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Abstract—This article presents a 3-D semi-analytical model of 

an axial-flux reluctance coupling. Thanks to the separation of 

variables method, Fourier series analysis and the convolution 

theorem (i.e . Cauchy’s product), the salient-pole region is 

modelled by a spatially variable  magnetic permeability. 

Additionally, an iterative algorithm is implemented to account for 

the magnetic saturation of the iron teeth. The results of the 

proposed model are compared with a previously published 2-D 

semi-analytical model, 3-D finite-element method and 

experimental results. The proposed method appears to be an 

appropriate  tool for the design process of reluctance couplings in 

cases where the salient poles are saturated.  

 
Index Terms—Magnetic coupling, variable reluctance, three-

dimensional analytical model, magnetic saturation.  

I.  INTRODUCTION 

AGNETIC couplings are electromagnetic devices used to 

transmit rotational movement between two shafts without 

mechanical contact. They can be typically employed in 

applications which need to transmit a torque through a sealed 

wall [1]. Additionally, they provide a natural resilience against 

overloads. 

Magnetic couplings consist of two rotors with an identical 

number of pole pairs. There are two types of magnetic 

couplings. Synchronous magnetic couplings in which both 

rotors rotate at the same speed [2] and asynchronous magnetic 

couplings in which the torque transmission is due to induced 

currents and the transmittable torque depends on the slip 

between the two rotors [3]. Both types of magnetic couplings 

can be found in radial-flux or axial-flux form [4], [5]. 

Among the synchronous couplings, the most widespread 

technology is the permanent magnets (PM) couplings 

composed of two similar PM rotors facing each other. This 

topology provides the highest pull-out torque density [6] but is 

the most expensive as rare-earth materials are required for both 

rotors. Reluctance couplings are a less common topology of 

synchronous couplings [7]. As shown on Fig. 1 a), they also 

comprise two rotors, one with PM and a second one with soft-

steel salient poles (SP). Therefore, reluctance couplings require 

less rare-earth material than their PM counterparts and are 

consequently cheaper. Moreover, the absence of PM on one 

rotor allows it to be used in harsher environments such as at 
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high temperatures. However, these gains are achieved at the 

expense of the torque density. 

 

Fig. 1. Component and geometrical parameters of a reluctance magnetic 

coupling. a) 3-D representation. b) Cross sectional views in the (𝑟𝜃) plane.  
 

The design of magnetic devices such as magnetic couplings 

requires fast and precise modelling tools for optimization 

processes. The finite-element method (FEM) is an accurate and 

easy to implement option but requires an important 

computation time especially in 3-D. Therefore, analytical and 

semi-analytical methods using separation of variables, Fourier 

series analysis and separation of space in subdomain in which 

the Maxwell’s equations are solved are often preferred for their 

lower computational cost. In previous works, 3-D analytical 

models for axial-flux magnetic couplings have been proposed 

for both PM couplings [8] and asynchronous couplings [9], 

[10]. More recently, a 2-D semi-analytical model of a 

reluctance coupling has been developed from a simplified 

geometry by neglecting the curvature and considering the end 
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effects in the torque and axial force calculation by using a 

correction factor [11]. The proposed model proved to be 

accurate for wide air-gaps at a very small computational cost. 

Nevertheless, for small air-gaps and more generally for 

arrangements where the SP of the reluctant rotor are highly 

saturated, the model was not able to determine the pull-out 

torque precisely. Indeed, an important assumption was that the 

iron of the SP had an infinite magnetic permeability which 

allowed to model the SP as a simple boundary condition. 

Consequently, the model was able to predict the optimal SP 

opening for a 3 mm air-gap but not for a 1 mm air-gap [11]. 

These results have shown the necessity of accounting the iron 

saturation in the analytical modelling of reluctance actuators. 

The method proposed in [11] could be improved by 

modelling the SP as a subdomain with a finite permeability 

using the superposition technique described in [12], [13]. With 

this technique, an iterative process can be implemented to  

account for the global saturation of the SP. However, it requires 

solving Maxwell’s equations in an additional subdomain with 

different eigenvalues, and then increase the computational time. 

Lately, several research groups developed 2-D cylindrical 

semi-analytical models of radial-flux actuators including 

subdomains with a spatially variable permeability allowing 

notably to affect a finite value to the SP permeability without 

increasing the number of subdomains [14]–[16] and also to 

implement global saturation iterative algorithms [17], [18]. The 

method employed is based on the convolution theorem (i.e. 

Cauchy’s product) which allows to consider complex space 

distribution of the magnetic permeability. In a recent article, we 

improved the method by applying it to an axial-flux 

superconducting flux modulation machine [19]. The proposed 

3-D model was a cartesian model considering subdomains with 

a permeability variable in two directions allowing to approach 

the magnetic behavior of superconducting bulks. The use of the 

Cauchy product allows, especially in 3D, to reduce the number 

of sub-domains compared to the superposition technique. 

Moreover, it should be noted that the superposition technique is 

complex to implement on geometries with several magnetic 

saliencies because the number of subdomains can become very 

high. For instance, the 2-D model geometry of [20] is divided 

in 23 subdomains. 

In this article, we apply the method presented in [19] to 

propose a new 3-D semi-analytical model of the axial-flux 

reluctance coupling of Fig. 1. Thanks to the convolution 

theorem, the model considers the non-linear magnetic behavior 

and the end effects of the iron SP while using only few 

subdomains. The results provided by the model are compared 

with [11], 3-D non-linear FEM and experimental tests. 

II.  SEMI-ANALYTICAL MODEL 

A.  Geometrical parameters 

Fig.1 shows the actual geometry of the reluctance couplings 

with the following geometrical parameters. 𝑅1 is the inner 

radius of the PM and SP, 𝑅2is the outer radius, 𝑝 is the number 

of pole pairs, 𝛼 is the PM opening, 𝛽 is the SP opening, 𝛿 is the 

torque angle i.e. the shift angle between the PM center and the 

SP center, 𝑊𝑎 is the magnet thickness, 𝑊𝑏 is the air-gap length 

and 𝑊𝑐 is the SP thickness, as shown in Fig. 2.  

