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Introduction and preliminaries

All graphs considered in this study are finite, simple, and loopless. For vertices u, v in a connected graph G, the distance between u and v, denoted by d G (u, v), is the least number of edges in a path connecting u and v. The status [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 12; 13; 14; 15] of a vertex x in G, denoted by s(x), is defined as s(x) = y∈V (G) d G (x, y). The status sequence [1; 2; 3; 9; 10; 12; 13; 14; 15] of G is the list of the statuses of all vertices of G arranged in nondecreasing order.

Recently, Abiad et al. [START_REF] Abiad | On the status sequences of trees[END_REF] showed that the determination of whether there exists a tree that has a given sequence of integers as its status sequence is NPcomplete. They mentioned that sequences associated with a graph, including status sequence, contain useful information about the graph's structure and give a compact representation of the graph without using vertex adjacencies. Extracting and analyzing the information contained in such sequences is a crucial issue in many problems, such as graph isomorphism.

Non-isomorphic graphs may have the same status sequences. An example of non-isomorphic graphs with the same status sequence can be found in [START_REF] Entringer | Distance in graphs[END_REF]. Slater [START_REF] Slater | Counterexamples to Randić's conjecture on distance degree sequences for trees[END_REF] provided infinite pairs of non-isomorphic trees with the same status sequence. Buckley and Harary [START_REF] Buckley | Distance in graphs[END_REF] wrote a comprehensive text on distance in graphs, which includes the concepts of the status and status sequence. In [START_REF] Buckley | Unsolved problems on distance in graphs[END_REF], they proposed various conjectures and unsolved problems concerning distancerelated topics in graphs, inclusive of characterizing status sequences. A graph is said to be status injective [1; 2; 3; 9; 10; 12; 13; 14] if the statuses of its vertices are distinct. Pachter [START_REF] Pachter | Constructing status injective graphs[END_REF] proved that for any given connected graph and positive integer N , there exist N non-isomorphic status injective graphs, each with the same status sequence and containing the given graph as an induced subgraph. Note that the graphs constructed in [START_REF] Pachter | Constructing status injective graphs[END_REF] are all connected non-tree graphs. For a given graph that satisfies certain conditions, Shang [START_REF] Shang | On constructing graphs with the same status sequence[END_REF] provided a modification of the graph, which yields a non-isomorphic graph with the same status sequence. Let F be a family of a type of connected graphs and G be a graph in F. Graph G is said to be status unique in F [1; 10; 12; 14], or status unique in that type of graphs, if G is uniquely determined in F by its status sequence. That is, whenever H ∈ F, and H and G have the same status sequence, then H is isomorphic to G. A spider is a tree in which exactly one vertex has degree exceeding two. Shang and Lin [START_REF] Shang | Spiders are status unique in trees[END_REF] proved that spiders are status unique in the family of all trees. A weakly status injective tree is a tree in which any vertices having the same status are vertices of degree one. Shang et al. [START_REF] Shang | Weakly status injective trees are status unique in trees[END_REF] verified that a weakly status injective tree is status unique in all trees. Since a tree is weakly status injective if it is status injective, it is evident that a status injective tree is also status unique in the trees. Using another proof, Abiad et al. [START_REF] Abiad | On the status sequences of trees[END_REF] obtained the same result that status injective trees are status unique in all trees. [START_REF] Shang | Spiders are status unique in trees[END_REF] proposes the following conjectures:

Conjecture A: Any status injective tree is status unique in all connected graphs.

Conjecture B: A tree and a non-tree graph cannot have the same status sequence.

These two conjectures have been settled negatively by Qiao and Zhan [START_REF] Qiao | Pairs of a tree and a nontree graph with the same status sequence[END_REF]. A connected graph is said to be unicyclic if it has exactly one cycle. Qiao and Zhan proved the following theorem: Theorem 1.1 [START_REF] Qiao | Pairs of a tree and a nontree graph with the same status sequence[END_REF] For each integer n ≥ 10, there exist a tree T n and a unicyclic graph U n , both of order n, with the following properties:

(1) T n and U n have the same status sequence.

(2) For n ≥ 15, if n ≡ 3 (mod 4), then T n is status injective, and among any four consecutive even orders, there is at least one order n such that T n is status injective. 2 Theorem 1.1 shows that status injective trees are not status unique in all connected graphs. Motivated by this result, we would like to know the types of graphs that are status unique in all connected graphs. Therefore, this study focuses on the status uniqueness of the graphs. In the next section, a few types of graphs that are not status unique in the connected graphs are presented. In Section 3, several status unique graphs in the connected graphs are introduced. In addition, four conjectures regarding the status uniqueness of a graph are proposed in this paper.

