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Abstract

Purpose: An accurate zonal segmentation of the prostate is required for prostate cancer (PCa)
management with MRI.

Approach: The aim of this work is to present UFNet, a deep learning-based method for auto-
matic zonal segmentation of the prostate from T2-weighted (T2w) MRI. It takes into account
the image anisotropy, includes both spatial and channelwise attention mechanisms and uses loss
functions to enforce prostate partition. The method was applied on a private multicentric three-
dimensional T2w MRI dataset and on the public two-dimensional T2w MRI dataset ProstateX.
To assess the model performance, the structures segmented by the algorithm on the private data-
set were compared with those obtained by seven radiologists of various experience levels.

Results: On the private dataset, we obtained a Dice score (DSC) of 93.90� 2.85 for the whole
gland (WG), 91.00� 4.34 for the transition zone (TZ), and 79.08� 7.08 for the peripheral
zone (PZ). Results were significantly better than other compared networks’ (p-value < 0.05).
On ProstateX, we obtained a DSC of 90.90� 2.94 for WG, 86.84� 4.33 for TZ, and 78.40�
7.31 for PZ. These results are similar to state-of-the art results and, on the private dataset, are
coherent with those obtained by radiologists. Zonal locations and sectorial positions of lesions
annotated by radiologists were also preserved.

Conclusions: Deep learning-based methods can provide an accurate zonal segmentation of the
prostate leading to a consistent zonal location and sectorial position of lesions, and therefore can
be used as a helping tool for PCa diagnosis.

© 2022 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.9.2.024001]
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1 Introduction

Prostate cancer (PCa) is the most frequent type of cancer affecting men in Europe and North
America with more than 190,000 expected cases in the United States in 2021. It is estimated that
12% of American men will develop PCa during their life.1 For years, the standard imaging
modality used to guide biopsies was transrectal ultrasound, prone to underdetection of clinically
significant PCa and to overestimation of benign lesions.2 Now, its replacement by multipara-
metric-MRI (mp-MRI) is supported by several medical associations such as the European
Association of Urology3 and the American Urological Association.4 Based on mp-MRI, the
PI-RADS score5 is designed to improve detection, localization, characterization, and risk strati-
fication in patients with suspected PCa in treatment-naive prostate glands. It uses a five-point
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scale based on the probability that a combination of mp-MRI findings on T2-weighted (T2w),
diffusion-weighted (DWI), and dynamic contrast-enhanced sequences correlates with the pres-
ence of clinically significant PCa. Then, the patient will benefit from standard and targeted
biopsies if a suspected lesion is detected.2,6–9 PI-RADS defines a dominant sequence for each
zone of the prostate: T2w for the transition zone (TZ) and DWI for the peripheral zone (PZ);
so identification of the zonal location of a lesion is vital. Both zones are shown in Fig. 1.

In addition, to locate findings on MRI reports and to simplify discussions about biopsies and
treatment, radiologists and urologists have defined sector maps that are based on those zones and
on longitudinal, transverse, and anteroposterior directions. Since both PI-RADS scores and
sectorial positions are subject to a high inter-rater variability,10–12 there is a need for automated
PCa diagnosis methods.

When required, the manual segmentation of prostate zones is commonly performed from
T2w sequences. But several factors complicate this task and make it time-consuming even for
a skilled physician.13 First, boundaries of the prostatic gland and inner boundaries between TZ
and PZ may be hard to detect. Second, the prostate is subject to an important intersubject vari-
ability due to physiological differences in terms of shape, size, and tissue intensities.14,15 Finally,
sequences acquired from different MRI machines increase the variability in appearance of the
prostate in T2w imaging.

1.1 Related Works

Several authors proposed computerized methods for the automatic segmentation of the prostate
from T2w MRI sequences. In 2012, the PROMISE12 challenge, dedicated to the segmentation
of the whole prostatic gland (WG),16 took place and was won by Vincent et al.17 using active
appearance models. Meanwhile, convolutional neural networks (CNN) began to provide prom-
ising results, especially in image classification.18 Among the different architectures, UNet19

appeared to be adapted to biomedical image segmentation. Furthermore, in 2016, Milletari
et al.20 presented V-net, a three-dimensional (3D) UNet variation with a Dice similarity coef-
ficient (DSC)-based loss function dedicated to the automatic segmentation of the prostate with
consistent results on PROMISE12 (mean DSC of 86.9� 3.3%) and was the first of many works
on WG segmentation using deep learning. For example, in 2017, Cheng et al.21 used holistically
nested networks22 and coherence-enhancing diffusion filters23 to perform this task, and in 2018
Tian et al.24 studied the use of transfer learning from large-scale datasets. Now, CNN have
become the most widely used methodology for automated segmentation of WG, with best mean
DSC on PROMISE12 comprised between 91.5% and 93%.25,26

Although WG prostate segmentation is performed successfully in many cases, the zonal seg-
mentation of the prostate is more difficult especially for the PZ. Indeed, in addition to having a
croissant-like shape in axial views, this zone is subject to an important intersubject variability.
For the zonal segmentation of the prostate, many authors used two-dimensional (2D) neural
networks, as the large anisotropy of 2D T2w MRI sequences makes them closer to stacked