B.  Consideration of the radial end effects 

In [11], a 2-D simple model defined at the mean radius has 

been developed assuming that the magnetic field is invariant 

along the radial direction and equal to the value at the mean 

radius. With this assumption both the so-called end and 

curvature effects were neglected. However, as will be shown 

later in the article (Fig. 15), the magnetic field drops down 

rapidly near the top and bottom edges of the PM because of the 

end effects clearly showing a limit of the 2-D model. Thus, we 

must propose a 3-D model in order to account for the variation 

of the magnetic field along the radial direction. 

 

Fig. 2. Sectional view of the cartesian problem with the different domains 

and parameters of the problem. a) (xz) plane b) (yz) plane  
 

In order to simplify the geometry, the curvature effects are 

neglected by linearizing to the mean radius 𝑅𝑚= (𝑅2+𝑅1) 2⁄ . 

Hence, the problem can be solved in Cartesian coordinates with 

the x-axis representing the radial direction and the y-axis 

representing the azimuthal direction. The x-coordinate is 

related to the r coordinate by 𝑥 = 𝑟 − 𝑅𝑚 whereas the 

y-coordinate is related to the 𝜃-coordinate by 𝑦 = 𝑅𝑚𝜃. Thus, 

the cross-sectional views of the Cartesian problem are shown in 

Fig. 2 a) and b) for the (xz) and (yz) planes respectively. As 
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shown on Fig. 2 a) the variation in the radial direction is 

considered to model the end effects since the PM and SP height 

is finite. Moreover, in the radial direction, we must define two 

artificial external boundary conditions to limit the geometry. 

These boundaries must be located far enough away from the 

PM and SP so as not to affect the result. 

Finally, one can note that, in the Cartesian frame, the height 

of the PM and SP is 𝐷 = 𝑅2−𝑅1, a pole width is 𝜏 = 𝑅𝑚𝜋 𝑝⁄ , 

the PM width is 𝛼 𝜏 2⁄  and the SP width is 𝛽 𝜏 2⁄ . The 

linearization to the mean radius is a common method to 

simplify the modelling of axial-flux actuator and has been 

successfully applied for various topologies in previous works 

[8], [9] [19]. 

C.  Boundary conditions and Fourier series representation 

From this section, the superscripts of the magnetic quantities 

will denote the index of the subdomains and the subscripts will 

correspond to the harmonic ranks and the directions of the 

vector components. Finally, the terms in bold correspond to 

matrix and vector terms. 

As shown in Fig. 2, the geometry is divided in 3 subdomains, 

the PM region with a spatially variable magnetization 

(region I), the air-gap (region II) and the SP region (region III) 

with a spatially variable permeability. As there is no current in 

any of the subdomains, the magnetic field �⃗⃗� 𝑖 in region i will be 

expressed as a magnetic scalar potential Φ𝑖 defined as: 

�⃗⃗� 𝑖= −∇Φ𝑖 (𝑖 = 𝐼,𝐼𝐼, 𝐼𝐼𝐼) (1) 

In the z-direction, the geometry is limited by the soft iron 

yokes whose permeability is supposed to be infinite leading to 

the orthogonality of the flux density at the yoke surface. 

Expressed in magnetic scalar potential, the boundary conditions 

in 𝑧 = 0 and 𝑧 = 𝑍3=𝑊𝑎 +𝑊𝑏 +𝑊𝑐  are: 

Φ𝐼(𝑥,𝑦, 0) = Φ𝐼𝐼𝐼(𝑥,𝑦, 𝑍3)= 0 (2) 

The PM periodicity leads to a system of odd boundary 

conditions in the y-direction:  

Φ𝑖(𝑥,0,𝑧) = −Φ𝑖(𝑥,𝜏, 𝑧) (3) 

In the x-direction, the external limits of the problem are 

located at 𝑥 = 𝐿 2⁄  and 𝑥 = −𝐿 2⁄  at which the boundary 

condition is a magnetic insulation leading to the following 

Neumann condition on the scalar potential: 

∂Φ𝑖

𝜕𝑥
(
𝐿

2
,𝑦, 𝑧) =

∂Φ𝑖

𝜕𝑥
(−
𝐿

2
, 𝑦, 𝑧) = 0 (4) 

The limit in the x-direction is fixed at 𝐿 = 3𝐷, this value is 

defined from our experience of previous models [19]. 

Additionally, at the boundaries between the regions in       

𝑧 = 𝑍1= 𝑊𝑎  and 𝑧 =𝑍2= 𝑊𝑎 + 𝑊𝑏, the interface conditions 

ensure the continuity of the flux density orthogonal component 

and the magnetic field tangential components. 

According to the conditions (3) and (4) and by applying the 

separation of variables, the magnetic scalar potential in each 

domain can be expressed in terms of complex Fourier series: 

Φ𝑖(𝑥,𝑦,𝑧) = ∑ ∑ Φ̂𝑛,𝑘
𝑖 (𝑧)𝑒𝑗

2𝑛𝜋
𝐿
𝑥𝑒𝑗

𝑘𝜋
𝜏
𝑦

+𝑁

𝑘=−𝑁

+𝑁

𝑛=−𝑁

 (5) 

The eigenvalues in the x and y directions are 2𝜋𝑛 𝐿⁄  and 

𝑘𝜋 𝜏⁄  respectively, with 𝑛 and 𝑘 denote the harmonic ranks. 

𝑁 represent the highest spatial harmonic considered. We chose 

an identical number of harmonics in both directions for the sake 

of simplicity. The impact of 𝑁 on the computation time and 

accuracy of the model will be discussed below. Similarly, the 

component 𝑢 (𝑢 = 𝑥, 𝑦, 𝑧) in domain i of the magnetic field 𝐻𝑢
𝑖  

and the flux density 𝐵𝑢
𝑖 can be expressed as: 

𝐻𝑢
𝑖 (𝑥,𝑦,𝑧) = ∑ ∑ 𝐻𝑢𝑛,𝑘

𝑖
(𝑧)𝑒𝑗

2𝑛𝜋
𝐿
𝑥𝑒𝑗

𝑘𝜋
𝜏
𝑦

+𝑁

𝑘=−𝑁

+𝑁

𝑛=−𝑁

 (6) 

𝐵𝑢
𝑖 (𝑥,𝑦,𝑧) = ∑ ∑ �̂�𝑢𝑛,𝑘

𝑖
(𝑧)𝑒𝑗

2𝑛𝜋
𝐿
𝑥𝑒𝑗

𝑘𝜋
𝜏
𝑦

+𝑁

𝑘=−𝑁

+𝑁

𝑛=−𝑁

 (7) 

As a result of this representation, only the z-dependent 

coefficients of the scalar potential Φ̂𝑛,𝑘
𝑖 (𝑧), the magnetic field 

𝐻𝑢𝑛,𝑘
𝑖
(𝑧) and the flux density �̂�𝑢𝑛,𝑘

𝑖
(𝑧), are still to be 

determined. 