2 Non-isomorphic graphs with the same status sequence According to [9; 10], it can be seen that neither status injective non-tree graphs nor status injective trees are status unique in all connected graphs. In the following, we exhibit four types of graphs, none of which are status unique in the connected graphs. A caterpillar is a tree containing a path such that each vertex, not on the path, is adjacent to a vertex on the path. Examples of caterpillars and unicyclic graphs with the same status sequences are presented in [START_REF] Qiao | Pairs of a tree and a nontree graph with the same status sequence[END_REF]. In Fig. 1 [START_REF] Shang | On constructing graphs with the same status sequence[END_REF], the two non-isomorphic caterpillars have the same status sequence. Hence, caterpillars are neither status unique in the connected graphs, nor status unique in the trees or even in the caterpillars. In contrast to caterpillars, spiders are status unique in the trees [START_REF] Shang | Spiders are status unique in trees[END_REF]. We cannot find two non-isomorphic spiders, or a spider and a non-spider tree, having the same status sequence.
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Non-isomorphic caterpillars with the same status sequence {26, 26, 28, 32, 32, 36, 36, 40, 42, 42, 42, 50}.

Fig. 1: [START_REF] Shang | On constructing graphs with the same status sequence[END_REF] Graphs with the same status sequence (i)

Note that in the figures in this section, each number beside a vertex is the status of the vertex in the graph. The next figure shows that complete bipartite graphs are not status unique in all connected graphs. The graph on the left in Fig. 2 [5] is the complete bipartite graph K 2,3 . 
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Non-isomorphic graphs with the same status sequence {5, 5, 6, 6, 6}, the left one is K 2,3 .

Fig. 2: [START_REF] Entringer | Distance in graphs[END_REF] Graphs with the same status sequence (ii)

A wheel is a graph formed by adding a vertex to a cycle, and then connecting this vertex to each vertex of the cycle with an edge. Fig. 3 shows that a wheel and a non-wheel graph have the same status sequence. That is, the wheels are not status unique in the connected graphs.

Fig. 3: Graphs with the same status sequence (iii)

A graph H is 2-connected if H -x is connected for each x ∈ V (H). For a connected graph G, a 2-connected component of G is a maximal 2-connected subgraph of G. If every 2-connected component of G is a complete graph,
then G is called a block graph. In Fig. 4, all graphs have the same status sequence. Clearly, the most-left graph is a block graph with two 2-connected components K 5 and K 4 . The others are not block graphs because they are 2-connected non-complete graphs. Fig. 3 also shows that a block graph has the same status sequence as a wheel. Therefore, block graphs are not status unique in the connected graphs. We end this section by proposing the following conjecture.

Conjecture 1 Block graphs are status unique in the family of all block graphs.

In this section, we introduce several status unique graphs in the family of all connected graphs. Firstly, it is obvious that a complete graph is status unique in the connected graphs. Secondly, any path is status unique in the connected graphs [START_REF] Shang | Spiders are status unique in trees[END_REF], since a path of order n is the only graph of order n containing vertices with the status n-1 i=1 i = n(n-1)

2

. To show that a cycle is also a status unique graph, we use the following graph and theorem. For integers n, k with

n > k ≥ 2, let G k,n denote a graph with vertex set V (G k,n ) = {x 1 , x 2 , • • • , x n }, and the edge set E(G k,n ) = {x i x i+1 | i = 1, 2, • • • , n -k} ∪ {x n-k+1 x j | j = n -k + 2, n -k + 3, • • • , n}. Fig. 5 shows G 6,9 [7]. It is easy to see that G 2,n is a path. r r r r r x 1 x 2 x 3 x 4 x 7
x 5
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x 8 The minimum status of a connected graph G, denoted by ms(G), is defined as ms(G) = min x∈V (G) s(x). We have the following theorem.

Theorem 3.1 [START_REF] Lin | Minimum statuses of connected graphs with fixed maximum degree and order[END_REF] Let G be a connected graph with △(G) ≥ k ≥ 2 and order n.

Then, ms(G) ≤ ms(G k,n ). Furthermore, if the equality holds, we have △(G) = k and G contains G k,n as a spanning subgraph. 2
The degree of a vertex x in graph G is denoted by deg G (x). The following theorem shows that a cycle is a status unique graph in the family of all connected graphs.

Theorem 3.2 Cycles are status unique in all connected graphs.

Proof. Let C n and P n denote a cycle and a path of order n, respectively. Evidently, the status sequence of C n consists of n multiplicities of the number ms(P n ). Let G be a connected graph with the same status sequence as

C n . It suffices to show that G is isomorphic to C n . It is clear that △(G) ≥ 2, and ms(G) = ms(P n ) = ms(G 2,n ). According to Theorem 3.1, △(G) = 2 and G contains G 2,n
, that is, a path of order n, as a spanning subgraph. Let the spanning path of G be x 1 x 2 • • • x n . Now, we show that the following claim is true.

