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DISCRETE APPROXIMATION OF THE GRIFFITH FUNCTIONAL BY ADAPTIVE FINITE ELEMENTS

This paper is devoted to show a discrete adaptive finite element approximation result for the isotropic two-dimensional Griffith energy arising in fracture mechanics. The problem is addressed in the geometric measure theoretic framework of generalized special functions of bounded deformation which corresponds to the natural energy space for this functional. It is proved to be approximated in the sense of Γ-convergence by a sequence of discrete integral functionals defined on continuous piecewise affine functions. The main feature of this result is that the mesh is part of the unknown of the problem, and it gives enough flexibility to recover isotropic surface energies.

1. Introduction 1.1. The variational approach to fracture. The Griffith functional has been introduced in the context of brittle fracture. It finds its roots in the seminal work of Griffith [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] whose main ideas have been revisited in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] (see also the monograph [START_REF] Bourdin | The variational approach to fracture[END_REF]) into a variational evolution formulation. The main point is that, in a quasi-static setting and in presence of irreversibility, a constrained global minimization principle together with an energy balance select equilibrium states of an elastic body experiencing brittle fracture. In a nutshell, the Griffith energy is defined by

G(u, K) := Ω\K |e(u)| 2 dx + µH N -1 (K), (1.1) 
where Ω ⊂ R N , a bounded open set, stands for the reference configuration of an elastic material, K ⊂ Ω is a codimension-one set representing the crack, u : Ω \ K → R N is the displacement field which might be discontinuous across K, and its symmetric gradient e(u) := (∇u + ∇u T )/2 is the linearized elastic strain. The constant µ > 0 is a material parameter called toughness. This energy puts in competition a bulk energy, representing the elastic energy stored in the body outside the crack, and a surface energy penalizing the presence of the crack K through its (N -1)-dimensional Hausdorff measure, henceforth denoted by H N -1 .

This problem falls within the framework of so-called free discontinuity problems (according to De Giorgi's terminology), and it presents many formal analogies with its scalar counterpart, the Mumford-Shah functional. Although, thanks to geometric measure theory, the existence theory for the latter is by now quite well understood (see e.g. [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] and references therein), the minimization of the Griffith functional had to face serious additional difficulties. In particular, a satisfactory existence theory has only recently been solved. As for the Mumford-Shah functional, it passes through the introduction of a "weak formulation" where the crack is replaced by the jump set J u of u. A convenient functional setting to investigate this problem is that of functions of bounded deformation, BD(Ω), which correspond to (integrable) vector fields u : Ω → R N whose distributional symmetric gradient Eu is a bounded Radon measure. This space has been introduced in [START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF] (see also [START_REF] Temam | Problèmes mathématiques en plasticité[END_REF][START_REF] Strang | Functions of bounded deformations[END_REF]) as a natural space to formulate problems of perfect plasticity. Brittle fracture however requires a finer understanding of this space and especially the introduction of the subspace SBD(Ω) of special functions of bounded deformation in [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF], for which the singular part of Eu with respect to the Lebesgue measure is concentrated on the jump set. Unfortunately, this step forward was still not enough because of lack of control of the values of u (due to the failure of Poincaré-Korn and/or Korn type inequalities in that space). It is only recently that the introduction of the space GSBD(Ω) of generalized special functions of bounded deformation in [START_REF] Maso | Generalised functions of bounded deformation[END_REF] (see Section 2 for the precise definition) has given a satisfactory mathematical framework to investigate a well founded existence theory for the weak formulation, as well as for the original one. Some further compactness properties of that space have been investigated in [START_REF] Chambolle | Crismale: Compactness and lower semicontinuity in GSBD[END_REF][START_REF] Chambolle | Existence of strong solutions to the Dirichlet problem for the Griffith energy[END_REF] which has led to prove the existence of minimizers of the Griffith functional under Dirichlet boundary conditions (formulated in a relaxed sense).

1.2. Approximation of the Griffith energy. The Γ-convergence approximation of free discontinuity problems (e.g. by more tractable ones from a numerical point of view) is of fundamental importance in applications. It has been proven in [START_REF] Braides | Non-local approximation of the Mumford-Shah functional[END_REF] that it is not possible to approximate free discontinuity functionals by means of local integral functionals. To overcome this difficulty, a first possibility is to introduce an additional variable like, e.g., in phase field approximations where the sharp discontinuity is smoothened into a diffuse discontinuity. It represents one of the most popular methods which have already proven to be successful in other contexts such as the Modica-Mortola approximation of the perimeter functional [START_REF] Modica | Un esempio di Γ-convergenza, Boll[END_REF], or the Ambrosio-Tortorelli approximation of the Mumford-Shah functional [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF]. In the context of brittle fracture, such approximations, which have a founded mechanical interpretation as a gradient damage model, have only recently been established in full generality in [START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF] (see also [START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF]). The main drawback is that, an additional numerical approximation would give rise to a multiscale problem with on the one hand the parameter of approximation, and on the other hand the mesh size (see e.g. [START_REF] Bellettini | Discrete approximation of a free discontinuity problem[END_REF][START_REF] Bach | Quantitative analysis of finite-difference approximations of freediscontinuity problems[END_REF][START_REF] Crismale | A derivation of Griffith functionals from discrete finite-difference models[END_REF]). Another possibility is to use nonlocal integral functionals as e.g. in [START_REF] Braides | Non-local approximation of the Mumford-Shah functional[END_REF][START_REF] Negri | A non-local of free discontinuity problems in SBV and SBD[END_REF][START_REF] Scilla | Non-local approximation of the Griffith functional[END_REF].

For what concerns the numerical treatment of free discontinuity problems, the main difficulty is related to the fact that the jump set is part of the unknowns and that standard discontinuous finite element methods do not in general apply in this context. Having this problematic in mind as well as the multiscale issues arising in phase field or nonlocal approximations, one is thus tempted to find single scale discrete approximations of free discontinuity problems. There is a huge literature on this subject and, without being exhaustive, we refer to discrete-to-continuous approximations results [START_REF] Alicandro | Finite-difference approximation of energies in fracture mechanics[END_REF][START_REF] Chambolle | Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations[END_REF][START_REF] Chambolle | Finite-differences discretizations of the Mumford-Shah functional[END_REF][START_REF] Gobbino | Finite difference approximation of the Mumford-Shah functional[END_REF][START_REF] Negri | The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional[END_REF][START_REF] Negri | A finite element approximation of the Griffith's model in fracture mechanics[END_REF][START_REF] Negri | Convergence analysis for a smeared crack approach in brittle fracture[END_REF], nonlocal finite elements approximations [START_REF] Lussardi | Convergence of nonlocal finite element energies for fracture mechanics[END_REF][START_REF] Negri | A finite element approximation of the Griffith's model in fracture mechanics[END_REF] or discrete approximations based on stochastic meshes in [START_REF] Bach | Random finite-difference discretizations of the Ambrosio-Tortorelli functional with optimal mesh size[END_REF][START_REF] Ruf | Discrete stochastic approximations of the Mumford-Shah functional[END_REF].

Let us focus on the discrete approximation result obtained in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] for the Mumford-Shah functional in dimension N = 2. In that work, the classical Mumford-Shah functional

F (u) := Ω |∇u| 2 dx + µH 1 (J u )
is approximated in the sense of Γ-convergence by a functional of the form

F ε (u) := Ω f ε (∇u) dx
putting a restriction on the functional space on which F ε is defined. The functional F ε is discrete in the sense that u is (a scalar-valued) continuous function and piecewise affine on suitable εdependent meshes (see Definition 1.1). It consists in an adaptive finite element approximation because there is an implicit mesh optimization whose numerical implementation has been carried out in [START_REF] Bourdin | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF]. The function f ε (∇u) takes the form 1 ε f (ε|∇u| 2 ) where f is a nondecreasing function satisfying the standard properties (1.4). Typical examples of functions f are, on the one hand the arctan function (as e.g. in [START_REF] Gobbino | Finite difference approximation of the Mumford-Shah functional[END_REF] following a conjecture of De Giorgi) and, on the other hand f (t) = t ∧ κ. The main feature of this result is that, allowing the mesh to move gives enough flexibility to approximate isotropic surface energies. The constant µ appearing in the functional F is explicit and only depends on κ and the geometry of the triangulation.

An analogous analysis has been carried out in [START_REF] Negri | The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional[END_REF], where the author constraints the mesh to be made either of equilateral triangles, or of right isosceles ones. In that case, the result is that the functional F ε Γ-converges to an anisotropic version of the Mumford-Shah functional

Ω |∇u| 2 dx + Ju φ(ν u ) dH 1 ,
for some function φ : S 1 → R, which can be explicitly computed, depending on the normal ν u to the jump set J u . In [START_REF] Negri | Convergence analysis for a smeared crack approach in brittle fracture[END_REF], the same problem is addressed in the two-dimensional vectorial setting. If f ε is as before, the following approximating energy is considered Ω f ε (e(u)) dx.

As in [START_REF] Negri | The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional[END_REF], the ε-dependent mesh is fixed and made either of equilateral triangles, or of right isosceles triangles, and the result is that this functional Γ-converges to an anisotropic version of the Griffith functional

Ω |e(u)| 2 dx + Ju φ(ν u ) dH 1 ,
where φ : S 1 → R is as in [START_REF] Negri | The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional[END_REF]. Note that if f (t) = t ∧ κ, then

f ε (e(u)) = ε|e(u)| 2 if ε|e(u)| 2 ≤ κ, κ if ε|e(u)| 2 > κ. (1.2) 
In order to recover the isotropic Griffith energy (1.1), a similar approximation result is considered in [START_REF] Negri | A finite element approximation of the Griffith's model in fracture mechanics[END_REF] where, now, the meshes are allowed to move as in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], but the function f ε now depends on the full gradient ∇u (instead of the symmetric gradient) and behaves like

f ε (∇u) ∼ ε|e(u)| 2 if ε|∇u| 2 ≤ κ, κ if ε|∇u| 2 > κ (1.3) 
(compare with (1.2)). In that case, the analysis of [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] can be adapted to show a Γ-convergence result towards the isotropic Griffith energy (1.1) with the same geometric multiplicative constant µ (as in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF]) in front of the surface energy.

1.3. Our result. The objective of the present work is to generalize the previous results in the two-dimensional vectorial case to show an analogous statement as in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], namely an adaptive discrete finite element approximation of the isotropic Griffith functional. To state precisely our main result, Theorem 1.3, we need to introduce some notation (we refer to Section 2 regarding functional spaces).

Let Ω be a bounded open set of R 2 with Lipschitz boundary. As in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], we introduce the following class of admissible meshes. Definition 1.1. A triangulation of Ω is a finite family of closed triangles intersecting Ω, whose union contains Ω, and such that, given any two triangles of this family, their intersection, if not empty, is exactly a vertex or an edge common to both triangles. Given some angle θ 0 with 0 < θ 0 ≤ 45 • -arctan(1/2), and a function ε → ω(ε) with ω(ε) ≥ 6ε for any ε > 0 and lim ε→0 + ω(ε) = 0, we define, for any ε > 0 T ε (Ω) := T ε (Ω, ω, θ 0 )

as the set of all triangulations of Ω made of triangles whose edges have length between ε and ω(ε), and whose angles are all greater than or equal to θ 0 . Then we consider the finite element space V ε (Ω) of all continuous functions u : Ω → R 2 for which there exists T ∈ T ε (Ω) such that u is affine on each triangle T ∈ T.

Remark 1.2. Imposing θ 0 > 0 and ω(ε) ≥ ε corresponds to a non-flatness condition that ensures the existence of a radius (θ 0 ) > 0 such that for all triangle T ∈ T, one can find a point x ∈ T such that B (x) ⊂ T. As for the conditions θ 0 ≤ 45 • -arctan(1/2) and ω(ε) ≥ 6ε, we will later see that they are crucial to prove the existence of recovery sequences. Indeed, we use the same optimal triangulation introduced in [23, Appendix A], where the authors' explicit construction makes use of triangles with edges of length 6ε and angles equal to 45 • -arctan(1/2).

Let us consider a nondecreasing continuous function

f : [0, +∞) → [0, +∞) satisfying f (0) = 0, lim t→0 + f (t) t = 1 and lim t→∞ f (t) = κ, (1.4) 
for some constant κ > 0, and a symmetric fourth order tensor

A ∈ L (M 2×2 sym , M 2×2 sym ) such that α|ξ| 2 ≤ Aξ : ξ ≤ β|ξ| 2 for all ξ ∈ M 2×2 sym , (1.5) 
for some constants α, β > 0.

Our main result is the following Γ-convergence approximation of the Griffith functional.

Theorem 1.3. The functional

F ε : L 0 (Ω; R 2 ) → [0, +∞] defined by F ε (u) =    1 ε Ω f εAe(u) : e(u) dx if u ∈ V ε (Ω), +∞ otherwise (1.6) 
Γ-converges, with respect to the L 0 (Ω; R 2 )-topology of convergence in measure, to the Griffith functional F : L 0 (Ω; R 2 ) → [0, +∞] given by

F(u) =    Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ) if u ∈ GSBD 2 (Ω), +∞ otherwise.
Remark 1.4. As explained above, a meaningful choice is the function f (t) = t ∧ κ, for which the energy reduces to

Ω κ ε ∧ Ae(u) : e(u) dx.
It corresponds to the brittle damage energy of a linearly elastic material composed of two phases: an undamaged one whose elasticity coefficients are represented by the Hooke tensor A, and a damaged one whose elasticity coefficients are set to 0. The constant κ/ε stands for the toughness of the material whose diverging character as ε → 0 forces the damaged zones to concentrate on vanishingly small sets (see [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF]).

1.4. Strategy of proof. As usual in Γ-convergence, the proof is achieved by combining a compactness result, a lower bound and an upper bound inequality. In order to describe our argument, let us assume for simplicity that f (t) = t ∧ κ and A = id.

Our compactness result, Proposition 4.5 rests on the general GSBD compactness result of [START_REF] Chambolle | Equilibrium configurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF]. Given a sequence {u ε } ε>0 with uniformly bounded energy, one can apply [START_REF] Chambolle | Equilibrium configurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF]Theorem 1.1] to the modified function v ε := u ε 1 {|e(uε)| 2 ≤κ/ε} which consists in putting the value zero inside each triangle T where the (symmetric) gradient of u ε is "large". It might thus create a jump on the boundary of T whose perimeter can be estimated by L 2 (T )/ε. It leads to compactness in measure for the sequence {u ε } ε>0 (up to subtracting a sequence of piecewise rigid motions, leaving the energy unchanged), which thus justifies why it is natural to consider Γ-convergence with respect to this topology.

The upper bound causes no particular difficulty. It consists in using known density results in GSBD 2 (Ω) (see [START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF][START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF]) to reduce to the case where the jump set of u is made of finitely many pairwise disjoint closed line segments, and u is smooth outside. Then, considering a similar optimal triangulation of Ω as in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] (whose vertices do not cross the jump set) and a piecewise affine Lagrange interpolation of u, it leads to the desired upper bound (see Proposition 3.11).

The proof of the lower bound inequality is much more delicate to address and it represents, to our opinion, the main achievement of this work. First of all, the blow-up method allows one to identify separately the bulk part and the singular part. The bulk part can be easily recovered by modifying u ε into a new function which vanishes in all triangles where e(u ε ) is "too large" as in the compactness argument (see Proposition 3.4). The main difficulty is to get a lower bound for the singular part of the energy.

