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Abstract.

Purpose: An accurate zonal segmentation of the prostate is required for prostate cancer management with MRI.
Approach: The aim of this work is to present UFNet, a deep learning-based method for automatic zonal segmentation
of the prostate from T2-weighted (T2w) MRI. It takes into account the image anisotropy, includes both spatial and
channel-wise attention mechanisms and uses loss functions to enforce prostate partition. The method was applied on
a private multicentric 3D T2w MRI dataset and on the public 2D T2w MRI dataset ProstateX. To assess the model
performance, the structures segmented by the algorithm on the private dataset were compared with those obtained by
seven radiologists of various experience levels.

Results: On the private dataset, we obtained a Dice score (DSC) of 93.90 + 2.85 for the whole gland (WG), 91.00 £
4.34 for the transition zone (TZ) and 79.08 £ 7.08 for the peripheral zone (PZ). Results were significantly better than
other compared networks’ (p-value<.05). On ProstateX we obtained a DSC of 90.90 + 2.94 for WG, 86.84 + 4.33 for
TZ and 78.40 4 7.31 for PZ. These results are similar to state-of-the art results and, on the private dataset, are coherent
with those obtained by radiologists. Zonal locations and sectorial positions of lesions annotated by radiologists were
also preserved.

Conclusions: Deep learning-based methods can provide an accurate zonal segmentation of the prostate leading to
a consistent zonal location and sectorial position of lesions, and therefore can be used as a helping tool for prostate
cancer diagnosis.
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1 Introduction

Prostate cancer (PCa) is the most frequent type of cancer affecting men in Europe and North
America with more than 190,000 expected cases in the USA in 2021. It is estimated that 12%
of American men will develop PCa during their life.! For years, the standard imaging modality
used to guide biopsies was transrectal ultrasound (TRUS), prone to underdetection of clinically
significant PCa and to overestimation of benign lesions.> Now, its replacement by multiparametric-
MRI (mp-MRI) is supported by several medical associations such as the European Association of
Urology? and the American Urological Association.* Based on mp-MRI, the PI-RADS score” is
designed to improve detection, localization, characterization and risk stratification in patients with
suspected PCa in treatment-naive prostate glands. It uses a 5-point scale based on the probability
that a combination of mp-MRI findings on T2-weighted (T2w), diffusion-weighted (DWI) and
dynamic contrast-enhanced (DCE) sequences correlates with the presence of clinically significant
PCa. Then the patient will benefit from standard and targeted biopsies if a suspected lesion is
detected.>®° PI-RADS defines a dominant sequence for each zone of the prostate: T2w for the
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Fig 1: Left: Axial view of the T2-weighted IQ/Ili'image of a prostate. ight: The correlspoﬁding zonal and
lesion segmentation. The whole gland is the union of transition zone and peripheral zone.

Transition Zone (TZ) and DWI for the Peripheral Zone (PZ); so identification of the zonal location
of a lesion is vital. Both zones are represented in Fig. 1.

In addition, to locate findings on MRI reports and to simplify discussions about biopsies and

treatment, radiologists and urologists have defined sector maps that are based on those zones and
on longitudinal, transverse and antero-posterior directions. Since both PI-RADS scores and sec-
torial positions are subject to a high inter-rater variability'®-!? there is a need for automated PCa
diagnosis methods.
When required, the manual segmentation of prostate zones is commonly performed from T2w se-
quences. But several factors complicate this task and make it time-consuming even for a skilled
physician.!3 First, boundaries of the prostatic gland and inner boundaries between TZ and PZ may
be hard to detect. Second, the prostate is subject to an important inter-subject variability due to
physiological differences in terms of shape, size and tissue intensities.'* !> Finally, sequences ac-
quired from different MRI machines increase the variability in appearance of the prostate in T2w
imaging.

Related Works Several authors proposed computerized methods for the automatic segmenta-
tion of the prostate from T2w MRI sequences. In 2012 the PROMISE12 challenge, dedicated
to the segmentation of the whole prostatic gland (WG),'® took place and was won by Vincent et
al.!” using active appearance models. Meanwhile, convolutional neural networks (CNN) began
to provide promising results, especially in image classification.'® Among the different architec-
tures, UNet'? appeared to be adapted to biomedical image segmentation. Furthermore, in 2016
Milletari et al.?® presented V-net, a 3D UNet variation with a Dice similarity coefficient (DSC)
based loss function dedicated to the automatic segmentation of the prostate with consistent results
on PROMISE12 (mean DSC of 86.9+3.3%) and was the first of many works on WG segmentation
using deep learning. For example, in 2017, Cheng et al.>! used holistically nested networks?> and
coherence-enhancing diffusion filters>> to perform this task, and in 2018 Tian et al.?>* studied the
use of transfer learning from large-scale datasets. Now, CNN have become the most widely used
methodology for automated segmentation of WG, with best mean DSC on PROMISE12 comprised
between 91.5% and 93%.25-26