Fig. 1 (a) Axial view of the T2-weighted MR image of a prostate. (b) The corresponding zonal and
lesion segmentation. The WG is the union of TZ and PZ.
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2D images than to real 3D volumes. To improve the generalization on previously unseen data-
sets, Rundo et al.27 proposed a 2D UNet for the zonal segmentation with squeeze-and-excitation
modules. Aldoj et al.28 conceived a DenseNet-like network to perform a zonal segmentation,
with a DSC of 92.1� 0.8% for WG and 89.5� 2% for the TZ. Cuocolo et al.29 compared the
classic 2D UNet with efficient neural network (ENet)30 and efficient residual factorized ConvNet
(ERFNet)31 which aim to limit their number of parameters and computation times while keeping
a high level of performance. All those articles used the public dataset ProstateX32–34 consisting of
2D T2w MRI sequences with a slice thickness of 3 mm, originally dedicated to PCa diagnosis.35

Several works also considered 3D neural networks to take into account the volumetric consis-
tency between slices. Bardis et al.36 used a combination of 3D UNets to respectively locate the
whole prostate, segment the prostate in the image, and classify each voxel of the image as TZ or
PZ. Meyer et al.37 performed zonal segmentation with a 3D neural network including anisotropic
MaxPooling and deconvolutions to perform a zonal segmentation of the prostate. Zavala-
Romero et al.38 used a multiplanar 3D neural network39 to perform this zonal segmentation and
studied in particular the impact of MRI vendors on generated segmentations, showing the impor-
tance of multicentric and multivendor datasets.

1.2 Limitations

All those works obtained good results regarding the zonal segmentation of the prostate.
However, they did not tackle the issue of localizing prostate lesions within zones and sectors.
This localization is important for grading those lesions in the PI-RADS standard.

Moreover, prior works were based on 2D T2w sequences since they are the most widely
available modality. Yet, 3D T2w prostate MR images allow a shorter acquisition time40,41 and
simplify modalities fusion among other advantages,42 while having similar performances in
terms of diagnosis. For those reasons, they will probably become the new radiological standard
in prostate imaging in the near future. Differences between 2D and 3D T2w sequences are shown
in Fig. 2.

In addition, inter-rater variability in the segmentation of prostate zones and whole gland
(WG) has not been widely considered.28,37,43 The number of human raters was limited to three,
and no consensus was built for the prostate zones.

1.3 Contributions

To cope with the previous limitations, we introduce in this paper the following contributions:

• To the best of our knowledge, we provide the first prostate zonal segmentation method on
3D T2w MR images in addition to 2D T2w MRI. The obtained results are similar to the
state of the art.

• We propose a deep learning-based framework for the automatic zonal segmentation of the
prostate (TZ and PZ), including a neural network architecture. This architecture takes into

Fig. 2 (a) Sagittal view of a 3D T2wMR image of the prostate and its segmentation by a radiologist
(slice thickness: 1 mm). (b) Sagittal view of a 2D T2w MR image of the same prostate and its
segmentation from the axial views by the same radiologist, resampled to the resolution of the
3D T2w MRI (original slice thickness: 3.25 mm).
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consideration the anisotropy of the data and includes dual attention mechanisms to
improve the zonal segmentation. Partition loss functions were defined to enforce the
partition of the prostate.

• We compare the generated segmentations with the ones supplied by seven radiologists of
various experience levels, from which we derive a consensus segmentation. We show that
our network performs similarly to the radiologists.

• Finally, we show that our method globally preserves both the zonal location and the sec-
torial position of lesions of the prostate, making it suitable as a helping tool for the detec-
tion and grading of lesions. Furthermore, we propose the first computerized method to
generate a prostate’s sector map from its zonal segmentation.

2 Material and Methods

2.1 Dataset

2.1.1 MRI scans

In this work approved by our joint institutional review boards, we used a private dataset of 131
3D T2w MR images from treatment-naive patients who underwent a prostate MRI before the
first round of biopsy for clinical suspicion of PCa (linked to an elevated prostate-specific antigen,
a positive digital rectal evaluation and a genetic susceptibility) between October 2013 and July
2019 from 3T Siemens scanners (Siemens Healthcare, Erlangen, Germany) on Pitié-Salpêtrière
Hospital, Paris, France (100, 76.6%) and from 3T G.E. scanners (GE Healthcare; Chicago,
Illinois) on Tenon Hospital, Paris, France (31, 23.4%). This dataset was built to have a diversity
in terms of shapes, sizes, and volumes. The voxel dimensions are [0.36 to 0.78, 0.36 to 0.78, 0.5
to 1.0] mm. A random split of 91/40 (69%/31%) patients has been used between the training-
validation set and the test set. In practice, the former was split into fivefolds in a cross-validation
strategy where fourfolds served as a training set and the fifth one as a validation set. A minority
(35.9%) had at least a clinically significant lesion, which was defined as a lesion with a PI-RADS
score ≥3, of which 30 being on the training-validation set (33.0% of the training-validation set)
and 17 on the test set (42.5%).

To assess the capacity of our network to provide a segmentation preserving not only the zonal
location of the lesions but also their sectorial positions, we had access to an additional dataset of
33 3D T2w MRI sequences of prostates with 46 clinically significant lesions that we will call
private lesion dataset. These sequences have been acquired on the same scanners than the private
dataset between May 2017 and December 2019, with 24 from Tenon Hospital, Paris, France
(73%, voxel dimensions: [0.547, 0.547, 0.5] mm) and nine from Pitié-Salpêtrière Hospital,
Paris, France (27%, voxel dimensions: [0.36 to 0.78, 0.36 to 0.78, 0.5 to 1.0] mm).