Before describing our strategy of proof, let us briefly explain why the methods of [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] (and similarly [START_REF] Bourdin | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF]) fail in our situation. The idea of [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] consists in modifying every minimizing sequence {u ε } ε>0 inside each triangle T of the associated triangulation T ε ∈ T ε (Ω) according to its variations along each edge of T . It rests on the introduction of a jump criterion which stipulates that if the variation of u ε is large enough, it is convenient to create a jump along the edge. More precisely, if x 1 , x 2 and x 3 stand for the vertices of the triangle T , it will be energetically favorable to create a jump at the middle point of the segment [x i , x j ] if

|u ε (x i ) -u ε (x j )| |x i -x j | > σ √ ε ,
for some constant σ > 0, while u ε remains unchanged on [x i , x j ] otherwise. This criterion has to be defined in such a way that: (i) the new function, say w ε , has a jump set in each triangle T which satisfies H 1 (J wε ∩ T ) ≤ L 2 (T )/(ε sin θ 0 ), where θ 0 is as in Definition 1.1, and w ε does not jump across ∂T ; (ii) the absolutely continuous part of the gradient, ∇w ε , is controlled in L 2 (T ) by the energy restricted to T . This construction ensures that the variation of the new discontinuous and piecewise affine function w ε is always controlled along at least two edges of each triangle T , and it yields a control of the full gradient ∇w ε of w ε inside T . In [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], this is possible thanks of the scalar nature of the problem because the gradient ∇w ε|T is a (constant) vector in R 2 (see [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF]Remark 3.5]).

In our case, u ε is not scalar-valued anymore, but vector-valued and the energy only depends on its symmetric gradient e(u ε ). If one uses the same criterion than in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], then condition (i) above will be satisfied for the new function w ε on T . However, one will only be able to estimate the L 2norm of the (symmetric) gradient of w ε by that of the full gradient of u ε which, unfortunately, is not controlled by the energy F ε (u ε ). Note that in [START_REF] Negri | A finite element approximation of the Griffith's model in fracture mechanics[END_REF], such a control is artificially made possible thanks to the particular form of the energy (see (1.3) above). This is however not natural in this linearized elasticity setting where the energy should be expressed in terms of the symmetric gradient of the displacement.

As a consequence, the jump criterion has to be modified. As the energy only depends on the symmetric part of the gradient of u ε , it would be natural to consider a criterion involving the longitudinal variation of u ε along the edges of the triangle instead of the full variation. In other words, one could modify the criterion by asking that if

|(u ε (x i ) -u ε (x j )) • (x i -x j )| |x i -x j | 2 > σ √ ε ,
then we create a jump at the middle point of [x i , x j ], while u ε remains unchanged on [x i , x j ] otherwise. In that case, it is again not possible to control the symmetric gradient e(w ε ) of the new function w ε by that of u ε . Indeed, in a similar way as in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], the previous criterion ensures that the longitudinal variation of w ε along at least two edges of each triangle is controlled by the energy restricted to T . If we call ξ 1 and ξ 2 ∈ S 1 both (linearly independent) directions associated to these "good" edges, it shows that e(w ε ) |T : (ξ 1 ⊗ ξ 1 ) and e(w ε ) |T : (ξ 2 ⊗ ξ 2 ) are controlled by e(u ε ) |T which is not enough to control the full 2 × 2 symmetric matrix e(w ε ) |T which has three degrees of freedom. In addition, some (uncontrolled) discontinuities can also be created at the interface I := ∂T ∩ ∂T between two adjacent triangles T and T so that condition (i) fails as well.

Overcoming these difficulties seems to be a very serious issue so that we decided to attack this problem from a different angle. First of all, the use of the blow-up method allows one to reduce to the case where Ω = B is the unit ball, u is a step function of the form

u(x) = a if x • ν < 0, b if x • ν > 0,
for some a, b ∈ R 2 with a = b and ν ∈ S 1 (with a jump set corresponding to the diameter of B orthogonal to ν), and, see Lemma 3.6, such that

{|e(uε)| 2 ≤κ/ε} |e(u ε )| 2 dx → 0. (1.7)
To make our strategy of proof more transparent, we assume that a • ν = b • ν. A standard argument based on Fubini's Theorem shows that the one-dimensional section of u ε in the direction ν passing through the point y,

namely t → (u ε ) ν y (t) := u ε (y + tν) • ν converges (in measure) to the step function t → u ν y (t) = a • ν1 R -+ b • ν1 R + .
Let us denote by T ε the triangulation on which u ε is (continuous and) piecewise affine. We further denote by T ε b the familly of all triangles T ∈ T ε such that |e(u ε ) |T | 2 > κ/ε. Thanks to (1.7), we show that almost every line orthogonal to J u ∩ B must cross at least one triangle T ∈ T ε b (see Lemma 3.7). The reason is that if, for some y ∈ J u ∩ B, the line y + Rν intersects no such triangles, then (u ε ) ν y would be bounded in

H 1 (because |((u ε ) ν y ) | ≤ |e(u ε )(y + tν)|
) and thus, it would converge weakly in that space to a constant function, contradicting that a • ν = b • ν. This information allows one to get a bad lower bound for the surface energy with 1/2 multiplicative factor. It suggests to improve the previous argument by showing that "many" lines y + Rν passing through y ∈ J u ∩ B must actually cross at least two triangles in T ε b , which is the object of Lemma 3.8. To do that, we show in Lemma 3.9 that there are very few points y in J u ∩ B such that the line y + Rν crosses exactly one triangle T ∈ T ε b . Indeed, in that case, up to a small error, the function (u ε ) ν y would have to pass from the value a • ν to b • ν inside T . Due to the particular shape of a triangle and of the fact that u ε is affine inside T , this could only happen for at most two values of y. Moreover, if y is far away from these two values, the variation of (u ε ) ν y across the triangle T is not sufficient, and it becomes necessary to cross an additional triangle T in T ε b . With this improvement, we can now construct two disjoint families of triangles with the property that both families project onto J u ∩ B into two sets of almost full H 1 measure (see Lemma 3.10). It enables one to compensate the bad multiplicative factor 1/2 in the previous argument, and obtain the expected lower bound with the correct constant corresponding to κ sin θ 0 (see Proposition 3.5). In [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF], the right factor in the lower estimate of the jump part comes from the two transitions of the phase field approximating J u , one from each side of the jump set. Similarily here, the same role is played by the characteristic function χ ε = 1 {|e(uε)| 2 >κ/ε} . Indeed, having in mind the optimal triangulation computed in the upper bound (see [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF]Appendix A]) and knowing that almost every line orthogonal to J u ∩ B crosses at least two distinct triangles of T ε b , we expect these triangles to form a neighbourhood of J u as in Figure 1. Therefore, L 1 (χ ε ) 

B J u ∩ B = Π ν ∩ B ε sin θ 0 (χ ε ) ν y = 0 0 1 B ν y y Figure 1
To conclude this introduction, let us mention that the originality of this work is twofold. First of all, we are able to provide a deterministic discrete finite element approximation result of the Griffith functional with isotropic surface energies. In particular, our approach does not require any unnatural dependence of the approximating energy with respect to the skew symmetric part of the gradient (in the context of linear elasticity) nor the use of stochastic meshes. Second, our method relies on an unusual application of the slicing method, which is rather employed in Γ-convergence analysis to reduce the dimension of the problem to a one-dimension study. Here, we instead use this method as a tool to enumerate in a non trivial way the number of triangles needed to derive the correct multiplicity in the surface energy. 1.5. Organisation of the paper. In Section 2, we collect useful notation and preliminary results that will be useful in the subsequent sections. Section 3 is devoted to show our main result, Theorem 1.3. It is divided into three parts: a first one consisting in a compactness result, Proposition 3.1, a second one corresponding to the lower bound inequality, Proposition 3.3, and a last one for the upper bound inequality, Proposition 3.11 through the construction of a recovery sequence. Eventually, in Section 4, we extend the previous Γ-convergence analysis allowing for Dirichlet boundary conditions formulated in a suitable way at the discrete and continuum levels (see Theorem 4.1). We then deduce the fundamental property of Γ-convergence, Corollary 4.2, in our specific setting, i.e., the convergence of minimizers as well as the minimum value.

Notation and preliminaries

Vectors. The Euclidean scalar product between two vectors x and y ∈ R n is denoted by x • y, and the associated Euclidean norm by |x| := √ x • x. For x ∈ R n and > 0, we denote by Functional spaces. We use standard notation for Lebesgue and Sobolev spaces. If U is a bounded open subset of R n , we denote by L 0 (U ; R m ) the set of all L n -measurable functions from U to R m . We recall that a sequence

{g k } k∈N in L 0 (U ; R m ) converges in measure to g ∈ L 0 (U ; R m ) if for all ε > 0, L n ({x ∈ U : |g k (x) -g(x)| > ε}) → 0.
Note that, for any fixed constant M > 0, we can define the following mapping

d M : (g, h) ∈ L 0 (U ; R m ) × L 0 (U ; R m ) → U M ∧ |g -h| dx ∈ R + (2.1)
which turns out to be a distance over L 0 (U ; R m ), with the property that g k converges in measure to g if and only if d M (g k , g) → 0. It confers to L 0 (U ; R m ) a metric space structure.

Functions of bounded variation and sets of finite perimeter. We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for an exhaustive treatment on that subject and just recall few notation. Let U ⊂ R n be a bounded open set.

A function u ∈ L 1 (U ; R m ) is a function of bounded variation in U , and we write u ∈ BV (U ; R m ), if its distributional derivative Du belongs to M(U ; M m×n ). We use standard notation for that space, referring to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for details. We just recall that a function u belongs to SBV 2 (U ; R m ) if u ∈ SBV (U ; R m ) (the distributional derivative Du has no Cantor part), its approximate gradient ∇u belongs to L 2 (U ; M m×n ) and its jump set J u satisfies H n-1 (J u ) < ∞.

A Lebesgue measurable set A ⊂ R n is a set of finite perimeter in U if its characteristic function 1 A belongs to BV (U ; R n ). The reduced boundary of A is denoted by ∂ * A and the essential (or measure theoretic) boundary is denoted by ∂ * A. For every t ∈ [0, 1], we denote by A (t) the set of points where A has density t.

We also recall that a partition P = {P i } i∈N of an open set U is a Cacciopoli partition if each P i have finite perimeter in U , and i∈N |D1 Pi |(U ) < ∞. In that case, i∈N [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Section 4.4]). In the sequel (as in [21, Theorem 2.5]), we will sometimes use the following notation for Caccioppoli partitions:

(P i ) (1) ∪ i,j∈N, i =j ∂ * P i ∩ ∂ * P j contains H n-1 -almost all of U (see
P (1) := i∈N P i (1) , ∂ * P := i∈N ∂ * P i .
(Generalized) functions of bounded deformation. A function u ∈ L 1 (U ; R n ) is a function of bounded deformation, and we write u ∈ BD(U ), if its distributional symmetric gradient Eu := (Du + Du T )/2 belongs to M(U ; M n×n sym ). We refer to [START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF][START_REF] Temam | Problèmes mathématiques en plasticité[END_REF][START_REF] Strang | Functions of bounded deformations[END_REF][START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF] for the main properties and notation of that space. The space SBD 2 (U ) is made of all functions u ∈ SBD(U ) (Eu has no Cantor part) such that the approximate symmetric gradient e(u) (the absolutely continuous part of Eu with respect to L n ) belongs to L 2 (U ; M n×n sym ) and its jump set J u satisfies H n-1 (J u ) < ∞. We now recall the definition and the main properties of the space of generalized functions of bounded deformation introduced in [START_REF] Maso | Generalised functions of bounded deformation[END_REF]. We first need to introduce some notation. Let ξ ∈ S n-1 , we denote by Π ξ := {y ∈ R n : y • ξ = 0} the orthogonal space to ξ and by p ξ the orthogonal projection onto Π ξ . For every set B ⊂ R n , we define for ξ ∈ S n-1 and y ∈ R n , B ξ y := {t ∈ R : y + tξ ∈ B}, B ξ := p ξ (B) and, for every (vector-valued) function u : B → R n and (scalar-valued) function f : B → R,

u ξ y (t) := u(y + tξ) • ξ, f ξ y (t) = f (y + tξ) for all y ∈ R n and all t ∈ B ξ y . Definition 2.1. Let U ⊂ R n be
a bounded open set and u ∈ L 0 (U ; R n ). Then, u ∈ GBD(U ) if there exists a nonnegative measure λ ∈ M(U ) such that one of the following equivalent conditions holds true for every ξ ∈ S n-1 :

(1) for every

τ ∈ C 1 (R) with -1 2 ≤ τ ≤ 1 2 and 0 ≤ τ ≤ 1, the partial derivative D ξ (τ (u • ξ)) = D(τ (u • ξ)) • ξ belongs to M(U ), and
|D ξ (τ (u • ξ))|(B) ≤ λ(B) for every Borel set B ⊂ U ;
(2) u ξ y ∈ BV loc (U ξ y ) for H n-1 -a.e. y ∈ U ξ , and

Π ξ |Du ξ y |(B ξ y \ J 1 u ξ y ) + H 0 (B ξ y ∩ J 1 u ξ y ) dH n-1 (y) ≤ λ(B) for every Borel set B ⊂ U,
where J 1

u ξ y := {t ∈ J u ξ y : |[u ξ y ](t)| ≥ 1}. The function u belongs to GSBD(U ) if u ∈ GBD(U ) and u ξ y ∈ SBV loc (U ξ y )
for every ξ ∈ S n-1 and for H n-1 -a.e. y ∈ U ξ . Every u ∈ GBD(U ) has an approximate symmetric gradient e(u) ∈ L 1 (U ; M n×n sym ) such that for every ξ ∈ S n-1 and for H n-1 -a.e. y ∈ U ξ , e(u)(y + tξ)ξ • ξ = (u ξ y ) (t) for L 1 -a.e. t ∈ U ξ y . Moreover, the jump set J u of u ∈ GBD(U ), defined as the set of all x 0 ∈ U for which there exist

(u + (x 0 ), u -(x 0 ), ν u (x 0 )) ∈ R n × R n × S n-1 with u + (x 0 ) = u -(x 0 ) such that the function y ∈ B 1 → u x0, := u(x 0 + y) converges in measure in B 1 as 0 to y ∈ B 1 → u + (x 0 ) if y • ν u (x 0 ) > 0, u -(x 0 ) if y • ν u (x 0 ) ≤ 0, is countably (H n-1 , n -1)-rectifiable.
Finally, the energy space GSBD 2 (U ) is defined as

GSBD 2 (U ) := {u ∈ GSBD(U ) : e(u) ∈ L 2 (U ; M n×n sym ), H n-1 (J u ) < ∞}.

Proof of the main result

Let us introduce the Γ-lower and upper limits (with respect to the topology of convergence in measure) F and F : L 0 (Ω; R 2 ) → [0, +∞] defined by

F (u) := inf lim inf ε→0 F ε (u ε ) : u ε → u in measure in Ω , and 
F (u) := inf lim sup ε→0 F ε (u ε ) : u ε → u in measure in Ω , for all u ∈ L 0 (Ω; R 2 ).
3.1. Domain of the Γ-limit. We begin our analysis by identifying the domain of finiteness of the Γ-limit.