Claim: For all i, j with i + 2 ≤ j and x i x j ̸ = x 1 x n , we have

x i x j / ∈ E(G).
Assume that there exist some i ′ , j ′ with i ′ + 2 ≤ j ′ and

x i ′ x j ′ ̸ = x 1 x n such that x i ′ x j ′ ∈ E(G). Then, max{deg G (x i ′ ), deg G (x j ′ )} ≥ 3, which contradicts △(G) = 2. Hence, this claim is true. Next, if x 1 x n / ∈ E(G)
, then G is isomorphic to P n , and thus G and C n cannot have the same status sequence, which is a contradiction. Therefore,

x 1 x n ∈ E(G) and G is isomorphic to C n . 2
The following lemmas are used to prove the next results. Lemma 3.3 [START_REF] Entringer | Distance in graphs[END_REF] Suppose that x and y are adjacent vertices of a connected graph G. Let V x and V y be the sets

V x = {u ∈ V (G)|d G (u, x) < d G (u, y)}, and V y = {u ∈ V (G)|d G (u, y) < d G (u, x)}. Then, s(x) -s(y) = |V y | -|V x |. 2 Lemma 3.4
Let G be a connected graph of order n and x, y be a pair of adjacent vertices in G. We then have

-n + 2 ≤ s(x) -s(y) ≤ n -2.
Proof. According to Lemma 3.3, it is clear that

|s(x) -s(y)| ≤ n -2. Then, -n + 2 ≤ s(x) -s(y) ≤ n -2. 2
Lemma 3.5 Let G be a connected graph of order n and x be a vertex in G with status s. Then, x is adjacent to a vertex with status s -n + 2 if and only

if deg G (x) = 1. Proof. Suppose that s(x) = s. Let y ∈ V (G), xy ∈ E(G), and V x , V y be the sets V x = {u ∈ V (G)|d G (u, x) < d G (u, y)} and V y = {u ∈ V (G)|d G (u, y) < d G (u, x)}. ⇐) Suppose that deg G (x) = 1. Then, V x = {x} and V y = V (G)-{x}. We have |V x | = 1 and |V y | = n -1. By Lemma 3.3, s(x) -s(y) = |V y | -|V x | = n -2.
Then, s(y) = s -n + 2.

⇒) According to Lemma 3.4, we have s(y) ≥ s -n + 2. Now we prove the contrapositive. Assume that deg G (x) ≥ 2. Then, there is some z ∈ V (G) -{y} with xz ∈ E(G). We distinguish the following two cases:

Case 1. zy ∈ E(G). We have z / ∈ V x and z / ∈ V y . Then, |V x | ≥ 1 and |V y | ≤ n-2. By Lemma 3.3, s(x)-s(y) = |V y |-|V x | ≤ n-3. Hence, s(y) ≥ s-n+3. Case 2. zy / ∈ E(G). We have z ∈ V x . Then, |V x | ≥ 2 and |V y | ≤ n -2. By Lemma 3.3, s(x) -s(y) = |V y | -|V x | ≤ n -4. Hence, s(y) ≥ s -n + 4.
Both cases obtain s(y) > s -n + 2. Thus, we see that if x is adjacent to a vertex with status s -n + 2 then deg G (x) = 1. 2 A star S n is a complete bipartite graph K 1,n-1 , where n ≥ 3. The center of a star is the vertex of the star with degree n -1. For the convenience of proving the next theorems, we use the following notations. A nondecreasing sequence consisting of m multiplicities of number a i , for i = 1, 2, • • • , r, where

a 1 < a 2 < • • • < a r and r ≥ 1, is denoted by {a 1 , a 2 , • • • , a r } m .
The superscript m can be omitted if m = 1. For two nondecreasing sequences A and B, we use A∪B to denote the nondecreasing sequence consisting of all numbers of A and B. Thus, if c ∈ A∪B, the multiplicities of c in A∪B are then equal to the sum of the multiplicities of c in A and the multiplicities of c in B. For instance, the status sequence of a star S n can be denoted by {n -1} ∪ {2n -3} n-1 , where n ≥ 3. Now, we prove the following theorem: Proof. Let G be a connected graph with the same status sequence as star S n , where n ≥ 3. We note that G has status sequence {n -1} ∪ {2n -3} n-1 . It suffices to show that G is isomorphic to S n . Now, let c be the vertex in G with s(c) = n -1. Clearly, c is adjacent to each vertex x in V (G) -{c} and s(x) = 2n -3. As s(c) = s(x) -n + 2, by Lemma 3.5 each x in V (G) -{c} has degree one. Thus, G is isomorphic to S n . 2 A double star is a graph formed by connecting the centers of two stars with an edge. We denote a double star formed by stars S p and S q as S p,q , where p ≥ q ≥ 3. It can be seen that the status sequence of a double star S p,q is {p + 2q -2, 2p + q -2} ∪ {2p + 3q -4} p-1 ∪ {3p + 2q -4} q-1 if p > q, and is {3p -

2} 2 ∪ {5p -4} 2p-2 if p = q.
Theorem 3.7 Double stars are status unique in all connected graphs.

