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Abstract In this paper, a numerical process is presented for predicting the response of vibrating structures
excited by a non-homogeneous turbulent boundary layer. This one is based on the synthesis of different re-
alizations of the random pressure fluctuations that can be introduced as loading of a vibroacoustic model.
The vibratory response is finally deduced by averaging together the responses of the different loads. As a
first approach, the pressure fluctuations of the non-homogeneous turbulent boundary layer can be generated
separately for different sub-areas of the structure by using the uncorrelated wall plane waves technique and
mean boundary layer parameters. An extension of this basic approach consists in taking into account the
interaction between the sub-areas and a refinement of the sub-area decomposition. Wall pressure fluctuations
related to a continuous evolution of the boundary layer can then be generated and introduced in the vibroa-
coustic model. The accuracy of the proposed approach is studied on a rectangular panel excited on one side
by a growing fully turbulent boundary layer triggered at one edge of the plate. Comparisons with the spatial
approach and the wavenumber approach using the sub-area decomposition technique are proposed. Interests
of the proposed approach in term of accuracy and computing times are discussed.

1. Introduction

Vibrations induced by the wall pressure under a turbulent boundary layer is a major concern
in the design of vehicles. Such vibrations cause structure wear and are a source of disturbing
interior noise. Predicting the vibroacoustic behavior of structures excited by a turbulent flow is an
important issue for improving vehicle longevity and passenger comfort.

Most of the literature focusing on the vibratory response of structures excited by turbulent
boundary layer (TBL) consider a spatially homogeneous excitation (see for instance Graham (1997);
Hambric et al. (2004); De Rosa and Franco (2008); Ciappi et al. (2009); Franco et al. (2013); Maxit
and Denis (2013); Ciappi et al. (2016); Marchetto et al. (2018)). However, many industrial appli-
cations show vibrating structures underneath a growing TBL or with curved surfaces for which the
pressure loading can no longer be considered homogeneous spatially. This situation occurs on the
sonar bow of a vessel or on the appendices of a submarine vehicle (steering rods, sail, rudder), on
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the windshield and the roof of a passenger car, or on the cockpit of an aircraft to cite few examples.
For these cases, the spatial variations of the TBL is generally due to the growing of the TBL from
its starting point and to the pressure gradients induced by the curvature of the flow. Few attention
has been carried out to this topic whereas the influence of an inhomogeneous TBL can not be neg-
ligible on the vibroacoustic behavior of the structure. This has been have recently highlighted by
the present authors on a rectangular plate with varying thickness and excited by a TBL triggered at
the upstream edge of the plate (Guillon et al., 2021). In this context, this article aims to propose
a efficient and versatile process for predicting the vibratory response of a structure excited by a
non-homogeneous TBL. This process relies on an extension of the uncorrelated wall plane waves
method developed some year ago for homogeneous TBL (Maxit, 2016). It consists in the synthesis
of different realizations of the TBL wall pressure field taking into account the spatial variations of
the TBL parameters. These realizations can then be easily used as loadings of any vibroacoustic
model. For sake of conciseness and simplicity, a flat plate excited by a TBL triggered at one of its
edge will be considered as an example. No static pressure gradient will then be considered. That
will allow us using models of the wall pressure fluctuation (WPF) developed during these last sev-
enty years as discussed below. Considering a case with pressure gradients would have required the
use of dedicated models of the WPF that are currently under developments by teams specialized
in fluid mechanics (see for instance Rozenberg et al. (2012); Salze et al. (2014)). As these models
are not yet fully validated, it had appeared more relevant for these first developments concern-
ing a structure excited by non-homogeneous TBL excitations to consider a case without pressure
gradient.

The phenomena occurring underneath the TBL are random and it generally requires impractical
computing time to get the solutions of the Navier-Stokes equations. Direct numerical simulations
(DNS) and large eddy simulations (LES) are limited to low Reynolds numbers and canonical flow
conditions (Cohen and Gloerfelt, 2018) and are nonviable in terms of time consumption for en-
gineering applications. Many researchers have then focused on the characterization of the power
spectral density of the random turbulent pressure, generally from experimental measurements.
Wall pressure fluctuation (WPF) models have been established from analytical expressions depend-
ing on the TBL parameters and on unknown parameters determined by fitting the model to exper-
imental data for flat surfaces and fully developed TBL with zero pressure gradient (Goody, 2004;
Corcos, 1964; Mellen, 1990; Chase, 1980). These models are composed of the auto-spectrum
which characterizes the power of the excitation and of the normalized cross-spectrum which ex-
presses the spatial correlation of the pressure fluctuations. Auto-spectrum semi-empirical models
are generally built following scaling laws (Ciappi and Magionesi, 2005; Hwang et al., 2009). The
space-frequency cross-spectrum, in the case of a spatially homogeneous TBL, is a function of 2-
point spatial separation, representing the decay of the correlation (Corcos, 1964; Mellen, 1990).
Considering a space Fourier transform of the cross-spectrum, expressions in the wavenumber do-
main can be obtained like for the Chase model (Chase, 1980).

These models of WPF are generally used for estimating the vibroacoustic response of a panel
excited by a TBL. The calculation process can be decomposed in 3 steps:

- a hydrodynamic calculation is used to estimate the TBL parameters as functions of space,
from the problem geometry and flow characteristics;

- the WPF spectrum is evaluated with an appropriate model proposed in the literature as de-
scribed previously and from the space-average of the TBL parameters as an input;

- the vibratory response of the panel is calculated using a vibroacoustic model considering the
WPF spectrum as an input.