In addition, we considered the public dataset ProstateX32–34 to compare our method with
prior works. It consists of 204 T2w MR images taken with 3T Siemens scanners on Radboud
University Medical Center, with an in-plane dimension of ½0.375 to 0.6� mm2 and a slice thick-
ness of [3 to 4.5] mm, the most frequent resolution being 0.5 × 0.5 × 3 mm. We excluded three
sequences for mismatches with their provided segmentation and randomly split the remaining
data into a training-validation set of 141 sequences and a test set of 60 prostates, with a fivefold
cross-validation strategy similar to the one used on the private dataset.

2.1.2 Zonal segmentation

The zonal segmentation of the private dataset consists of binary masks of the WG and the TZ.
The segmentation of the training-validation set has been performed by a single expert radiologist,
whereas on the test set seven radiologists of various levels of experience provided each a zonal
segmentation for each prostate: three experts (≥1000 prostate MRI interpreted), two seniors
(≈500 prostate MRI), and two juniors (≤100 prostate MRI). This led to a total of 280
(¼40 × 7) zonal segmentations on the test set, for a rich comparison of performance with radio-
logical experts. The radiologists were instructed to first segment WG and then TZ on the axial
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plane of the 3D T2w MRI sequence of our cohort. PZ was obtained by subtracting TZ to WG.
Segmentation was performed using MedInria, an open-source software.44

In addition to these segmentations, we also generated a consensus segmentation for WG and
TZ using the STAPLE algorithm,45 which describes raters’ binary segmentations by Bernoulli
distributions and uses an expectation-maximization (EM) algorithm to produce a consensus of
the segmentations. We binarized the obtained consensus by only keeping voxels with a prob-
ability ≥0.75. This threshold was chosen empirically, as its value varies following the different
authors between 0.5 and 0.95.46–48 PZ was then obtained by subtracting the consensus TZ to the
consensus WG. An example with different raters segmentation and the consensus is shown
in Fig. 3.

As the segmentations supplied by the radiologists have been prone to intrarater variability,
leading to some gaps between TZ and WG border on the anterior part of the prostate which, after
verification with a radiologist, do not belong to PZ, we applied on the initially determined PZ
a slicewise 2D erosion, followed by a restriction to its largest connected component or the two
largest components if the second component is at most three times smaller than the largest com-
ponent, then a slicewise 2D dilation. Examples of the impact of those corrections are shown
in Fig. 4.

For ProstateX, we used the zonal segmentation provided by Cuocolo et al.29,49 No zonal
segmentation has been done on the private lesion dataset.

Fig. 3 Inter-rater variability, with segmentations from three of the seven raters (red, blue, yellow)
and consensus segmentation from STAPLE using the seven raters (white), on (a) axial and
(b) sagittal views. Solid line: WG, dashed line: TZ.

Fig. 4 (a) Examples of segmentations of the PZ (= WG − TZ) before correction. (b) Same seg-
mentations after correction.
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2.1.3 Lesion placement

On the private dataset, each expert or senior radiologist (five of the seven raters) provided a
segmentation of the lesions, from which we derived a consensus using the STAPLE algorithm
as explained in Sec. 2.1.2. On the private lesion dataset, a radiologist provided for each lesion
its sectorial position according to the 27 regions of interest sector map defined in Dickinson
et al.50—with for some lesions two or three sectors indicated, as well as their size, their
PI-RADS score, and their Likert score.51

2.2 Objectives and Architecture of the Networks

For the zonal segmentation of the prostate, we chose a framework with two cascaded UNet-based
neural networks. A sum-up of the whole framework is shown in Fig. 5.

The objective of the first network, that we will call global location network, is to roughly
segment WG to generate a bounding box around the prostate with a fixed size of 8 cm according
to transverse and anteroposterior directions, and a margin of 10 cm above and below that
segmentation. It takes as inputs patches of size 192 × 192 × 32 voxels at a resolution of
1 × 1 × 3 mm and uses as a loss function the generalized Dice loss function.52 For image
resampling, we used the python module SimpleITK,53 with BSpline interpolation for images
and nearest-neighbors interpolation for masks.

The second network, or zonal segmentation network, operates at a higher resolution of
0.5 × 0.5 × 1 mm and takes input patches of 96 × 96 × 48 voxels, which appeared to be a good
compromise between the quantity of information brought to the network and the available GPU
memory. Resampled and rescaled images had a size of 160 × 160 × ½57 to 110� voxels. The loss
functions used for the training of the zonal segmentation network are defined in Sec. 2.4.
Detailed architecture of the networks is shown in Fig. 6. In the final framework, we used
UFNet for both the global location network and the zonal segmentation network, but with fewer
parameters for the former. We combined in UFNet two methods to take into account the existing
anisotropy of the data. As in Ref. 54, we used anisotropic MaxPooling and 3D deconvolutions
with varying kernel sizes, and we replaced the classic k × k × k kernels by a combination of
k × k × 1 and 1 × 1 × k as presented in Fig. 6(d) inspired by Liu et al.55 We used the activation
function LeakyReLU with a parameter α ¼ 0.1 except for the last layer which uses sigmoid
activation. In UFNet, we used deep supervision, which consists of introducing upscaled versions
of intermediate results from the decoder into the final result as a form of regularization. We
also performed Dropout56 and instance normalization57 to fight against overfitting and improve
stability of our network, and we used attention modules which are presented in Sec. 2.3.