Proof. Let G be a connected graph with the same status sequence as a double star S p,q , where p ≥ q ≥ 3. It suffices to show that G is isomorphic to S p,q . We distinguish the two cases p > q and p = q. Note that |V (G)| = p + q. Case 1. p > q ≥ 3. The status sequence of G is {s 1 , s 2 } ∪ {s 3 } p-1 ∪ {s 4 } q-1 , where s 1 = p + 2q -2, s 2 = 2p + q -2, s 3 = 2p + 3q -4, and s 4 = 3p + 2q -4. Let x, y, x ′ and y ′ be vertices in G with s(x) = s 1 , s(y) = s 2 , s(x ′ ) = s 3 , and s(y ′ ) = s 4 . First, we show that xy ∈ E(G). Assume that xy / ∈ E(G). Then any path connecting x and y has more than two vertices. Let P : xz 1 z 2 • • • z k y (k ≥ 1) be a path in G. We see that s(z 1 ) ̸ = s 1 , s 2 , since x and y are the only vertices with statuses s 1 and s 2 , respectively. By Lemma 3.5, s(z 1 ) ̸ = s 3 , as any vertex with status s 3 adjacent to x has degree one. Then, s(z 1 ) = s 4 . It can be seen that s(z 1 ) -s(x) = s 4 -s 1 = 2p -2 > p + q -2, which contradicts Lemma 3.4. Thus, we have

xy ∈ E(G). Let V x = {u ∈ V (G)|d G (u, x) < d G (u, y)}, and V y = {u ∈ V (G)|d G (u, y) < d G (u, x)}. Now we claim that |V y | ≥ q. By Lemma 3.4, y ′ x / ∈ E(G). Let Q : y ′ w 1 w 2 • • • w t x (t ≥ 1
) be one of the shortest paths in G that connects y ′ and x. According to Lemma 3.5, we have s(w t ) ̸ = s 3 . By Lemma 3.4, we have s(w t ) ̸ = s 4 . Then, s(w t ) = s 2 . That is, w t = y. From the shortestness of Q, we have d G (y ′ , y) < d G (y ′ , x). Hence, all q -1 vertices with status s 4 are in V y . Then, |V y | ≥ q. Next, we claim that y ′ and y are adjacent, showing that the aforementioned path

Q : y ′ w 1 w 2 • • • w t x is y ′ yx.
Assume that this is false, that is, t ≥ 2. By Lemma 3.5, we have s(w t-1 ) ̸ = s 4 , as any vertex with status s 4 adjacent to y = w t has degree one. Then, s(w t-1 ) = s 3 . By Lemma 3.5,

w t-1 x / ∈ E(G) since deg G (w t-1 ) ≥ 2. Then, d G (w t-1 , y) < d G (w t-1 , x) and w t-1 ∈ V y . Hence, |V y | ≥ q + 1 and |V x | ≤ p -1. By Lemma 3.3, s(y) -s(x) = |V x | -|V y | ≤ p -q -2
, which contradicts the fact that s(y)-s(x) = s 2 -s 1 = p-q. From this contradiction, we see that t = 1 and Q is y ′ yx. That is, each vertex with status s 4 is adjacent to y and has degree one. Now, from |V x | + |V y | ≤ p + q, |V x | -|V y | = p -q, and |V y | ≥ q, we have |V x | = p and |V y | = q. Hence, all p -1 vertices with status s 3 are in V x . Clearly, no vertex in V x can be adjacent to y. Then, each vertex in V x is adjacent to x and has degree one. Thus, G is isomorphic to S p,q . Case 2, p = q ≥ 3. In this case, we have |V (G)| = 2p, and the status sequence of G is {s 1 } 2 ∪ {s 2 } 2p-2 , where s 1 = 3p -2 and s 2 = 5p -4. Let x and y be the vertices in G with s(x) = s(y) = s 1 . First, we show that xy ∈ E(G). If xy / ∈ E(G), then any path connecting x and y has more than two vertices. Let P :