Although WG prostate segmentation is performed successfully in many cases, the zonal seg-
mentation of the prostate is more difficult especially for the PZ. Indeed, in addition to having a
croissant-like shape in axial views, this zone is subject to an important inter-subject variability.
For the zonal segmentation of the prostate, many authors used 2D neural networks, as the large
anisotropy of 2D T2w MRI sequences makes them closer to stacked 2D images than to real 3D
volumes. To improve the generalization on previously unseen datasets, Rundo et al.?’ proposed
a 2D UNet for the zonal segmentation with Squeeze-and-Excitation modules. Aldoj et al.?® con-
ceived a DenseNet-like network to perform a zonal segmentation, with a DSC of 92.14 0.8% for
WG and 89.5 + 2% for the TZ. Cuocolo et al.”® compared the classic 2D UNet with efficient
neural network (ENet)? and efficient residual factorized ConvNet (ERFNet)?! which aim to limit
their number of parameters, and computation times while keeping a high level of performance. All
those articles used the public dataset ProstateX>>—4 consisting of 2D T2w MRI sequences with a
slice thickness of 3mm, originally dedicated to PCa diagnosis.>> Several works also considered
3D neural networks to take into account the volumetric consistency between slices. Bardis et al.¢
used a combination of 3D UNets to respectively locate the whole prostate, segment the prostate
in the image and classify each voxel of the image as TZ or PZ. Meyer et al.>’ performed zonal
segmentation with a 3D neural network including anisotropic MaxPooling and deconvolutions to
perform a zonal segmentation of the prostate. Zavala-Romero et al.*® used a multiplanar 3D neural
network>? to perform this zonal segmentation, and studied in particular the impact of MRI vendors
on generated segmentations, showing the importance of multicentric and multivendor datasets.

Limitations All those works obtained good results regarding the zonal segmentation of the
prostate. However, they did not tackle the issue of localizing prostate lesions within zones and
sectors. This localization is important for grading those lesions in the PI-RADS standard.
Moreover, prior works were based on 2D T2w sequences since they are the most widely available
modality. Yet, 3D T2w prostate MR images allow a shorter acquisition time***! and simplify
modalities fusion among other advantages,*> while having similar performances in terms of di-
agnosis. For those reasons they will probably become the new radiological standard in prostate
imaging in the near future. Differences between 2D and 3D T2w sequences can be seen in Fig. 2.
In addition, inter-rater variability in the segmentation of prostate zones and whole gland has not
been widely considered.?3:37-43 The number of human raters was limited to three, and no consen-
sus was built for the prostate zones.

Contributions To cope with the previous limitations, we introduce in this paper the following
contributions :

* To the best of our knowledge, we provide the first prostate zonal segmentation method on
3D T2w MR images in addition to 2D T2w MRI. The obtained results are similar to the state
of the art.

* We propose a deep learning-based framework for the automatic zonal segmentation of the
prostate (transition zone and peripheral zone), including a novel neural network architecture.



Fig 2: Left: Sagittal view of a 3D T2w MR image of the prostate and its segmentation by a radiologist (slice
thickness: 1mm). Right: Sagittal view of a 2D T2w MR image of the same prostate and its segmentation
from the axial views by the same radiologist, resampled to the resolution of the 3D T2w MRI (original slice
thickness: 3.25mm).

This architecture takes into consideration the anisotropy of the data, and includes dual atten-
tion mechanisms to improve the zonal segmentation. Partition loss functions were defined to
enforce the partition of the prostate.

* We compare the generated segmentations with the ones supplied by 7 radiologists of vari-
ous experience levels, from which we derive a consensus segmentation. We show that our
network performs similarly to the radiologists.

* Finally, we show that our method globally preserves both the zonal location and the sectorial
position of lesions of the prostate, making it suitable as a helping tool for the detection and
grading of lesions. Furthermore we propose the first computerized method to generate a
prostate’s sector map from its zonal segmentation.

2 Material and Methods
2.1 Dataset
2.1.1 MRI Scans

In this work approved by our joint institutional review boards, we used a private dataset of 131
3D T2w MR images from treatment-naive patients who underwent a prostate MRI before the first
round of biopsy for clinical suspicion of PCa (linked to an elevated prostate-specific antigen (PSA),
a positive Digital Rectal Evaluation and a genetic susceptibility) between October 2013 and July
2019 from 3T Siemens scanners (Siemens Healthcare, Erlangen, Germany) on Pitié-Salpétriere
Hospital, Paris, France (100, 76.6%) and from 3T G.E. scanners (GE Healthcare; Chicago, IL)
on Tenon Hospital, Paris, France (31, 23.4%). This dataset was built to have a diversity in terms
of shapes, sizes and volumes. The voxel dimensions are [0.36-0.78, 0.36-0.78, 0.5-1.0lmm. A
random split of 91/40 (69%/31%) patients has been used between the training-validation set and
the test set.In practice, the former was split into five folds in a cross-validation strategy where four
folds served as a training set and the fifth one as a validation set. A minority (35.9%) had at least
a clinically significant lesion, which was defined as a lesion with a PI-RADS score > 3, of which
30 being on the training-validation set (33.0% of the training-validation set) and 17 on the test set
(42.5%).



To assess the capacity of our network to provide a segmentation preserving not only the zonal lo-
cation of the lesions but also their sectorial positions, we had access to an additional dataset of 33
3D T2w MRI sequences of prostates with 46 clinically significant lesions that we will call private
lesion dataset. These sequences have been acquired on the same scanners than the private dataset
between May 2017 and December 2019, with 24 from Tenon Hospital, Paris, France (73%, voxel
dimensions: [0.547, 0.547, 0.5]Jmm) and 9 from Pitié-Salpétriere Hospital, Paris, France (27%,
voxel dimensions: [0.36-0.78, 0.36-0.78, 0.5-1.0]mm).