2.3 Attention Mechanisms

Attention in deep learning consists of encouraging the network to focus on some specific parts of
the data, deemed with particularly relevant information for its task, and to downplay the impor-
tance of the rest of the data. The information can be highlighted based on its spatial location
(spatial attention) or on the characteristics of the feature maps that contains it (channel attention).
Here, we combined both channel attention and spatial attention through two different methods:
squeeze-and-excitation modules and attention gates, respectively.58,59

2.3.1 Squeeze-and-excitation modules

The objective of squeeze-and-excitation modules58 is to put more focus on the feature maps
that provides useful information for the segmentation task. Given x the input of the module,
of size W ×H ×D × C, we define x̃ ¼ ½x̃1; x̃2; : : : ; x̃C� (size: W ×H ×D × C) the output of
the module as

EQ-TARGET;temp:intralink-;e001;116;126fsq ¼ ReLUðWT
1GAPðxÞÞ; (1)

EQ-TARGET;temp:intralink-;e002;116;84fex ¼ σðWT
2 fsqÞ; (2)

EQ-TARGET;temp:intralink-;e003;116;61∀ c ∈ ½1; C�; x̃c ¼ ðfexÞc · xc; (3)
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GAP() is a 3D global average pooling module, σðÞ is the sigmoid function, and W1, W2 are
convolutional kernels [see Fig. 6(b)]. Both fsq and fex have a size of 1 × 1 × 1 × C. We used
squeeze-and-excitation modules on the encoder part of our network.

2.3.2 Attention gates

Introduced in biomedical segmentation by Oktay et al.,59 the principle of attention gates is to
highlight in skip connections spatial zones with the more informative content. More precisely, if

Fig. 5 Framework for the zonal segmentation of the prostate. The global location network extracts
from a T2w MRI sequence a bounding box, which serves as input to the zonal segmentation net-
work, generating the zonal segmentation of the WG (cyan), the TZ (green), and the PZ. Finally, a
sector map is constructed from the zonal segmentation to provide information about the location of
the lesion (magenta).

Hamzaoui et al.: Automatic zonal segmentation of the prostate from 2D and 3D T2-weighted MRI. . .

Journal of Medical Imaging 024001-7 Mar∕Apr 2022 • Vol. 9(2)



x and g are the feature maps from skip connection and the gating signal with coarser information,
respectively, we define

EQ-TARGET;temp:intralink-;e004;116;321qatt ¼ ψTðReLUðWT
g gþWT

x xþ bgÞÞ þ bψ ; (4)

EQ-TARGET;temp:intralink-;e005;116;277α ¼ σðqattÞ; x̂ ¼ α⊙x; (5)

whereWg andWx are the convolutional kernels, ψ is a 1 × 1 × 1 convolutional kernel, bψ and bg
are biases and ⊙ the Hadamard product. A visualization of the architecture is available in
Fig. 6(c). We used attention gates on each layer of our network.

Combination of both attention methods has already been used for PCa detection60,61 but to
the best of our knowledge, it is the first time it is applied to prostate zonal segmentation.

2.4 Loss Functions for the Zonal Segmentation Network

We used as the main loss function the mean of 1-DSC for WG, for TZ, and for PZ.
Several approaches have been proposed in prior works to enforce the partition of the prostate

such that WG ¼ TZ ∪ PZ and TZ ∩ PZ ¼ ∅. First, one can only segment WG and TZ and
build PZ by subtracting TZ to WG.27 Second, one can learn to segment WG and both zones
and rely on postprocessing to enforce the partition.54 Another approach is to segment WG and
to classify its voxels as either TZ or PZ.36 In this paper, we propose another approach only based
on segmentation, with partition loss functions dedicated to obtain a partition of the prostate.
If we consider pWG; pTZ; pPZ ∈ ½0;1�N the probabilistic segmentation by the zonal segmentation
network of WG, TZ, and PZ, respectively, then we define the two losses:

Fig. 6 (a) Architecture of the zonal segmentation network and its components: (b) the encoder
block, (c) the attention gate, and (d) the used convolutional block. Values above layers in (a) cor-
respond to the number of output filters in the convolutions performed in this layer. Architecture of
global location network is similar but with a lower number of parameters.
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EQ-TARGET;temp:intralink-;e006;116;735L1
auxðpWG; pTZ; pPZÞ ¼ 1

N

XN
i¼1

ðpWG
i − pTZ

i − pPZ
i Þ2; (6)

and

EQ-TARGET;temp:intralink-;e007;116;684L2
auxðpWG; pTZ; pPZÞ ¼

P
N
i¼1ðpTZ

i :pPZ
i Þ�PN

i¼1 p
WG
i

�
þ ε

: (7)

The objective of L1
aux is to ensure that the segmentation obtained by the network is coherent,

i.e., that the segmentations for TZ and for PZ are within the limits of the segmentation of WG,
and that they totally cover it. For this reason, we chose to penalize not only segmented voxels
outside the WG segmentation but also the voxels that are included in both the TZ and PZ seg-
mentations. The objective of L2

aux is to enforce this lack of intersection.