The main difficulty related to this process is the coupling of the random model of the wall
pressure fluctuations induced by the TBL to the deterministic vibroacoustic model. Five methods
are discussed in Maxit et al. (2015). Three of them will be used and adapted in this paper to take
into account the spatial inhomogeneity of the TBL:

- the first one, the most common, is based on a formulation in the spatial domain. It requires to
discretize the panel surface with a fine grid and to estimate the frequency response functions
(FRF) between the different points of the grids (Hong and Shin, 2010). As the grid should
be sufficiently fine to capture the small variations due to the convection of the vortexes, the
number of FRF to be calculate can be high and the computing time can be huge (Ciappi
et al., 2012). Alternative methods in discrete coordinates have been proposed to circumvent
this issue. For instance, the frequency modulated pseudo-equivalent deterministic excitation
(PEDEy;) (De Rosa et al., 2015, 2013) can be cited as an effective method for the mid to
high frequency ranges. Its fundaments are based on the pseudo excitation method (Xu et al.,
1999; Lin et al., 2011), an exact method relying on the modal decomposition of the cross-
spectrum at each frequency, and on the introduction of approximations on the WPF spectrum
representation in order to reduce significantly the computational costs;

- the second one is based on a wavenumber formulation (Maury et al., 2002). The panel
response is estimated through the sensitivity functions that correspond to the panel response
to wall plane waves. This method is substantially faster when the convective ridge of the TBL
can be neglected, since the cutoff wavenumbers can be defined in this case from the panel
characteristics (Bonness et al., 2010; Hambric et al., 2004);

- the last one consists in interpreting the random excitation of the WPF as a set of uncorre-
lated wall plane waves (UWPW) and to synthesize different realizations of the wall pressure
field from an analytical formula (Maxit, 2016). This one depends on the amplitudes of the
wall plane waves that are directly related to the WPF spectrum expressed in the frequency-
wavenumber domain. The wall pressure fields are used as loading of the vibroacoustic model
of the panel. The panel response is then deduced by averaging the responses to the different
realizations of the WPF (Karimi et al., 2020a,b).

In the present paper, we propose to extend the UWPW technique for the non-homogeneous
flow. Compared to the spatial and wavenumber approaches, this one has the advantage that it
can be easily used in standard element-based codes (Karimi et al., 2020a) while saving computing
time (Maxit et al., 2015). The process for synthesizing the WPF for non-homogeneous TBL will be
based, in a primary version, on the same assumptions that the sub-area decomposition technique
(SDT) (Guillon et al., 2021). The excited surface of the panel will be decomposed in different
sub-areas. For each sub-area, the WPF will be estimated independently of the other sub-areas
considering the superposition of uncorrelated wall plane waves. In an advanced version, the phase
of the uncorrelated wall plane waves will be unchanged from one sub-area to another, that will
permit to describe the correlations between the different sub-areas. The proposed technique will
be compared on a test case to the spatial and the wavenumber methods that have been extended
recently to non-homogeneous TBL excitation (Guillon et al., 2021).

The paper is organized as follows:

- the section 2 reminds the principle of the three methods evoked previously (i.e. spatial,
wavenumber and UWPW) in the case of a homogeneous TBL excitation;

- then, the section 3 deals on the extension of these methods to the non-homogeneous TBL.
First, the principles of the spatial approach and the wavenumber approach, called the sub-



Figure 1: Rectangular baffled panel excited by a homogeneous TBL.

area decomposition technique (SDT) (Guillon et al., 2021) are presented. Then, the theoret-
ical framework of the extension of the UWPW method is proposed in order to take the spatial
variations of the TBL into account.

- the section 4 concerns the numerical applications and the comparisons of these different
methods in the case of a growing TBL. Interests and limitations of these approaches are
discussed before to conclude.

2. Reminder of different formulations for a panel excited by a
homogeneous TBL

In this section, we consider a baffled elastic panel excited by a stationary and homogeneous TBL
as schematically represented in the Fig. 1. For simplicity of the presentation, the panel of area ¥ is
supposed rectangular, in the plane (2, Z), of length L, and width L. The flow goes in the direction
7 at the external flow speed U,. The TBL thickness and the convective speed are noted § and U,,
respectively. A weak coupling is assumed between the panel and the TBL, which means that panel
vibrations do not interfere with the turbulent flow. The wall pressure field induced by the TBL
is characterized by the WPF cross-spectrum ¥, ,, which is supposed to be known from the TBL
parameters (i.e. input data of the calculation). The panel response to be estimated from the WPF
cross-spectrum will be characterized by auto-spectrum density (ASD) of the panel velocity at point
X € X. In the next three subsections, we remind the theoretical background for predicting this
response with three different approaches: the spatial, the wavenumber and the UWPW approaches.

2.1. Spatial formulation

Let X be a point on the surface ¥ and v the velocity response of the plate at this point. The
auto-spectrum of the plate velocity v is given by Strawderman (1969); Maury et al. (2002):

Sy (X, w) = H H Hy (X, %,w)V,,(%,X,w)H, (X, X, w)dXdX, ¢))
¥ X

where H,(X,X,w) is the panel FRF in velocity at point X for a normal unit force applied at point
% and ¥,,(X,X,w) is the space-frequency WPF cross-spectrum.

Semi-empirical models of the WPF spectrum have been established for flat surfaces and fully
developed homogeneous TBL, where statistical properties of the pressure field are independent
of the position. Hence, the WPF cross-spectrum for homogeneous TBL, \Ilgp only depends on the
space separation X — X and can be written on the form (Bull, 1996):

h
pp

»Yu

U (x-%w)=T - X,w)S,,(w), (2)

PID(



where I‘pp(fc — %,w) is the spatial coherence function of the separation X — % and Spp(w) is the
WPF auto-spectrum.

h
pp

Assuming that ¥ (%, X) € ©°, \I/pp(i,i,w) =0 (X - %,w), Eq. (1) leads to:

$,u(X,w) = H H Hy (X, %, 0)0" (% - %, w) H (X, & w)dxdZ. 3)
b b

Excepted for academic panels (such as simply supported rectangular panel), the FRFs appearing in
this equation cannot be obtained analytically. Usually, the integrals are then replaced by discrete
sums and the FRFs between the different grid points are evaluated by a numerical approach.

2.2. Wavenumber formulation

The wavenumber formulation is based on the use of the spatial Fourier transform of the WPF
spectrum. Indeed, the wavenumber-frequency spectrum @Zp(k, w) is defined by:

o (k,w) = H v (% - % w)e! I RqzaE, )

where j2 =—1.

Introducing this equation in Eq. (3) leads to the formulation in the wavenumber domain:

1 .
Su(X,0) = — [[ X )| @), (e w)ak, ®)
/I8

where H,(X,k,w) is called the velocity sensitivity function (SF). It corresponds to the velocity
response at X when the panel is excited by a wall plane wave of wavenumber k (see Marchetto
et al. (2018) for further details).