xz 1 z 2 • • • z k y (k ≥ 1) be a path in G. We see that s(z 1 ) -s(x) = s 2 -s 1 = 2p -2. By Lemma 3.5, deg G (z 1 ) = 1,
which is a contradiction. Hence xy ∈ E(G). Next, from Lemma 3.5, it is evident that each vertex with status s 2 is adjacent to either vertex x or vertex y and has degree one. By Lemma 3.3, we see that the set of vertices closer to x than y has the same size as the set of vertices closer to y than x, as s(x) = s(y). Hence, among the 2p -2 vertices with status s 2 , there are p -1 vertices adjacent to x, and the others are adjacent to y. Thus, G is isomorphic to S p,p . 2 A rooted tree is a tree with a specific vertex designated as the root. We now introduce a type of rooted trees in the following. Let T be a rooted tree with root z. Then, T is called a perfect symmetry tree of type I if deg T (u) = deg T (v) whenever d T (u, z) = d T (v, z), where u, v ∈ V (T ). Let x, y be a pair of adjacent vertices in T . The vertex x is called a children vertex of y if d T (x, z) = d T (y, z) + 1. For a perfect symmetry tree of type I, let ℓ be the maximum distance between the root and any vertex in the tree. For i = 0, 1, • • • , ℓ, let r i denote the number of children vertices of a vertex in the tree which has distance i between the root. We then designate such a perfect symmetry tree of type I as T (r 0 , r 1 , • • • , r ℓ ). Note that r 0 is the degree of the root and r ℓ = 0. Fig. 6 exhibits T (3, 3, 0). Now, for i = 0, 1, 2,

• • • , ℓ -1, let Z i = {u ∈ V (T (r 0 , r 1 , • • • , r ℓ ))
|u and the root has distance i}. We observed the following:

T (r 0 , r 1 , • • • , r ℓ )-Z 0 consists of r 0 disjoint trees T (r 1 , r 2 , • • • , r ℓ ), T (r 0 , r 1 , • • • , r ℓ ) -(Z 0 Z 1 ) consists of r 0 r 1 disjoint trees T (r 2 , r 3 , • • • , r ℓ ), and in general T (r 0 , r 1 , • • • , r ℓ ) -( i j=0 Z j ) consists of i j=0 r j disjoint trees T (r i+1 , r i+2 , • • • , r ℓ ), for i ≤ ℓ -1. It can be seen that T (r i+1 , r i+2 , • • • , r ℓ ) is a subtree of T (r i , r i+1 , • • • , r ℓ ), and 
|V (T (r i+1 , r i+2 , • • • , r ℓ ))| = |V (T (r i , r i+1 , • • • , r ℓ ))| -1 r i for all i = 0, 1, 2, • • • , ℓ -1.
We note that T (0) is a tree of a single vertex and |V (T (0))| = 1. For convenient in proving the main theorem, we may see the only vertex of T (0) as the root of itself, and the root of T (0) is adjacent to zero children vertices. Lemma 3.8 Suppose that T (r 0 , r 1 , • • • , r ℓ ) is a perfect symmetry tree of type I with order n. Let a 0 = ℓ i=1 (i i-1 j=0 r j ), and

a i = a i-1 +n-2|V (T (r i , r i+1 , • • • , r ℓ ))|, for i = 1, 2, • • • , ℓ. Then T (r 0 , r 1 , • • • , r ℓ ) has status sequence: {a 0 } ( ℓ i=1 {a i } i-1 j=0 r j ).
Note that r ℓ = 0 and T (0) is a tree of a single vertex.

Proof. Let z 0 be the root and z 0 z 1 • • • z ℓ be a path in T (r 0 , r 1 , • • • , r ℓ ). From the symmetry of the tree, it is clear that any vertices with the same distance between the root have the same status. Hence, for i = 1, 2, • • • , ℓ, there are i-1 j=0 r j vertices that have the status s(z i ). We first evaluate s(z 0 ). Clearly,

s(z 0 ) = r 0 + 2r 0 r 1 + • • • + ℓr 0 r 1 • • • r ℓ-1 = ℓ i=1 (i i-1 j=0 r j ). Next, we show that s(z i ) -s(z i-1 ) = n -2|V (T (r i , r i+1 , • • • , r ℓ ))| for i = 1, 2, • • • , ℓ. For the adjacent vertices z i-1 and z i , where i ∈ {1, 2, • • • , ℓ}, let V z i-1 = {u ∈ V (T (r 0 , r 1 , • • • , r ℓ ))|d T (r 0 ,r 1 ,••• ,r ℓ ) (u, z i-1 ) < d T (r 0 ,r 1 ,••• ,r ℓ ) (u, z i )}, and V z i = {u ∈ V (T (r 0 , r 1 , • • • , r ℓ ))|d T (r 0 ,r 1 ,••• ,r ℓ ) (u, z i ) < d T (r 0 ,r 1 ,••• ,r ℓ ) (u, z i-1 )}. It can be seen that the subgraph of T (r 0 , r 1 , • • • , r ℓ ) induced by the set V z i is a tree T (r i , r i+1 , • • • , r ℓ ). Then |V z i | = |V (T (r i , r i+1 , • • • , r ℓ ))|. According to Lemma 3.3, s(z i ) -s(z i-1 ) = |V z i-1 | -|V z i | = n -2|V (T (r i , r i+1 , • • • , r ℓ ))|.
Thus, we can complete the proof by letting

a i = s(z i ) for i = 0, 1, 2, • • • , ℓ. 2
Now we prove the following theorem. Theorem 3.9 A perfect symmetry tree T (r 0 , r 1 , • • • , r ℓ ) of type I is status unique in all connected graphs if r 0 ≥ 4.