Proposition 3.1. Let {ε k } k∈N satisfying ε k → 0, u ∈ L 0 (Ω; R 2 ) and {u k } k∈N ⊂ L 0 (Ω; R 2 ) be such that M := sup k F ε k (u k ) < ∞ and u k → u in measure in Ω. Then, u ∈ GSBD 2 (Ω).
Proof. According to the properties (1.4) satisfied by f , for all δ > 0, there exists a constant 0 < K < κ such that

f (t) ≥ K ∧ [(1 -δ)t] for all t ≥ 0. (3.1) Indeed, since f (t)/t → 1 as t → 0 + , there exists t * > 0 such that f (t)/t ≥ 1 -δ for all t ∈ [0, t * ] and K := (1 -δ)t * < κ. Hence, for all t ∈ [0, t * ], we have f (t) ≥ (1 -δ)t, while for all t > t * , as f is nondecreasing, f (t) ≥ f (t * ) ≥ K.
By definition of F ε k , there exists a triangulation

T k ∈ T ε k (Ω) such that u k ∈ V ε k (Ω)
is affine on each triangle T ∈ T k . We introduce the characteristic functions

χ k := 1 (1-δ)Ae(u k ):e(u k ) ≥ K ε k ∈ L ∞ (Ω; {0, 1})
which are constant on each triangle T ∈ T k , so that

D k := {χ k = 1} ∩ Ω = N k i=1 (T k i ∩ Ω)
for some triangles

T k i ∈ T k . Remark that this choice of χ k implies that M ≥ F ε k (u k ) ≥ (1 -δ) Ω (1 -χ k )Ae(u k ) : e(u k ) dx + K ε k Ω χ k dx, forcing χ k to converge to 0 in L 1 (Ω) since 0 ≤ Ω χ k dx ≤ K -1 M ε k → 0. Let v k := (1 -χ k )u k so that, by [3, Theorem 3.84], v k ∈ SBV 2 (Ω; R 2 ) with ∇v k = (1 -χ k )∇u k and J v k ⊂ Ω ∩ ∂D k ⊂ N k i=1 ∂T k i .
Note that

v k → u in measure in Ω and A := {x ∈ Ω : |u k (x)| → ∞} is L 2 -negligible. (3.2) Indeed, since u k → u in measure in Ω and {u k = v k } ⊂ D k with L 2 (D k ) → 0, for all η > 0, we get that L 2 ({|v k -u| > η}) ≤ L 2 ({|u k -u| > η}) + L 2 (D k ) → 0. Additionally, up to a subsequence (not relabeled), u k (x) → u(x) ∈ R 2 for L 2 -a.e. x ∈ Ω.
On the one hand, using the energy bound F ε k (u k ) ≤ M and the ellipticity property (1.5) of A, we infer that

Ω |e(v k )| 2 dx ≤ M (1 -δ)α . (3.3)
On the other hand, by definition of an admissible triangulation, the edges of each triangle T k i have length greater than or equal to ε k and their angles are all greater than or equal to θ 0 , so that the heights of such triangles must be greater than or equal to ε k sin θ 0 . Therefore, for all 1

≤ i ≤ N k , L 2 (T k i ) ≥ 1 2 (ε k sin θ 0 ) H 1 (∂T k i ) 3
which implies that for all open subset U ⊂⊂ Ω :

H 1 (J v k ∩ U ) ≤ 6 sin θ 0 i∈{1,...,N k }, T k i ∩U =∅ L 2 (T k i ) ε k . Let k U ≥ 1 (depending on U ) be such that for all k ≥ k U , any triangle T ∈ T k intersecting U is contained in Ω, then it follows that for all k ≥ k U , H 1 (J v k ∩ U ) ≤ 6 ε k sin θ 0 Ω χ k dx ≤ 6M K sin θ 0 , (3.4) 
where we used once more the energy bound

F ε k (u k ) ≤ M .
Gathering (3.3) and (3.4), we can apply the GSBD 2 -compactness Theorem ([19, Theorem 1.1]). Together with (3.2), it ensures the existence of a subsequence (depending on the open subset U , which we do not relabel) such that

u |U ∈ GSBD 2 (U ), e(v k ) |U e(u |U ) weakly in L 2 (U ; M 2×2 sym ) and H 1 (J u ∩ U ) ≤ lim inf k→∞ H 1 (J v k ∩ U ).
We then consider an exhaustion of Ω by a sequence of open subsets {U m } m∈N satisfying U m ⊂⊂ U m+1 ⊂⊂ Ω for all m ∈ N and m U m = Ω. Using a diagonal extraction argument, we can find a subsequence (still denoted by {v k } k∈N ) such that for all m ∈ N,

u |Um ∈ GSBD 2 (U m ) and e(v k ) |Um e(u |Um ) weakly in L 2 (U m ; M 2×2 sym ) and H 1 (J u ∩ U m ) ≤ lim inf k→∞ H 1 (J v k ∩ U m ). (3.5) Let us now check that u belongs to GSBD 2 (Ω). Indeed, let ξ ∈ S 1 and τ ∈ C 1 (R) be such that |τ | ≤ 1 2 and 0 ≤ τ ≤ 1. For all test function φ ∈ C ∞ c (Ω)
, there exists m ∈ N such that supp φ ⊂ U m so that, owing to the dominated convergence Theorem,

D ξ (τ (u • ξ)) , φ = - Um τ (u • ξ)D ξ φ dx = -lim k→∞ Um τ (v k • ξ)D ξ φ dx = lim k→∞ D ξ (τ (v k • ξ)), φ . Since v k • ξ ∈ SBV 2 (Ω), using the chain rule formula in BV ([3, Theorem 3.96]), we get that τ (v k • ξ) ∈ SBV 2 (Ω) with D ξ (τ (v k • ξ)) = τ (v k • ξ)e(v k ) : (ξ ⊗ ξ) L 2 Ω + τ (v + k • ξ) -τ (v - k • ξ) ν v k • ξ H 1 J v k .
Taking the variation, we infer that

|D ξ (τ (v k • ξ))| ≤ |e(v k )|L 2 Ω + H 1 J v k =: λ k .
As a consequence of (3.3) together with (3.4), the sequence

{λ k } k∈N is bounded in M(U m ) for all m ∈ N, with sup k≥k Um λ k (U m ) ≤ M (1 -δ)α + 6M K sin θ 0 =: M δ < +∞, so that, up to a further diagonal extraction, λ k U m λ (m) weakly* in M(Ω) for some nonnega- tive measure λ (m) ∈ M(Ω) satisfying, for all m ∈ N, λ (m) (Ω) ≤ lim inf k→∞ λ k (U m ) ≤ M δ .
Therefore, we can introduce the following nonnegative measure λ ∈ M(Ω) defined by

λ(B) := sup m∈N λ (m) (B) = lim m→∞ λ (m) (B) for all Borel subset B ⊂ Ω.
We thus obtain that

| D ξ (τ (u • ξ)) , φ | ≤ lim k→∞ λ k U m , |φ| = λ (m) , |φ| ≤ λ, |φ| , implying both that D ξ (τ (u • ξ)) ∈ M(Ω) according to Riesz Representation Theorem and that |D ξ (τ (u • ξ))| ≤ λ in M(Ω),
which shows that u ∈ GBD(Ω). Using next that u ∈ GSBD(U m ) for all m ∈ N and [29, Definition 4.2], we deduce that u ∈ GSBD(Ω). Eventually, by locality of the definition of the approximate symmetric gradient e(u) (see [29, Formula (9.1)]), as a consequence of (3.3) together with (3.5), we infer that e(v k ) e(u) weakly in L 2 (Ω; M 2×2 sym ) with e(u) ∈ L 2 (Ω; M 2×2 sym ). Passing to the limit as m → ∞ in the last property of (3.5) and using (3.4) shows that H 1 (J u ) < ∞. All of this establishes that u ∈ GSBD 2 (Ω) and completes the proof of the Proposition. Remark 3.2. We will later improve the previous result (see Proposition 4.5) by getting rid-off the a priori knowledge that u k converges in measure in Ω. The price to pay will be to subtract a sequence of piecewise rigid body motions. Proposition 4.5 will a posteriori justify why the topology of convergence in measure is the natural one to address the Γ-convergence analysis.

3.2. The lower bound. The proof of the lower bound inequality relies on the blow up method which consists in identifying separately the Lebesgue and jump parts of the energy.

Proposition 3.3. For all u ∈ L 0 (Ω; R 2 ), F(u) ≤ F (u).
Proof. Without loss of generality, we can assume that F (u) < ∞. For any ζ > 0, there exists a sequence {u ε } ε>0 such that u ε → u in measure in Ω and

lim inf ε→0 F ε (u ε ) ≤ F (u) + ζ < ∞. Let us extract a subsequence {u k } k∈N := {u ε k } k∈N from {u ε } ε>0 such that u k → u L 2 -a.e. in Ω and lim k→∞ F ε k (u k ) = lim inf ε→0 F ε (u ε ) < ∞.
This implies that, for k large enough,

u k ∈ V ε k (Ω) and sup k F ε k (u k ) < ∞.
By definition of the finite element space V ε k (Ω), there exists a triangulation

T k ∈ T ε k (Ω) such that u k is affine on each T ∈ T k .
We first note that, according to Proposition 3.1, u ∈ GSBD 2 (Ω). Let us show the lower bound inequality F (u) ≥ F(u). To this aim, we introduce the following sequence of Radon measures on Ω

λ k := 1 ε k f ε k Ae(u k ) : e(u k ) L 2 Ω.
Since the sequence {λ k } k∈N is uniformly bounded in M(Ω), up to a subsequence (not relabeled), we have λ k * λ weakly* in M(Ω) for some nonnegative measure λ ∈ M(Ω). Thanks to the lower semicontinuity of weak* convergence in M(Ω) along open sets, we have that

F (u) + ζ ≥ lim k→∞ λ k (Ω) ≥ λ(Ω). (3.6) 
Using that the measures L 2 Ω and H 

λ = dλ dL 2 L 2 Ω + dλ dH 1 J u H 1 J u + λ s ,
for some nonnegative measure λ s which is singular with respect to both L 2 Ω and H 1 J u . Thus, after integration over Ω and recalling (3.6), we get that

F (u) + ζ ≥ Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ) = F(u).
Taking the limit as ζ → 0, we obtain the desired lower bound inequality.

The rest of this section is devoted to the establishment of (3.7) and (3.8). We start by identifying the lower bound for the bulk energy. Proposition 3.4 (Lower bound for the Lebesgue part). For L 2 -a.e.

x 0 ∈ Ω, dλ dL 2 (x 0 ) ≥ Ae(u)(x 0 ) : e(u)(x 0 ). Proof. Let x 0 ∈ Ω be such that dλ dL 2 (x 0 ) = lim 0 λ B (x 0 )
π 2 exists and is finite, and

lim 0 1 2 B (x0) |e(u)(y) -e(u)(x 0 )| 2 dy = 0.
According to Besicovitch and Lebesgue differentiation Theorems, L 2 -almost every point x 0 in Ω satisfies these properties. We next consider a sequence of radii { j } j∈N such that j 0 and λ(∂B j (x 0 )) = 0 for all j ∈ N.

As in the proof of Proposition 3.1, according to the properties (1.4) satisfied by f , for all δ > 0, there exists a constant 0 < K < κ such that f (t) ≥ K ∧ [(1 -δ)t] for all t ≥ 0. Moreover, using the characteristic functions

χ k := 1 (1-δ)Ae(u k ):e(u k ) ≥ K ε k ∈ L ∞ (Ω; {0, 1})
we have for every Borel set B ⊂ Ω,

λ k (B) ≥ (1 -δ) B (1 -χ k )Ae(u k ) : e(u k ) dx + K ε k B χ k dx. Note that because u k is affine on each triangle T ∈ T k , χ k is constant on each triangle T ∈ T k .
Following the proof of Proposition 3.1, the sequence

v k := (1 -χ k )u k ∈ SBV 2 (Ω; R 2 ) satisfies v k → u in measure in Ω and e(v k ) e(u) weakly in L 2 (Ω; M 2×2 sym ).
Then, for all j ∈ N,

λ(B j (x 0 )) = lim k→∞ λ k (B j (x 0 )) ≥ (1 -δ) lim inf k→∞ B j (x0) Ae(v k ) : e(v k ) dx ≥ (1 -δ) B j (x0)
Ae(u) : e(u) dx.

Dividing the previous inequality by π 2 j and passing to the limit as j → ∞ implies by the choice of the point x 0 that

dλ dL 2 (x 0 ) = lim j→∞ λ(B j (x 0 )) π 2 j ≥ (1 -δ) lim j→∞ 1 π 2 j B j (x0)
Ae(u) : e(u) dx

= (1 -δ)Ae(u)(x 0 ) : e(u)(x 0 ).
Taking the limit as δ → 0 + completes the proof of the lower bound for the Lebesgue part.

We next pass to the lower bound inequality for the jump part of the energy which represents the most difficult and original part of our result. Proposition 3.5 (Lower bound for the jump part). For H 1 -a.e. x 0 ∈ J u ,

dλ dH 1 J u (x 0 ) ≥ κ sin θ 0 .
The proof of Proposition 3.5 is quite long and involved. It necessitates the introduction of some tools in order to carry out the blow-up analysis coupled with the slicing method. Let x 0 ∈ J u be such that

dλ dH 1 J u (x 0 ) = lim 0 λ B (x 0 ) H 1 J u ∩ B (x 0 )
exists and is finite, and

lim 0 H 1 (J u ∩ B (x 0 )) 2 = 1.
According to the Besicovitch differentiation Theorem and the countably (H 1 , 1)-rectifiability of J u (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.83]), it follows that H 1 -almost every point x 0 in J u fulfills these conditions. The point x 0 ∈ J u being fixed throughout the rest of the proof of Proposition 3.5, we sometimes intentionally omit to write the dependence with respect to x 0 .

By definition of the jump set J u , there exist ν

:= ν u (x 0 ) ∈ S 1 and u ± (x 0 ) ∈ R 2 with u + (x 0 ) = u -(x 0 ) such that the function u x0, := u(x 0 + •) converges in measure in B := B 1 (0) to the jump function u : y ∈ B → u + (x 0 ) if y • ν > 0, u -(x 0 ) if y • ν < 0,
as 0 (see [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Definition 2.3]). Note that, the jump set J u in B coincides with the diameter

B ν = p ν (B) orthogonal to ν. Moreover, since H 1 ξ ∈ S 1 : [u](x 0 ) • ξ = 0 = 0, for any η > 0, there exists ξ ∈ S 1 such that |ν -ξ| ≤ η, ν • ξ ≥ 1 2 , ν • ξ ⊥ ≤ η and [u](x 0 ) • ξ = 0, (3.9) 
where

[u](x 0 ) := u + (x 0 ) -u -(x 0 ). If [u](x 0 ) • ν = 0,
we can simply take ξ = ν. We then set

M η := |u + (x 0 ) • ξ| + |u -(x 0 ) • ξ| > 0. (3.10)
From now on, when working with the convergence in measure, we will use the distance d Mη defined in (2.1) associated to this precise value of M η . As before, we consider a sequence of radii { j } j∈N such that j 0 and λ(∂B j (x 0 )) = 0 = H 1 (J u ∩ ∂B j (x 0 )) for all j ∈ N.