Additionally, in order to solve the problem, the 

magnetization in region I and the magnetic permeability in 

region III must be expressed in Fourier series as well: 

𝑀𝐼⃗⃗⃗⃗  ⃗ = 𝑀𝐼(𝑥,𝑦)𝑢𝑧⃗⃗⃗⃗ = ∑ ∑ 𝑀𝑛,𝑘
𝐼 𝑒𝑗

2𝑛𝜋
𝐿
𝑥𝑒𝑗

𝑘𝜋
𝜏
𝑦

+𝑁

𝑘=−𝑁

+𝑁

𝑛=−𝑁

 (8) 

𝜇𝐼𝐼𝐼(𝑥,𝑦) = ∑ ∑ �̂�𝑛,𝑘
𝐼𝐼𝐼 𝑒𝑗

2𝑛𝜋
𝐿
𝑥𝑒𝑗

𝑘𝜋
𝜏
𝑦

+∞

𝑘=−∞

+∞

𝑛=−∞

 (9) 

Where the coefficients 𝑀𝑛,𝑘
𝐼  are: 

𝑀𝑛,𝑘
𝐼 =

{
 
 
 

 
 
 

0 𝑓𝑜𝑟 𝑘 𝑒𝑣𝑒𝑛,
2𝐵𝑟𝑒𝑚𝐷

𝜇0𝜋𝑘𝐿
sin(

𝑘𝜋𝛼

2
)𝑒−𝑗𝑘𝜋

𝑅𝑚𝛿
𝜏  

 𝑓𝑜𝑟 𝑛 = 0 𝑎𝑛𝑑 𝑘 𝑜𝑑𝑑 ≠ 0, 
2𝐵𝑟𝑒𝑚
𝜇0𝜋

2𝑛𝑘
sin(

𝑛𝜋𝐷

𝐿
)sin(

𝑘𝜋𝛼

2
)𝑒−𝑗𝑘𝜋

𝑅𝑚𝛿
𝜏  

𝑓𝑜𝑟 𝑛 ≠ 0 𝑎𝑛𝑑 𝑘 𝑜𝑑𝑑 ≠ 0

 (10) 

 

Where 𝐵𝑟𝑒𝑚is the remanant flux density of the PM. It should 

be noted that we assume the magnets to have a relative 

permeability equal to 1. The coefficients �̂�𝑛,𝑘
𝐼𝐼𝐼  are: 

�̂�𝑛,𝑘
𝐼𝐼𝐼 =

{
 
 
 
 
 
 

 
 
 
 
 
 

0 𝑓𝑜𝑟 𝑘 𝑜𝑑𝑑,

𝜇0 (1 + (𝜇𝑟 −1)𝛽
𝐷

𝐿
) 

𝑓𝑜𝑟 𝑛 = 0 𝑎𝑛𝑑 𝑘 = 0,
𝜇0𝛽

𝑛𝜋
(𝜇𝑟 −1)sin(

𝑛𝜋𝐷

𝐿
)

 𝑓𝑜𝑟 𝑛 ≠ 0 𝑎𝑛𝑑 𝑘 = 0,
2𝜇0𝐷

𝑘𝜋𝐿
(𝜇𝑟 −1)sin(

𝑘𝜋𝛽

2
)

𝑓𝑜𝑟 𝑛 = 0 𝑎𝑛𝑑 𝑘 ≠ 0, 
2𝜇0
𝑘𝑛𝜋2

(𝜇𝑟 −1) sin(
𝑘𝜋𝛽

2
)sin(

𝑛𝜋𝐷

𝐿
)

𝑓𝑜𝑟 𝑛 ≠ 0 𝑎𝑛𝑑 𝑘 ≠ 0

 (11) 

D.  Convolution theorem and matrix form 

The constitutive relation between 𝐵𝑢
𝐼𝐼𝐼 and 𝐻𝑢

𝐼𝐼𝐼 in region III 

is: 

𝐵𝑢
𝐼𝐼𝐼(𝑥,𝑦, 𝑧) = 𝜇𝐼𝐼𝐼(𝑥,𝑦)𝐻𝑢

𝐼𝐼𝐼(𝑥,𝑦, 𝑧) (12) 
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Using the Cauchy’s product, (12) can be rewritten in terms 

of Fourier series coefficients [19]: 

�̂�𝑢𝑛,𝑘
𝐼𝐼𝐼
(𝑧) = ∑ ∑ �̂�𝑛−𝑛′,𝑘−𝑘′

𝐼𝐼𝐼 �̂�𝑢𝑛′,𝑘′
𝐼𝐼𝐼

(𝑧)

+𝑁

𝑘′=−𝑁

+𝑁

𝑛′=−𝑁

 (13) 

Equation (13) shows that in region III, each harmonic of 𝐵𝑢
𝐼𝐼𝐼 

depends on all harmonics of 𝐻𝑢
𝐼𝐼𝐼 which will lead to a system of 

differential equations that must be solved in matrix form. Thus, 

(13) is rewritten for each component as follows: 

𝑩𝒙
𝑰𝑰𝑰 = 𝝁𝒄,𝒙

𝑰𝑰𝑰𝑯𝒙
𝑰𝑰𝑰 (14) 

𝑩𝒚
𝑰𝑰𝑰 = 𝝁𝒄,𝒚

𝑰𝑰𝑰𝑯𝒚
𝑰𝑰𝑰 (15) 

𝑩𝒛
𝑰𝑰𝑰 = 𝝁𝒄,𝒛

𝑰𝑰𝑰𝑯𝒛
𝑰𝑰𝑰 (16) 

Here, 𝑩𝒖
𝒊  denotes the column vector gathering the Fourier series 

coefficients �̂�𝑥𝑛,𝑘
𝐼𝐼𝐼

. We can similarly define 𝑯𝒖
𝒊 , 𝚽𝒊 and 𝑴𝒖

𝒊  for 

the magnetic field, the scalar potential and magnetization in 

each region, the vector concatenation structure in 3-D is 

presented in [19]. Moreover, 𝝁𝒄,𝒙
𝑰𝑰𝑰, 𝝁𝒄,𝒚

𝑰𝑰𝑰 and 𝝁𝒄,𝒛
𝑰𝑰𝑰 denotes the 

permeability convolution matrices for the different components 

of the constitutive relation whose concatenation structure is also 

presented in [19].  