2.5 Sector Map Construction

Another objective of our work is also to estimate the efficiency of our method to correctly assess
the sectorial position of lesions. To this end, we designed an algorithm taking as input the zonal
segmentation of a prostate and constructing the associated sector map. We chose to base our
sector map on the 27 regions of interest sector map defined by Dickinson et al.50 We defined
the limits between sectors as follows:

• According to the longitudinal axis: we split the prostate on three equal-sized parts corre-
sponding to the apex, to the midgland, and to the base, taking as extremes points the lowest
and highest positions of WG segmentation. Following axes are computed separately for
each third of the prostate.

• According to the anteroposterior axis: we split each part across its median sagittal
slice xmid.

• According to the transverse axis: for each part, we take the mean of the extreme positions
of their slices (their leftest and rightest positions) according to the transverse axis xleft and
xright, and we define the positions of the inner subdivisions as: xmidleft ¼ 0.4ðxmid − xleftÞ þ
xleft and xmidright ¼ 0.6ðxright − xmidÞ þ xmid.

The main difference between our constructed sector map and the 27 regions of interest sector
map50 is the absence of the three sectors related to the anterior fibromuscular stroma, as we did
not segment this particular zone but included it into TZ. For this reason, we included lesions
located in the anterior fibromuscular stroma among the TZ lesions. An illustration is shown
in Fig. 7

The zonal location of a lesion in the prostate is defined as the zone (PZ or TZ) with the
highest proportion of lesions’ voxels, and the sectorial position of the lesion as the sector within
the considered zone with the highest proportion of lesion’s voxels.

3 Experimental Design

3.1 Training of the Network

Training on the private dataset was performed using an Intel(R) Xeon(R) Gold 6246R CPU and
a NVIDIA Tesla V100 SXM2 32 GB GPU, a NVIDIA Tesla T4 16 GB GPU having also been
used for the ProstateX dataset. We used Keras62 and Tensor Flow 2.4.163 as a deep learning
framework.

The training of the global location network has been done with a batch size of 4, using
RMSProp as a gradient optimizer with an initial learning rate of 0.0005. The training of the
zonal segmentation network has been done with a batch size of 8, using Adam as a gradient
optimizer with an initial learning rate of 0.0005, and attributing loss weights of 1, 0.1, and
0.01, respectively, to L, L1

aux and L2
aux. Several values of parameters (learning rate, batch size. . . )

were tested before choosing those values.
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For both networks, we adopted a maximal number of epochs of 500, with a policy of early
stopping if the validation loss did not improve for 70 epochs. We also adopted a policy of reduc-
tion of the learning rate with a multiplication by 0.2 in case of stagnation of the validation loss for
30 epochs. The dropout rate was set to 0.3.

To improve the performance of the network, we artificially increased the number of images
used during the training due to data augmentation through the Python module batchgenerators.64

This module allowed us to apply several transformations such as rotation according to the longi-
tudinal axis, mirror transform along the anteroposterior axis, elastic transform or intensity trans-
forms such as gamma transform. The intensity of each sequence has also been normalized via
the subtraction of its voxels’ mean value and a division by their standard deviation.

3.2 Test and Postprocessing

We used test-time augmentation,65,66 which consists of applying different transformations to an
image during the test procedure, using the network on each of these transformed images and then
reverting those transforms and combining the obtained results into one final prediction by taking
their mean, to improve the final segmentation and the robustness of the process. Transformations
applied were all combinations of flipping along the anteroposterior axis with a rotation of
�10 deg, for a total of six images.

In postprocessing, to apply our method on the whole image, we applied a sliding window
strategy, where patches of size 96 × 96 × 48 were extracted with steps of (24, 24, 12) voxels
according to each dimension and where the contribution of each patch to a specific voxel is
divided by the number of patches contributing to this voxel. Finally, after reconstruction of the
segmentation from the patches, we applied a threshold of 0.5 to obtain WG segmentation that we
restrained to its largest connected component according to the longitudinal direction. Within WG

Fig. 7 Sector map of the prostate according to axial views in (a) the base, (b) the midgland, and
(c) the apex; (d) the sagittal view. White: WG; orange: TZ. The blue axis separates the anterior
from the posterior of the prostate, the red axes are left-right based separations and the yellow axes
represent the separations between (a) the base, (b) the midgland, and (c) the apex. The green
dashed lines on the sagittal view indicate the location of the different axial views.
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segmentation, we defined TZ segmentation as the voxels for which the probability to be in TZ
was higher than the probability to be in PZ, and conversely for PZ.

4 Results

The main metrics we used to estimate the performance of our network were DSC and 95%
Hausdorff distance (HD95%). We mainly compared three networks for the zonal segmentation
network: a 3D UNet as presented by Isensee et al.,67 introducing context and localization
modules and which served as a basis for other networks, the network UNetV2 with elements
presented in Sec. 2.2 to take into account the image anisotropy and UFNet which adds deep
supervision, attention modules, and the partition losses. These three networks have 2.15M,
2.28M, and 2.32M parameters, respectively. A UFNet with 1.03M parameters was used as the
global location network.

To improve the segmentations and their stability, inspired by Isensee et al.,25 we combined
the results of five neural networks obtained through cross-validation to provide a final, more
precise ensembled segmentation by taking the mean of their prediction before postprocessing,
including test-time augmentation. These networks are named with the suffix -E.