By our choice of x 0 , we have

             lim j→∞ lim k→∞ u k (x 0 + j •) = lim j→∞ u x0, j = u in measure in B, lim j→∞ lim k→∞ λ k (B j (x 0 )) 2 j = lim j→∞ λ(B j (x 0 )) 2 j = dλ dH 1 J u (x 0 ), lim j→∞ lim k→∞ ε k j = lim j→∞ lim k→∞ ω(ε k ) j = 0.
The metrizability of the convergence in measure in B shows the existence of an increasing sequence {k j } j∈N (depending on η) such that k j ∞ as j → ∞ and

               v j := u kj (x 0 + j •) → u in measure in B, λ kj (B j (x 0 )) 2 j → dλ dH 1 J u (x 0 ), ε kj j → 0, ω(ε kj ) j → 0.
In particular, using a change of variables, we get that

2 dλ dH 1 J u (x 0 ) = lim j→∞ 1 j ε kj B j (x0) f ε kj Ae(u kj ) : e(u kj ) dx = lim j→∞ j ε kj B f ε kj 2 j
Ae(v j ) : e(v j ) dy

≥ lim sup j→∞ j ε kj B f ε kj 2 j α|e(v j )ξ • ξ| 2 dy,
where, in the last inequality, we used the ellipticity property (1.5) of A, the nondecreasing character of f and that ξ ∈ S 1 .

According to the properties (1.4) satisfied by f , for all δ ∈ (0, 1), there exists a constant A > 0 such that

f (t) ≥ (At) ∧ [(1 -δ)κ] for all t ≥ 0.
Indeed, since f (t) → κ as t → ∞, there exists t * ≥ 0 such that for all t ≥ t * , f (t) ≥ (1 -δ)κ.

The function f (t)/t being continuous over [0, t * ] (extended by the value 1 at t = 0), it reaches its minimum value A > 0 over this segment so that f (t) ≥ At for all t ∈ [0, t * ].

Let us introduce the characteristic functions

χ j := 1 Aαε k j 2 j |e(vj )ξ•ξ| 2 ≥(1-δ)κ ∈ L ∞ (B; {0, 1}), so that 2 dλ dH 1 J u (x 0 ) ≥ lim sup j→∞ αA j B (1 -χ j )|e(v j )ξ • ξ| 2 dy + (1 -δ)κ j ε kj B χ j dy . (3.12)
We then introduce the translated and rescaled triangulations

T x0,j := 1 j T kj -x 0 , T x0,j b := T ∈ T x0,j : αA j |e(v j ) |T ξ • ξ| 2 ≥ (1 -δ)κ j ε kj . (3.13)
Note that v j is affine on each T ∈ T x0,j . Let us point out that

χ j |T := 1 if T ∈ T x0,j b , 0 otherwise. (3.14) Since ((v j ) ξ z ) (t) = e(v j )(z + tξ)ξ • ξ, then for H 1 -a.e. z ∈ B ξ , (χ j ) ξ z (t) = 1 if αA j |((v j ) ξ z ) (t)| 2 ≥ (1-δ)κ j ε k j , 0 otherwise, for L 1 -a.e. t ∈ B ξ z . (3.15)
The triangles belonging to the collection T x0,j b correspond to the sets where the longitudinal slope of v j in the direction ξ is "very large". They, roughly speaking, represent the places where it will be energetically convenient to introduce a jump because of the sharp transition.

The following result, which will play a major role in the proof of Proposition 3.5, shows that for many points y ∈ J u ∩ B, the one-dimensional energy on B ξ y is arbitrarily small uniformly with respect to y. Lemma 3.6. For all η > 0, there exist a subset Z ⊂ J u ∩ B with H 1 (Z) ≤ η and a subsequence (not relabeled, depending on x 0 ) such that the following property holds : for all γ > 0, there exists j 0 = j 0 (γ) ∈ N such that for all y ∈ J u ∩ B \ Z and all j ≥ j 0 ,

                   B ξ y (χ j ) ξ y dt ≤ γ, B ξ y 1 -(χ j ) ξ y |((v j ) ξ y ) | 2 dt ≤ γ 2 , B ξ y M η ∧ |(v j -u) ξ y | dt ≤ γ.
Proof. According to Fubini's Theorem, the convergence in measure (3.11a) and (3.12), we infer that

B ξ B ξ z M η ∧ |(v j -u) ξ z | dt + B ξ z (1 -(χ j ) ξ z )|((v j ) ξ z ) | 2 dt + B ξ z (χ j ) ξ z dt dH 1 (z) ≤ B M η ∧ |v j -u| dx + B (1 -χ j )|e(v j )ξ • ξ| 2 dx + B χ j dx → 0.
As a consequence, up to a subsequence (not relabeled), there exists an

H 1 -negligible set N ⊂ B ξ such that B ξ z M η ∧ |(v j -u) ξ z | dt + B ξ z (1 -(χ j ) ξ z )|((v j ) ξ z ) | 2 dt + B ξ z (χ j ) ξ z dt → 0 for all z ∈ B ξ \ N .
In order to pass from arbitrary points z ∈ B ξ to arbitrary points y ∈ J u ∩ B = B ν , let us consider the following mapping (see Figure 2)

Φ : z ∈ R 2 -→ z - ν • z ν • ξ ξ ∈ Π ν (3.17)
which corresponds to the linear projection onto Π ν in the direction ξ. Thanks to (3.9), we can check that the Lipschitz constant of Φ is bounded by 1 + 4η 2 . Moreover, since for all z ∈ B ξ we have

B ξ z + ν•z ν•ξ = B ξ Φ(z) = s ∈ R : z + s -ν•z ν•ξ ξ ∈ B , we deduce that B ξ z M η ∧ |(v j -u) ξ z | dt + B ξ z (1 -(χ j ) ξ z )|((v j ) ξ z ) | 2 dt + B ξ z (χ j ) ξ z dt = B ξ Φ(z) M η ∧ |(v j -u) ξ Φ(z) | ds + B ξ Φ(z) (1 -(χ j ) ξ Φ(z) )|((v j ) ξ Φ(z) ) | 2 ds + B ξ Φ(z) (χ j ) ξ Φ(z) ds thanks to the change of variables s = t + ν•z ν•ξ . Since B ν ⊂ Φ(B ξ ), setting N := Φ(N ) ⊂ Π ν , we get that H 1 (N ) = 0 and B ξ y M η ∧ |(v j -u) ξ y | ds + B ξ y (1 -(χ j ) ξ y )|((v j ) ξ y ) | 2 ds + B ξ y (χ j ) ξ y ds → 0 for all y ∈ B ν \ N .
Applying Egoroff's theorem, for all η > 0, there exists a subset Z ⊂ B ν such that H 1 (Z) ≤ η and the above convergence is uniform with respect to y ∈ B ν \ Z.

Let us consider the subsequence introduced in Lemma 3.6. For all y ∈ B 1-

η 4 ν = J u ∩ B 1-η 4
, we define the end points of the section passing through y in the direction ξ (see the Figure 2) :

   a(y) := min t ∈ [-2, 2] : y + tξ ∈ B 1-η 4 ∈ [-2, 0], b(y) := max t ∈ [-2, 2] : y + tξ ∈ B 1-η 4 ∈ [0, 2], (3.18) 
so that B 1-

η 4 ξ y = (a(y), b(y)). Note that, for all y ∈ J u ∩ B 1-η 2 ⊂ B 1-η 4 ν , 0 < L η := 1 - η 2 2 |ξ • ν ⊥ | 2 + η(8 -3η) 16 -1 - η 2 ξ • ν ⊥ ≤ |a(y)|, |b(y)| ≤ 2. (3.19) Φ η 2 η 4 ξ ν Π ν Π ξ B y y + a(y)ξ 0 y + b(y)ξ L η 0 J u ∩ B 1-η 2 Figure 2
We introduce the family

T x0,j b,int := T ∈ T x0,j b : T ∩ B 1-η 4 = ∅ of triangles which intersect B 1-η
4 and where v j varies enough in the direction ξ. Note that for j ∈ N large enough (depending on η), each T ∈ T x0,j b,int is contained in B, since the lengths of all triangles's edges are controlled by ω(ε kj )/ j → 0. The collection T x0,j b,int is introduced for technical reasons to deal with triangles which intersect the boundary of the ball B.

In the following result, we show that, for some subset of Z ⊂ J u ∩ B 1-η 2 of arbitrarily small H 1 measure, and along a subsequence (only depending on η), all the sections in the direction ξ passing through J u ∩ B 1-η 2 \ Z must cross at least one triangle T ∈ T x0,j b,int contained in B, and on which the longitudinal slope of v j in the direction ξ is "large". The formal idea of the proof consists in observing that, if for some y ∈ J u ∩ B 1-η 2 the one-dimensional section B ξ y intersects no triangle in the collection T x0,j b,int for infinitely many j's, then the function (v j ) ξ y would be bounded in H 1 (B ξ y ). Lemma 3.6 would then entail that (v j ) ξ y converges (weakly in H 1 (B ξ y ) and also L 1 -a.e. in B ξ y ) to a constant function. This property contradicts the fact that (v j ) ξ y → u ξ y L 1 -a.e. in B ξ y , where u ξ y is a step function taking two different values u ± (x 0 ) • ξ. Lemma 3.7. For all η > 0, there exist a subset Z ⊂ J u ∩ B containing Z with H 1 (Z ) ≤ η, and a subsequence (not relabeled) such that the following property holds : for all y ∈ J u ∩ B 1-η 2 \ Z and all j ∈ N, there exists a triangle T = T (y, j) ∈ T x0,j b,int such that ( T ∩ B) ξ y = ∅. Proof. Let Z be the exceptional set given by Lemma 3.6. We first show the weaker result that there exists an increasing mapping φ : N → N with the following property: for all y ∈ J u ∩B 1-η 2 \Z and all j ∈ N, there exists a triangle T = T (y, φ(j)) ∈ T x0,φ(j) b,int such that (T ∩ B) ξ y = ∅. Suppose by contradiction that such is not the case, and define

γ * 1 := L η M η > 0, γ * 2 := L η |[u](x 0 ) • ξ| 1 + 2L η > 0 and γ * = γ * (η) := γ * 1 ∧ γ * 2 4 > 0,
where we recall that the constants M η and L η are defined in (3.10) and (3.19), respectively. Thanks to Lemma 3.6, there exists j * = j * (γ * ) ∈ N such that for all y ∈ J u ∩ B \ Z and all j ≥ j * ,

B ξ y (1 -(χ j ) ξ y )|((v j ) ξ y ) | 2 dt ≤ γ * 2 and B ξ y M η ∧ |(v j -u) ξ y | dt ≤ γ * .
We then consider the extraction φ : j ∈ N -→ j + j * ∈ N which only depends on η. By assumption, there exists y = y(φ)

∈ J u ∩ B 1-η 2 \ Z and j = j(φ) ∈ N such that (T ∩ B) ξ y = ∅ for all T ∈ T x0,j+j * b,int . Remembering (3.14), we deduce that (χ j+j * ) ξ y ≡ 0 on (a(y), b(y)). Moreover, since φ(j) = j + j * ≥ j * , we have b(y) a(y) |((v j+j * ) ξ y ) | 2 dt ≤ γ * 2 and b(y) a(y) M η ∧ |(v j+j * -u) ξ y | dt ≤ γ * .
By continuity of (v j+j * ) ξ y on the compact [a(y), b(y)], (v j+j * ) ξ y being in H 1 (B ξ y ), there exist two points

t ± ∈ [a(y), b(y)] ∩ R ± such that min [a(y),b(y)]∩R ± M η ∧ | (v j+j * ) ξ y -u ± (x 0 ) • ξ| = M η ∧ | (v j+j * ) ξ y (t ± ) -u ± (x 0 ) • ξ|. Hence, γ * L η ≥ 1 L η 0 a(y) M η ∧ | (v j+j * ) ξ y -u -(x 0 ) • ξ| dt + 1 L η b(y) 0 M η ∧ | (v j+j * ) ξ y -u + (x 0 ) • ξ| dt ≥ M η ∧ | (v j+j * ) ξ y (t -) -u -(x 0 ) • ξ| + M η ∧ | (v j+j * ) ξ y (t + ) -u + (x 0 ) • ξ| ≥ M η ∧ | (v j+j * ) ξ y (t -) -u -(x 0 ) • ξ| + | (v j+j * ) ξ y (t + ) -u + (x 0 ) • ξ| ≥ M η ∧ |[u](x 0 ) • ξ| - t + t - (v j+j * ) ξ y (t) dt ≥ M η ∧ (|[u](x 0 ) • ξ| -2γ * ) ,
which is impossible thanks to of our choice of γ * .

We are now in position to complete the proof of Lemma 3.7. For all j ∈ N, let

Z j := y ∈ J u ∩ B 1-η 2 : there exists T ∈ T x0,j b,int such that (T ∩ B) ξ y is contained in an edge or a vertex of T , y T Π ν u + (x 0 ) u -(x 0 ) y + t -ξ y + t + ξ y + a(y)ξ y + b(y)ξ 0 ξ ν Figure 3 and Z := Z ∪ j∈N Z j .
We notice that j Z j is H 1 -negligible (each Z j being finite), hence H 1 (Z ) ≤ η. Moreover, for all y ∈ J u ∩ B 1-η 2 \ Z and all j ∈ N, there exists a triangle T ∈ T x0,φ(j) b,int such that (T ∩ B) ξ y is non-empty, and it is neither reduced to a vertex of T nor contained in an edge of it. It thus implies that ( T ∩ B) ξ y = ∅. Let us consider the further subsequence introduced in Lemma 3.7. As a consequence, for all j ∈ N, the family of triangles

F j := T ∈ T x0,j b,int : there exists y ∈ J u ∩ B 1-η 2 such that ( T ∩ B) ξ y = ∅ (3.20)
is nonempty. Thanks to Lemma 3.7, it is possible to obtain a bad lower bound. Indeed, from that result, we infer that

J u ∩ B 1-η 2 \ Z ⊂ T ∈Fj Φ(p ξ (T )
) with Φ the projection onto Π ν in the direction ξ defined in (3.17). Using next that L 2 (T ) ≥ H 1 (p ξ (T ))(ε kj / j ) sin θ 0 /2 and that the Lipschitz constant of Φ is bounded by 1 + 4η 2 , we deduce from (3.12) and our choice of x 0 that

2 dλ dH 1 J u (x 0 ) ≥ lim inf j→∞ (1 -δ)κ j ε kj B χ j dy ≥ lim inf j→∞ T ∈Fj (1 -δ)κ j L 2 (T ) ε kj ≥ (1 -δ)κ sin θ 0 2 1 + 4η 2 lim inf j→∞ H 1   T ∈Fj Φ(p ξ (T ))   ≥ (1 -δ)κ sin θ 0 2 1 + 4η 2 H 1 J u ∩ B 1-η 2 \ Z ≥ (1 -δ)κ sin θ 0 1 + 4η 2 (1 -η).
Letting η → 0 and δ → 0 leads to dλ dH 1 J u (x 0 ) ≥ κ sin θ 0 2 which corresponds to a too low lower bound because of the factor 1/2 in the right-hand side of the previous inequality. In order to improve the previous argument, we need to establish that many lines B ξ y parallel to ξ and passing through the jump set at some point y ∈ J u ∩ B must actually intersect at least two triangles of the collection T x0,j b,int , where the longitudinal variation of v j in the direction ξ is "large". This idea is precisely formulated in the following result which is an improvement of Lemma 3.7.