Several points are to be noted here. Firstly, it can be seen 

from (10) that the k  even coefficients of 𝑀𝑛,𝑘
𝐼  are equal to zero 

whereas the k  odd coefficients of �̂�𝑛,𝑘
𝐼𝐼𝐼  are null. The vector and 

matrix form of each Fourier series must also include the zero 

coefficients to ensure the correspondence between each 

harmonic.  

Secondly, care should be taken while calculating the 

convolution matrices coefficients to avoid convergence 

problem [14]. Indeed, at the boundaries between tooth and air 

in region III, the perpendicular component of �⃗�  and the 

tangential component of �⃗⃗�  are continuous whereas the 

perpendicular component of �⃗⃗�  and the tangential component of 

�⃗�  are discontinuous. For instance, on the (xz) boundary of the 

SP, both the right and left-hand side of (14) contain a single 

discontinuous parameter which does not cause any convergence 

issues. However, in (15), the right-hand side is continuous 

whereas the left-hand side is the product of two discontinuous 

terms which leads to convergence issues. As described in [21], 

this can be solved by defining to kinds of convolution matrices, 

𝝁𝒄
𝑰𝑰𝑰and (𝟏/𝝁)𝒄

𝑰𝑰𝑰. On one hand, the matrix 𝝁𝒄
𝑰𝑰𝑰 is the most 

obvious and defined by the concatenation of the coefficients 

�̂�𝑛,𝑘
𝐼𝐼𝐼  from (11). On the other hand, (𝟏/𝝁)𝒄

𝑰𝑰𝑰 is defined as the 

concatenation of the Fourier series coefficients of 1 𝜇𝐼𝐼𝐼(𝑥,𝑦)⁄  

which can be calculated by replacing 𝜇0 and 𝜇𝑟 by 1 𝜇0⁄  and 

1 𝜇𝑟⁄  in (11). Doing so, there is two ways to express the 

constitutive relation: 

𝑩𝒖
𝑰𝑰𝑰 = 𝝁𝒄

𝑰𝑰𝑰𝑯𝒖
𝑰𝑰𝑰 (17) 

And 

𝑯𝒖
𝑰𝑰𝑰 = (𝟏/𝝁)𝒄

𝑰𝑰𝑰𝑩𝒖
𝑰𝑰𝑰 (18) 

Thus, expressing (14) using (17) and (15) using (18) will 

ensure the convergence on the (xz) boundary of the SP. This 

method is well known in 2-D, but in 3-D an additional problem 

arises. Indeed, it is not possible to ensure a perfect convergence 

of every component on each SP boundary in region III. Still 

using the example of (14), on the (yz) boundary, 𝐵𝑦
𝐼𝐼𝐼 is the 

discontinuous field whereas 𝐻𝑦
𝐼𝐼𝐼 is continuous. Therefore, 

using (18) will lead to a bad convergence of this 

component [21]. Consequently, the convergence of certain 

components must be sacrificed on certain faces of the SP. 

Nonetheless, since the boundary condition between air and iron 

leads the tangential components to be significantly smaller than 

the perpendicular components, the most appropriate option here 

is to arrange (14-16) to ensure a good convergence of the 

perpendicular components. Therefore, (14) and (15) are 

expressed using (17) whereas (16) is expressed using (18) 

leading to: 

𝝁𝒄,𝒙
𝑰𝑰𝑰 = ((𝟏 𝝁⁄ )𝒄

𝑰𝑰𝑰)−𝟏 (19) 

𝝁𝒄,𝒚
𝑰𝑰𝑰 = ((𝟏 𝝁⁄ )𝒄

𝑰𝑰𝑰)−𝟏 (20) 

𝝁𝒄,𝒛
𝑰𝑰𝑰 = 𝝁𝒄

𝑰𝑰𝑰 (21) 

Lastly, it should be noted that the constitutive relations in 

regions I and II should also be expressed in matrix form. Since 

the permeability is uniform in these domains, the matrices  𝝁𝒄
𝑰 , 

𝝁𝒄
𝑰𝑰, (𝟏/𝝁)𝒄

𝑰 and (𝟏/𝝁)𝒄
𝑰𝑰  are diagonal and equal to: 

𝝁𝒄
𝒊 = ((𝟏 𝝁⁄ )𝒄

𝒊 )−𝟏= 𝜇0𝑰(𝟐𝑵+𝟏)𝟐  (𝑖 = 𝐼 𝑜𝑟 𝐼𝐼)  (22) 

Where 𝑰(𝟐𝑵+𝟏)𝟐 is the identity matrix. 

