Greene DJ, McCarthy JE,
Tagliazucchi E, Laufs H, Schlaggar BL, Dosenbach NUF, Petersen
SE (2017) On the stability of BOLD fMRI correlations. Cereb
Cortex 27:4719–4732.

Liégeois R, Laumann TO, Snyder AZ, Zhou J, Yeo BT (2017)
Interpreting temporal fluctuations in resting-state functional con-
nectivity MRI. Neuroimage 163:437–455.

Lindquist MA, Xu Y, Nebel MB, Caffo BS (2014) Evaluating dynamic
bivariate correlations in resting-state fMRI: a comparison study
and a new approach. Neuroimage 101:531–546.

Liu X, Duyn JH (2013) Time-varying functional network information
extracted from brief instances of spontaneous brain activity. Proc
Natl Acad Sci USA 110:4392–4397.

Lombardo D, Cassé-Perrot C, Ranjeva JP, Le Troter A, Guye M,
Wirsich J, Payoux P, Bartrés-Faz D, Bordet R, Richardson JC,
Felician O, Jirsa V, Blin O, Didic M, Battaglia D (2020) Modular
slowing of resting-state dynamic functional connectivity as a
marker of cognitive dysfunction induced by sleep deprivation.
Neuroimage 222:117155.

Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y (2012) Rat brains
also have a default mode network. Proc Natl Acad Sci USA
109:3979–3984.

Luczak A, Barthó P, Marguet SL, Buzsáki G, Harris KD (2007)
Sequential structure of neocortical spontaneous activity in vivo.
Proc Natl Acad Sci USA 104:347–352.

Majeed W, Magnuson M, Hasenkamp W, Schwarb H, Schumacher
EH, Barsalou L, Keilholz SD (2011) Spatiotemporal dynamics of
low frequency BOLD fluctuations in rats and humans. Neuroimage
54:1140–1150.

Mandino F, Yun YL, Gigg J, Olivo MC, Grandjean J (2019) Mouse
rest 3 x TG. Openneuro. Available at https://openneuro.org/
datasets/ds001890/versions/1.0.1.

Marder E, Taylor AL (2011) Multiple models to capture the variability
in biological neurons and networks. Nat Neurosci 14:133–138.

Medic G, Wille M, Hemels ME (2017) Short- and long-term health
consequences of sleep disruption. Nat Sci Sleep 9:151–161.

Melozzi F, Woodman MM, Jirsa VK, Bernard C (2017) The virtual
mouse brain: a computational neuroinformatics platform to study
whole mouse brain dynamics. eNeuro 4:ENEURO.0111-17.2017.

Melozzi F, Bergmann E, Harris JA, Kahn I, Jirsa V, Bernard C (2019)
Individual structural features constrain the mouse functional con-
nectome. Proc Natl Acad Sci USA 116:26961–26969.

Montbrió E, Pazó D, Roxin A (2015) Macroscopic description for net-
works of spiking neurons. Phys Rev X 5:e021028.

Monto S, Palva S, Voipio J, Palva JM (2008) Very slow EEG fluctua-
tions predict the dynamics of stimulus detection and oscillation
amplitudes in humans. J Neurosci 28:8268–8272.