To integrate Eq. (5), the infinite space must be truncated with the cutoff wavenumber % and
discretized. The set of wavevectors () is bounded by —k and +k in both directions (i.e. the
streamwise and transverse directions) and regularly discretized with the wavenumber step k.
The integral is then approximated and the velocity ASD becomes:

h
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For frequencies well above the aerodynamic coincidence frequency, the panel can generally be
seen as a low-wavenumber filter and the convective contributions of the WPF have a negligible
effect on the plate response. It results that the cutoff wavenumber can be defined according to the
flexural wavenumber of the plate % (see for instance Karimi et al. (2020b)):

k=Mkf9 (7)

where 4 is a margin parameter, typically equal to 1.3. Otherwise, the convective peak of the WPF
spectrum should be included in Q, with a k£ higher than the convective wavenumber k..



2.3. Uncorrelated wall planes waves method

The UWPW method consists in generating different realizations of the WPF induced by the TBL
and to use them as loadings of a vibroacoustic model, typically a FEM model (Maxit, 2016; Karimi
et al., 2020a,b). The pressure fields are synthetized by considering a set of uncorrelated wall plane
waves mimicking the TBL. The process related to this approach can be decomposed in 3 steps
(Maxit, 2016):

(i) N, realizations of the UWPW field are generated. For each realization r, the blocked pressure
is calculated at the nodes X € ¥ of the FEM mesh:

po(X,w) = ) \Saa,(w)exp{j(k-X+¢i)}, ®

ke

where ¢y are random phases uniformly distributed in [0;27] expressing the fact that the
waves are uncorrelated and the wave amplitude auto-spectrum is given by:

h
3" (k,w)ok?
pp
Saa(w) = T, €©)
(i) the panel response at node X in velocity to the r-th realization of the synthesized WPF,
noted v" (X, w), is computed with the vibroacoustic model. The process is iterated for all
realizations r € [[1, N,.];

(iii) the velocity auto-spectrum at X in response to the TBL excitation is the ensemble average of
the responses v (X, w) for r € [1, N,]:

X 1 N,
Sun(X.) = B[ () (7 (X)) ], = - 3 1

, (10)

where E[-], is the ensemble average.

When a finite element model is considered for the panel (Karimi et al., 2020a; Maxit, 2016), the
element size in the streamwise and crosswise directions, dx and dz, should respect the following
criterion: - -

5x<]%—,6z<r. an

x z

3. Panel excited by a non-homogeneous turbulent boundary
layer

The methods for predicting the vibrational response of a panel for a homogeneous excitation have
been given in the previous section. In the following, the TBL is no longer spatially homogeneous.
A typically case that will be considered for the numerical applications is the growing of a fully
turbulent boundary layer triggered at one edge (for instance with a sand paper strap), as schemat-
ically represented in Fig. 2. For such case, the laminar and transition regions are supposed small
compared to the plate surface. That permits to approximate the TBL as fully turbulent over all
the plate surface. Using some hypotheses, the previous methods can be adapted to estimate the
panel response to these non-homogeneous excitations. It was the purpose of the work presented
in (Guillon et al., 2021) for the spatial and the wavenumber approaches. We are going to remind
the main results for these two approaches before to extend the UWPW method, that constitutes the
novelty of the present paper. The results predicted by the different approaches will be compared
and discussed in the section 4.



Figure 2: Spatially varying TBL along stream direction z.

3.1. Spatial formulation

Eq. (1) can be used to evaluate the panel response to a non-homogeneous excitation. However, the
difficulty to apply this formula relies on the estimation of the cross-spectrum of WPF, ¥, (X, X, w),
for all the couple of points on the plate, (X,%) € ¥°. However, the WPF of a TBL is weakly cor-
related spatially. The coherence length A is an indicator of the decay of the spatial correlation of
the pressure field. For two points whose separation distance is small compared to the coherence
length, it can be assumed that the TBL presents small variations and that the WPF could be approx-
imated by considering a local homogeneous TBL. When the separation becomes large compared
to the coherence length, the correlation tends to zero. Under these simplifying assumptions, the
cross-spectrum of the WPF between X and % can be approximated by (Guillon et al., 2021):

{[spp(w)r,,p(i -xw)] o 1% -] < 4A(w),
0

if [|% - %] = 4A(w),

U X (12)

yw) =

M

(X

where A is the coherence length of the WPF and the quantities S, and I',, are calculated using
the arithmetic mean of TBL parameters at X and X.

It is important to note that the spatial method is not valid for low frequencies. Indeed, the
Corcos model predicts a w™" decay rate of the coherence length which has been verified exper-
imentally (Salze et al., 2014). In the low frequency range, the coherence length is large and it
can then be of the same order than the length of the panel. The assumption of a local homoge-
neous TBL cannot be applied. In contrary, in the mid and high frequencies, the coherence length
is much smaller compared to the length of the panel and the assumption of a local homogeneous
TBL model can be applied when the TBL parameters do not vary significantly along a coherence
length. In the following, the scope will be focused on frequencies where the coherence is at least
two times smaller than the panel length.

3.2. Wavenumber formulation: sub-area decomposition technique

Supposing the spatially homogeneous excitation in Eq. (3) and introducing the space Fourier
transform allowed us to propose the wavenumber formulation in section 2.2. This mathematical
operation can obviously not be performed directly in Eq. (1) for a spatially varying TBL. Never-
theless, the panel surface ¥ can be divided into N sub-areas along the streamwise direction .
Then a locally homogeneous TBL is assumed on each sub-area, as shown in Fig. 3. Eq. (1) can be
rewritten:

L W)H (X, X, w)dxdx. (13)

Hu

s.x =Y Y [ [ mxzw,

=1g¢=1 _ -
P=RAT %€y, ey,

Eq. (13) contains N x N terms, with N the number of sub-areas. The equation may be made
simpler, as some terms can be neglected considering the properties of the WPF:



Figure 3: Sub-area discretization of X..

- on one side, for two points belonging to the same sub-area, TBL parameters are assumed
constant and a cross-spectrum for a homogeneous excitation can be used;

- on the other side, the spatial correlation is a decreasing function of the two points spatial
separation. It is assumed that, when the two points belong to distinct sub-areas, their spatial
separation is high compared to the coherence length so that their correlation is negligible.

Following these assumptions, a growing TBL is approximated by the sequence of homogeneous
TBL as illustrated on Fig. 3 for 3 sub-areas.

These assumptions can be translated into the following equation:

he, = o~ .