In addition, we considered the public dataset ProstateX>?—>* to compare our method with prior
works. It consists of 204 T2w MR images taken with 3T Siemens scanners on Radboud University
Medical Center, with an in-plane dimension of [0.375-0.6]Jmm? and a slice thickness of [3-4.5]mm,
the most frequent resolution being 0.5x0.5x3mm. We excluded three sequences for mismatches
with their provided segmentation and randomly split the remaining data into a training-validation
set of 141 sequences and a test set of 60 prostates, with a fivefold cross-validation strategy similar
to the one used on the private dataset.

2.1.2 Zonal segmentation

The zonal segmentation of the private dataset consists of binary masks of the WG and the TZ.
The segmentation of the training-validation set has been performed by a single expert radiologist,
whereas on the test set 7 radiologists of various levels of experience provided each a zonal segmen-
tation for each prostate: 3 experts (> 1000 prostate MRI interpreted), 2 seniors (= 500 prostate
MRI) and 2 juniors (< 100 prostate MRI). This led to a total of 280 (=40x7) zonal segmentations
on the test set, for a rich comparison of performance with radiological experts. The radiologists
were instructed to first segment WG and then TZ on the axial plane of the 3D T2w MRI sequence
of our cohort. PZ was obtained by subtracting TZ to WG. Segmentation was performed using
Medlnria, an open-source software (https://med.inria.fr/).
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Fig 3: Inter-rater variability, with segment
segmentation from STAPLE using the 7 raters (white), on axial (left) and sagittal views (right). Solid line:
whole gland, dashed line: transition zone.

In addition to these segmentations we also generated a consensus segmentation for WG and
TZ using the STAPLE algorithm** , which describes raters’ binary segmentations by Bernoulli
distributions and uses an expectation-maximization (EM) algorithm to produce a consensus of the
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segmentations. We binarized the obtained consensus by only keeping voxels with a probability
> 0.75. This threshold was chosen empirically, as its value varies following the different authors
between 0.5 and 0.95.447 PZ was then obtained by subtracting the consensus TZ to the consensus
WG. An example with different raters segmentation and the consensus can be seen in Fig.3.

As the segmentations supplied by the radiologists have been prone to intra-rater variability, leading
to some gaps between TZ and WG border on the anterior part of the prostate which, after verifica-
tion with a radiologist, do not belong to PZ, we applied on the initially determined PZ a slicewise
2D erosion, followed by a restriction to its largest connected component - or the two largest com-
ponents if the second component is at most three times smaller than the largest component, then a
slicewise 2D dilation. Examples of the impact of those corrections can be seen in Fig. 4.
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Fig 4: Top: Examples of segmentations of the peripheral zone
correction. Bottom: Same segmentations after correction.
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For ProstateX, we used the zonal segmentation provided by Cuocolo et al.>>*® No zonal
segmentation has been done on the private lesion dataset.

2.1.3 Lesion placement

On the private dataset, each expert or senior radiologist (5 of the 7 raters) provided a segmentation
of the lesions, from which we derived a consensus using the STAPLE algorithm as explained in
section 2.1.2. On the private lesion dataset, a radiologist provided for each lesion its sectorial
position according to the 27 regions of interest sector map defined in Dickinson et al.* - with for
some lesions 2 or 3 sectors indicated, as well as their size, their PI-RADS score and their Likert

score.50

2.2 Objectives and architecture of the networks

For the zonal segmentation of the prostate we chose a framework with two cascaded UNet-based
neural networks. A sum-up of the whole framework is available in Fig.5.

The objective of the first network, that we will call global location network, is to roughly
segment WG in order to generate a bounding box around the prostate with a fixed size of 8cm ac-
cording to transverse and antero-posterior directions, and a margin of 10cm above and below that
segmentation. It takes as inputs patches of size 192 x 192 x 32 voxels at a resolution of 1x1x3mm,
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Step 1: Localization of the prostate

T2W, 1x1x3mm
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Fig 5: Framework for the zonal segmentation of the prostate. The global location network extracts from a
T2w MRI sequence a bounding box, which serves as input to the zonal segmentation network, generating
the zonal segmentation of the whole gland (cyan), the transition zone (green) and the peripheral zone.
Finally, a sector map is constructed from the zonal segmentation to provide information about the location

of the lesion (magenta)



and uses as a loss function the Generalized Dice loss function.’! For image resampling we used
the python module SimpleITK,>> with BSpline interpolation for images and nearest neighbors in-
terpolation for masks.