Lemma 3.8. For all η > 0, there exist Z ⊂ J u ∩ B containing Z with H 1 (Z ) ≤ 3η, and a (not relabeled) subsequence such that for all j ∈ N and for all y

∈ J u ∩ B 1-η 2 \ Z , # T ∈ T x0,j b,int : ( T ∩ B) ξ y = ∅ ≥ 2.
The proof of Lemma 3.8 consists in constructing both Z and the subsequence inductively by means of the following technical result, Lemma 3.9. It stipulates that the set of all points y ∈ J u ∩B such that B ξ y intersects exactly one triangle T in the collection T x0,j b,int , has arbitrarily small H 1 measure. To establish this property, we first show that if such situation arises, then the function (v j ) ξ y is uniformly close (with respect to y) to the step function u ξ y taking the values u ± (x 0 ) • ξ. Thus, up to a small error which is uniform in y, the function (v j ) ξ y must pass from the value u -(x 0 ) • ξ to u + (x 0 ) • ξ in an affine way inside the only triangle T ∈ T x0,j b,int which is crossed by B ξ y . However, due to the shape of a triangle, this can happen for at most two different values of y, say z 1 and z 2 . Then, if y ∈ J u ∩ B is far away from these two values z 1 and z 2 , the variation of (v j ) ξ y is not sufficient to connect the values u ± (x 0 ) • ξ in an affine way. It thus becomes necessary for B ξ y to intersect an additional triangle T ∈ T x0,j b,int , where the variation of (v j ) ξ y is substantial, in order to recover the full jump. Lemma 3.9. For all η > 0, there exist constants C * = C * (η) > 0, γ * = γ * (η) > 0 and a subset Z * = Z * (η) ⊂ J u ∩ B containing Z and satisfying H 1 (Z * ) ≤ 2η such that the following property holds: for all 0 < γ < γ * , there exists j(γ) ∈ N such that for all j ≥ j(γ), the set

Y j := y ∈ J u ∩ B 1-η 2 \ Z : there exists a unique T ∈ T x0,j b,int such that ( T ∩ B) ξ y = ∅ (3.21) satisfies H 1 (Y j \ Z * ) ≤ C * γ.
Proof of Lemma 3.9. The proof is divided into three steps.

Step 1. In this first step, we show that for j large enough and for many points y ∈ Y j , the set (B ∩ T ) ξ y (where T is the only triangle in T x0,j b,int which crosses B ξ y ) is close to (J u ) ξ y , uniformly with respect to y.

For all j ∈ N and all y ∈ Y j , let T j (y) ∈ T x0,j b,int be the unique triangle such that ( Tj (y) ∩ B) ξ y = ∅. We define the end points of the section in the direction ξ passing through y inside T j (y) (see the Figure 4) by Let y ∈ J u ∩ B 1-η 2 \ Z and set := lim sup j f j (y) ∈ [0, 4]. Assume by contradiction that > 0 and extract a subsequence depending on y (not relabeled) such that f j (y) → . Then, there exists j 0 ∈ N such that y ∈ Y j for all j ≥ j 0 . Moreover, according to Lemma 3.6 and setting

I j (y) := (a(y), b(y)) \ (a j (y), b j (y)) ⊂ B ξ y , we have                  |b j (y) -a j (y)| ≤ B ξ y (χ j ) ξ y dt → 0, Ij (y) |((v j ) ξ y ) | 2 dt ≤ B ξ y 1 -(χ j ) ξ y |((v j ) ξ y ) | 2 dt → 0, b (y) a(y) 
M η ∧ |(v j -u) ξ y | dt ≤ B ξ y M η ∧ |(v j -u) ξ y | dt → 0. (3.24)
Up to another subsequence (still not relabeled), the first condition in (3.24) ensures that a j (y) → m and b j (y) → m for some m ∈ [a(y), b(y)]. Thus, for all τ > 0, there exists j 1 = j 1 (τ ) ≥ j 0 such that for all j ≥ j 1 ,

I τ := (a(y), m -τ ) ∪ (m + τ, b(y)) ⊂ I j (y),
with the convention that (x, y) = ∅ if y < x. We set

I - τ := (a(y), m -τ ) , I + τ := (m + τ, b(y)) , so that (v j ) ξ y |I ± τ ∈ H 1 (I ± τ )
and the truncated function

w j := M η ∧ (v j ) ξ y ∨ (-M η ) ∈ H 1 (I ± τ ) satisfies w j = ((v j ) ξ y ) 1 {|(vj) ξ y |≤Mη} .
According to the second condition in (3.24), the sequence {w j } j∈N is bounded in H 1 (I ± τ ) and w j → 0 in L 2 (I ± τ ). As a consequence, up to a subsequence, there exist constants c ± ∈ R such that w j → c ± in H 1 (I ± τ ) and L 1 -a.e. in I ± τ . Yet, as (v j ) ξ y converges in measure to u ξ y in I ± τ , up to another subsequence (still not relabeled), we have that (v j ) ξ y pointwise converges to u ξ y L 1 -a.e. in

I ± τ . Hence c ± = (M η ∧ u ± (x 0 ) • ξ) ∨ (-M η ) = u ± (x 0 )
• ξ by our choice (3.10) of M η . Thus, for all τ > 0,

u -(x 0 ) • ξ 1 (a(y),m-τ ) + u + (x 0 ) • ξ 1 (m+τ,b(y)) = u ξ y |Iτ L 1 -a.e. in I τ .
Taking the limit as τ → 0 + , we obtain that

u -(x 0 ) • ξ 1 (a(y),m) + u + (x 0 ) • ξ 1 (m,b(y)) = u ξ y L 1 -a.e.

in (a(y), b(y)),

leading to m = 0 since [u](x 0 ) • ξ = 0 by our choice (3.9) of ξ. As a consequence f j (y) = (|a j (y)| + |b j (y)|)1 Yj (y) → 0 which is against > 0. Using (3.23), Lemma 3.6 and owing to Egoroff's Theorem, we can find a set Z * ⊂ J u ∩ B containing Z with H 1 (Z * ) ≤ 2η such that for all γ > 0, there exists j 0 (γ) ∈ N satisfying

           B ξ y (1 -(χ j ) ξ y )|((v j ) ξ y ) | 2 dt ≤ γ 2 , B ξ y M η ∧ |(v j -u) ξ y | dt ≤ γ, (|a j (y)| + |b j (y)|) 1 Yj (y) ≤ γ for all y ∈ J u ∩ B 1-η 2 \
Z * and all j ≥ j 0 (γ).

(3.25)

Step 2. In this step, we show that for many points y ∈ Y j , the variation of (v j ) ξ y inside the only triangle T in T x0,j b,int which is crossed by B ξ y , is uniformly close with respect to y to the jump of u ξ y . More precisely, let

C η := 8 1 + 1 L η > 0, γ * = γ * (η) := 1 2 min 1, M η C η , L η , |[u](x 0 ) • ξ| 4C η > 0. (3.26)
Let us show that for all 0 < γ < γ * , there exists j 1 (γ) ∈ N such that Writing

(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) -[u](x 0 ) • ξ ≤ C η γ for all j ≥ j 1 (γ)
M η ∧ (v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) -[u](x 0 ) • ξ ≤ M η ∧ (v j ) ξ y (0 ∨ b j (y)) -u + (x 0 ) • ξ +M η ∧ (v j ) ξ y (0 ∨ b j (y)) -(v j ) ξ y (b j (y)) +M η ∧ (v j ) ξ y (0 ∧ a j (y)) -u -(x 0 ) • ξ +M η ∧ (v j ) ξ y (a j (y)) -(v j ) ξ y (0 ∧ a j (y)) =: J 1 + J 2 + J 3 + J 4 ,
it remains to control each of the last four terms.

Let us first estimate the terms J 2 and J 4 . If b j (y) ≥ 0, J 2 = 0. Otherwise, by the Cauchy-Schwarz inequality,

J 2 = M η ∧ 0 bj (y) ((v j ) ξ y ) dt ≤ |b j (y)| 0 bj (y) | (v j ) ξ y | 2 dt 1 2 ≤ γ 3/2 ≤ γ.
Similarly, we have that J 4 ≤ γ.

Let us now estimate the term J 1 . We consider the function

z j := M η ∧ |(v j ) ξ y -u + (x 0 ) • ξ| ∈ H 1 (B ξ y )
with 

z j = ((v j ) ξ y ) 1 {0≤(vj ) ξ y -u + (x0)•ξ≤Mη} -((v j ) ξ y ) 1 {0≤u + (x0)•ξ-(vj
|z j (t)| ≤ b(y) -0 ∨ b j (y) z j L 2 (I + ) + 1 b(y) -0 ∨ b j (y) z j L 1 (I + ) ≤ √ 2 ((v j ) ξ y ) L 2 (I + ) + 2 L η M η ∧ |(v j ) ξ y -u + (x 0 ) • ξ| L 1 (I + ) ≤ √ 2 + 2 L η γ.
By continuity of (v j ) ξ y in B ξ y , the above inequality remains true up to the end point 0 ∨ b j (y) of I + , so that J 1 ≤ ( √ 2 + 2 Lη )γ. A similar argument shows that J 3 ≤ ( √ 2 + 2 Lη )γ, and thus

J 1 + J 2 + J 3 + J 4 ≤ 8(1 + 1 Lη )γ = C η γ, which shows that M η ∧ (v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) -[u](x 0 ) • ξ ≤ C η γ.
Eventually, as C η γ < M η for all 0 < γ < γ * by (3.26), we conclude the validity of (3.27).

Step 3. We now show that it is possible to include Y j \ Z * inside a finite union of arbitrarily small segments contained in J u ∩ B (see Figure 7). Let 0 < γ < γ * and j 1 (γ) ∈ N be given by (3.27). For all j ≥ j 1 (γ), we define 

∈ Y j \ Z * is such that ( T ∩ B) ξ y = ∅, we know from
Step 2 that the variation of (v j ) ξ y across T is close to [u](x 0 ) • ξ, up to a small error of order O(γ) which is uniform with respect to y. Therefore, we will show that if y is far away from z 1 and z 2 , then the variation of (v j ) ξ y across T is not sufficient to recover the full jump [u](x 0 ) • ξ.

Let x 1 , x 2 and x 3 ∈ T be the three vertices of T and X i := p ξ (x i ) ∈ B ξ . We easily see that there exists i 0 ∈ {1, 2, 3} such that X i0 = arg max

z∈p ξ (T ) L 1 (T ξ z ). Up to a permutation of {x 1 , x 2 , x 3 },
there is no loss of generality to assume that i 0 = 3 and X 3 • ξ ⊥ ≤ X 1 • ξ ⊥ , with ξ ⊥ ∈ S 1 being one of the two orthogonal vectors to ξ.

Let h T ≥ ε k j sin(θ0) j > 0 be the smallest height of T . We claim that, for all z, z ∈ p ξ (T ) be such

that T ξ z = ∅, T ξ z = ∅ and either z • ξ ⊥ , z • ξ ⊥ ≥ X 3 • ξ ⊥ or z • ξ ⊥ , z • ξ ⊥ ≤ X 3 • ξ ⊥ , then, |z -z | ≤ 2L 2 (T ) h T |L 1 (T ξ z ) -L 1 (T ξ z )| max(L 1 (T ξ z ), L 1 (T ξ z )) . (3.29)
Indeed, consider for instance the case where

X 1 • ξ ⊥ ≥ z • ξ ⊥ > z • ξ ⊥ ≥ X 3 • ξ ⊥
(see Figure 5). Let

L := L 1 (T ξ z ), L := L 1 (T ξ z ), d := |X 1 -z| , d := |X 1 -z | . ξ ⊥ ν ⊥ ξ ν x 1 x 1 x 3 x 3 X 3 z z X 1 L L L max T T d d L L L max Π ξ Figure 5
Then, L > L > 0, d > d > 0 and using Thalès' Theorem, we have that

d d = d -|z -z | d = L L . Since d ≤ |X 1 -X 3 | = H 1 (p ξ ([x 1 , x 3 ])) ≤ |x 1 -x 3 | ≤ 2L 2 (T ) h T , we obtain that |z -z | = d L -L L ≤ 2L 2 (T ) h T |L -L | L ,
so that (3.29) holds in that case. The proof of the other case

X 2 • ξ ⊥ ≤ z • ξ ⊥ , z • ξ ⊥ ≤ X 3 • ξ ⊥ is similar and we omit it.
For all j ≥ j 1 (γ) and all T ∈ T j , we have L max (T ) > L ref (T ). Indeed, if such would not be the case, denoting by

y ∈ Y j \ Z * a point such that ( T ∩ B) ξ y = ∅, then L 1 (T ξ p ξ (y) ) = L 1 (T ξ y ) = b j (y) -a j (y) ≤ L max (T ) ≤ L ref (T ), entailing that |(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y))| = e(v j ) |T : (ξ ⊗ ξ) (b j (y) -a j (y)) ≤ |[u](x 0 ) • ξ| -4C η γ, by definition (3.28) of L ref (T ). Therefore, we would obtain that 4C η γ ≤ |[u](x 0 ) • ξ| -(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) ≤ (v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) -[u](x 0 ) • ξ , which is against (3.

27). Applying the Intermediate Value Theorem to the strictly monotone and continuous functions y

∈ [X 1 , X 3 ] → L 1 (T ξ y ) ∈ [0, L max (T )] and y ∈ [X 2 , X 3 ] → L 1 (T ξ y ) ∈ [0, L max (T )]
, there are at least one and at most two points z 1 ref , z 2 ref ∈ p ξ (T ) (according to whether T has an edge along the direction ξ or not, see Figure 6), only depending on j and T , such that

L 1 (T ξ z 1 ref ) = L 1 (T ξ z 2 ref ) = L ref (T ).
(We set z 1 ref = z 2 ref in the case where T has an edge along the direction ξ). Without loss of generality, we can assume that z

1 ref • ξ ⊥ ≥ z 2 ref • ξ ⊥ . ξ ⊥ ν ⊥ ξ ν z 1 ref = z 2 ref L max L ref L ref L max L ref z 1 ref z 2 ref Π ξ T T Figure 6
. Two possible configurations of T .

Let us introduce the following segments (orthogonal to ξ) associated to T (see Figure 7),

T i (T ) := z ∈ Π ξ : z -z i ref ≤ C η j L 2 (T ) ε kj γ for i ∈ {1, 2}, (3.30) 
where

C η := 20C η sin θ 0 |[u](x 0 ) • ξ| is a constant only depending on η.
For every j ≥ j 1 (γ) and every y ∈ Y j \ Z * , let T ∈ T x0,j b,int be such that ( T ∩ B) ξ y = ∅. Note that

T ∈ T j . If p ξ (y) • ξ ⊥ ≥ X 3 • ξ ⊥ and z 1 ref • ξ ⊥ ≥ X 3 • ξ ⊥ (
the other cases being treated similarly), applying (3.29) above, with z = p ξ (y) and z = z 1 ref , we get that

p ξ (y) -z 1 ref ≤ 2L 2 (T ) h T (b j (y) -a j (y)) -L ref (T ) max (b j (y) -a j (y), L ref (T )) ≤ 2L 2 (T ) h T |(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y))| -|[u](x 0 ) • ξ| + 4C η γ e(v j ) |T : (ξ ⊗ ξ) L ref (T ) ≤ 2L 2 (T ) h T 5C η γ |[u](x 0 ) • ξ| -4C η γ ≤ C η j L 2 (T ) ε kj γ,
where we also used (3.27) and (3.26).