- = 1 - fp=gq=

(%, %) € (3, x ), \Ppp(i,i,w)={0pp(x fw) Hp=g=g 14)
ifp # g,

with \I/Z;,C is the cross-spectrum of the WPF for a homogeneous load, attributed to the sub-area ¢

which is estimated considering an arithmetic mean of TBL parameters on surface .

It results that each sub-area ¢ of surface X is associated with a locally homogeneous spectrum.
Introducing Eq. (14) into Eq. (13), only the terms p = ¢ remain. It is then possible to define
the wavenumber-frequency cross-spectrum @Zl’f(k, w) of the sub-area ( as the Fourier transform of
\I/ZI’)C()ZC — X, w). Finally, the velocity auto-spectrum can be written (Guillon et al., 2021):

N

1 N
Se(Xow) = —5 Y 3 [HSX k)| Bl (k. w)ok?, (15)
4mre &=
¢=1 keQy

where f{,f (X, k,w) is the plate response in velocity at X when the panel is excited by a wall plane
wave on surface 3.

This approach has been called the sub-area decomposition technique (SDT). With the SDT,
because of the spatial correlation of the WPF, the length of the sub-area needs to respect a criterion
related to the cutoff wavenumber (Guillon et al., 2021):

L, 3 2m

- Z5.=.

N ~ 2k (16)
Moreover, the SDT is valid when the convective wavenumber k., is significantly greater than the

flexural wavenumber k. Under this condition, it is assumed that the convective peak has a weak

role in the vibrational panel response and that it can be neglected. Therefore, the convective peak

can be filtered out of the integration domain, according to Eq. (7).



3.3. Uncorrelated wall planes waves applied to the sub-area decomposition

In this subsection, the UWPW method is extended to calculate the panel response to non-homogeneous
TBL excitations. The same principle than the SDT described previously is considered at first. The
excited surface of the panel is decomposed in N sub-areas and a wavenumber-frequency cross-
spectrum @Z;,C(k, w) is associated to each sub-area ¢ € [1, N] (as in the previous section). More-
over, in a first approach and as for the SDT, the pressures acting on two different sub-areas are
supposed to be uncorrelated (as expressed by Eq. (14)). The pressure field can then be deter-
mined on each sub-area, separately. This pressure field should correspond to the one of a locally
homogeneous TBL characterized by the cross-spectrum @Zz’f(k, w) in the sub-area ¢. The Eq. (8)
defining the blocked pressure for a homogeneous TBL can be reused for defining the blocked pres-
sure related to the sub-area {. The cross-spectrum of the WPF related to the sub-area ¢ should be
considered. The random phases occurring in Eq. (8) have be chosen different from one sub-area
to another due to the fact that the pressures acting on different sub-areas are uncorrelated. These
random phases are noted C<p1:, where we remind that k, r, ¢ are, respectively, the wall plane wave
index, the realization index, and the sub-area index.

The blocked pressure on the sub-area ¢ € [1, N] can then be expressed by:

X €., (X, w) = Z \/S AcAc exp k X +°¢ )}, a7

keQy
M (k, w)ok

. _ %pp
with SAlc(Alc((w) = =

(18)

Realizations of the wall pressure field can be generated using this formula for the different
sub-areas. As for the homogeneous excitation, the WPF can be introduced as loads in the panel
vibratory model to deduce the panel response. An ensemble average on the panel response to the
different realizations is then performed to estimate the panel response to the non-homogeneous
TBL. The synthesis of these WPF by this process supposes that the pressures acting on distinct sub-
areas are uncorrelated. This approach named the “local” uncorrelated wall plane wave (L-UWPW)
technique is equivalent to the SDT method and should give the same predictions.

For the SDT, the decorrelation of the WPF spectrum between the different sub-areas is a manda-
tory condition to perform a spatial Fourier transform. However, with the UWPW method, this
condition can be easily relaxed by taking the same phases, oy, for the different sub-areas. This
supposes that the wall plane waves are defined globally on the whole excited surface, but their am-
plitudes can vary from one sub-area to another. Under this condition (i.e. gpk oK, for ¢ € [1, N])
the wall pressure field of the realization r is given by:

X €., pb (X, w) Z \/S AcAc exp k X+<pk)} (19)

ke

As the wall plane waves are defined on the global scale of the panel, it is name the “global”
uncorrelated wall plane wave (G-UWPW) technique.

We have presented two alternative approaches to take the spatial variations of the TBL param-
eters into account in the UWPW method. In the next section, we are going to assess the validity of
these two approaches by comparing their results to the ones obtained both by the spatial approach
and the SDT, that we have described in the sections 3.1 and 3.2, respectively. We will also present
a third version of the extension of the UWPW method for a non-homogeneous TBL.
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Figure 4: TBL parameters estimated from Eq. (20) and Eq. (21).
(a): TBL thickness ¢; (b): shear stress 7. Free stream velocity: 40 m/s.

4. Numerical applications

4.1. Turbulent boundary layer parameters

The 1 meter long and 0.35 meter large rectangular panel shown in Fig. 2 is set in a flow of
free stream velocity equal to 40 m/s, & corresponding to the streamwise direction. The TBL is
supposed triggered by a sandpaper strip at the plate edge + = 0. The TBL parameters will be
estimated with an analytical model for a flat smooth plate (Sanders, 2014). This model for 2-D
(z,y) incompressible flow supposes a zero pressure gradient and external velocity U, constant and
equal to the free stream velocity. Moreover, the laminar and transitional regions are neglected.
Under these assumptions, the TBL thickness and the shear stress can be estimated by (Sanders,
2014; Schilchting and Gersten, 2017):

v L/ 4/5
5 = 037(@) A, 20)
1 2 14 1/5
7= 5pUs 00592(%:&) . 21

The TBL parameters estimated with this model are plotted on Fig. 4. The TBL thickness in-
creases along the length of the plate, whereas the shear stress decreases significantly along the first
third of the length of the plate and then remains roughly constant. Considering an arithmetic aver-
age of these quantities, 10.7 mm is obtained for the TBL thickness and 3.76 Pa for the shear stress.
These averaged values would be the ones considered if the TBL would be supposed homogeneous
(as it will be the case in the section 4.6 for comparison).