Research Article: New Research 18 of 19

September/October 2021, 8(5) ENEURO.0283-21.2021 eNeuro.org

http://dx.doi.org/10.1016/j.neuroimage.2006.01.021
https://www.ncbi.nlm.nih.gov/pubmed/16530430
http://dx.doi.org/10.1002/hbm.23553
https://www.ncbi.nlm.nih.gov/pubmed/28294459
http://dx.doi.org/10.1371/journal.pcbi.1007019
https://www.ncbi.nlm.nih.gov/pubmed/31071085
http://dx.doi.org/10.1371/journal.pone.0224669
https://www.ncbi.nlm.nih.gov/pubmed/31790422
http://dx.doi.org/10.1126/science.aag1420
https://www.ncbi.nlm.nih.gov/pubmed/27934763
http://dx.doi.org/10.1038/s41593-020-00719-y
https://www.ncbi.nlm.nih.gov/pubmed/33077948
http://dx.doi.org/10.1038/nrn2201
https://www.ncbi.nlm.nih.gov/pubmed/17704812
http://dx.doi.org/10.1006/nimg.2000.0630
https://www.ncbi.nlm.nih.gov/pubmed/10988040
http://dx.doi.org/10.1162/neco_a_01300
https://www.ncbi.nlm.nih.gov/pubmed/32687770
http://dx.doi.org/10.1371/journal.pcbi.1000196
http://dx.doi.org/10.1016/j.neuroimage.2017.08.006
https://www.ncbi.nlm.nih.gov/pubmed/28780401
http://dx.doi.org/10.1016/j.neuroimage.2015.12.017
https://www.ncbi.nlm.nih.gov/pubmed/26706448
https://data.donders.ru.nl/collections/di/dcmn/DSC_4180000.18_502
https://data.donders.ru.nl/collections/di/dcmn/DSC_4180000.18_502
http://dx.doi.org/10.1016/j.neuroimage.2017.03.026
https://www.ncbi.nlm.nih.gov/pubmed/28315459
http://dx.doi.org/10.1016/j.neuroimage.2019.116278
https://www.ncbi.nlm.nih.gov/pubmed/31614221
http://dx.doi.org/10.1016/j.cub.2019.06.017
https://www.ncbi.nlm.nih.gov/pubmed/31303490
http://dx.doi.org/10.1016/j.neuroimage.2014.11.001
https://www.ncbi.nlm.nih.gov/pubmed/25462790
http://dx.doi.org/10.1016/j.neuroimage.2015.11.055
https://www.ncbi.nlm.nih.gov/pubmed/26631813
http://dx.doi.org/10.1515/nf-2008-0105
https://www.ncbi.nlm.nih.gov/pubmed/18094684
http://dx.doi.org/10.1038/nature06445
https://www.ncbi.nlm.nih.gov/pubmed/18094685
http://dx.doi.org/10.1016/j.neuroimage.2013.05.079
https://www.ncbi.nlm.nih.gov/pubmed/23707587
http://dx.doi.org/10.7554/eLife.22425
http://dx.doi.org/10.1016/j.neuroimage.2016.04.049
https://www.ncbi.nlm.nih.gov/pubmed/27477535
http://dx.doi.org/10.1038/ncomms8751
http://dx.doi.org/10.1038/srep00397
https://www.ncbi.nlm.nih.gov/pubmed/22563526
http://dx.doi.org/10.1073/pnas.0900924106
https://www.ncbi.nlm.nih.gov/pubmed/19255447
http://dx.doi.org/10.1093/cercor/bhw265
https://www.ncbi.nlm.nih.gov/pubmed/27591147
http://dx.doi.org/10.1016/j.neuroimage.2017.09.012
https://www.ncbi.nlm.nih.gov/pubmed/28916180
http://dx.doi.org/10.1016/j.neuroimage.2014.06.052
https://www.ncbi.nlm.nih.gov/pubmed/24993894
http://dx.doi.org/10.1073/pnas.1216856110
https://www.ncbi.nlm.nih.gov/pubmed/23440216
http://dx.doi.org/10.1073/pnas.1200506109
https://www.ncbi.nlm.nih.gov/pubmed/22355129
http://dx.doi.org/10.1073/pnas.0605643104
https://www.ncbi.nlm.nih.gov/pubmed/17185420
http://dx.doi.org/10.1016/j.neuroimage.2010.08.030
https://www.ncbi.nlm.nih.gov/pubmed/20728554
https://openneuro.org/datasets/ds001890/versions/1.0.1
https://openneuro.org/datasets/ds001890/versions/1.0.1
http://dx.doi.org/10.1038/nn.2735
https://www.ncbi.nlm.nih.gov/pubmed/21270780
http://dx.doi.org/10.2147/NSS.S134864
https://www.ncbi.nlm.nih.gov/pubmed/28579842
http://dx.doi.org/10.1523/ENEURO.0111-17.2017
http://dx.doi.org/10.1073/pnas.1906694116
http://dx.doi.org/10.1103/PhysRevX.5.021028
http://dx.doi.org/10.1523/JNEUROSCI.1910-08.2008
https://www.ncbi.nlm.nih.gov/pubmed/18701689


Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau
C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN,
Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A,
Nicholas E, et al. (2014) A mesoscale connectome of the mouse
brain. Nature 508:207–214.

Ott E, Antonsen TM (2008) Low dimensional behavior of large sys-
tems of globally coupled oscillators. Chaos 18:e037113.

Plenz D, Kitai ST (1998) Up and down states in striatal medium spiny
neurons simultaneously recorded with spontaneous activity in
fast-spiking interneurons studied in cortex–striatum–substantia
nigra organotypic cultures. J Neurosci 18:266–283.

Ponce-Alvarez A, Deco G, Hagmann P, Romani GL, Mantini D,
Corbetta M (2015) Resting-state temporal synchronization net-
works emerge from connectivity topology and heterogeneity.
PLoS Comput Biol 11:e1004100.

Pope M, Fukushima M, Betzel R, Sporns O (2021) Modular origins of
high-amplitude co-fluctuations in fine-scale functional connectivity
dynamics. bioRxiv 2021.05.16.444357.

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA,
Vogel AC, Laumann TO, Miezin FM, Schlaggar BL, Petersen SE
(2011) Functional network organization of the human brain.
72:665–678. Neuron

Preti MG, Van De Ville D (2017) Dynamics of functional connectivity
at high spatial resolution reveal long-range interactions and fine-
scale organization. Sci Rep 7:1–12.

Preti MG, Bolton TA, Van De Ville D (2017) The dynamic functional
connectome: state-of-the-art and perspectives. Neuroimage
160:41–54.

Prichard D, Theiler J (1994) Generating surrogate data for time series
with several simultaneously measured variables. Phys Rev Lett
73:951–954.

Qin J, Chen SG, Hu D, Zeng LL, Fan YM, Chen XP, Shen H (2015)
Predicting individual brain maturity using dynamic functional con-
nectivity. Front Hum Neurosci 9:418.

Rashid B, Damaraju E, Pearlson GD, Calhoun VD (2014) Dynamic
connectivity states estimated from resting fMRI identify differen-
ces among schizophrenia, bipolar disorder, and healthy control
subjects. Front Hum Neurosci 8:897.

Sanz Leon P, Knock SA, Woodman MM, Domide L, Mersmann J,
McIntosh AR, Jirsa V (2013) The virtual brain: a simulator of pri-
mate brain network dynamics. Front Neuroinform 7:10.

Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK (2015) Mathematical
framework for large-scale brain network modeling in the virtual
brain. Neuroimage 111:385–430.

Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR,
Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009)
Early-warning signals for critical transitions. Nature 461:53–59.

Schirner M (2018) Hybrid brain model data. OSF. Available at osf.io/
mndt8.

Schirner M, Rothmeier S, Jirsa VK, McIntosh AR, Ritter P (2015) An
automated pipeline for constructing personalized virtual brains
from multimodal neuroimaging data. Neuroimage 117:343–357.

Schirner M, McIntosh AR, Jirsa V, Deco G, Ritter P (2018) Inferring
multi-scale neural mechanisms with brain network modelling. Elife
7:e28927.

Sforazzini F, Schwarz AJ, Galbusera A, Bifone A, Gozzi A (2014)
Distributed BOLD and CBV-weighted resting-state networks in the
mouse brain. Neuroimage 87:403–415.