The second network, or zonal segmentation network, operates at a higher resolution of 0.5x0.5x1mm
and takes input patches of 96x96x48 voxels, which appeared to be a good compromise between the
quantity of information brought to the network and the available GPU memory. Resampled and
rescaled images had a size of 160x160x[57-110] voxels. The loss functions used for the training of
the zonal segmentation network are defined in section 2.4. Detailed architecture of the networks is
provided in Fig.6. In the final framework we used UFNet for both the global location network and
the zonal segmentation network, but with fewer parameters for the former. We combined in UFNet
two methods to take into account the existing anisotropy of the data. As in Meyer et al.,>> we used
anisotropic MaxPooling and 3D Deconvolutions with varying kernel sizes, and we replaced the
classic kxkxk kernels by a combination of kxkx1 and 1x1xk as presented in Fig.6.d inspired
by Liu et al.>* We used the activation function LeakyReLLU with a parameter o=0.1 except for the
last layer which uses sigmoid activation. In UFNet we used deep supervision, which consists in in-
troducing upscaled versions of intermediate results from the decoder into the final result as a form
of regularization. We also performed Dropout®> and Instance normalization’® to fight against over-
fitting and improve stability of our network, and we used attention modules which are presented in
section 2.3.

2.3 Attention mechanisms

Attention in deep learning consists in encouraging the network to focus on some specific parts of
the data, deemed with particularly relevant information for its task, and to downplay the importance
of the rest of the data. The information can be highlighted based on its spatial location (spatial
attention) or on the characteristics of the feature maps that contains it (channel attention). Here, we
combined both channel attention and spatial attention through two different methods: respectively
Squeeze-and-Excitation modules and attention gates.”’>%

Squeeze-and-Excitation modules The objective of Squeeze-and-Excitation modules®’ is to put
more focus on the feature maps that provides useful information for the segmentation task. Given
@ the input of the module, of size W x H X D x C, we define & = [Z1,®2,...,Z¢c] (size: W X H X
D x C) the output of the module as

fsq = ReLU(W{ GAP(z)) (1)
Jex = G(WszSfI) 2)
Ve € [1,C, e = (fex)e: @e 3)

GAP() is a 3D Global Average Pooling module, o () is the sigmoid function and W7, Wy
are convolutional kernels (See Fig.6.b). Both fy, and f., have a size of 1x1x1x C. We used
Squeeze-and-Excitation modules on the encoder part of our network.
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Fig 6: Architecture of the zonal segmentation network (a) and its components: the encoder block (b), the
attention gate (c) and the used convolutional block (d). Values above layers in (a) correspond to the number
of output filters in the convolutions performed in this layer. Architecture of global location network is similar
but with a lower number of parameters.



Attention gates Introduced in biomedical segmentation by Oktay et al.’® | the principle of at-

tention gates is to highlight in skip connections spatial zones with the more informative content.
More precisely, if & and g are respectively the feature maps from skip connection and the gating
signal with coarser information, we define

Qarr = ¢T(ReLU(WTg+ W@ +bg)) +by 4)
0(qui); T=aOx %)

with Wy and W, convolutional kernels, ¥ a 1x1x1 convolutional kernel, b,, and by biases
and ©® the Hadamard product. A visualization of the architecture is available in Fig.6.c. We used
attention gates on each layer of our network.

Combination of both attention methods has already been used for PCa detection®®® but to the
best of our knowledge it is the first time it is applied to prostate zonal segmentation.

2.4 Loss functions for the zonal segmentation network

‘We used as the main loss function the mean of 1-DSC for WG, for TZ and for PZ.

Several approaches have been proposed in prior works to enforce the partition of the prostate
such that WG = TZUPZ and TZNPZ = & . First, one can only segment WG and TZ and build
PZ by subtracting TZ to WG.?’ Second, one can learn to segment WG and both zones, and rely
on postprocessing to enforce the partition.>> Another approach is to segment WG and to clas-
sify its voxels as either TZ or PZ.3® In this paper we propose another approach only based on
segmentation, with partition loss functions dedicated to obtain a partition of the prostate. If we
consider pWV&, p™% pPZ € [0, 1]V the probabilistic segmentation by the zonal segmentation network

of respectively WG, TZ and PZ, then we define the two losses:

1 N
LawPV PP = 5 (0 = = P (6)
i=1
and
g"( TZ PZ)
P -D;
2PV, pTE PP = = : (7)
(X pVO)+e

i=1

The objective of .2}, is to ensure that the segmentation obtained by the network is coherent
i.e. that the segmentations for TZ and for PZ are within the limits of the segmentation of WG,
and that they totally cover it. For this reason, we chose to penalize not only segmented voxels
outside the whole gland segmentation but also the voxels that are included in both the TZ and PZ

segmentations. The objective of .2, is to enforce this lack of intersection.

2.5 Sector map construction

Another objective of our work is also to estimate the efficiency of our method to correctly assess
the sectorial position of lesions. To this end, we designed an algorithm taking as input the zonal
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segmentation of a prostate and constructing the associated sector map. We chose to base our sector
map on the 27 regions of interest sector map defined in Dickinson et al.** We defined the limits
between sectors as follows:

* According to the longitudinal axis: We split the prostate on three equal-sized parts corre-
sponding to the apex, to the midgland and to the base, taking as extremes points the lowest
and highest positions of WG segmentation. Following axes are computed separately for each
third of the prostate.