Table 1 Comparison between our method and UNet on our private dataset after correction.

Model Zone DSC (in %) p-value/UNet-E HD95% (in mm) p-value/UNet-E

UFNet-E
(5 × 2.32M parameters)

WG 93.90 ± 2.85 *** 2.59 ± 0.98 **

TZ 91.00 ± 4.34 *** 3.20 ± 0.90 ***

PZ 79.08 ± 7.08 *** 3.87 ± 1.65 *

UNetV2-E
(5 × 2.28M parameters)

WG 93.65 ± 2.46 * 2.73 ± 0.80 *

TZ 90.73 ± 4.09 * 3.42 ± 0.94 *

PZ 78.11 ± 7.58 * 4.26 ± 2.36 >.05

UNet-E
(5 × 2.15M parameters)

WG 93.48 ± 2.54 — 2.81 ± 0.80 —

TZ 90.47 ± 4.28 — 3.53 ± 0.97 —

PZ 77.51 ± 7.95 — 4.09 ± 1.93 —

Model Zone DSC (in %) p-value/UNet HD95% (in mm) p-value/UNet

UFNet WG 93.45 ± 2.89 *** 2.81 ± 0.93 **

TZ 90.45 4.51 *** 3.41 ± 0.93 ***

PZ 77.80 ± 7.79 *** 4.15 ± 1.92 *

UNetV2 WG 93.16 ± 2.51 >0.05 2.91 ± 0.80 >.05

TZ 90.24 ± 4.16 * 3.52 ± 0.93 >0.05

PZ 76.52 ± 8.03 * 4.37 ± 2.09 >0.05

UNet WG 92.87 ± 2.79 — 3.21 ± 1.32 —

TZ 89.85 ± 4.56 — 3.83 ± 1.17 —

PZ 75.95 ± 8.47 — 4.38 ± 1.91 —

Note: Top: Results for the ensembling of five networks of three different types, obtained from cross-validation.
Best results for each considered metric are in bold. Bottom: Mean of the results from the five networks used in
the ensemble version. Signed-rank Wilcoxon test with Bonferroni–Holm correction has been used to assess
statistically significant differences and to compute p-values for ensembled networks and for mean of networks
on each fold. Significant differences are indicated.
*p-value ≤ 0.05.
**p-value ≤ 0.01.
***p-value ≤ 0.001.
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4.1 Results for Private Dataset

For this dataset, we compared the outputs of the networks to the consensus obtained from the
seven radiologists and corrected as described in Sec. 2.1.2 (i.e., slicewise restriction of PZ to
its largest components). The same correction was applied to the outputs of the network.

4.1.1 Segmentation results

Results obtained for the metrics on WG, TZ, and PZ are given in Table 1. They are shown in
Fig. 8, along with statistical differences between the performance of the networks. The global
location network provided an adequate bounding box of the prostate, i.e., which surrounds the
prostate without crossing it, for all images. Some examples of zonal segmentation are provided in
Figs. 9 and 10. The mean time to process one patch was 0.8 s, and the mean time to process a
sequence on this dataset was 4.5 s.

4.1.2 Comparison with radiologists

We compared these results to the segmentations provided by the seven radiologists on the same
dataset, as shown in Fig. 11. While not being as good as the best radiologists, i.e., those with

Fig. 8 Metrics between network segmentation and consensus segmentation on private dataset
for all three networks. (a) Dice for WG, TZ, and PZ.(b) Hausdorff distance for WG, TZ, and PZ.
Black line and red point are median and mean, respectively. Signed-rank Wilcoxon test with
Bonferroni–Holm correction has been used to assess statistically significant differences and to
compute p-values. Significant differences are indicated (* : p-value ≤ 0.05; **: p-value ≤ 0.01;
***: p-value ≤ 0.001).
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the closest segmentations to the consensus, UFNet-E obtained results similar to radiologists’.
If we rank UFNet-E and all radiologists according to how close they are to the consensus for all
metrics according to their means, UFNet-E is ranked between the third place and the seventh
place, with a global fifth place.

4.2 Lesion Positions

4.2.1 Test set

On the 17 prostates of the test set with a lesion, we applied our sector map construction algorithm
and determined the location of the lesion using the sector map derived from the ground truth as
the true sector map. On the zonal location of the lesion, we obtained a 100% accuracy, whereas
on the sectorial position we obtained an accuracy of 88% (15 out 17 cases). Observed lesion
position errors are due to differences on the delineations of the apex, midgland, and base between
the ground truth segmentation and the segmentation from the network. Examples of lesion loca-
tions are shown in Fig. 12.

Fig. 9 Good segmentations on the private dataset, with axial views of (top left) the base, (top right)
the midgland, and (bottom left) the apex, and (bottom right) sagittal view. White: ground truth WG;
orange: ground truth TZ; cyan: network-segmented WG; green: network-segmented TZ.
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Fig. 10 Poor segmentations on the private dataset, with axial views of (top left) the base,
(top right) the midgland and (bottom left) the apex, and (bottom right) sagittal view. White:
ground truth WG; orange: ground truth TZ; cyan: network-segmented WG; green: network-
segmented TZ.