E.  Magnetostatic field solution 

Using the matrix form described above, the relation (1) 

becomes: 

𝑯𝒙
𝒊 = −𝑗

2𝜋

𝐿
𝑵𝒙𝚽

𝒊 (23) 

𝑯𝒚
𝒊 = −𝑗

𝜋

𝜏
𝑵𝒚𝚽

𝒊 (24) 

𝑯𝒛
𝒊 = −

𝜕

𝜕𝑧
𝚽𝒊 (25) 

Where the matrix 𝑵𝒙 and 𝑵𝒚 are diagonal matrices of 

indexes n and k whose structure is described in [19]. In scalar 

potential, the partial differential equation is derived from the 

Gauss law for magnetism: 

∇ ∙ �⃗� 𝑖 = 0 (26) 

Since the divergence of the magnetization in region I is equal 

to zero, the magnetostatic equation to solve in each domain is 

derived from (1), (14), (15), (16) and (26): 

𝜕2

𝜕𝑧2
𝚽𝒊−𝑽𝒊

𝟐
𝚽𝒊= 0 (27) 

Where in regions I and II: 

𝑽𝑰 =𝑽𝑰𝑰 = ((
2𝜋

𝐿
)
2

𝑵𝒙
𝟐+(

𝜋

𝜏
)
2

𝑵𝒚
𝟐)

1
2

 (28) 

And in the region III: 

𝑽𝑰𝑰𝑰 = ((
2𝜋

𝐿
)
2

 𝝁𝒄,𝒛
𝑰𝑰𝑰−𝟏𝑵𝒙𝝁𝒄,𝒙

𝑰𝑰𝑰𝑵𝒙+(
𝜋

𝜏
)
2

 𝝁𝒄,𝒛
𝑰𝑰𝑰−𝟏𝑵𝒚𝝁𝒄,𝒚

𝑰𝑰𝑰𝑵𝒚)

1
2

 

In order to solve (27), eigen decomposition must be applied 

to 𝑽𝑰𝑰𝑰: 

𝑽𝑰𝑰𝑰 = 𝑷𝑰𝑰𝑰𝑫𝑰𝑰𝑰𝑷𝑰𝑰𝑰
−𝟏

 (29) 

Where 𝑷𝑰𝑰𝑰 and 𝑫𝑰𝑰𝑰 are he eigenvector matrix and 

eigenvalue matric of 𝑽𝑰𝑰𝑰.  
 

 



 5 

According to the boundary conditions, the solutions of (27) 

are, in region I: 

𝚽𝑰 =
sinh(𝑽𝑰𝑧)

sinh(𝑽𝑰𝑍1)
𝒂 (30) 

In region II: 

𝚽𝑰𝑰 =
sinh(𝑽𝑰𝑰(𝑧 −𝑍2))

𝑠𝑖𝑛ℎ(𝑽𝑰𝑰(𝑍1−𝑍2))
𝒂 

        +
sinh(𝑽𝑰𝑰(𝑧 −𝑍1))

𝑠𝑖𝑛ℎ(𝑽𝑰𝑰(𝑍2−𝑍1))
𝒃 

(31) 

And in region III: 

𝚽𝑰𝑰𝑰 =𝑷𝑰𝑰𝑰
sinh(𝑫𝑰𝑰𝑰(𝑧−𝑍3))

sinh(𝑫𝑰𝑰𝑰(𝑍2−𝑍3))
𝑷𝑰𝑰𝑰

−𝟏
𝒃 (32) 

Where the hyperbolic functions of matrix inputs are defined 

similarly to hyperbolic functions for scalar inputs. 𝒂 and 𝒃 are 

column vectors containing the unknown coefficients which are 

calculated using the following interface conditions: 

 
𝜕

𝜕𝑧
𝚽𝑰−

𝜕

𝜕𝑧
𝚽𝑰𝑰|

𝒛=𝒁𝟏

= 𝑴𝑰 (33) 

𝜇0
𝜕

𝜕𝑧
𝚽𝑰𝑰|

𝒛=𝒁𝟐

= 𝝁𝒄
𝑰𝑰𝑰
𝜕

𝜕𝑧
𝚽𝑰𝑰𝑰|

𝒛=𝒁𝟐

 (34) 

The system of linear equations (33-34) is to be solved 

numerically to determine 𝒂 and 𝒃 [14], [19]. 

F.  Calculation of the torque and axial force 

The electromagnetic torque 𝑇𝑧 and axial force 𝐹𝑧 are 

determined from the Maxwell stress tensor. The integration 

surface is the boundary between regions I and II: 

𝑇𝑧 =𝑝𝜇0𝑅𝑚 ∫∫ 𝐻𝑧
𝐼𝐼(𝑥,𝑦, 𝑍1)𝐻𝑦

𝐼𝐼(𝑥,𝑦,𝑍1)𝑑𝑥𝑑𝑦

2𝜏

0

𝐿
2

−
𝐿
2

 (35) 

𝐹𝑧 =
𝜇0𝑝

2
∫∫(𝐻𝑧

𝐼𝐼(𝑥,𝑦,𝑍1)
2−𝐻𝑥

𝐼𝐼(𝑥,𝑦, 𝑍1)
2

2𝜏

0

𝐿
2

−
𝐿
2

−𝐻𝑦
𝐼𝐼(𝑥,𝑦, 𝑍1)

2)𝑑𝑥𝑑𝑦 

(36) 

Using (23-26) to derive the Fourier series coefficients of the 

magnetic field from the scalar potential, the torque can finally 

be expressed as: 

𝑇𝑧 = 

2𝑝𝜇0𝜏𝐿𝑅𝑚 ∑ ∑ 𝐻𝑦
𝐼�̂�
𝑛,𝑘
(𝑍1)𝐻𝑧

𝐼�̂�
−𝑛,−𝑘

(𝑍1)

+∞

𝑘=−∞

+∞

𝑛=−∞

 
(37) 

And the axial force can be expressed as: 

𝐹𝑧 = 𝑝𝜇0𝜏𝐿 ∑ ∑ (𝐻𝑧
𝐼�̂�
𝑛,𝑘
(𝑍1)𝐻𝑧

𝐼�̂�
−𝑛,−𝑘

(𝑍1)

+∞

𝑘=−∞

+∞

𝑛=−∞

−𝐻𝑥
𝐼�̂�
𝑛,𝑘
(𝑍1)𝐻𝑥

𝐼�̂�
−𝑛,−𝑘

(𝑍1)

−𝐻𝑦
𝐼�̂�
𝑛,𝑘
(𝑍1)𝐻𝑦

𝐼�̂�
−𝑛,−𝑘

(𝑍1)) 

(38) 

 

 

G.  Consideration of SP saturation 

The model proposed above allows to consider a finite value 

for the average SP magnetic permeability 𝜇𝑟. Therefore, it is 

possible to implement an iterative method to account for the 

saturation of the SP. Each step of the iterative algorithm 

consists of calculating the average flux density in the SP base 

(between 
𝑍2+𝑍3

2
 and 𝑍3) to calculate the permeability from the 

𝜇𝑟 −𝐵 curve shown on Fig. 3b and to update the 𝜇𝑟 for the next 

iteration of the algorithm. The detailed algorithm used can be 

found in [18].  