L L z 1 ref T 1 (T ) T 2 (T ) z 2 ref X3 y x3 L ref L ref L max Π ν Π ξ T ξ ⊥ ν ⊥ ξ ν Φ η 4 Figure 7. The length of T i (T ) is given by L = 2C η j L 2 (T ) ε k j γ.
We have just shown that for all j ≥ j 1 (γ) and all y ∈ Y j \ Z * , there exists T ∈ T j such that p ξ (y) ∈ T 1 (T ) ∪ T 2 (T ). Since y ∈ Π ν , then y = Φ(p ξ (y)) ∈ Φ (T 1 (T ) ∪ T 2 (T )), with Φ introduced in (3.17). Recalling that the Lipschitz constant of Φ is less than 1 + 4η 2 ≤ 2 for η small enough, we deduce that

H 1 (Φ (T 1 (T ) ∪ T 2 (T ))) ≤ 2H 1 (T 1 (T ) ∪ T 2 (T )) ≤ 8C η j L 2 (T ) ε kj γ.
Together with the fact that each triangle in T j ⊂ T x0,j b,int is contained in B, we obtain that for all j ≥ j 1 (γ),

H 1 (Y j \ Z * ) ≤ T ∈ Tj H 1 (Φ (T 1 (T ) ∪ T 2 (T ))) ≤ 8C η γ j ε kj T ∈ Tj L 2 (T ) ≤ 8C η γ κ(1 -δ) (1 -δ)κ j ε kj B χ j dx ≤ 8C η γ κ(1 -δ) λ kj (B j (x 0 )) j .
Possibly taking a larger j 1 (γ) ∈ N, we finally get that for all j ≥ j 1 (γ),

H 1 (Y j \ Z * ) ≤ 8C η κ(1 -δ) 2 dλ dH 1 J u (x 0 ) + 1 γ =: C * γ,
for some constant C * > 0 only depending on η.

We are now in position to prove Lemma 3.8.

Proof of Lemma 3.8. Let j 0 = j 0 (η) ∈ N such that η 2 j 0 C * < γ * , where C * and γ * are given by Lemma 3.9. For all j ≥ j 0 , as 0 < γ j := η 2 j C * < γ * , Lemma 3.9 ensures the existence of an integer i(γ j ) ≥ j 0 such that for all i ≥ i(γ j ),

H 1 (Y i \ Z * ) ≤ C * γ j = η 2 j
. Thereby, we define the following extraction φ(j 0 ) := i(γ j0 ) ≥ j 0 , φ(j + 1) := max (φ(j) + 1, i(γ j+1 )) for all j ≥ j 0 .

(3.31)

Since φ(j) ≥ i(γ j ), then H 1 (Y φ(j) \ Z * ) ≤ η 2 j . Hence, we set

Z := Z * ∪ +∞ j=j0 Y φ(j) , (3.32) 
which satisfies

H 1 (Z ) ≤ 2η + j≥j0 η 2 j ≤ 3η.
Moreover, for all j ≥ j 0 and all y ∈

J u ∩ B 1-η 2 \ Z , Lemma 3.7 ensures that # T ∈ T x0,φ(j) b,int : ( T ∩ B) ξ y = ∅ ≥ 1,

and since y /

∈ Y φ(j) for all j ≥ j 0 , it actually follows that

# T ∈ T x0,φ(j) b,int : ( T ∩ B) ξ y = ∅ ≥ 2, concluding the proof of Lemma 3.8.
Let us consider the further subsequence introduced in Lemma 3.8. In order to derive a lower bound for the surface energy without the factor 1/2, we now construct two disjoint subfamilies F 1 j and F 2 j from F j (see (3.20)) with the property that both sets

T ∈F 1 j T, T ∈F 2 j T
project onto B ν = J u ∩ B, thanks to the mapping Φ • p ξ , into two sets of almost full H 1 measure in J u ∩ B. This is the object of the following technical result.

Lemma 3.10. Let K ⊂ J u ∩ B 1-η 2 \ Z be a compact set. For all j ∈ N, there exist two disjoint subfamilies F 1 j and F 2 j of F j such that

K ⊂ Φ   T ∈F 1 j p ξ ( T )   ∩ Φ   T ∈F 2 j p ξ ( T )   .
Proof. For the sake of clarity, we omit to write the explicit dependance on j for the different objects considered herafter (triangles, intervals, and so forth). For all y ∈ J u ∩ B 1-η 2 \ Z , we consider a pair of distinct triangles of F j satisfying T 1 (y), T 2 (y)

∈ arg min H 1 Φ(p ξ ( T 1 ) ∩ p ξ ( T 2 )) :

T 1 , T 2 ∈ T x0,j b,int , T 1 ∩ T 2 = ∅, ( T 1 ∩ B) ξ y = ∅, ( T 2 ∩ B) ξ y = ∅ . (3.
33) Note that Lemma 3.8 ensures that the set

{T 1 , T 2 } ⊂ T x0,j b,int : ( T i ∩ B) ξ y = ∅ for all i ∈ {1, 2}
is nonempty and finite, hence the minimum in (3.33) is achieved and we have at our disposal such a pair of distinct triangles T 1 (y), T 2 (y) . Then, we introduce the following open segment in

B ν = J u ∩ B I(y) := Φ p ξ ( T 1 (y)) ∩ p ξ ( T 2 (y)) ⊂ B ν = J u ∩ B. (3.34)
Since y ∈ I(y), it follows that

K ⊂ J u ∩ B 1-η 2 \ Z ⊂ y∈Ju∩B 1-η 2 \Z I(y).
Furthermore, I(y) is optimal in the sense that any other triangle T ∈ T x0,j b,int satisfying ( T ∩ B) ξ y = ∅ is such that

I(y) ⊂ Φ(p ξ ( T )). (3.35) y z z T ia T i b b a T T Π ν ξ ⊥ ν ⊥ ν ξ Figure 8
Indeed, setting J := Φ(p ξ ( T )), there exist points a, b, ã and b in

B ν = J u ∩B such that I(y) = (a, b), J = (ã, b) with a • ν ⊥ < b • ν ⊥ and ã • ν ⊥ < b • ν ⊥ . By construction, there exist i a (resp. i b ) ∈ {1, 2} such that a (resp. b) is the image by Φ • p ξ of a vertex of T ia (y) (resp. T i b (y)), see Figure 8.
Assume by contradiction that there exists a point z ∈ I(y) \ J.

If y • ν ⊥ < z • ν ⊥ , then J ⊂ (ã, z)
since J is a segment containing y. In particular, Φ(p ξ ( T ia (y))) ∩ J ⊂ (a, z). Together with (3.33) and recalling that J := Φ(p ξ ( T )), it ensures that

H 1 ((a, z)) ≥ H 1 Φ(p ξ ( T ia (y))) ∩ Φ(p ξ ( T )) ≥ H 1 (I(y)) = H 1 ((a, z)) + H 1 ((z, b)) > H 1 ((a, z)),
which is impossible. A similar argument shows that the other situation y • ν ⊥ > z • ν ⊥ is also impossible. This shows the validity of (3.35).

By compactness of K, there exist an integer N = N (j, K) ≥ 1 and points y 1 , . . . , y

N ∈ J u ∩ B 1-η 2 \ Z such that K ⊂ N i=1 I(y i ). (3.36)
Up to relabeling the points y i , we can assume that 9). Let us now construct two disjoint subfamilies F 1 j and F 2 j of F j by induction in N iterations. Iteration 1. Set F 1 (1) := {T 1 (y 1 )} and F 2 (1) := {T 2 (y 1 )}. Clearly F 1 (1) ∩ F 2 (1) = ∅ and, for all k ∈ {1, 2}, there is T ∈ F k (1) such that (B ∩ T ) ξ y1 = ∅ and I(y 1 ) ⊂ Φ(p ξ ( T )) . Iteration 2. We distinguish two cases:

y 1 • ν ⊥ < • • • < y N • ν ⊥ (See Figure
i) If {T 1 (y 2 ), T 2 (y 2 )} ∩ F 1 (1) ∪ F 2 (1) = ∅, then we set F 1 (2) := F 1 (1) ∪ {T 1 (y 2 )} and F 2 (2) := F 2 (1) ∪ {T 2 (y 2 )}. We have that F 1 (2) ∩ F 2 (2) = ∅
and, for all i, k ∈ {1, 2}, there exists T ∈ F k (2) such that (B ∩ T ) ξ yi = ∅ and I(y i ) ⊂ Φ(p ξ ( T )). ii) Otherwise, there exist i, k ∈ {1, 2} such that T i (y 2 ) ∈ F k (1), i.e. T i (y 2 ) = T k (y 1 ), and

T 3-i (y 2 ) / ∈ F k (1)
. In that case, we set F k (2) := F k (1) and F 3-k (2) := F 3-k (1) ∪ {T 3-i (y 2 )}. Note that, it might be the case that T 3-i (y 2 ) ∈ F 3-k (1). We have that F 1 (2)∩F 2 (2) = ∅ and, for all i, k ∈ {1, 2}, there exists T ∈ F k (2) such that (B ∩ T ) ξ yi = ∅ and I(y i ) ⊂ Φ(p ξ ( T )).

Iteration n + 1 for some n ∈ {1, . . . , N -1}. Assume that we have constructed two disjoint subfamilies F 1 (n) and F 2 (n) of F j with the following properties: for all k ∈ {1, 2} and all i ∈ {1, . . . , n}, there exists

T ∈ F k (n) such that (B ∩ T ) ξ yi = ∅ and I(y i ) ⊂ Φ(p ξ ( T )). Let us now construct F 1 (n + 1) and F 2 (n + 1): i) If {T 1 (y n+1 ), T 2 (y n+1 )} ∩ F 1 (n) ∪ F 2 (n) = ∅, then we set F 1 (n + 1) := F 1 (n) ∪ {T 1 (y n+1 )} and F 2 (n + 1) := F 2 (n) ∪ {T 2 (y n+1 )}.
In that case, we have that F 1 (n + 1) ∩ F 2 (n + 1) = ∅ and that for all k ∈ {1, 2} and all i ∈ {1, . . . , n + 1}, there exists T ∈ F k (n + 1) such that (B ∩ T ) ξ yi = ∅ and I(y i ) ⊂ Φ(p ξ ( T )). For i ∈ {1, . . . , n}, it follows from the previous iteration n and because F k (n) ⊂ F k (n + 1), while for i = n + 1, it is a consequence of the fact that T k (y n+1 ) ∈ F k (n + 1). ii) Otherwise, there exist p, q ∈ {1, 2} such that T p (y n+1 ) ∈ F q (n). Let us further distinguish two subcases: (a) If T 3-p (y n+1 ) / ∈ F q (n), then we set F q (n + 1) := F q (n) and F 3-q (n + 1) := F 3-q (n) ∪ {T 3-p (y n+1 )}. Then F 1 (n + 1) ∩ F 2 (n + 1) = ∅ and, for all k ∈ {1, 2} and all i ∈ {1, . . . , n + 1}, there exists T ∈ F k (n + 1) such that (B ∩ T ) ξ yi = ∅ and I(y i ) ⊂ Φ(p ξ ( T )). Indeed, for i ∈ {1, . . . , n} this is a consequence of the previous iteration n and of the fact that F k (n) ⊂ F k (n + 1), while, for i = n + 1, it results from T p (y n+1 ) ∈ F q (n + 1) and T 3-p (y n+1 ) ∈ F 3-q (n + 1). (b) If both T 1 := T 1 (y n+1 ) ∈ F q (n) and T 2 := T 2 (y n+1 ) ∈ F q (n), we introduce the indexes i 1 := arg min i ∈ {1, . . . , n + 1} : (B ∩ T 1 ) ξ yi = ∅ and i 2 := arg min i ∈ {1, . . . , n + 1} : (B ∩ T 2 ) ξ yi = ∅ . Up to interchanging T 1 and T 2 , there is no loss of generality to assume that i 1 ≥ i 2 (see Figure 9). We set F q (n + 1) := F q (n) \ {T 1 } and F 3-q (n + 1) := F 3-q (n) ∪ {T 1 }. Once more, we have F 1 (n + 1) ∩ F 2 (n + 1) = ∅ and, for all k ∈ {1, 2} and all i ∈ {1, . . . , n + 1}, there exists T ∈ F k (n + 1) such that (B ∩ T ) ξ yi = ∅ and I(y i ) ⊂ Φ(p ξ ( T )). This is immediate for i = n + 1 because T 2 = T 2 (y n+1 ) ∈ F q (n + 1) and T 1 = T 1 (y n+1 ) ∈ F 3-q (n + 1). For i ∈ {1, . . . , n}, there are two possibilities:

• for k = 3 -q, it follows from F 3-q (n) ⊂ F 3-q (n + 1).

• for k = q and i ∈ {1, . . . , i 1 -1}, by the previous iteration n there exists T ∈ F q (n) such that (B ∩ T ) ξ yi = ∅ and I(y i ) ⊂ Φ(p ξ ( T )). As (B ∩ T 1 ) ξ yi = ∅, by definition of i 1 , this implies that T = T 1 , so that actually T ∈ F q (n + 1) satisfies the above requirements. Assuming next that i ∈ {i 1 , . . . , n}, we deduce that n + 1 > i ≥ i 2 . By definition of i 2 , we have (B ∩ T 2 ) ξ yi 2 = ∅ while (B ∩ T 2 ) ξ yn+1 = ∅ so that the convexity of T 2 together with the ordering of the points y i lead to (B ∩ T 2 ) ξ yi = ∅. Hence, owing to (3.35), we infer that I(y i ) ⊂ Φ(p ξ ( T 2 )) and T 2 ∈ F q (n + 1) satisfies the above requirements.

We proceed this construction up to the N th iteration, and finally define

F k j := F k (N ) for k ∈ {1, 2}, (3.37) 
which define two disjoint subfamilies of F j satisfying in particular, thanks to (3.36),

K ⊂ N i=1 I(y i ) ⊂   T ∈F 1 j Φ(p ξ ( T ))   ∩   T ∈F 2 j Φ(p ξ ( T ))   = Φ   T ∈F 1 j p ξ ( T )   ∩ Φ   T ∈F 2 j p ξ ( T )   .
The proof of Lemma 3.10 is now complete.

ξ ⊥ ν ⊥ ξ ν y N y n+1 y i1 y i2 y i2-1 y 1 Π ν T 1 T 2 . . . . . .

Figure 9

We are now in position to complete the proof of Proposition 3.3.