Proof. Suppose that T (r 0 , r 1 , • • • , r ℓ ) has order n. Let A = {a 0 } ( ℓ i=1 {a i } i-1 j=0 r j ) be the status sequence of T (r 0 , r 1 , • • • , r ℓ ), as stated in Lemma 3.8. We recall that a i and r i are the status and the number of children vertices of a vertex x whenever x has distance i between the root. Suppose that G is a connected graph with the same status sequence A. It suffices to show that G is isomorphic to T (r 0 , r 1 , • • • , r ℓ ). The proof can be completed by showing that the following claims are true. The assertion for each claim is followed by its proof.

Claim 1. In G, a vertex with status a i cannot be adjacent to a vertex with status a j whenever |j -i| ≥ 2.

Without loss of generality, let j ≥ i + 2. From Lemma 3.8, we have

a j -a i ≥ a i+2 -a i = (a i+2 -a i+1 ) + (a i+1 -a i ) = n -2|V (T (r i+2 , r i+3 , • • • , r ℓ ))| + n -2|V (T (r i+1 , r i+2 , • • • , r ℓ ))| > 2n -4|V (T (r 1 , r 2 , • • • , r ℓ ))| > n -2, since n ≥ 4|V (T (r 1 , r 2 , • • • , r ℓ ))| + 1 for r 0 ≥ 4.
Then by Lemma 3.4, Claim 1 holds. Claim 2. Each vertex in G with status a ℓ is adjacent to a vertex with status a ℓ-1 .

Assume that this assertion is false. Then, there exists a vertex in G with status a ℓ , say x 1 , that is not adjacent to any vertex with status a ℓ-1 . Let

x 1 x 2 • • • x m (m ≥ 3) be a path in G with s(x i ) ̸ = a ℓ-1 for i = 2, 3, • • • , m -1 and s(x m ) = a ℓ-1 . From Claim 1, we can see that s(x i ) = a ℓ for all i ̸ = m. Then, s(x m-1 ) -s(x m ) = a ℓ -a ℓ-1 = n -2|V (T (r ℓ ))| = n -2 by Lemma 3.8.
We then have deg G (x m-1 ) = 1 by Lemma 3.5, which is a contradiction. Hence, Claim 2 holds. Claim 3. Each vertex in G with status a ℓ has degree one. This assertion holds from Claim 2, Lemmas 3.8 and 3.5.

Claim 4. For an integer

i in the set {1, 2, • • • , ℓ}, G has ℓ-i j=0 r j disjoint sub- graphs T (r ℓ-i+1 , r ℓ-i+2 , • • • , r ℓ ). The root of each subgraph T (r ℓ-i+1 , r ℓ-i+2 , • • • , r ℓ )
has status a ℓ-i+1 , and is adjacent to r ℓ-i+1 vertices with status a ℓ-i+2 and one vertex with status a ℓ-i , and has degree r ℓ-i+1 + 1.

We prove this assertion through induction on i. For convenience of the proof, we say that G has zero vertices with status a ℓ+1 . From Claims 2 and 3, this assertion is true for i = 1. Now assume that this assertion is true for i = 1, 2, • • • , k, some k where 1 ≤ k < ℓ. By applying i = 1, 2, • • • , k, we see that all vertices in G with statuses ≥ a ℓ-k+1 have completed the adjacency, since the ratio of vertices with status a ℓ-i+2 to vertices with status a ℓ-i+1 is

r ℓ-i+1 , for i = 1, 2, • • • , k. Now for i = k we see that G has ℓ-k j=0 r j disjoint subgraphs T (r ℓ-k+1 , r ℓ-k+2 , • • • , r ℓ )
, each of which has root with status a ℓ-k+1 . Now consider the vertices in G with status a ℓ-k . We first prove the following statement.