Fig. 11 Metrics between UFNet-E (ours) segmentation and the consensus segmentation on
private dataset, side to side with the metrics for raters’ segmentation ranked in increasing
order of performance (the rater k being written as Rk). (a) Dice for WG, TZ and PZ. (b) 95%
Hausdorff distance for WG, TZ, and PZ. Black line and red point are median and mean values,
respectively.
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4.2.2 Private lesion set

On the private lesion set, we obtained an accuracy for the zonal location of lesions of 91%
(42 out of 46) and of 74% for their sectorial positions (34 out of 46).

All four cases where the lesion has been placed in the wrong zone are cases with a configu-
ration similar to the configuration presented in Fig. 13(b), i.e., with a lesion in the anterior part of
PZ near the border with TZ and with a voxel intensity closer to TZ’s than to PZ’s. Cases with a

Fig. 12 Examples of correct lesion placement on the test set. (a) Placement derived from the true
segmentation (white: WG; orange: TZ). (b) Placement on the sector map computed from the net-
work segmentation (cyan: WG; green: TZ). Separations between sectors are in red (anteropos-
terior direction) and in blue (transverse direction). Lesions are in magenta (consensus
segmentation from five radiologists).
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sectorial position error correspond to either lesions located according to our algorithm across two
adjacent sectors—including the true sectorial position—but with a majority of voxels in the
wrong sector (four cases), or a lesion well located according to transverse and anteroposterior
directions but not according to longitudinal direction, for example, lesions located in the midg-
land whereas the true position is in the base (four cases).

4.3 Results on ProstateX

4.3.1 Segmentation results

Results obtained on ProstateX are given on Table 2 and are shown in Fig. 16. A boxplot graph
illustrating the performances according to the different metrics is available in Fig. 14. The global
location network provided an adequate bounding box of the prostate for all images. The mean
inference time of the network for each patch was 0.09 s, adding up to 3.5 s on the whole
sequence.

4.3.2 Evolution of Dice score during training

We also estimated on ProstateX the impact of the different architectures on the evolution of DSC
during the training. These results are shown in Fig. 15. It appeared that taking into account the
anisotropy does not have an important impact on the course of the training, contrary to the intro-
duction of attention modules which help to speed up the training.

5 Discussion

In this work, we used a framework composed of two successive neural networks to generate a
zonal segmentation of the prostate on both 2D and 3D T2w MRI sequences. The global location
network has been able to provide an adapted bounding box of the prostate, and the zonal seg-
mentation network has been able to generate an accurate zonal segmentation of the prostate. This
framework not only allows us to detect the prostate despite its relatively small size (around 5% of
the image on the private dataset) but also to take advantage of the better resolution on 3D T2w
MRI sequences while only requiring a reasonable amount of memory.

The results for the segmentation of the different zones of the prostate are comparable with the
results of the state of the art, as for example, Bardis et al.36 obtained a mean Dice of 94.0% for the
whole prostate, 91.4% for the TZ, and 77.6% for the OZ. On ProstateX, we obtained DSC similar
or superior to Cuocolo et al.29 with segmentations from the same dataset, showing the efficiency
of our method. Those differences could be explained by the use of 3D networks (compared to 2D

Fig. 13 (a) Example of wrong lesion placement on the test set. Top: placement derived from the
true segmentation (white: WG; orange: TZ), in the base. Bottom: placement on the sector map
computed from the network segmentation, in the midgland (cyan: WG; green: TZ). Limits between
base/midgland/apex are in yellow, the lesion is in magenta.(b) Example from the private lesion set
with the lesion (in magenta) located in TZ by the network whereas the radiologists located it in PZ.
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used by Cuocolo et al.),29 of attention modules, and by the difference in training set sizes and
number of training epochs.

The use of attention modules and anisotropy-adapted modules appeared to have a positive
impact, with fewer epochs for training with attention modules and overall better results for both
modifications, especially on 3D T2w sequences with p-values < 0.05 between the classic UNet,
the version with the anisotropy modules and the version with both additional modules on almost
all considered metrics. On the other hand, the use of partition losses seemed to have a positive but
moderate impact on the Hausdorff Distance and on TZ segmentation, whereas slightly deterio-
rated results for PZ.

The apex and the base of the prostate are the most difficult regions to segment, which is in
accordance with previous publications, involving human14,15 or automatic raters28,43 (see Figs. 9,
10, and 16). The reasons behind this complexity include, but are not limited to, the heterogeneity
of the tissues on these regions, the possible ambiguities of the borders, or exotic shapes of both
WG and TZ at their top and bottom slices.

Table 2 Comparison between our method and UNet on the ProstateX dataset.

Model Zone DSC (in %) HD95% (in mm)