* According to the antero-posterior axis: We split each part across its median sagittal slice
Xmid-

* According to the transverse axis: For each part we take the mean of the extreme positions of
their slices (their leftest and rightest positions) according to the transverse axis Xjef; and Xyignt,
and we define the positions of the inner subdivisions as: Xmidieft = 0.4(Xmid — Xieft) +Xlete and
Xmidright = 0.6(Xright — Xmid) + Xmid-

The main difference between our constructed sector map and the 27 regions of interest sector
map49 is the absence of the 3 sectors related to the anterior fibromuscular stroma, as we did not
segment this particular zone but included it into TZ. For this reason we included lesions located in
the anterior fibromuscular stroma among the TZ lesions. An illustration is provided in Fig.7

The zonal location of a lesion in the prostate is defined as the zone (PZ or TZ) with the high-
est proportion of lesions’ voxels, and the sectorial position of the lesion as the sector within the
considered zone with the highest proportion of lesion’s voxels.

3 Experimental design
3.1 Training of the network

Training on the private dataset was performed using an Intel(R) Xeon(R) Gold 6246R CPU and a
NVIDIA Tesla V100 SXM?2 32GB GPU, a NVIDIA Tesla T4 16GB GPU having also been used
for the ProstateX dataset. We used Keras®! and Tensor Flow 2.4.15? as a deep learning framework.
The training of the global location network has been done with a batch size of 4, using RMSProp
as a gradient optimizer with an initial learning rate of 5e-4. The training of the zonal segmen-
tation network has been done with a batch size of 8, using Adam as a gradient optimizer with
an initial learning rate of Se-4, and attributing loss weights of 1, 0.1 and 0.01 respectively to
L, L1 and Z2.. Several values of parameters (learning rate, batch size...) were tested before
choosing those values.

For both networks we adopted a maximal number of epochs of 500, with a policy of early stopping
if the validation loss did not improve for 70 epochs. We also adopted a policy of reduction of the
learning rate with a multiplication by 0.2 in case of stagnation of the validation loss for 30 epochs.
The dropout rate was set to 0.3.

To improve the performance of the network we artificially increased the number of images used
during the training thanks to data augmentation through the Python module batchgenerators.®® This
module allowed us to apply several transformations such as rotation according to the longitudinal
axis, mirror transform along the antero-posterior axis, elastic transform or intensity transforms

11



Fig 7: Sector map of the prostate according to axial views in the base (top left), the midgland (top right)
and the apex (bottom left), and to the sagittal view (bottom right). White: whole gland, orange: transition
zone. The blue axis separates the anterior from the posterior of the prostate, the red axes are left-right based
separations and the yellow axes represent the separations between the base (top left), the midgland (top
right) and the apex (bottom left). The green dashed lines on the sagittal view indicate the location of the
different axial views.
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such as gamma transform. The intensity of each sequence has also been normalized via the sub-
traction of its voxels’ mean value and a division by their standard deviation.

3.2 Test and postprocessing

We used test-time augmentation,®*% which consists in applying different transformations to an

image during the test procedure, to use the network on each of these transformed images and then
to revert those transforms and to combine the obtained results onto one final prediction by taking
their mean, to improve the final segmentation and the robustness of the process. Transformation
applied were all combinations of flip along the antero-posterior axis with a rotation of +10°, for a
total of 6 images.

In postprocessing, to apply our method on the whole image we applied a sliding window strategy,
where patches of size 96x96x48 were extracted with steps of (24, 24, 12) voxels according to each
dimension and where the contribution of each patch to a specific voxel is divided by the number
of patches contributing to this voxel. Finally, after reconstruction of the segmentation from the
patches, we applied a threshold of 0.5 to obtain WG segmentation that we restrained to its largest
connected component according to the longitudinal direction. Within WG segmentation we de-
fined TZ segmentation as the voxels for which the probability to be in TZ was higher than the
probability to be in PZ, and conversely for PZ.

4 Results

The main metrics we used to estimate the performance of our network were DSC and 95% Haus-
dorff distance (HD95%). We mainly compared three networks for the zonal segmentation network:
a 3D UNet as presented in Isensee et al.,% introducing context and localization modules and which
served as a basis for other networks, the network UNetV2 with elements presented in section 2.2 to
take into account the image anisotropy and UFNet which adds deep supervision, attention modules
and the partition losses. These 3 networks have respectively 2.15M, 2.28M and 2.32M parameters.
A UFNet with 1.03M parameters was used as the global location network.

To improve the segmentations and their stability, inspired by Isensee et al.,>> we combined the
results of 5 neural networks obtained through cross-validation to provide a final, more precise
ensembled segmentation by taking the mean of their prediction before postprocessing, including
test-time augmentation. These networks are named with the suffix -E.

4.1 Results on private dataset

On this dataset we compared the outputs of the networks to the consensus obtained from the 7
radiologists and corrected as described in section 2.1.2 (i.e. slicewise restriction of PZ to its largest
components). The same correction was applied to the outputs of the network.

4.1.1 Segmentation results

Results obtained for the metrics on WG, TZ and PZ are given in Table 1. They are illustrated
in Fig.8, along with statistical differences between the performance of the networks. The global
location network provided an adequate bounding box of the prostate, i.e. which surrounds the
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prostate without crossing it, for all images. Some examples of zonal segmentation are provided in
Fig.9 and Fig.10. The mean time to process one patch was 0.8s, and the mean time to process a
sequence on this dataset was 4.5s.