In the following, the Goody model (Goody, 2004) will be considered for the auto-spectrum of
the WPF whereas the Mellen model (Mellen, 1990) will be considered for the normalized cross-
spectrum. Hence, the wavenumber-frequency cross-spectrum of the WPF will be estimated by:

2 2
2mag ok,

((Ol,.Oé k)2 + (ak )2 + a2(k,. _ k.)2)3/2 (22)

(I)pp(ka:a kzaw) = Spp(w)'
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Figure 5: Two examples of realization of the pressure field (Pa) at 100 Hz;
(a): L-UWPW method; (b): G-UWPW method.
Black vertical lines indicate the sub-area boundaries.
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where ¢; = 0.5,¢5 = 3,¢c3 = 1.1, a,, = 0.10, o, = 0.77 and k. = w/U, is the convective wavenumber.

(23)

4.2. Pressure fields synthetized with the L-UWPW and G-UWPW methods

Realizations of the blocked pressure p,, are calculated with Eq. (17) and Eq. (19), corresponding
to the L-UWPW and G-UWPW methods, respectively. One realization for each method is shown in
the (Z, Z) plane at 100 Hz on Fig. 5, when considering 5 sub-areas.

Fig. 5(a) corresponds to the L-UWPW method. The intensity of the pressure field is increas-
ing in the streamwise direction, which is consistent with the growing of the TBL. However, some
discontinuities of the pressure field can be clearly observed at the sub-area boundaries. Indepen-
dent random wall plane wave phases C%T( have been considered in order to simulate uncorrelated
pressure fields from one sub-area to another as in the SDT (Guillon et al., 2021). This assumption
has been useful for establishing the formulation, but the discontinuities observed resulting of this
assumption are not representative of the TBL pressure fluctuations.

On the other hand, Fig. 5(b) shows the results for the G-UWPW method that supposes iden-
tical wall plane wave phases for the different sub-areas. The resulting pressure field is spatially
continuous, even through the sub-area boundaries, that is consistence with the physic of the TBL.
The intensity of the pressure is still increasing along the 7 axis.

In order to further assess the pressure synthesized with the two proposed methods, an ensemble

of N, realizations are used to calculate the auto-spectrum of the synthesized pressure field S, ,,
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Figure 6: Analysis of the synthesized pressure field at 3 points: green « = 0.2L,, blue x = 0.5L,,
brown z = 0.8L,. (a): Auto-spectrum for the synthesized pressure field (dB, ref. 1 Pa’ /Hz). Three
calculations (G-UWPWP): dashed line, 20 realizations; dash-dot line, 200 realizations; continuous
line, analytical with Goody model (reference). (b): Average in the frequency band [50 - 700] Hz
of the absolute errors between the G-UPWP prediction and the Goody model in function of the
number of realizations.

at a point X, with the following equation:

Spup (X, w) = E[pp(X,w) (pp(X,w))"] - 24)

The estimated auto-spectrum considering the blocked pressure calculated with Eq. (19), for
three different positions along 7 axis, is plotted in Fig. 6(a) and compared to the auto-spectrum
of the Goody model from Eq. (23). Since only the information at the point X is relevant, the
L-UWPW and the G-UWPW methods display the same prediction. The difference of levels for the
different observation points as well as the global frequency variations are well described by the
synthesized pressures. In order to inspect more in details the convergence of the process, the Fig.
6(b) shows the average absolute error on the frequency band [50, 700] Hz between the auto-
spectrum of the synthesized pressure field and the Goody model, as a function of the number of
realizations. It can be observed that the errors decrease globally when the number of realization
increases whatever the point considered. The average error is below 1dB above 20 realizations.
Consequently, adopting a margin to guarantee an error below 1dB, it can be presumed that the
convergence is reached for 30 realizations.

Now, let us focusing on the spatial coherence of the pressure fields synthetized by the two
UWPW methods as a function of the distance from a fixed observation point Xq. The coherence is
then calculated with the following formula:

E | pp(Xo, (X, w)"
Ly, (Xo, X, 0) = [Pl o) (X, )], 25)

(E[Inh(Xo.) 7], E[lpp(x.)],)"

The spatial coherence I',, ,, considering the L-UWPW method is plotted along the stream di-
rection 7 on Fig. 7, at two frequencies f = 100Hz and f = 400 Hz for Xy = (L,/2;L./2). The
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Figure 7: Spatial coherence of the pressure field synthesized by the
L-UWPW method considering 5 sub-areas. (a): 100 Hz; (b): 400 Hz.

vertical dark dotted lines indicate the sub-areas boundaries and the dotted curve corresponds to
the exponential decay of the Mellen model given by:
Fpp(Xo, X, w) = exp {-a, [|X = Xol| £} . (26)
Within the sub-area containing the point X, the decay of the coherence of the synthesized
pressure field is in agreement with the Mellen model. However, the drop of the coherence when
crossing a sub-area boundary expresses that the pressure fields applied on two different sub-areas
are uncorrelated, which is not consistent with the Mellen model.

When considering the G-UWPW method, the coherence Iy, ,, shown on Fig. 8, is continuous
even through the sub-area boundaries and globally in agreement with the decrease of the Mellen
model. This agreement seems well better with 200 realizations than with 20 realizations. However,
it will be seen later that the convergence of the panel vibration prediction is achieved with only
30 realizations as it was pointed out for homogeneous excitations in Maxit (2016). This can be
explained by the fact that the weakly correlated contributions of the WPF have few influence on
the panel response and therefore it is not necessary to predict them accurately.

4.3. Plate vibratory model

A rectangular aluminum panel simply supported on its four edges is considered for the following
numerical applications. The material Young’s modulus F, Poisson’s ratio v, and mass density p,
are respectively, 68.9 GPa, 0.35 and 2740kg/m®. The panel dimensions are 1 m and 0.35m in the
streamwise and crosswise directions, respectively. The panel thickness h linearly varies along the
z-axis from 2 mm at the leading edge to 6 mm at the trailing edge as schematically represented on
Fig. 9. A varying thickness has been chosen in order to stress the effect of the spatial variation
of the excitation, while keeping an almost canonical case. Indeed, because of the symmetry of
the modal shapes for a simply supported plate with constant thickness, the influence of the spatial
evolution of the TBL on the vibration behavior is flattened. This symmetry of the mode shapes is
broken when considering a variation of the thickness in the streamwise direction, the modes can
then be excited with different strengths depending on the spatial distribution of the loadings due
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Figure 9: 2-D panel view (width L, = 0.35m).

to the TBL. It is assumed that the slope resulting from this spatial variation of the thickness is weak
and does not affect the TBL compared to a flat panel.