The iterative method requires to run the model and calculate 

the coefficients 𝒂 and 𝒃 several times. Usually, less than 20 

steps are required to reach a permeability error inferior to 5 %. 

It should be noted that the permeability is defined here as the 

ratio between the flux density and the magnetic field and not as 

the derivative of the flux density with respect to the magnetic 

field. Indeed, the iterative method simulate the non-linearities 

by a linear model with the same working point as the real 

system. Hence, Fig. 3a also presents the 𝐵−𝐻 curve from 

which the 𝜇𝑟 −𝐵 curve is derived, as shown in Fig. 3b. 

 
Fig. 3. Simplified 𝐵 − 𝐻 curve (a) of the low carbon steel (AISI-1010) used 

in the reluctance coupling’s SP and corresponding 𝜇𝑟 −𝐵  curve (b). 
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III.  COMPARISON WITH 3-D FEM 

In this section, the accuracy and performances of the 

proposed model will be assessed by comparing the following 

models: 

 The non-linear 3-D semi-analytical model (3D-SAM) 

proposed in section II with 𝑁 = 10 harmonics. As 

presented above this model considers the end effect of 

the SP but not the curvature effects using the 

linearization to the average radius. Additionally, the 

global saturation of the SP is accounted thanks to the 

iterative process. 

 The 2-D semi-analytical model (2D-SAM) presented in 

[11] with 𝑁 = 100 harmonics. This model neglects the 

curvature effects and partially considers the end effects 

through a correction factor. The saturation is neglected 

as the SP permeability is supposed to be infinite. 

 A non-linear 3-D FEM (3D-FEM) model considering 

the actual cylindrical geometry of Fig. 1 simulated on 

the software COMSOL with a scalar potential 

formulation. The mesh and an example of the flux 

density distribution is provided in [11]. The local iron 

saturation of the SP and back iron is considered in this 

model using the 𝐵− 𝐻 curve of Fig. 3a. This model will 

be used as reference as it requires less assumptions  

Table I presents the input parameters of the three models and 

the corresponding values for the studied coupling. These 

parameters correspond to the prototype used for the 

experimental measurement presented in the next section. 
TABLE I 

Parameters of the magnetic coupling 

Parameter Description Value 

𝑅1 PM and SP inner radius 30 mm 

𝑅2  PM and SP outer radius 60 mm 
𝑊𝑎 PM thickness 10 mm 
𝑊𝑏 Air-gap length - 
𝑊𝑐 SP thickness 15 mm 
𝑝 Number of pole pairs 5 

𝛼 PM to pole opening ratio 0.83 
𝛽 SP to pole opening ratio 0.23 

𝐵𝑟𝑒𝑚 Remanent magnetization of the PM 1.25 T 

 

A.  Flux density distribution in the air-gap 

Fig. 4 and Fig. 5 shows the axial and tangential components 

of the flux density distribution along the 𝜃˗direction in the 

middle of the air-gap, at the average radius under no-load 

condition (𝛿 = 0) for the three studied models. The air-gap 

length is fixed at Wb = 1 mm. It can be observed that the three 

models have a similar behavior. However, on Fig. 4, one can 

note that the 3D-SAM gives a more precise value of the field 

amplitude than the 2D-SAM but has more ripples. Indeed, 

employing a 3-D model does not allow to select a large number 

of harmonics because two directions needs to be considered. 

Meanwhile, the 2D˗SAM can use a substantial number of 

harmonics and present a smooth curve but does not account for 

the saturation leading to an error on the amplitude. 

 
Fig. 4. Axial component of the flux density at the average radius, in the 

middle of the air-gap under no-load condition  
(𝑊𝑏 = 1 𝑚𝑚, 𝑟 = 𝑅𝑚, 𝑧 = 𝑊𝑎 +𝑊𝑏/2  and 𝛿 = 0). 

 

 

 
Fig. 5. Tangential component of the flux density at the average radius, in the 

middle of the air-gap under no-load condition  
(𝑊𝑏 = 1 𝑚𝑚, 𝑟 = 𝑅𝑚, 𝑧 = 𝑊𝑎 +𝑊𝑏/2  and 𝛿 = 0). 

 

In Fig. 5, similar conclusions can be drawn, except that the 

error made by the 3D-SAM seems to be larger as it cannot 

predict with so few harmonics the two peaks between 22° and 

12°. 

Fig. 6 and 7 shows the axial component of the flux density 

in the middle of the air-gap at the outer and inner radii, 

respectively. In both cases, we plotted the 2D-SAM but one 

should keep in mind that the 2D-SAM accounts for the end-

effects only for the torque calculations which means that the 

distribution provided by 2D-SAM are identical for all radii. 

Therefore, the interest of using the 3D-SAM appears more 

clearly on these graphs as the end-effects are not negligible 

anymore on the top and bottom edges leading to a graver error 

on the flux density than at the mean radius. 
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Fig. 6. Axial component of the flux density around the outer radius, in the 

middle of the air-gap under no-load condition  
(𝑊𝑏 = 1 𝑚𝑚, 𝑟 = 𝑅2 −2𝑚𝑚, 𝑧 = 𝑊𝑎+ 𝑊𝑏/2  and 𝛿 = 0). 

 
Fig. 7. Axial component of the flux density around the inner radius, in the 

middle of the air-gap under no-load condition  
(𝑊𝑏 = 1 𝑚𝑚, 𝑟 = 𝑅1 +2𝑚𝑚, 𝑧 = 𝑊𝑎+ 𝑊𝑏/2  and 𝛿 = 0). 

B.  Torque and axial force 

Although he accuracy on the magnetic field distribution 

remain an important matter, the primary aim of an analytical 

model is to be precise on the values relevant for the actuator 

sizing. In the case of our magnetic coupling, the relevant values 

are the pull-out torque and the maximum axial force. 