Proof of Proposition 3.3. Since all triangles T in F j are contained in B, we get from (3.11b) and (3.12),

dλ dH 1 J u (x 0 ) = lim j→∞ λ kj (B j (x 0 )) 2 j ≥ lim inf j→∞ (1 -δ)κ j 2ε kj B χ j dx ≥ lim inf j→∞ (1 -δ)κ j 2ε kj T ∈Fj L 2 (T ).
Using next the inequality L 2 (T ) ≥ H 1 (p ξ (T ))(ε kj / j ) sin θ 0 /2, we deduce that

2 dλ dH 1 J u (x 0 ) ≥ (1 -δ)κ sin θ 0 2 lim inf j→∞ T ∈Fj H 1 (p ξ (T )). Let K ⊂ J u ∩ B 1-η 2 \
Z be a compact set and F 1 j and F 2 j be two disjoint subfamilies of F j given by Lemma 3.10. Thus

2 dλ dH 1 J u (x 0 ) ≥ (1 -δ)κ sin θ 0 2 lim inf j→∞    T ∈F 1 j H 1 (p ξ (T )) + T ∈F 2 j H 1 (p ξ (T ))    ,
and remembering that Φ has a Lipschitz constant bounded by 1 + 4η 2 ,

2 dλ dH 1 J u (x 0 ) ≥ (1 -δ)κ sin θ 0 2 1 + 4η 2 lim inf j→∞    T ∈F 1 j H 1 (Φ(p ξ (T ))) + T ∈F 2 j H 1 (Φ(p ξ (T )))    ≥ (1 -δ)κ sin θ 0 2 1 + 4η 2 lim inf j→∞    H 1   T ∈F 1 j Φ (p ξ (T ))   + H 1   T ∈F 2 j Φ (p ξ (T ))      ≥ (1 -δ)κ sin θ 0 1 + 4η 2 H 1 (K).
By inner regularity of the Radon measure H 1 (J u ∩ B 1-η 2 \ Z ), passing to the supremum with respect to all compact sets K ⊂

J u ∩ B 1-η 2 \ Z , we get that 2 dλ dH 1 J u (x 0 ) ≥ (1 -δ)κ sin θ 0 1 + 4η 2 H 1 (J u ∩ B 1-η 2 \ Z ).
Remembering that

J u ∩ B = B ν , we have 2 = H 1 (J u ∩ B) = H 1 (J u ∩ B 1-η 2 ) + η ≤ H 1 (J u ∩ B 1-η 2 \ Z ) + 4η because H 1 (Z ) ≤ 3η. Hence 2 dλ dH 1 J u (x 0 ) ≥ (1 -δ)κ sin θ 0 1 + 4η 2 (2 -4η).
Finally passing to the limit as η → 0 and δ → 0, we deduce that

dλ dH 1 J u (x 0 ) ≥ κ sin θ 0 ,
which corresponds to the desired lower bound with the correct multiplicative constant.

3.3.

The upper bound. The proof of the Γ-lim sup inequality relies on suitable approximation results in GSBD (see [START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF][START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF][START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF]) which allow us to reduce to the case where the jump set of u is a finite union of pairwise disjoint closed line segments, and u is smooth outside the jump set. Then, an explicit mesh construction introduced in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], adapted to this simple geometrical situation, provides the desired upper bound.

Proposition 3.11. For all u ∈ L 0 (Ω; R 2 ),

F (u) ≤ F(u).
Proof. We can assume that F(u) < ∞, and thus that u ∈ GSBD 2 (Ω). Using the density result for GSBD functions (see [START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF]Theorem 1.1]) as well as the lower semicontinuity of F with respect to the convergence in measure (see [START_REF] Maso | An introduction to Γ-convergence[END_REF]Proposition 6.8]), we can further assume without loss of generality that u

∈ SBV 2 (Ω; R 2 ) ∩ L ∞ (Ω; R 2 ). Writing u = (u 1 , u 2 ), we can apply [23, Lemma 4.2] to both components u 1 and u 2 ∈ SBV 2 (Ω)∩ L ∞ (Ω) of u. For Ω := (a, b) × (c, d) ⊂ R 2 with Ω ⊂⊂ Ω , we can find an extension v ∈ SBV 2 (Ω ; R 2 ) ∩ L ∞ (Ω ; R 2 ) such that v |Ω = u, v L ∞ (Ω ;R 2 ) ≤ √ 2 u L ∞ (Ω;R 2 ) and H 1 (∂Ω ∩ J v ) = 0. (3.38) 
Next owing to the density result in SBV (see [START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF]Theorem 3.1]), there exists a sequence

{v k } k∈N in SBV 2 (Ω ; R 2 ) ∩ L ∞ (Ω ; R 2 ) as well as N k disjoint closed segments L k 1 , . . . , L k N k
⊂ Ω with the following properties:

J v k = N k i=1 L k i , H 1 (J v k \ J v k ) = 0, v k ∈ W 2,∞ (Ω \ J v k ; R 2 ) and      v k → v strongly in L 1 (Ω ; R 2 ), ∇v k → ∇v strongly in L 2 (Ω ; M 2×2 ), lim sup k H 1 (A ∩ J v k ) ≤ H 1 (A ∩ J v ) for all open subset A ⊂⊂ Ω . (3.39) 
Using (3.39) and the lower semicontinuity of F in L 0 (Ω; R 2 ) with respect to the convergence in measure, we obtain that

F (u) ≤ lim inf k→∞ F (v k|Ω ).
The proof is complete once we know that lim inf k F (v k|Ω ) ≤ F(u). This follows from Lemma 3.12 below, applied to each function v k . Indeed, using that result, we get that

lim inf k→∞ F (v k|Ω ) ≤ lim inf k→∞ Ω Ae(v k ) : e(v k ) dx + κ sin θ 0 H 1 (J v k ∩ Ω) .
Recalling the convergences (3.39), we conclude that

F (u) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ∩ Ω) = Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ) = F(u),
where we used H 1 (J v ∩ ∂Ω) = 0 and that v = u in Ω.

We are back to establishing the following result.

Lemma 3.12.

Let v ∈ SBV 2 (Ω ; R 2 ) ∩ L ∞ (Ω ; R 2 ) be such that J v = N i=1 L i , H 1 (J v \ J v ) = 0, v ∈ W 2,∞ (Ω \ J v ; R 2 ),
for some pairwise disjoint closed segments L 1 , . . . , L N ⊂ Ω . Then,

F (v |Ω ) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ∩ Ω). Proof. Since Ω ⊂⊂ Ω , then d := dist(Ω, R 2 \ Ω ) > 0. For all δ ∈ (0, d), let us consider the open sets Ω δ := {x ∈ Ω : dist(x, R 2 \ Ω ) > δ} which satisfy Ω ⊂⊂ Ω δ ⊂⊂ Ω . We introduce a cut-off function φ δ ∈ C ∞ c (R 2 ; [0, 1]) which is supported in Ω and such that φ δ = 1 in Ω δ , φ δ = 0 in R 2 \ Ω δ 2 . We next introduce the function v := φ δ v ∈ SBV 2 (R 2 ; R 2 ) ∩ L ∞ (R 2 ; R 2 ). We remark that v ∈ W 2,∞ R 2 \ N i=1 L i ; R 2 , J v ⊂ J v , and J v \ J v ⊂ J v \ Ω δ . (3.40) Since J v ⊂ J v and H 1 (J v ) < ∞, the disjoint closed segments L i ⊂ Ω satisfy H 1 (J v ) = H 1 (J v ) = N i=1 H 1 (L i ).
Then according to [23, Appendix A], since θ 0 is smaller than or equal to Θ 0 := 45 • -arctan(1/2), for all ε > 0 there exists an admissible triangulation

T ε ∈ T ε (R 2 , ω, θ 0 ) such that, setting T ε := {T ∈ T ε : T ∩ i L i = ∅},
• The vertices of T ε are never situated on any L i :

for all i ∈ {1, . . . , N }, L i ∩ Vertices(T ε ) = ∅,
• Using [23, Formula (4.9)],

T ∈T ε L 2 (T ) ε → sin θ 0 H 1 (J v ). (3.41) 
We define the set D ε := T ∈T ε T and χ ε := 1 Dε ∈ L ∞ (R 2 ; {0, 1}), while v ε is the Lagrange interpolation of the values of v at the vertices of the triangulation T ε . Note that, if x 1 , x 2 and x 3 are the vertices of T ∈ T ε , the values v(x i ) are well defined since, by construction of the triangulation T ε , the points x 1 , x 2 and x 3 do not belong to i L i . In particular,

v ε ∈ V ε (Ω , ω, θ 0 ) and      χ ε → 0 strongly in L 1 (Ω ), v ε → v strongly in L 2 (Ω ; R 2 ), e(v ε )1 Ω \Dε → e(v) strongly in L 2 (Ω ; M 2×2 sym ). (3.42) 
Indeed, the first convergence is a consequence of (3.41) since

χ ε L 1 (Ω ) ≤ L 2 (D ε ) = T ∈T ε L 2 (T ) → 0.
Next, noticing that every

T ∈ T ε \ T ε is contained in R 2 \ i L i and v ∈ W 2,∞ (R 2 \ i L i ; R 2 ),
we infer that for all ε > 0 and

T ∈ T ε \ T ε , v ε -v H 1 (T ;R 2 ) ≤ Cε D 2 v L 2 (T ) , (3.43) 
for some constant C = C(θ 0 ) > 0 depending only on θ 0 (see e.g. [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]Theorem 3.1.5]). On the one hand, since

v ε L ∞ (T ;R 2 ) ≤ v L ∞ (T ;R 2 ) for all T ∈ T ε , we get that v ε -v 2 L 2 (Ω ;R 2 ) ≤ 2 v 2 L ∞ (R 2 ;R 2 ) T ∈T ε L 2 (T ) + T ∈Tε\T ε , T ∩Ω =∅ T |v ε -v| 2 dx.
Then, using (3.43) yields

v ε -v 2 L 2 (Ω ;R 2 ) ≤ 2 v 2 L ∞ (R 2 ;R 2 ) L 2 (D ε ) + C 2 ε 2 T ∈Tε\T ε , T ∩Ω =∅ D 2 v 2 L 2 (T ) ≤ 2 v 2 L ∞ (R 2 ;R 2 ) L 2 (D ε ) + C 2 ε 2 D 2 v 2 L 2 (R 2 \ i Li) → 0,
leading to the second convergence in (3.42). Note in particular that v ε converges in measure to v in Ω . On the other hand, writing

e(v ε )1 Ω \Dε -e(v) 2 L 2 (Ω ;M 2×2 sym ) = Ω ∩Dε |e(v)| 2 dx + Ω \Dε |e(v ε ) -e(v)| 2 dx,
and using that L 2 (D ε ) → 0, that ∇v ∈ L 2 (R 2 ; M 2×2 ) (because v ∈ SBV 2 (R 2 ; R 2 
)) as well as (3.43), we get that

e(v ε )1 Ω \Dε -e(v) 2 L 2 (Ω ;M 2×2 sym ) ≤ Ω ∩Dε |e(v)| 2 dx + C 2 ε 2 D 2 v 2 L 2 (R 2 \ i Li) → 0,
which implies the third convergence in (3.42).

We next show that

F (v |Ω ) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ∩ Ω) + H 1 (J v \ Ω δ ) . (3.44) 
Indeed, as f ≤ κ thanks to the growth properties (1.4), we get

Ω 1 ε f (εAe(v ε ) : e(v ε )) dx ≤ T ∈Tε\T ε , T ∩Ω =∅ L 2 (T ∩Ω ) 1 ε f εAe(v ε ) |T : e(v ε ) |T + κ ε T ∈T ε L 2 (T ).
On the one hand, (3.41) implies that κ ε

T ∈T ε L 2 (T ) → κ sin θ 0 H 1 (J v ). (3.45) 
On the other hand, since every triangle

T ∈ T ε \ T ε is contained in R 2 \ N i=1 L i , then ∇v ε|T x i -x j |x i -x j | = |v(x i ) -v(x j )| |x i -x j | ≤ ∇v L ∞ (R 2 \ i Li;M 2×2 ) ,
where x 1 , x 2 and x 3 are the vertices of T . Hence, applying [23, Remark 3.5], it results that

e(v ε ) L ∞ (R 2 \Dε;M 2×2 sym ) ≤ √ 5 sin θ 0 ∇v L ∞ (R 2 \ i Li;M 2×2 ) =: K < ∞. (3.46) 
Therefore, setting

δ ε := sup 0<t<εβK 2 f (t) t ,
we deduce, using f (0) = 0 and the property (1.5) of A, that

1 ε f (εAe(v ε ) : e(v ε )(1 -χ ε )) ≤ δ ε Ae(v ε ) : e(v ε )(1 -χ ε ) in Ω
From the properties (1.4) of f , we infer that δ ε → 1 as ε → 0. Hence, using the third convergence in (3.42), it ensures that 

T ∈Tε\T ε , T ∩Ω =∅ L 2 (T ∩ Ω ) 1 ε f εAe(v ε ) |T : e(v ε ) |T = Ω 1 ε f (εAe(v ε ) : e(v ε )(1 -χ ε )) dx ≤ δ ε Ω Ae(v ε ) : e(v ε )1 Ω \Dε dx → Ω Ae(v) : e(v)
ε→0 + Ω 1 ε f (εAe(v ε ) : e(v ε )) dx ≥ lim sup ε→0 Ω 1 ε f (εAe(v ε ) : e(v ε )) dx + lim inf ε→0 Ω \Ω 1 ε f (εAe(v ε ) : e(v ε )) dx ≥ F (v |Ω ) + Ω \Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ∩ Ω \ Ω).
Gathering (3.48) and (3.40), as by construction v |Ω = v |Ω , we deduce that

F (v |Ω ) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v \ J v ) + κ sin θ 0 H 1 (J v ∩ Ω) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v \ Ω δ ) + κ sin θ 0 H 1 (J v ∩ Ω),
which settles (3.44). Passing to the limit as δ 0 + thanks to the monotone convergence Theorem, we obtain that

H 1 (J v \ Ω δ ) → H 1 (J v \ Ω ) = 0, hence F (v |Ω ) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ∩ Ω),
which completes the proof of Lemma 3.12.

Convergence of minimizers

In order to investigate the approximation of minimizers for the Griffith energy, it is natural to impose boundary conditions to avoid trivial minimizers such as rigid displacements. This section is devoted to an approximation of the Griffith functional under a Dirichlet boundary condition by means of brittle damage energies. Let w ∈ W 2,∞ (R 2 ; R 2 ) be a prescribed boundary displacement. Given an admissible triangulation T ε ∈ T ε (Ω ) of Ω , we define w Tε as the piecewise affine Lagrange interpolation of w on T ε . Note that by standard finite element estimates (see [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]Theorem 3.1.5]), w Tε ∈ V ε (Ω ), w Tε → w strongly in H 1 (Ω ; R 2 ) and sup ε>0 F ε (w Tε ) < +∞.

(4.1)

We define V Dir ε (Ω ) to be the set of all continuous functions u : Ω → R 2 for which there exists a triangulation T ε ∈ T ε (Ω ) so that u is affine on each triangle T ∈ T ε and u = w Tε on each triangle T ∈ T ε such that T ∩ (Ω \ Ω) = ∅. We consider the following discrete functionals

G ε : u ∈ L 0 (Ω ; R 2 ) →    1 ε Ω f εAe(u) : e(u) dx if u ∈ V Dir ε (Ω ), +∞
otherwise.

The Griffith energy with Dirichlet boundary condition w is defined, for u ∈ L 0 (Ω ; R 2 ), by

G(u) :=        Ω Ae(u) : e(u) dx +κ sin θ 0 H 1 (J u ∩ Ω) + H 1 (∂Ω ∩ {u = w}) if u ∈ GSBD 2 (Ω ), u = w L 2 -a.e. in Ω \ Ω, +∞ otherwise.
Note that the additional boundary term accounts for possible jumps at the boundary, where the boundary condition fails to be satisfied. In the previous expression and in the sequel, we still denote by u the trace of u |Ω ∈ GSBD 2 (Ω) on ∂Ω (see [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Theorem 5.5]).