1.00

0.97

0.94

Whole Gland Transition Zone
1.00 okok
kxkk I E3 1
I ok 1 I I—II*
I I ES
| — 0.95

0.90

Peripheral Zone

0.9

0.8

Kok

Soo1 8o.8s g 1
o | o 8%’ —
0.88 ° 0.80
0.6 .
0.85 0.75 o ‘
’ : 0.5 rS
0.82 - - : 0.70 - : , ‘ o
UFNet-E  UNetV2-E UNet-E UFNet-E  UNetV2-E UNet-E UFNet-E  UNetV2-E UNet-E
Whole Gland L Transition Zone Peripheral Zone
FHK
skk T 1
| 1  kx — 0 *
1 * 1 ! ok '
Iél 2 -1 2 —|7
2 3 4 C
€ € €
£ 1S . £ 6
c c c "
= o =g =
23 2 2 8 .
un un P wn e
)] [=2] [=2]
a a a
I T 1 T 10
4 o
12 R
. 6
14
5 N . 5
7 o
UFNet-E UNetV2-E UNet-E UFNet-E UNetV2-E UNet-E 1 UFNetE UNetV2-E UNet-E

Fig 8: Metrics between network segmentation and consensus segmentation on private dataset for all three
networks. Top: Dice for whole gland, transition zone and peripheral zone. Bottom: Hausdorff distance
for whole gland, transition zone and peripheral zone. Black line and red point are respectively median and
mean. Signed-rank Wilcoxon test with Bonferroni-Holm correction has been used to assess statistically
significant differences and to compute p-values. Significant differences are indicated (* : p-value < 0.05;
*%: p-value < 0.01; ***: p-value < 0.001)

4.1.2 Comparison with radiologists

We compared these results to the segmentations provided by the 7 radiologists on the same dataset,
as can be seen in Fig.11. While not being as good as the best radiologists i.e. those with the
closest segmentations to the consensus, UFNet-E obtained results similar to radiologists’. If we
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Midgland __Midgland

Fig 9: Good segmentations on the private dataset, with axial views of the base (top left), the midgland
(top right) and the apex (bottom left), and sagittal view (bottom right). White: Ground truth whole gland,
Orange: Ground truth transition zone, Cyan: Network-segmented whole gland, Green: Network-segmented
transition zone.
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Fig 10: Poor s
(top right) and the apex (bottom left), and sagittal view (bottom right). White: Ground truth whole gland,
Orange: Ground truth transition zone, Cyan: Network-segmented whole gland, Green: Network-segmented
transition zone.

rank UFNet-E and all radiologists according to how close they are to the consensus for all metrics
according to their means, UFNet-E is ranked between the 3th place and the 7th place, with a global
Sth place.

4.2 Lesion positions
4.2.1 Test set

On the 17 prostates of the test set with a lesion, we applied our sector map construction algorithm
and determined the location of the lesion using the sector map derived from the ground truth as
the true sector map. On the zonal location of the lesion, we obtained a 100% accuracy, whereas
on the sectorial position we obtained an accuracy of 88% (15 out 17 cases). Observed lesion po-
sition errors are due to differences on the delineations of the apex, midgland and base between the
ground truth segmentation and the segmentation from the network. Examples of lesion locations
are provided in Fig.12.

4.2.2 Private lesion set

On the private lesion set, we obtained an accuracy for the zonal location of lesions of 91% (42 out
of 46), and of 74% for their sectorial positions (34 out of 46).

All 4 cases where the lesion has been placed in the wrong zone are cases with a configuration simi-
lar to the configuration presented on the right image of Fig.13, i.e. with a lesion in the anterior part
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Fig 12: Examples of correct lesion placement on the test set. Left: placement derived from the true seg-
mentation (white: whole gland, orange: transition zone). Right: placement on the sector map computed
from the network segmentation (cyan: whole gland, green: transition zone). Separations between sectors
are in red (antero-posterior direction) and in blue (transverse direction). Lesions are in magenta (consensus
segmentation from 5 radiologists).
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Model Zone | DSC (in %) | p-val/UNet-E | HD95% (in mm) | p-val/UNet-E
UFNet.E WG | 93.90 + 2.85 Hk 2.59 + 0.98 *ok
(5x2.32M parameters) TZ | 91.00 +4.34 Hkk 3.20 £ 0.90 Hkk
PZ | 79.08 + 7.08 Hokok 3.87 £ 1.65
WG | 93.65 + 2.46 * 2.73 £ 0.80
(SXZ.EE%ﬁt;;i_l]Sneters) TZ | 90.73 £+ 4.09 * 342 +0.94
PZ | 78.11 = 7.58 * 4.26 +2.36 >.05
WG | 93.48 +2.54 - 2.81 +0.80 -
(5x2.1 ;ﬁ;ﬁmeters) TZ | 90.47 £ 4.28 : 3.53 £ 0.97 :
PZ | 77.51 +£7.95 - 4.09 +1.93 -
Model Zone | DSC (in %) p-val/UNet | HD95% (in mm) | p-val/UNet
WG | 93.45 +2.89 Hokk 2.81 +0.93 ok
UFNet TZ | 90.45 £ 4.51 Hokok 3414093 Hkk
PZ | 77.80 +7.79 ook 4.15+1.92 *
WG | 93.16 = 2.51 >.05 2.91 +0.80 >.05
UNetV2 TZ |90.24 £4.16 * 3.524+0.93 >.05
PZ | 76.52 + 8.03 * 4.37 +2.09 >.05
WG | 92.87 +2.79 - 321 +1.32 -
UNet TZ | 89.85 + 4.56 - 3.83 +1.17 -
PZ | 75.95 +8.47 - 438 +£1.91 -

Table 1: Comparison between our method and UNet on our private dataset after correction.