If we consider only the first space harmonic, the pull-out 

torque of a reluctance coupling is reached for a torque angle 

𝛿 =𝜋 4𝑝⁄  corresponding to 𝛿 = 9° for the coupling of 

Table I [11]. However, because of the other space harmonics as 

well as saturation effects, the pull-out torque is actually reached 

at a higher 𝛿. Nevertheless, as will be observed in the next 

section, the torque value at 𝛿 = 9° still provides a very precise 

estimate of the pull-out torque. 

Fig. 8 shows the pull-out torque as a function of the air-gap 

length for the three compared models. For large air-gaps, the 

pull-out torque is well predicted by the both analytical models. 

However, for small air-gaps, the 3D-SAM appears to be more 

accurate than 2D-SAM. 

Fig. 9 shows the axial force in no-load condition (𝛿 =0) as 

a function of the air-gap length. Similar observations to those 

of Fig. 8 can be made as the three models converge for large 

air-gaps whereas the accuracy of 2D-SAM decreases for small 

air-gaps compared to 3D-SAM.  

Indeed, the small air-gap configurations correspond to 

saturated cases, therefore, the ability of 3D-SAM to account for 

the iron saturation provides a significant gain in accuracy for 

both pull-out torque and axial force. 

 
Fig. 8. Torque versus the air-gap length for a torque angle of 𝛿 = 9°. 

 
Fig. 9. Axial force versus the air-gap length for a torque angle of 𝛿 = 0°. 

 

Fig. 10 presents the pull-out torque as a function of the SP 

opening 𝛽 for an air-gap length of 1 mm. In [11], this graph 

highlighted the necessity of considering the magnetic saturation 

as the 2D-SAM is unable to predict the pull-out torque for very 

thin SP. In contrast, the 3D-SAM is much closer to the actual 

behavior but it is still not able to predict the optimal SP opening 

(i.e. 𝛽 = 0.3) for 𝑁 = 10 harmonics. Therefore, we plotted the 

results provided by the 3D-SAM for 𝑁 =15 harmonics. These 

additional data show that the accuracy of the 3D-SAM can be 

further improved by increasing the number of harmonics as the 

3D-SAM with 𝑁 = 15 exhibits an optimal SP opening at        

𝛽 = 0.25 whereas the 3D-SAM with 𝑁 = 10 predicted           

𝛽 = 0.2. 

Quite obviously, it is expected that increasing 𝑁 will 

increase the model accuracy. However, this comes at a 

significant computational cost. Indeed, the 3D-SAM 

computation time is comprised between 1 and 15 s for 𝑁 = 10 
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against 4 and 40 s for 𝑁 = 15. The high variability of the 

computation time is due to the number of iterations required in 

the saturation algorithm. As a comparison, the 2D-SAM takes 

less than 50 ms to compute and the 3D-FEM about 3 min. 

 
Fig. 10. Torque versus the SP opening for an air-gap length of 1 mm and a 

torque angle of 𝛿 = 9°. 

 
Fig. 11. Influence of the SP permeability on the average flux density in the 

SP (left-axis) and on the torque (right-axis) obtained with 3D-SAM without 

the saturation algorithm. 
 

An additional limitation of the 3D-SAM can be observed on 

Fig. 11. For this figure, we deactivated the saturation algorithm 

allowing us to plot the average flux density in the SP as a 

function of the SP imposed relative permeability. Although the 

average flux density is expected to increase with the 

permeability, it can be seen that it actually reaches a maximum 

around 𝜇𝑟 =350. Indeed, since the discontinuity in the non-

uniform permeability in region III increases with 𝜇𝑟 the 

magnetic field values are more difficult to compute in this 

region leading to inaccuracies. Nonetheless, we also plotted the 

pull-out torque versus 𝜇𝑟 and it appears to be constantly 

increasing as expected. Moreover, this issue did not alter the 

convergence of the saturation algorithm and did not seems to 

affect significantly the accuracy on the important quantities 

such as torque or axial force.  

According to the previous observation, it appears that the 

3D-SAM is mainly suited to SP saturated cases. Indeed, in non-

saturated cases, Figs 4-6 showed that the 2D-SAM model is 

accurate enough and at a much lower computation cost. 

Additionally, the issue highlighted by Fig. 11 appears in non-

saturated cases only. 

IV.   COMPARISON WITH EXPERIMENTAL RESULTS 

In order to experimentally validate the proposed model, we 

used the test bench presented in [11]. The first measurements 

were performed with an air-gap value of 2.9 mm to validate the 

model in non-saturated cases.  

Fig. 12 shows the experimental setup for the static torque 

measurement. The torque is measured by suspending weights at 

the end of a 0.5 m rod connected to the SP rotor shaft whereas 

the PM rotor was fixed. The torque angle 𝛿 corresponds to the 

difference between the angular position of both rotors. The 

position of a first rotor is  blocked at 0° whereas the position of 

the second rotor is  measured using an incremental encoder 

(resolution of 4096 pulses/revolution). 

 
Fig. 12. Picture of the experimental setup for the torque measurement [11]. 

 

Fig. 13 shows the experimental setup for the air-gap flux 

density distribution measurement. A Hall probe is inserted in 

the air-gap to measure the flux density at different locations. It 

should be noted that this procedure could not be realized for 

small air gaps as the Hall probe did not fit between PM and SP. 

Fig. 14 shows the axial component of the flux density 

distribution along the 𝜃˗direction measured in the middle of the 

air-gap, at the mean radius under no-load condition (𝛿 = 0) and 

compared with the three models. For such a large air-gap, the 

difference between the models and measurements are 

indistinguishable. Indeed, in this configuration, the SP are not 

saturated, the curvature and end effects are negligible 

(measurement at the mean radius), thus the assumptions of all 

models are valid. 
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Fig. 13 Picture of the experimental setup for the flux density measurement. 

 

Fig. 15 shows the axial component of the flux density 

distribution along the 𝑟˗direction measured in the middle the 

air-gap, at the center of the SP and PM under no-load condition 

(𝛿 = 0), as shown in Fig. 13. Comparisons between the three 

models are given. In this case, the SP are still not saturated (air-

gap of 2.9 mm), but we can observe the end and curvature 

effects. As was observed on Fig. 12, the 2D-SAM is accurate at 

the mean radius, but it cannot predict precisely the flux density 

close to the top and bottom edges of the coupling, as shown in 

Fig. 15. However, the 3D-SAM, which considers the end 

effects, is much closer to the measurements. The impact of the 

curvature effects, neglected by the 3D-SAM, can be observed 

in both the measurement and 3D-FEM which are 

unsymmetrical with respect to the mean radius contrary to the 

3D-SAM. Nevertheless, the errors produced by this assumption 

are minor, which confirms the curvature effects are a secondary 

order phenomenon. 