The normal modes of the undamped panel have been extracted from a finite element model
using the MSC NASTRAN software. Two 2-D meshes composed of quadrilateral linear elements
(CQUAD4) have been considered:

- the coarser one is composed of 2759 nodes: 89 along 7 and 31 along z. This mesh is adapted
for the UWPW and SDT calculations that considered wall pressure fields filtered at a given
cutoff wavenumber k. The element-size criterion defined by Eq. (11) is respected even
when the cutoff wavenumber in the streamwise direction is defined regarding the convective
wavenumber. This will make it possible to perform UWPW calculations including the con-
vective contributions even if in general they will have a negligible effect on the vibrations of
the panel;

- the finer one, composed of 29344 nodes: 131 along 7 and 224 along z. This mesh is adapted
for the spatial calculations. It permits to describe the variations of the WPF due to the flow
convection as well as the small coherence length of the WPF in the transverse direction.
Indeed, the mesh exhibits 5 elements per convective wavelength in the z direction and 5
elements per coherence length in the z direction at the highest frequency of interest.

Shell properties (PSHELL) and isotropic material properties (MAT1) have been used. Respective
thicknesses are assigned at the four nodes of each quadrilateral element for describing the plate
thickness variations. The plate modes are extracted with a normal modal analysis using the Lanczos
method (SOL103) up to 1000 Hz. The vibratory responses of the panel induced by the WPF have
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then been estimated using the modal expansion technique with a damping loss 7 factor set at 1%
for all the modes.

4.4. Comparison of the vibratory response prediction

Let us compare the plate velocity response predicted by the different methods presented in the
section 3. The flow conditions considered in these calculations are the ones presented in the
section 4.1. In particular, the flow speed is 40 m/s and the TBL parameters vary spatially according
to Fig. 4.

The SDT method and the L-UWPW method, that both consider uncorrelated pressure fields on
the different sub-areas, are compared in Fig. 10(a) in terms of spatial mean square velocity of the
plate:

- 1
Sunle) = 5 [[_Suu(Xwpax. 27)

The vibratory calculations were achieved considering 5 sub-areas and using 10 realizations of the
pressure field for the L-UWPW method. The choice of the number of sub-areas have been the
subject of a discussion in Guillon et al. (2021). Increasing the number of sub-areas leads to a
better representation of the continuous growth of the TBL, at the cost of the loss of global spatial
correlation of the excitation, in particular for the formulation with uncorrelated sub-areas used
here. When the convective peak is filtered, a suggested criterion based on the cutoff wavenumber
is given in Eq. (16). Frequency range starts at 100 Hz, where the coherence length A is at least
two times smaller than the panel length. As expected, both methods give very similar results. Fig.
10(b) shows the difference of prediction between the L-UWPW method and the SDT for different
number of realizations. It can be observed that higher is the number of realizations in the L-UWPW
method, lower is the discrepancy between the two methods. An average of these discrepancies over
the studied frequency range gives 0.76 dB with 10 realizations, 0.41 dB with 30 realizations and it
goes down to 0.18 dB with 100 realizations. In the following, 30 realizations will be used for the
computation of the pressure field with UWPW methods.

Now, the results of the L-UWPW and G-UWPW methods are compared with the ones of the
spatial method that can be seen as a reference. The discrepancies of the prediction between the
two UWPW approaches and the spatial approach are shown in Fig. 11 in function of the frequency.
Overall, the differences with the spatial approach are similar for the two UWPW approaches for
the frequencies above the third mode, that is to say above 159 Hz. Average error comparing the
spatial method for the L-UWPW method is 0.62 dB whereas it is 0.61 dB with the G-UWPW method
in the frequency range [159-700] Hz. At some frequencies close to the resonance frequencies, the
differences can be more significant (around 1 or 2 dB) with a change of sign at the resonances. This
can be explained by a shift of the resonant frequencies predicted by using two different meshes
(i.e. the coarser mesh for the UWPW calculations and the finer one for the spatial calculation).
The C-UWPW processes are then not directly at the origin of these discrepancies. A supplementary
C-UWPW calculation have been performed considering the modal frequencies calculated by FEM
with the finer mesh. In this case, the differences between the C-UWPW and the spatial results are
less than 1 dB over all the frequency range (result not shown). The differences observed in Fig. 11
can then be attributed to discrepancies in the modal frequencies predictions with the two meshes
and not to the accuracy of the C-UWPW approach. Nonetheless, the L-UWPW predictions diverge
in the low frequencies. This result could be expected as the L-UWPW approach supposes, as SDT,
that the pressure fields acting on the different sub-areas are uncorrelated. The validity criterion on
the minimum sub-area size defined by Eq. (16) that was originally defined for the SDT should also
be respected for the L-UWPW method. When the frequency decreases, the flexural wavenumber
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Figure 10: Spatial mean square velocity predicted by the SDT and the L-UWPW method
considering 5 sub-areas. (a): Velocity level (dB, ref. 1 (m/s)?/Hz). (b): Difference between the
L-UWPW method and the SDT predictions for different number of realizations.

and then the cutoff wavenumber & defined by Eq. (7) decreases. This implies that fewer sub-
areas must be considered in the low frequency range compared to upper frequencies in order to
respect the criterion of Eq. (16). Whereas the L-UWPW approach is not well adapted for the low
frequencies, one can emphasize that the G-UWPW gives accurate results in the whole frequency
range as observed in Fig. 11.

As the G-UWPW approach does not consider that the pressure fields acting on different sub-
areas are uncorrelated, it does not require to fulfill the criterion (16) on the minimum sub-areas
sizes. An “asymptotic” formula can be then proposed by considering a number of sub-areas NV equal
to the number of nodes of the plate mesh, so that each node is associated to its own sub-area. The
blocked pressure at node X can then be calculated by:

po(X,w) = Y VSaa (X w)exp {j (k- X +py)}, (28)

ke

_ X (k,w)dk”
with Sya, (X, w) = e (29)
T

where @f,;(k, w) is the WPF spectrum calculated with the TBL parameters at X.