Top: Results for the ensembling of 5 networks of 3 different types, obtained from cross-validation. Best
results for each considered metric are in bold. Bottom: Mean of the results from the 5 networks used
in the ensemble version. Signed-rank Wilcoxon test with Bonferroni-Holm correction has been used to
assess statistically significant differences and to compute p-values for ensembled networks and for mean of
networks on each fold. Significant differences are indicated (* : p-value < 0.05; **: p-value < 0.01; ***;
p-value < 0.001)

of PZ near the border with TZ, and with a voxel intensity closer to TZ’s than to PZ’s. Cases with a
sectorial position error correspond to either lesions located according to our algorithm across two
adjacent sectors - including the true sectorial position - but with a majority of voxels in the wrong
sector (4 cases), or a lesion well located according to transverse and antero-posterior directions but
not according to longitudinal direction, for example lesions located in the midgland whereas the
true position is in the base (4 cases).

4.3 Results on ProstateX
4.3.1 Segmentation results

Results obtained on ProstateX are given on Table 2, and are illustrated in Fig.16. A boxplot graph
illustrating the performances according to the different metrics is available in Fig. 14. The global
location network provided an adequate bounding box of the prostate for all images. The mean
inference time of the network for each patch was 0.09s, adding up to 3.5s on the whole sequence.
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Model Zone | DSC (in %) | HD95% (in mm)

WG | 90.90 + 2.94 3.50£1.36
UFNet-E TZ | 86.84 + 4.33 4.27 + 1.40
PZ | 78.40 £ 7.31 4.00 £ 2.54
WG | 90.83 £2.81 348 +1.12

UNetV2-E
(with partition losses) TZ | 86.82 +4.53 4.25 +1.42
PZ | 7829 £7.14 4.01 £2.48
UNetV2-E WG | 90.81 £2.82 348 +1.11
(without partition TZ | 86.73 +£4.31 4.29 +£1.43
losses) PZ | 7831 £7.12 4.08 £+ 3.04
WG | 90.59 £ 3.09 391 £2.89
UNet-E TZ | 86.66 +4.56 4.64 £+ 3.02
PZ | 78.04 £ 7.60 4.14 +3.34
WG | 90.62 £2.92 3.58 £ 1.15
UFNet TZ | 86.45 +4.45 438 £ 1.41
PZ | 77.81 £7.35 4.06 £+ 2.38
UNetV2 WG | 90.48 £ 2.86 359 £ 1.11
(with partition losses) TZ | 86.38 +4.39 4374+ 1.37
PZ | 7745 +£7.42 4.26 4+ 3.46
UNetV2 WG | 90.47 £ 2.88 3.66 £1.19
(without partition TZ | 86.31 +4.58 444 +144
losses) PZ | 7753 £7.54 4.32 +3.94
UNet WG | 90.25 £+ 3.04 3.86 £1.93
TZ | 86.19 +4.58 4.60 £ 2.10
Pz | 7727 £7.75 4.24 +£3.26

Table 2: Comparison between our method and UNet on the ProstateX dataset.

Top: The -E signals the use of an ensemble of 5 networks. Best results for each considered metric are in
bold. No statistical differences were found between the ensembles of networks.

Bottom: Mean of the results from the 5 networks used in the ensemble version.
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s "
Fig 13: Left: Example of wrong lesion placement on the test set. Top: placement derived from the true
segmentation (white: whole gland, orange: transition zone), in the base. Bottom: placement on the sector
map computed from the network segmentation, in the midgland (cyan: whole gland, green: transition zone).
Limits between base/midgland/apex are in yellow, the lesion is in magenta. Right: Example from the private
lesion set with the lesion (in magenta) located in TZ by the network whereas the radiologists located it in
PZ.

4.3.2 Evolution of Dice score during training

We also estimated on ProstateX the impact of the different architectures on the evolution of DSC
during the training. These results are illustrated in Fig.15. It appeared that taking into account
the anisotropy does not have an important impact on the course of the training, contrary to the
introduction of attention modules which help to speed up the training.

5 Discussion

In this work, we used a framework composed of two successive neural networks to generate a zonal
segmentation of the prostate on both 2D and 3D T2w MRI sequences. The global location network
has been able to provide an adapted bounding box of the prostate, and the zonal segmentation net-
work has been able to generate an accurate zonal segmentation of the prostate. This framework not
only allows us to detect the prostate despite its relatively small size (around 5% of the image on
the private dataset) but also to take advantage of the better resolution on 3D T2w MRI sequences
while only requiring a reasonable amount of memory.

The results for the segmentation of the different zones of the prostate are comparable with the
results of the state of the art, as for example Bardis et al.3® obtained a mean Dice of 94.0% for the
whole prostate, 91.4% for the transition zone and 77.6% for the peripheral zone. On ProstateX we
obtained DSC similar or superior to Cuocolo et al.>’ with segmentations from the same dataset,
showing the efficiency of our method. Those differences could be explained by the use of 3D net-
works (compared to 2D used by Cuocolo et al.29), of attention modules, and by the difference in
training set sizes and number of training epochs.