 
Fig. 14. Axial component of the flux density measured at the mean radius, 

in the middle of the air-gap under no-load condition  
(𝑊𝑏 = 2.9 𝑚𝑚, 𝑟 = 𝑅𝑚, 𝑧 = 𝑊𝑎+ 𝑊𝑏/2  and 𝛿 = 0). 

 

 
Fig. 15. Axial component of the flux density along the 𝑟˗direction in the 

middle of the air-gap under no-load condition  
(𝑊𝑏 = 2.9 𝑚𝑚, 𝜃 = 0, 𝑧 = 𝑊𝑎+𝑊𝑏/2  and 𝛿 = 0). 

 

Fig 16 shows measured static torque as a function of the 

torque angle 𝛿 compared with the three models for an air-gap 

of 2.9 mm. As for the results of Fig. 8, the results of the three 

models are close to each other for this air-gap length and the 

measurements are coherent with the three models. It should be 

noted that although the 2D˗SAM has been judged less accurate 

than 3D-SAM in the previous section, the error made in non-

saturated cases are of the same order as the measurement’s 

errors. Moreover, this result shows the relevancy of the 

correction factor introduced in the 2D˗SAM by [11] which 

partially account for the end effects in the torque and axial force 

calculation. 

 
Fig. 16. Measured and calculated torque function of the torque angle 𝛿 for 

an average air-gap length of 2.9 mm. 
 

In order to assess the validity of the proposed model in 

saturated cases, we made an additional test after reducing the 

air-gap length to 0.73 mm. 

Fig. 17 compares the measured static torque as a function of 

𝛿 for the three models. We can observe more dispersed results 

than the ones given in Fig. 16, highlighting the influence of the 

SP saturation. As expected, the 2D-SAM is the least accurate as 

the coupling’s SP are saturated. Indeed, the 2D-SAM 

overestimate the pull-out torque by 17.5 % whereas the 3D-
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SAM only overestimate it by 3.5 % which shows the relevancy 

of the proposed model.  

 
Fig. 17. Measured and calculated torque function of the torque angle 𝛿 for 

an average air-gap length of 0.73 mm. 
 

 

As mentioned earlier it appears on Fig. 17 that the pull-out 

torque is not obtained at 𝛿 =9° but was measured at 𝛿 =10.9° 
whereas the models predicted it around 𝛿 = 10°. In any case, 

the torque measured around 𝛿 = 9° represents about 95 % of 

the pull-out torque which validates the approximation made in 

the last section.  

It should be noted though, that the angle corresponding to 

the pull-out torque is rather difficult to measure especially with 

the proposed method. Indeed, close to the pull-out torque, the 

coupling is very sensitive to small imbalances because the 

difference between the torque at 𝛿 = 9° and 𝛿 = 10.9° is very 

small. Moreover, small air-gaps values are difficult to precisely 

set because of the large axial forces and since the coupling 

becomes more vulnerable to misalignments. All these reasons 

lead to measurement errors which explain the differences 

between the measurements and 3D-FEM. 

V.  CONCLUSION 

In this article, we proposed a 3-D semi-analytical model 

(3D˗SAM) of a reluctance coupling accounting for the global 

magnetic saturation in the salient-pole. The goal of this model 

is to deal with the situations outside of the validity area of a 

previously developed 2-D semi-analytical model (2D-SAM) 

[11]. The new model is based on the Cauchy’s product and the 

matrix form which allows to implement subdomains with a 

spatially variable magnetic permeability in two directions. By 

using this technique, we managed to model the geometry with 

only three subdomains and implement an iterative algorithm to 

account for the non-linear magnetic behavior of the SP. 

The 3D-SAM and the previously developed 2D-SAM have 

been compared with 3D-FEM as well as experimental 

measurements on a reluctance magnetic coupling test bench for 

wide and short air-gaps. 

In the non-saturated cases, which correspond to the validity 

area of the 2D-SAM, all the models appeared to be accurate for 

the torque and axial force calculation. However, for the flux 

density distribution, the 2D-SAM is precise only at the mean 

radius since the end effects are only considered for the torque 

and axial force calculation through a correction factor whereas 

the 3D-SAM accounts for the end effects completely. 

Moreover, neglecting the curvature effects has proved to be a 

relevant and particularly useful assumption. 

Furthermore, the 3D-SAM managed to overcome the 

limitations of the 2D-SAM in situations where the SP are 

saturated, notability by accurately predicting the pull-out 

torque, for small air-gaps or for small SP opening, which is the 

most important output parameter of a magnetic coupling. 

However, the accuracy improvements made by the 3D-SAM 

comes at the expense of the computational cost and complexity 

of implementation compared to the 2D-SAM. Therefore, 

although both models are suitable for optimization and design 

processes as they are still faster than the FEM, the 2D-SAM 

appear as the appropriate option to design couplings expected 

to be used with non-saturated SP. Nonetheless, optimal 

geometries of magnetic actuators are frequently in saturated 

situations. Thus, the 3D-SAM remain a more relevant option in 

the general case. 

Additionally, the model proposed in this paper and the one 

presented in [11] are two modelling examples, the first one with 

few assumptions and the second one requiring more 

assumptions but providing a minimal computational cost. One 

can note that the method presented here can be applied with 

more or less assumptions, depending on the need, to improve 

the computation time. For instance, if the saturation is not 

significant for the intended application, the saturation algorithm 

can be removed which would drastically reduce the 

computation time. Alternatively, it is possible to apply the 

model in 2-D with the correction factor while keeping the 

iterative algorithm in order to reduce the overall number of 

harmonics. 

Finally, the proposed model can be adapted to other kind of 

axial-flux actuators comprising salient poles, such as the 

calculation of the torque ripple in axial-flux PM machines, 

under some slight modifications. 
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