Statement I: Each vertex with status a ℓ-k is adjacent to exactly r ℓ-k aforementioned subgraphs T (r ℓ-k+1 , r ℓ-k+2 , • • • , r ℓ ) with their roots. Now begin the proof of Statement I. By induction hypothesis, the root of each aforementioned subgraph T (r ℓ-k+1 , r ℓ-k+2 , • • • , r ℓ ) is adjacent to a vertex with status a ℓ-k . It is seen that in G the the ratio of vertices with status a ℓ-k+1 to vertices with status a ℓ-k is r ℓ-k . Now assume that Statement I is false. Then, among those vertices with status a ℓ-k , there is one vertex adjacent to fewer than r ℓ-k vertices with status a ℓ-k+1 , and there is another vertex adjacent to more than r ℓ-k vertices with status a ℓ-k+1 . Now, suppose x 1 ∈ V (G) with s(x 1 ) = a ℓ-k and that x 1 is adjacent to more than r ℓ-k vertices with status a ℓ-k+1 . Let P :

x 1 x 2 • • • x m (m ≥ 2) be one of the shortest paths in G such that s(x i ) ̸ = a ℓ-k-1 for i ̸ = m and s(x m ) = a ℓ-k-1 .
According to Claim 1 and the fact that any vertex with status a ℓ-k+1 has completed the adjacency, we can see that s(x i ) = a ℓ-k for all i ̸ = m. Now for the adjacent vertices

x m-1 and x m , Let V x m-1 = {u ∈ V (G)|d G (u, x m-1 ) < d G (u, x m )}, and V xm = {u ∈ V (G)|d G (u, x m ) < d G (u, x m-1 )}.
From the shortestness of the path P , we have the following vertices are in V x m-1 : (i) vertices x 1 , x 2 , • • • , x m-1 , and (ii) vertices in a subgraph T (r ℓ-k+1 , r ℓ-k+2 , • • • , r ℓ ) whose root is adjacent to some x i where i ∈ {1, 2, • • • , m -1}. Then,

|V x m-1 | ≥ (r ℓ-k + 1)|V (T (r ℓ-k+1 , r ℓ-k+2 , • • • , r ℓ ))| + 1 = |V (T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ))| + |V (T (r ℓ-k+1 , r ℓ-k+2 , • • • , r ℓ ))|,
and

|V xm | ≤ n -|V (T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ))| -|V (T (r ℓ-k+1 , r ℓ-k+2 , • • • , r ℓ ))|.
By Lemma 3.3,

s(x m-1 ) -s(x m ) = |V xm | -|V x m-1 | ≤ n -2|V (T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ))| -2|V (T (r ℓ-k+1 , r ℓ-k+2 , • • • , r ℓ ))|.
However, by Lemma 3.8

s(x m-1 ) -s(x m ) = a ℓ-k -a ℓ-k-1 = n -2|V (T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ))|,
which is a contradiction. Hence Statement I holds. Then, we see that every r ℓ-k number of subgraphs T (r ℓ-k+1 , r ℓ-k+2 , • • • , r ℓ ) connect to a vertex with status a ℓ-k , and then form a subgraph T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ), and the vertex with status a ℓ-k is the root. Hence G now has ℓ-k-1 j=0

r j disjoint subgraphs T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ).
Next, we show that the following statement is true.

Statement II: The root of each subgraph T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ) formed in Statement I is adjacent to a vertex with status a ℓ-k-1 .

Assume that Statement II is false. Then, there is some T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ) formed in Statement I with root y 1 such that y 1 is not adjacent to any vertex with status a ℓ-k-1 . Let Q : y 1 y 2 • • • y t (t ≥ 3) be one of the shortest paths in G with s(y i ) ̸ = a ℓ-k-1 for i ̸ = t and s(y t ) = a ℓ-k-1 . Recall that s(y 1 ) = a ℓ-k and all vertices with status a ℓ-k+1 have completed the adjacency in G. Hence by Claim 1 we have s(y i ) = a ℓ-k for all i ̸ = t. Now let 

V y t-1 = {u ∈ V (G)|d G (u, y t-1 ) < d G (u, y t )}, and V yt = {u ∈ V (G)|d G (u, y t ) < d G (u, y t-1 )}. According to Statement I, each y i is the root of a subgraph T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ), for i = 1, 2, • • • , t -1. From the shortestness of the path Q, the vertices of T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ) containing y i as the root are in V y t-1 , for i = 1, 2, • • • , t -1. Then, |V y t-1 | ≥ 2|V (T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ))|, and |V yt | ≤ n -2|V (T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ))|. By Lemma 3.3, s(y t-1 ) -s(y t ) = |V yt | -|V y t-1 | ≤ n -4|V (T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ))|. However, s(y t-1 ) -s(y t ) = a ℓ-k -a ℓ-k-1 = n -2|V (T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ))| by Lemma 3.
s(x) -s(y) ≤ n -2|V (T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ))| ( * ) However, s(x) -s(y) = a ℓ-k -a ℓ-k-1 = n -2|V (T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ))|
(r 0 , r 1 , • • • , r ℓ ). 2 
Let S be a spider. If S is isomorphic to some T (r 0 , r 1 , • • • , r ℓ ), where r 0 ≥ 3 and r i = 1 for all i = 1, 2, • • • , ℓ -1, then S is called a uniform spider. According to Theorem 3.9, a uniform spider is status unique in the connected graphs if r 0 ≥ 4. We now propose the following conjectures.