The use of attention modules and anisotropy-adapted modules appeared to have a positive impact,
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distance for whole gland, transition zone and peripheral zone. Black line and red point are respectively

median and mean values. Signed-rank Wilcoxon test with Bonferroni-Holm correction has been used to
assess statistically significant differences, but no differences were found.
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Fig 15: Evolution of the Dice coefficient on both training and validation sets during training (on one fold of
ProstateX).

with fewer epochs for training with attention modules and overall better results for both modifica-
tions, especially on 3D T2w sequences with p-values<.05 between the classic UNet, the version
with the anisotropy modules and the version with both additional modules on almost all consid-
ered metrics. On the other hand, the use of partition losses seemed to have a positive but moderate
impact on the Hausdorff Distance and on TZ segmentation, whereas slightly deteriorated results
for PZ.

The apex and the base of the prostate are the most difficult regions to segment, which is in

accordance with previous publications, involving human'# !> or automatic raters?®43 (See Figs.9,
10 and 16). The reasons behind this complexity include, but are not limited to, the heterogeneity
of the tissues on these regions, the possible ambiguities of the borders, or exotic shapes of both
WG and TZ at their top and bottom slices.
Results obtained by the network appeared to be on the same level of performance than those of the
radiologists, who can be separated in three categories: the experts (raters 3, 6 and 7), the seniors
(raters 1 and 2) and the juniors (raters 4 and 5). The network obtained results comparable to those
of radiologists in the middle of the pack and significantly better results than the rater 3 (an expert
radiologist) for both TZ and PZ (p-val < .05).

We have observed on the private lesion dataset that in more than 90% of the cases, the auto-
matic segmentation preserved the zone in which the lesions were located. The four cases of zonal
location errors correspond to a very specific situation that was not present in the training-validation
set. Also, we compare favourably with the inter-rater variability on sectorial positions observed
by Greer et al.'> with 74% of agreement between the radiologists and our method, even though
we rely on a slightly simpler sector map. Moreover, the observed errors on sectorial positions
would only have a minor clinical impact, as the global position of the lesion (left/right and ante-
rior/posterior) has been preserved in each case. It may also be more appropriate for clinical use to
provide the top two sectors on which each lesion lies, since in almost all cases the true sector is
among those two. Those results validate the use of neural network segmentation as a second reader
for automatic PCa diagnosis to detect in which zone the suspected lesion is located. This is impor-
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Sagittal
i

Fig 16: Segmentations on the 2D dataset ProstateX, with axial views of the base (top left), the midgland (top
right) and the apex (bottom left), and sagittal view (bottom right). Left column shows good segmentations,
right column shows poor segmentations. White: Ground truth whole gland, Orange: Ground truth transition
zone, Cyan: Network-segmented whole gland, Green: Network-segmented transition zone.
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tant as it determines which sequence to use to determine the PI-RADS score, as the importance of
the different sequences depends on which zone the suspected lesion is located in.

Our study faces several limitations. First the quality of the ProstateX segmentations are un-

even, as can be seen in Fig.16. Nevertheless we chose to work with this annotation set for the
sake of comparing ourselves with other methods. On the private dataset, we had to correct PZ
masks computed as WG-TZ with an ad hoc method to avoid the occurrence of thin isolated lines
or voxels (see Fig. 4). Indeed, without this processing, PZ-associated metrics and especially PZ
HD95% were affected. However, the impact was the same on the three compared networks and
it did not modify their relative performances. This processing was not required on the ProstateX
segmentation.
In addition, the algorithm to create the prostate sector map is based on debatable hypotheses. In
particular boundaries were determined part-wise and not slice-wise, and we arbitrarily defined in-
ner antero-posterior boundaries positions since there exists no formal definition to define them.
Those choices have a direct impact on sectorial positions, since peripheral sectors on the apex (es-
pecially sectors 6p and 12p) can have a very small area with our method. Moreover, the sector
map used in this study, inspired by the 27 region of interest sector map defined in Dickinson et
al.,* does not correspond to the PI-RADS 2.1 standard sector map® which is based on 39 regions
of interest. Nevertheless, in practice, the differences between the two sector maps have little to no
practical effects.

In Fig.10, we can see that some of the segmentations may have very unusual shapes, with for
instance "outgrowths" on the generated segmentation or WG split into two parts. To enforce coher-
ent shapes of WG and TZ, it may be possible to project the prostate on a restricted learned shape
space®”-%% in order to correct aberrant segmentations.

6 Conclusion

We proposed a deep learning-based method for the zonal segmentation of the prostate from T2w
MRI sequences, taking into account the anisotropy of these sequences, with attention modules and
enforcing the partition of the prostate. This method can be applied on both 2D and 3D T2w MRI
sequences. The obtained results not only are similar to the results from the state of the art but are
also coherent with the results obtained by radiologists and globally preserving zonal locations and
sectorial positions of the lesions, making our method suitable as a first step tool for an automated
system dedicated to diagnosis and grading of prostate cancer, as done in Hosseinzadeh et al.®® or
in Mehta et al.”’.
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