As the concept of sub-area decomposition does not appear explicitly in this last formulation
and the pressure can vary from one node to another, the process related to Eq. (28) is named the
“continuously” varying uncorrelated wall plane waves (C-UWPW) technique. For illustration, Fig.
12 presents two realizations of the WPF synthetized with the C-UWPW for the same situation than
Fig. 5. The WPF varies well continuously and the strength is growing gradually from the leading
edge to the trailing edge.

It can also be underlined that as the assumption consisting in neglecting the convective contri-
butions was related to the sub-area decomposition (Guillon et al., 2021), the C-UWPW can likely
describe these convective contributions when it is necessary (for instance, for frequencies below or
close to the aerodynamic coincidence frequency). In order to verify that the C-UWPW calculation
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Figure 12: Two examples of realization of the pressure field (Pa) at 100 Hz
generated by the C-UWPW method.
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Figure 13: Difference of mean square velocity level between the spatial approach and the
C-UWPW approach, with and without the convective contributions (30 realizations). Results of
the G-UWPW approach from Fig. 11 added for comparison.

converges well when the convective contributions are taken into account (even if these contribu-
tions have a negligible effect on the panel vibrations), the method is applied with two different
cutoff wavenumbers: first with a k defined by Eq. (7), which means that the contributions of the
convective of the WPF are neglected and second with k& = 180rad/m, which is higher than the
maximum convective wavenumber k. at 700 Hz, meaning that the contributions of the convective
of the WPF are taken into account. The difference of prediction with the spatial approach for the
C-UWPW method with and without the convective contributions are displayed in Fig. 13. First, it
can be observed that the discrepancies with the spatial approach are smaller than 0.5dB in gen-
eral. As for Fig. 11, some more significant discrepancies close to the resonant frequencies can be
attributed to difference of prediction of the resonant frequencies using the two different meshes.
The results in Fig. 13 are then satisfying and validates the C-UWPW approach for the present case.
Second, the two C-UWPW calculations match very well above 200 Hz whereas they are close to
each other below this frequency. Average error regarding to the spatial method is 0.61 and 0.72 dB
with 30 realizations, respectively without and with the convective contributions. This shows that
taking the convective contributions do not induce a divergence of the process. However, for the
present case and the frequencies considered well above the aerodynamic coincidence frequency,
the effect of the convective contributions is negligible on the panel vibrations.

Finally, two realizations of the pressure field used in the G-UWPW calculation with the convec-
tive peak are displayed in Fig. 14(a) and (c) and Fig. 15(a) and (c), at two given frequencies.
In Fig. 14, 159 Hz corresponds to a resonance (the third natural mode of the panel) and in Fig.
15, 277 Hz corresponds to an anti-resonance, halfway through the fifth and sixth natural modes
(first natural mode is below 100 Hz). The panel velocity field resulting from each pressure field
are plotted respectively in Fig. 14(b) and (d) and Fig. 15(b) and (d). For the resonance, the
velocity figures show that the modal shape dominates the plate behavior for any load. At the
anti-resonance, different plate responses could be observed for different pressure fields. The said
responses are still summations of modal shapes.

4.5. Panel with free edges: role of the convective peak

To highlight the effect of the convective contributions in some situations and to verify the accu-
racy of the C-UWPW approach for such cases, let us considered a second test case. The plate
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Figure 14: (a), (c): pressure fields (Pa) at the nodes of the spatial grid,
generated by the C-UWPW method and (b), (d): their respective
corresponding velocity fields (m/s), for a resonance (159 Hz).
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Figure 15: (a), (c): pressure fields (Pa) at the nodes of the spatial grid,
generated by the C-UWPW method and (b), (d): their respective
corresponding velocity fields (m/s), for an anti-resonance (277 Hz).

Free edge Simply Supported edges

\

T Free edge

Figure 16: Rectangular panel with F-SS-F-SS boundary conditions.

20



4
o
e}

&
S

Spatial — C-UWPW without conv.
—— C-UWPW with conv. 6 - = =C-UWPW with conv.

) (dB)

=
@ 90 a3
T W
c/)i z
> -100 g
=3 )
o O 2 -
S 110 25
o
>
-120 1 g
-130 : : : : : : -8 : : : : : :
100 200 300 400 500 600 700 100 200 300 400 500 600 700
Frequency (Hz) Frequency (Hz)
(@ (V)]

Figure 17: (a): Level of the spatial mean square velocity (dB, ref. 1 (m/s)/Hz) calculated with
the spatial method and the C-UWPW method including the convective contributions (30
realizations). Plate with F-SS-F-SS boundary condition. (b): Difference between the spatial
method and the C-UWPW method with or without the convective contributions.

dimensions and the material remain unchanged, but the two edges of the panel perpendicular
to the flow stream are set free, as represented in Fig. 16. The edges boundary conditions are
free-simply supported-free-simply supported (F-SS-F-SS). As explained by Hambric et al. (2004),
panels with free edges reacts more to the convective contributions of the WPF than the panels with
simply-supported or clamped boundary conditions. In other words, the panel filtering effect in the
wavenumber space is less significant for the former than for the latter.

The plate mean square velocity predicted with C-UWPW model is compared to the spatial one
on Fig. 17. Compared to the simply supported plate considered in the previous sections, the
resonant frequencies are shift toward the low frequencies. For instance, the third mode is moved
from 159Hz to 113 Hz. Fig. 17 shows a good agreement between the spatial results and the C-
UWPW results when the convective contributions are taken into account. The small differences
that can be observed in the higher part of the frequency range can be attributed to the finesse
of the mesh used for the UWPW calculations that can not fully describe the small wavelength
related to the convection. Fig. 17(b) shows that, if the convective contributions are neglected, the
errors of the C-UWPW approach can be significant. In this case, the C-UWPW approach generally
underestimates the plate velocity.

4.6. Influence of the non-homogeneity of the TBL

Finally, a last set of simulations is carried out for highlighting the effects of the non-homogeneity
of the TBL on the panel vibratory response. The plate considered and the flow conditions is the
one described in section 4.3 (i.e. plate with simply supported boundary conditions and a flow
speed of 40 m/s). Results of calculations taking the spatial variations of the TBL into account are
compared to the ones obtained by supposing that the TBL is homogeneous. The former results
are obtained with the spatial and the C-UWPW approaches described in the section 3 whereas
the latter ones are obtained with the spatial approach described in the section 2. The parameters
for the supposed homogeneous TBL correspond to a spatial arithmetic mean of the varying TBL
parameters: § = 10.7mm and 7 = 3.76 Pa.
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homogeneous TBL for spatial and C-UWPW (30 realizations) approaches.