Conjecture 2 Uniform spiders are status unique in all connected graphs.

Conjecture 3 Spiders are status unique in all connected graphs.

Conjecture 4 A perfect symmetry tree T (r 0 , r 1 , • • • , r ℓ ) of type I is status unique in all connected graphs if r 0 ≥ 2.

We call a tree a perfect symmetry tree of type II if this tree is formed by joining the roots of two T (r 0 , r 1 , • • • , r ℓ ) with an edge [START_REF] Shang | Branch-weight unique trees[END_REF]. Such a perfect symmetry tree of type II is denoted by 2 * T (r 0 , r 1 , • • • , r ℓ ). In the end of this article, we propose the following theorem.

Theorem 3.10 A perfect symmetry tree 2 * T (r 0 , r 1 , • • • , r ℓ ) of type II is status unique in all connected graphs if r 0 ≥ 2.

Proof. As previously mentioned, a perfect symmetry tree 2 * T (r 0 , r 1 , • • • , r ℓ )

of type II has status sequence {b 0 } 2 ( ℓ i=1 {b i } 2 i-1 j=0 r j ). Let G be a connected graph with the same status sequence. It suffices to show that G is isomorphic to 2 * T (r 0 , r 1 , • • • , r ℓ ). Using the same method as in Theorem 3.9, it is seen that all the arguments of the proof are similar to those in Theorem 3.9. After Claims 1 ∼ 4 have been proved, when applying i = ℓ in Claim 4, we obtain: G has 2r 0 disjoint subgraphs T (r 1 , r 2 , • • • , r ℓ ). The root of each subgraph T (r 1 , r 2 , • • • , r ℓ ) has status b 1 , and is adjacent to r 1 vertices with status b 2 and one vertex with status b 0 , and has degree r 1 + 1.

Let the two vertices with status b 0 be x and y. Then, among the roots of the 2r 0 subgraphs T (r 1 , r 2 , • • • , r ℓ ), some are adjacent to x, the others are adjacent to y. Now in G only x and y have not yet completed the adjacency. As G is a connected graph, the two vertices x and y are adjacent. By Lemma 3.3, the set of vertices closer to x than y has the same size as the set of vertices closer to y than x, since s(x) = s(y) = b 0 . Hence, there are exactly r 0 roots of the subgraphs T (r 1 , r 2 , • • • , r ℓ ) with status b 1 that are adjacent to x, and the others are adjacent to y. Thus, we have G is isomorphic to 2 * T (r 0 , r 1 , • • • , r ℓ ). 2
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  8, which is a contradiction. Hence, Statement II holds. Next, we prove the following statement.Statement III: The root of each subgraph T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ) formed in Statement I has degree r ℓ-k + 1. The previous Statement II shows that the root x of a subgraph T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ) formed in Statement I is adjacent to a vertex y with s(y) = a ℓ-k-1 . Evidently, the set of vertices closer to x than y has at least |V (T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ))| vertices. Hence the set of vertices closer to y than x has at most n-|V (T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ))| vertices. By Lemma 3.3,

Fig. 7

 7 shows the tree 2 * T[START_REF] Buckley | Distance in graphs[END_REF][START_REF] Buckley | Distance in graphs[END_REF] 0). Let |V (T (r 0 , r 1 , • • • , r ℓ ))| = n. By Lemma 3.8, the status sequence of T (r 0 , r 1 , • • • , r ℓ ) is {a 0 } ( ℓ i=1 {a i } i-1 j=0 r j ), where a 0 = ℓ i=1 (i i-1 j=0 r j ), anda i = a i-1 +n-2|V (T (r i , r i+1 , • • • , r ℓ ))|, for i = 1, 2, • • • , ℓ. Let now b 0 = 2a 0 +n and b i = b i-1 +2n-2|V (T (r i , r i+1 , • • • , r ℓ ))|, for i = 1, 2, • • • , ℓ. It is not difficult to see that 2 * T (r 0 , r 1 , • • • , r ℓ ) has status sequence {b 0 } 2 ( ℓ i=1 {b i } 2 i-1 j=0 r j ).
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 7 Fig.7:[START_REF] Shang | Branch-weight unique trees[END_REF] A perfect symmetry tree of type II.

  by Lemma 3.8. It is seen that the value s(x) -s(y) attains the upper bound in the inequality ( * ). We then have the set of vertices closer to x than y is exactly the subgraph T (r ℓ-k , r ℓ-k+1 , • • • , r ℓ ) containing x as the root. Thus, deg G x = r ℓ-k + 1. Hence, Statement III holds.From Statements I, II and III, we see that the assertion is true for i = k + 1. Hence Claim 4 holds by induction. Now applying i = ℓ in Claim 4, it can be seen that G is isomorphic to T
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