Shine JM, Koyejo O, Bell PT, Gorgolewski KJ, Gilat M, Poldrack RA
(2015) Estimation of dynamic functional connectivity using multi-
plication of temporal derivatives. Neuroimage 122:399–407.

Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski
KJ, Moodie CA, Poldrack RA (2016) The dynamics of functional
brain networks: integrated network states during cognitive task
performance. Neuron 92:544–554.

Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW,
Beckmann CF, Jenkinson M, Andersson J, Glasser MF, Van Essen
DC, Feinberg DA, Yacoub ES, Ugurbil K (2012) Temporally-inde-
pendent functional modes of spontaneous brain activity. Proc Natl
Acad Sci USA 109:3131–3136.

Stafford JM, Jarrett BR, Miranda-Dominguez O, Mills BD, Cain N,
Mihalas S, Lahvis GP, Lattal KM, Mitchell SH, David SV, Fryer JD,
Nigg JT, Fair DA (2014) Large-scale topology and the default
mode network in the mouse connectome. Proc Natl Acad Sci USA
111:18745–18750.

Steriade M, Nunez A, Amzica F (1993) A novel slow (,1 Hz) oscilla-
tion of neocortical neurons in vivo: depolarizing and hyperpolariz-
ing components. J Neurosci 13:3252–3265.

Su J, Shen H, Zeng LL, Qin J, Liu Z, Hu D (2016) Heredity character-
istics of schizophrenia shown by dynamic functional connectivity
analysis of resting-state functional MRI scans of unaffected sib-
lings. Neuroreport 27:843–848.

Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR (2012a)
Criticality in large-scale brain fMRI dynamics unveiled by a novel
point process analysis. Front Physiol 3:15.

Tagliazucchi E, Von Wegner F, Morzelewski A, Brodbeck V, Laufs H
(2012b) Dynamic BOLD functional connectivity in humans and its
electrophysiological correlates. Front Hum Neurosci 6:339.

Tagliazucchi E, Crossley N, Bullmore ET, Laufs H (2016) Deep sleep
divides the cortex into opposite modes of anatomical–functional
coupling. Brain Struct Funct 221:4221–4234.

Taher H, Torcini A, Olmi S (2020) Exact neural mass model for synap-
tic-based working memory. PLoS Comput Biol 16:e1008533.

Upadhyay J, Baker SJ, Chandran P, Miller L, Lee Y, Marek GJ,
Sakoglu U, Chin CL, Luo F, Fox GB, Day M (2011) Default-mode-
like network activation in awake rodents. PLoS One 6:e27839.

van den Heuvel MP, Sporns O (2013) Network hubs in the human
brain. Trends Cogn Sci 17:683–696.

Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC,
Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic
functional architecture in the anaesthetized monkey brain. Nature
447:83–86.

Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011)
Local sleep in awake rats. Nature 472:443–447.

Zamani Esfahlani F, Jo Y, Faskowitz J, Byrge L, Kennedy DP, Sporns
O, Betzel RF (2020) High-amplitude cofluctuations in cortical ac-
tivity drive functional connectivity. Proc Natl Acad Sci USA
117:28393–28401.