The differences of plate mean square velocity for the non-homogeneous TBL and for the sup-
posed homogeneous TBL are plotted in Fig. 18. Three observations can be made: first, the curve
related to the spatial approach and the one related to the C-UWPW approach are very close on the
whole frequency range. This shows that the C-UWPW approach is well adapted to describe the
effect of the spatial variations of the TBL on the plate vibrations. Second, significant differences
(between 2 and 6 dB) can be observed on the whole frequency ranges between homogeneous and
non-homogeneous cases. This shows that supposing the TBL as homogeneous can lead to impor-
tant errors. Finally, the differences are not monotonic in frequency. For some particular frequencies
(around 250 Hz and 510 Hz), the absolute differences can be significantly higher than for the oth-
ers frequencies. They correspond to particular modes exhibiting deformations on the thinner part
of the plate (i.e. close to the leading edge). As the TBL is growing from the leading edge, this
thinner part is less excited than the rest of the panel and then these modes reacts less than in
the case of a homogeneous TBL. This phenomena had already be observed with the SDT (see the
reference Guillon et al. (2021) for more details on this aspect).

In terms of computing time, the spatial method has required 32 minutes per frequency point
whereas only 1 minute has been necessary for the C-UWPW method. The former requires to
calculate all the FRF between the couples of nodes of the FE mesh and to perform the double
summation in Eq. (1) which are time consuming. In contrary, the C-UWPW method only requires
to generate few realizations (typically 30) of the wall pressure field using Eq. (28), to calculate the
vibroacoustic response of the panel to these pressure fields and to average the different responses.
The reduction of the computing time of a factor greater by 50 is one of the main advantages of the
C-UWPW method compared to the spatial one. Moreover, the C-UWPW is a non intrusive method.
This means that it can be easily used with any vibroacoustic code. In the present case, the pressure
fields have been calculated with MATLAB and have then be exported to be used as loadings of the
MSC NASTRAN calculations. A last advantage of the method is that the same set of pressure fields
can be used for different panels as long as the size of the panels and the flow conditions remain
the same.
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5. Conclusions

A numerical process has been proposed for predicting the response of vibrating structures excited
by a non-homogeneous turbulent boundary layer. This original process make it possible to take
into account the spatial variations of the TBL parameters in vibroacoustic simulations. It consists
in a first step to generate different realizations of the random pressure fluctuations induced by
the inhomogeneous TBL by using the analytical expression of Eq. (28). This expression gives the
blocked pressure at a given node X of the vibroacoustic model from the spectrum of the WPF
estimated with the TBL parameters at X. In a second step, the different synthetized wall pressure
fields of the inhomogeneous TBL are used as different loadings of the vibroacoustic model. Finally,
after calculation of the vibroacoustic responses to the different loadings, an ensemble average of
the different responses is performed to deduce the vibroacoustic response to the inhomogeneous
TBL. This approach has been called the Continuously varying Uncorrelated Wall Plane Waves (C-
UWPW) method as it consists in an extension of the UWPW technique developed some years ago
for homogeneous TBL (Maxit, 2016).

The results of the C-UWPW method has been confronted to the ones obtained by the spatial
approach and the Sub-area Decomposition Technique (SDT). This latter approach has been pro-
posed recently by the present authors (Guillon et al., 2021) as a primary approach to take the
non-homogeneous TBL into account and it has been used in the present paper as a base to develop
the theoretical fundamentals of the C-UWPW method. The test case considered consisted in a
rectangular plate excited on one side by a growing fully turbulent boundary layer triggered at one
edge of the plate. The plate thickness was linearly varying in the stream-wise direction to stress
the effect of the spatial evolution of the TBL. The following conclusions can be drawn from these
comparisons:

- the C-UWPW results in term of plate vibratory response converges toward the ones of the
spatial method as soon as 30 realizations are considered in the process;

- contrary to the SDT, the C-UWPW method can describe the convective contributions of the
WPF when these ones have a significant influence of the panel response. However, as for
the SDT, when these contributions can be neglected (for instance for frequencies well above
the aerodynamic coincidence frequency for some panels), they can be easily filtered thanks
to an appropriate cutoff wavenumber. This generally makes it possible to save significant
computing time because a coarser mesh can be used in this case;

- the C-UWPW method is significantly less time consuming in term of computation that the
spatial approach because it does not necessary to achieve a double summation on transfer
functions that should be estimated between many nodes (see Eq. (3)). In the C-UWPW
method, the number of vibroacoustic calculations is limited to the number of realizations
considered. When the convective contributions can be neglected, the gain in computing
times is even more important (due to use of a coarse mesh as evoked previously);

- comparison of a C-UWPW calculation describing the non-homogeneous TBL and another one
supposing the TBL as homogeneous shows a significant difference (up to 6 dB) on the panel
velocity response. This stresses the importance to take the spatial variations of the TBL pa-
rameters into vibroacoustic simulations, for instance with the proposed C-UWPW approach.

The investigations discussed in this paper will deserve to be continued in two directions in
the future: first, the proposed approach has been validated by comparison with others numerical
methods which are more time consuming. The gain in terms of computing is very significant.
However, only an experimental validation would validate the whole process. In particular, the
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vibration results depend on the accuracy of the WPF model considered in the calculation. At
the authors’ knowledge, experimental data allowing this validation are not available in the open
literature. A dedicated study has to be carried out. The present approach could be used as a starting
point to define plate cases highlighting the influence of the spatial variations of the TBL parameters
(as the plate varying thickness considered in this paper). Wall pressure field, flow and vibration
measurements will then be necessary on these cases in an aerodynamic or hydrodynamic tunnel;
second, a case without static pressure gradient has been considered as it allowed us using the
zero pressure gradient models of the WPF deeply studied and validated in the literature. However,
the cases of non-homogeneous TBL resulting of pressure gradients are commonly met in practice.
The proposed approach could be applied to these cases as soon as accurate models of the WPF in
adverse or favorable pressure gradients will be available. The developments of these WPF models
are then in the natural prolongation of the present work.
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