UFNet-E WG 90.90 ± 2.94 3.50 ± 1.36

TZ 86.84 ± 4.33 4.27 ± 1.40

PZ 78.40 ± 7.31 4.00 ± 2.54

UNetV2-E (with partition losses) WG 90.83 ± 2.81 3.48 ± 1.12

TZ 86.82 ± 4.53 4.25 ± 1.42

PZ 78.29 ± 7.14 4.01 ± 2.48

UNetV2-E (without partition losses) WG 90.81 ± 2.82 3.48 ± 1.11

TZ 86.73 ± 4.31 4.29 ± 1.43

PZ 78.31 ± 7.12 4.08 ± 3.04

UNet-E WG 90.59 ± 3.09 3.91 ± 2.89

TZ 86.66 ± 4.56 4.64 ± 3.02

PZ 78.04 ± 7.60 4.14 ± 3.34

UFNet WG 90.62 ± 2.92 3.58 ± 1.15

TZ 86.45 ±4.45 4.38 ± 1.41

PZ 77.81 ± 7.35 4.06 ± 2.38

UNetV2 (with partition losses) WG 90.48 ± 2.86 3.59 ± 1.11

TZ 86.38 ± 4.39 4.37 ± 1.37

PZ 77.45 ± 7.42 4.26 ± 3.46

UNetV2 (without partition losses) WG 90.47 ± 2.88 3.66 ± 1.19

TZ 86.31 ± 4.58 4.44 ± 1.44

PZ 77.53 ± 7.54 4.32 ± 3.94

UNet WG 90.25 ± 3.04 3.86 ± 1.93

TZ 86.19 ± 4.58 4.60 ± 2.10

PZ 77.27 ± 7.75 4.24 ± 3.26

Top: The -E signals the use of an ensemble of five networks. Best results for each considered metric are in
bold. No statistical differences were found between the ensembles of networks.
Bottom: Mean of the results from the five networks used in the ensemble version.
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Results obtained by the network appeared to be on the same level of performance than those
of the radiologists, who can be separated in three categories: the experts (raters 3, 6, and 7), the
seniors (raters 1 and 2), and the juniors (raters 4 and 5). The network obtained results comparable
to those of radiologists in the middle of the pack and significantly better results than the rater 3
(an expert radiologist) for both TZ and PZ (p-value < 0.05).

Fig. 14 Metrics between network segmentation and ground truth segmentation on ProstateX
dataset for all three networks. (a) Dice for WG, TZ, and PZ. (b) 95% Hausdorff distance for
WG, TZ, and PZ. Black line and red point are median and mean values, respectively. Signed-rank
Wilcoxon test with Bonferroni–Holm correction has been used to assess statistically significant
differences, but no differences were found.

Fig. 15 Evolution of the Dice coefficient on both training and validation sets during training
(on onefold of ProstateX).
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Fig. 16 Segmentations on the 2D dataset ProstateX, with axial views of (top left) the base, (top
right) the midgland, and (bottom left) the apex, and (bottom right) sagittal view. (a) Good segmen-
tations and (b) poor segmentations. White: ground truth WG; orange: ground truth TZ; cyan: net-
work-segmented WG; green: network-segmented TZ.
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We have observed on the private lesion dataset that in more than 90% of the cases, the auto-
matic segmentation preserved the zone in which the lesions were located. The four cases of zonal
location errors correspond to a very specific situation that was not present in the training-
validation set. Also, we compare favorably with the inter-rater variability on sectorial positions
observed by Greer et al.12 with 74% of agreement between the radiologists and our method, even
though we rely on a slightly simpler sector map. Moreover, the observed errors on sectorial
positions would only have a minor clinical impact, as the global position of the lesion (left/right
and anterior/posterior) has been preserved in each case. It may also be more appropriate for
clinical use to provide the top two sectors on which each lesion lies, since in almost all cases
the true sector is among those two. Those results validate the use of neural network segmentation
as a second reader for automatic PCa diagnosis to detect in which zone the suspected lesion is
located. This is important as it determines which sequence to use to determine the PI-RADS
score, as the importance of the different sequences depends on which zone the suspected lesion
is located in.

Our study faces several limitations. First the quality of the ProstateX segmentations is
uneven, as shown in Fig. 16. Nevertheless, we chose to work with this annotation set for the
sake of comparing ourselves with other methods. On the private dataset, we had to correct PZ
masks computed as WG-TZ with an ad hoc method to avoid the occurrence of thin isolated lines
or voxels (see Fig. 4). Indeed, without this processing, PZ-associated metrics and especially PZ
HD95% were affected. However, the impact was the same on the three compared networks, and
it did not modify their relative performances. This processing was not required on the ProstateX
segmentation.

In addition, the algorithm to create the prostate sector map is based on debatable hypotheses.
In particular, boundaries were determined partwise and not slicewise, and we arbitrarily defined
inner anteroposterior boundaries positions since there exists no formal definition to define them.
Those choices have a direct impact on sectorial positions, since peripheral sectors on the apex
(especially sectors 6p and 12p) can have a very small area with our method. Moreover, the sector
map used in this study, inspired by the 27 region of interest sector map defined by Dickinson
et al.,50 does not correspond to the PI-RADS 2.1 standard sector map5 which is based on 39
regions of interest. Nevertheless, in practice, the differences between the two sector maps have
little to no practical effects.

In Fig. 10, we can see that some of the segmentations may have very unusual shapes, with for
instance “outgrowths” on the generated segmentation or WG split into two parts. To enforce
coherent shapes of WG and TZ, it may be possible to project the prostate on a restricted learned
shape space68,69 to correct aberrant segmentations.

6 Conclusion

We proposed a deep learning-based method for the zonal segmentation of the prostate from T2w
MRI sequences, taking into account the anisotropy of these sequences, with attention modules
and enforcing the partition of the prostate. This method can be applied on both 2D and 3D T2w
MRI sequences. The obtained results not only are similar to the results from the state of the art
but are also coherent with the results obtained by radiologists and globally preserving zonal
locations and sectorial positions of the lesions, making our method suitable as a first step tool
for an automated system dedicated to diagnosis and grading of PCa, as done by Hosseinzadeh
et al.70 or by Mehta et al.71
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