Research Article: New Research 19 of 19

September/October 2021, 8(5) ENEURO.0283-21.2021 eNeuro.org

http://dx.doi.org/10.1038/nature13186
https://www.ncbi.nlm.nih.gov/pubmed/24695228
http://dx.doi.org/10.1063/1.2930766
https://www.ncbi.nlm.nih.gov/pubmed/19045487
http://dx.doi.org/10.1523/JNEUROSCI.18-01-00266.1998
http://dx.doi.org/10.1371/journal.pcbi.1004100
http://dx.doi.org/10.1016/j.neuron.2011.09.006
https://www.ncbi.nlm.nih.gov/pubmed/22099467
http://dx.doi.org/10.1038/s41598-017-12993-1
http://dx.doi.org/10.1016/j.neuroimage.2016.12.061
https://www.ncbi.nlm.nih.gov/pubmed/28034766
http://dx.doi.org/10.1103/PhysRevLett.73.951
https://www.ncbi.nlm.nih.gov/pubmed/10057582
http://dx.doi.org/10.3389/fnhum.2015.00418
https://www.ncbi.nlm.nih.gov/pubmed/26236224
http://dx.doi.org/10.3389/fnhum.2014.00897
https://www.ncbi.nlm.nih.gov/pubmed/25426048
http://dx.doi.org/10.3389/fninf.2013.00010
https://www.ncbi.nlm.nih.gov/pubmed/23781198
http://dx.doi.org/10.1016/j.neuroimage.2015.01.002
https://www.ncbi.nlm.nih.gov/pubmed/25592995
http://dx.doi.org/10.1038/nature08227
https://www.ncbi.nlm.nih.gov/pubmed/19727193
http://osf.io/mndt8
http://osf.io/mndt8
http://dx.doi.org/10.1016/j.neuroimage.2015.03.055
https://www.ncbi.nlm.nih.gov/pubmed/25837600
http://dx.doi.org/10.7554/eLife.28927
http://dx.doi.org/10.1016/j.neuroimage.2013.09.050
https://www.ncbi.nlm.nih.gov/pubmed/24080504
http://dx.doi.org/10.1016/j.neuroimage.2015.07.064
https://www.ncbi.nlm.nih.gov/pubmed/26231247
http://dx.doi.org/10.1016/j.neuron.2016.09.018
https://www.ncbi.nlm.nih.gov/pubmed/27693256
http://dx.doi.org/10.1073/pnas.1121329109
https://www.ncbi.nlm.nih.gov/pubmed/22323591
http://dx.doi.org/10.1073/pnas.1404346111
https://www.ncbi.nlm.nih.gov/pubmed/25512496
http://dx.doi.org/10.1523/JNEUROSCI.13-08-03252.1993
http://dx.doi.org/10.1097/WNR.0000000000000622
https://www.ncbi.nlm.nih.gov/pubmed/27295028
http://dx.doi.org/10.3389/fphys.2012.00015
https://www.ncbi.nlm.nih.gov/pubmed/22347863
http://dx.doi.org/10.3389/fnhum.2012.00339
https://www.ncbi.nlm.nih.gov/pubmed/23293596
http://dx.doi.org/10.1007/s00429-015-1162-0
https://www.ncbi.nlm.nih.gov/pubmed/26650048
http://dx.doi.org/10.1371/journal.pcbi.1008533
https://www.ncbi.nlm.nih.gov/pubmed/33320855
http://dx.doi.org/10.1371/journal.pone.0027839
http://dx.doi.org/10.1016/j.tics.2013.09.012
https://www.ncbi.nlm.nih.gov/pubmed/24231140
http://dx.doi.org/10.1038/nature05758
https://www.ncbi.nlm.nih.gov/pubmed/17476267
http://dx.doi.org/10.1038/nature10009
https://www.ncbi.nlm.nih.gov/pubmed/21525926
http://dx.doi.org/10.1073/pnas.2005531117
https://www.ncbi.nlm.nih.gov/pubmed/33093200

	Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest
	Introduction
	Materials and Methods
	Empirical mouse connectome
	Neural mass model
	Connectome-based modeling
	Mouse and human empiric datasets
	Time-dependent FC
	Surrogate BOLD models

	Results
	Rules of single and coupled nodes dynamics
	CA bursts account for RSN dynamics
	Multiple pathways to simulate RSN dynamics
	A generative mechanism for slow cascades of neuronal activations
	Neuronal cascades activate distinct RSN
	Neuronal cascades and BOLD-CAs in empiric data
	Neuronal cascades subtend RSN dynamics

	Discussion
	References