We will first prove the following result, generalizing Theorem 1.3 to the case of Dirichlet boundary conditions. Next, we will show a compactness result for sequences of dispacements u ε with uniformly bounded energy, with respect to the L 0 (Ω ; R 2 )-topology of convergence in measure, under the simplifying assumption that f : [0, +∞) → [0, +∞) reduces to f (t) = κ ∧ t for t ∈ R + . Considering eventually a sequence of minimizers of G ε (see Lemma 4.13), we will show that, up to a subsequence and up to subtracting a sequence of piecewise rigid body motions, it converges in measure in Ω to a minimizer of G and the minimal value of G ε converges to the minimal value of G. In other words, we obtain the fundamental theorem of Γ-convergence in our specific context. Corollary 4.2 (Convergence of minimizers). Assume further that Ω and Ω are connected. For each ε > 0 small, let u ε ∈ V Dir ε (Ω ) be a minimizer of G ε . Then, there exist a subsequence (not relabeled), a sequence of piecewise rigid body motions {r ε } ε>0 and a function u ∈ GSBD 2 (Ω )

with u = w L 2 -a.e. in Ω \ Ω, such that u ε -r ε → u in measure in Ω, G ε (u ε ) → G(u) and u is a minimizer of G.
Remark 4.3. Let us clarify that the improved lower bound (4.6) in Proposition 4.5 is crucial only for the compactness and convergence of minimizing sequences, to ensure that after the removal of piecewise rigid body motions, minimizers of the approximating functionals converge to a minimizer of the Griffith functional and their energies converge as well. Instead, the Γ-convergence result under Dirichlet boundary conditions directly follows from Theorem 1.3 and Proposition 3.1. Indeed, the proof of the lower bound in Theorem 4.1 is the consequence of the lower bound in Theorem 1.3 applied in Ω together with the identification of the volume terms in Ω \ Ω. 4.2. Γ-limit under Dirichlet boundary conditions. Let us introduce the Γ-lower and upper limits G and G defined, for all u ∈ L 0 (Ω ; R 2 ), by

G (u) := inf lim inf ε→0 G ε (u ε ) : u ε → u in measure in Ω , and 
G (u) := inf lim sup ε→0 G ε (u ε ) : u ε → u in measure in Ω .
Proof of Theorem 4.1. Lower bound. Let u ∈ L 0 (Ω ; R 2 ). Without loss of generality, we can assume that G (u) < +∞. For any ζ > 0, there exists a sequence {u ε } ε>0 such that u ε → u in measure in Ω and lim inf

ε→0 G ε (u ε ) ≤ G (u) + ζ < +∞.
Let us extract a subsequence {u k } k∈N := {u ε k } k∈N such that u k → u L 2 -a.e. in Ω and

lim k→∞ G ε k (u k ) = lim inf ε→0 G ε (u ε ) < +∞.
This implies that, for k large enough, u k ∈ V Dir ε k (Ω ) and sup k G ε k (u k ) < +∞. Especially, we get that u k ∈ V ε k (Ω ). Hence, according to Proposition 3.1 and Theorem 1.3 applied in Ω , we infer that u ∈ GSBD 2 (Ω ) and lim inf

k→∞ Ω 1 ε k f ε k Ae(u k ) : e(u k ) dx ≥ Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ).
Setting w k := w Tε k and using (4.1) together with the convergence in measure of u k = w k to u in Ω \ Ω, we get that u = w L 2 -a.e. in Ω \ Ω. Setting now δ k := sup f (t)/t : 0 < t < ε k βK 2 where

K = √ 5 sin θ 0 ∇w L ∞ (R 2 ;R 2 ) < ∞,
one can check that δ k converges to 1 as k → ∞ according to (1.4) and Upper bound. Let u ∈ L 0 (Ω ; R 2 ). We can assume that G(u) < +∞ so that u ∈ GSBD 2 (Ω ) and u = w L 2 -a.e. in Ω \Ω. According to the density results for GSBD functions (see [START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF]Theorem 1.1] and [START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF]Formula (5.11)]), there exists a sequence of functions

Ω 1 ε k f ε k Ae(u k ) : e(u k ) dx ≤ G ε k (u k ) + Ω \Ω
u n ∈ SBV 2 (Ω; R 2 ) ∩ L ∞ (Ω; R 2 ) such that      u n → u in measure in Ω, u n = w in an open bounded neighborhood of ∂Ω, lim sup n G(u n ) ≤ G(u). (4.2) 
Extending (continuously) u n by w on Ω \ Ω, we get that u n → u in measure in Ω . The proof is thus complete once we know that G (u n ) ≤ G(u n ), for all n ∈ N, as it would imply G (u) ≤ G(u), using the lower semicontinuity of G in L 0 (Ω ; R 2 ) with respect to the convergence in measure together with the last point of (4.2).

Therefore, we can assume without loss of generality that u ∈ SBV 2 (Ω ; R 2 ) ∩ L ∞ (Ω ; R 2 ) and u = w on V ∪(Ω \Ω) with V an open bounded neighborhood of ∂Ω. Next according to Proposition 5.1 (see Appendix) there exist a sequence {u k } k∈N in SBV 2 (Ω; R 2 ) ∩ L ∞ (Ω; R 2 ) as well as N k disjoint closed segments L k 1 , . . . , L k N k ⊂ Ω satisfying :

J u k = N k i=1 L k i , H 1 (J u k \ J u k ) = 0, u k ∈ W 2,∞ (Ω \ J u k ; R 2 ),          u k = w in an open neighborhood of ∂Ω, u k → u strongly in L 1 (Ω; R 2 ), ∇u k → ∇u strongly in L 2 (Ω; M 2×2 ), lim sup k→∞ H 1 (J u k ) ≤ H 1 (J u ). (4.3) 
Thus, extending continuously u k to Ω by setting u k = w on Ω \ Ω and using again the lower semicontinuity of G in L 0 (Ω ; R 2 ) with respect to the convergence in measure together with the convergences in (4.3), we are back to establishing that G (u k ) ≤ G(u k ) as the conclusion follows letting k → +∞. Arguing almost word for word as in the proof of Lemma 3.12, we show the following Lemma 4.4, which leads to the desired inequality.

Lemma 4.4. Let v ∈ SBV 2 (Ω ; R 2 ) ∩ L ∞ (Ω ; R 2 ) and W be a bounded open neighborhood of ∂Ω be such that v = w on W ∪ (Ω \ Ω)
and

Ω \ W ⊃ J v = N i=1 L i , H 1 (J v \ J v ) = 0, v ∈ W 2,∞ (Ω \ J v ; R 2 ), for some pairwise disjoint closed segments L 1 , . . . , L N ⊂ Ω \ W . Then, G (v) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ) = G(v).
We do not detail the proof of Lemma 4.4. We only stress that, following Lemma 3.12, for ε > 0 small enough, if T ε is the admissible triangulation given by [23, Appendix A] and v ε is the Lagrange interpolation of the values of v at the vertices of T ε , each triangle T ∈ T ε such that T ∩ (Ω \ Ω) = ∅ is contained in W ∪ R 2 \ Ω, so that v ε = w Tε on T . In particular, it ensures that v ε ∈ V Dir ε (Ω ). 4.3. Compactness for sequences with uniformly bounded energy and convergence of minimizers. In this paragraph, the density f reduces to f (t) = κ ∧ t for t ∈ R, so that the energy G ε corresponds to

G ε (u) = Ω κ ε
∧ Ae(u) : e(u) dx for u ∈ V Dir ε (Ω ). The reason of this simplifying assumption on f comes from the difficulty to obtain compactness for sequences with uniformly bounded energies and from the difficulty to prove the existence of minimizers, as it will be detailed below. This is however a meaningful case since it corresponds to a brittle damage type energy from the mechanical point of view.'

The following result shows a compactness and lower bound estimate for any sequence with uniformly bounded energy. 

k } k∈N ⊂ L 0 (Ω ; R 2 ) be such that M := sup k G ε k (u k ) < ∞.
Then there exist a subsequence (not relabeled), a Caccioppoli partition P = P j j∈N of Ω , a sequence of piecewise rigid motions {r k } k∈N with

r k := j∈N r j k 1 Pj ,
and a function u ∈ GSBD 2 (Ω ) such that u = w L 2 -a.e. in Ω \ Ω,

|r i k (x) -r j k (x)| → +∞ for L 2 -a.e. x ∈ Ω , for all i = j, (4.4) 
u k -r k → u in measure in Ω , (4.5) 
and

lim inf k→∞ Ω κ ε k ∧ Ae(u k ) : e(u k ) dx ≥ Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ∪ ∂ * P). (4.6) 
Remark 4.6. The lower bound inequality (4.6) strongly relies on the simplifying assumption

f (t) = κ ∧ t for t ∈ R.
Indeed, when working with a more general density f : [0, +∞) → [0, +∞) satisfying (1.4), the main issue arises when one needs to fix some δ > 0 to use (3.1), in order to exhibit an extraction, a Caccioppoli partition, rigid motions and a limit displacement which satisfy (4.4) and (4.5). As all of them depend on δ > 0, it becomes difficult to derive the lower bound, even for the Lebesgue part (4.9) below, since one simultaneously needs δ to be fixed (so that P, {r k } k∈N and u are well defined) and to converge to 0 (in order to recover (4.9) as in the proof of Proposition 3.4).

Proof. By definition of V Dir ε k (Ω ), there exists an admissible triangulation T k ∈ T ε k (Ω ) such that u k is affine on each triangle T ∈ T k and u k = w T k on each triangle T ∈ T k intersecting Ω \ Ω. We introduce the characteristic functions

χ k := 1 {Ae(u k ):e(u k )≥ κ ε k } ∈ L ∞ (Ω ; {0, 1}) which are constant on each triangle T ∈ T k . Since u k = w T k on each triangle T ∈ T k intersecting Ω \ Ω and w ∈ W 2,∞ (R 2 ; R 2 ), we deduce that, for k large enough, χ k = 0 in Ω \ Ω. Thus D k := {χ k = 1} = N k i=1 T k i ⊂ Ω for some triangles T k i ∈ T k , and L 2 (D k ) = Ω χ k dx → 0. Let v k := (1 -χ k )u k ∈ SBV 2 (Ω ; R 2 ) with ∇v k = (1 -χ k )∇u k and J v k ⊂ N k i=1 ∂T k i ⊂ Ω. Arguing as in the proof of Proposition 3.1, we infer that sup k∈N Ω |e(v k )| 2 dx + H 1 (J v k ) < ∞.
In view of the GSBD 2 -compactness Theorem ([21, Theorem 1.1]), there exist a subsequence (not relabeled), a Caccioppoli partition P = P j j∈N of Ω , a sequence of piecewise rigid motions

{r k } k∈N with rk := j∈N rj k 1 Pj , and a function ũ ∈ GSBD 2 (Ω ) such that      |r i k (x) -rj k (x)| → +∞ for L 2 -a.e. x ∈ Ω , for all i = j, v k -rk → ũ in measure in Ω , e(v k ) e(ũ) weakly in L 2 (Ω ; M 2×2 sym ). Since L 2 (D k ) → 0, we deduce that u k -rk → ũ in measure in Ω .
For all j ∈ N such that L 2 (P j ∩ Ω \ Ω) > 0, the convergence in measure of u k -rj k to ũ together with the convergence in measure of u k to w in P j ∩ Ω \ Ω =: V j ensure that rj k → w -ũ in measure in V j . Since the space of rigid body motions is a closed finite dimensional subspace of L 0 (Ω ; R 2 ), we can find a rigid body motion r j such that r j |Vj = w -ũ L 2 -a.e. in V j . Therefore, with

r := j∈N, L 2 (Pj ∩Ω \Ω)>0
r j 1 Pj , the piecewise rigid body motion r k := rk -r and the function u

= ũ + r ∈ GSBD 2 (Ω ) are such that      u k -r k → u in measure in Ω , u = w L 2 -a.e. in Ω \ Ω, e(v k ) e(u) weakly in L 2 (Ω ; M 2×2 sym ). (4.7) 
We are now back to prove (4.6). As in the proof of Proposition 3.3, we define the following Radon measures on Ω

λ k := κ ε k ∧ Ae(u k ) : e(u k ) L 2 Ω ∈ M(Ω ).
Using (4.1) and the energy bound assumption on u k , we obtain that the sequence {λ k } k∈N is uniformly bounded in M(Ω ). Thus, up to a subsequence (not relabeled), we have λ k * λ weakly* in M(Ω ) for some nonnegative measure λ ∈ M(Ω ). Thanks to the lower semicontinuity of weak* convergence in M(Ω ) along open sets, we have that

lim inf k→∞ Ω κ ε k ∧ Ae(u k ) : e(u k ) dx = lim inf k→∞ λ k (Ω ) ≥ λ(Ω ). (4.8) 
Recalling that P (1) ∪ ∂ * P contains H 1 -almost all of Ω , and using that the measures L 2 Ω , H 1 (P (1) ∩ J u ) and H 

λ = dλ dL 2 Ω L 2 Ω + dλ dH 1 (P (1) ∩ J u ) H 1 (P (1) ∩ J u ) + dλ dH 1 ∂ * P H 1 ∂ * P + λ s ,
for some nonnegative measure λ s which is singular with respect to L 2 Ω , H 1 (P (1) ∩ J u ) and H 1 ∂ * P. Thus, after integration over Ω and recalling (4.8), we would get that lim inf

k→∞ Ω κ ε k ∧ Ae(u k ) : e(u k ) dx ≥ Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ∩ P (1) ) ∪ ∂ * P .
On the one hand, the convergence in

H 1 (Ω ; R 2 ) of w T k to w (see (4.1)) ensures that lim inf k→∞ Ω κ ε k ∧ Ae(u k ) : e(u k ) dx ≤ lim sup k→∞ Ω \Ω Ae(w T k ) : e(w T k ) dx + lim inf k→∞ G ε k (u k ) ≤ Ω \Ω Ae(w) : e(w) dx + lim inf k→∞ G ε k (u k ). ( 4 

.12)

On the other hand, using that u = w in Ω \ Ω and that P (1) ∪ ∂ * P covers H 1 almost every Ω , we obtain that Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ∩ P Gathering (4.12) and (4.13) leads to (4.6), which completes the proof of Proposition 4.5.

Using the last convergence in (4.7), we easily get inequality (4.9) arguing in an identical manner than in the proof of Proposition 3.4. We do not reproduce the argument. The rest of this section is devoted to the establishment of (4.10) and (4.11). We start with the lower bound inequality for the jump part of the energy in the measure theoretic interior of P. Proposition 4.7 (Lower bound for the jump part in P (1) ). For H 1 -a.e. x 0 ∈ P (1) 

∩ J u , dλ dH 1 (P (1) ∩ J u ) (x 0 ) ≥ κ sin θ 0 .
Proof. The proof is very similar to that of Proposition 3.5. We just sketch it, underlying the main differences. Let x 0 ∈ P (1) ∩ J u be such that

dλ dH 1 (P (1) ∩ J u ) (x 0 ) = lim 0 λ B (x 0 ) H 1 P (1) ∩ J u ∩ B (x 0 )
exists and is finite, and lim 0 H 1 (P (1) 

∩ J u ∩ B (x 0 )) 2 = 1.
According to the Besicovitch differentiation Theorem and the countably (H 1 , 1)-rectifiability of P (1) ∩ J u , it follows that H 1 -almost every point x 0 in P (1) ∩ J u fulfills these conditions.

By definition of the jump set J u , there exist ν := ν u (x 0 ) ∈ S 1 and u

± (x 0 ) ∈ R 2 with u + (x 0 ) = u -(x 0 ) such that the function u x0, := u(x 0 + •) converges in measure in B := B 1 (0) to the jump function u : y ∈ B → u + (x 0 ) if y • ν > 0, u -(x 0 ) if y • ν < 0, as 0.
As before, we consider a sequence of radii { j } j∈N such that j 0 and λ(∂B j (x 0 )) = 0 = H 1 (P (1) ∩J u ∩∂B j (x 0 )) for all j ∈ N. Arguing as in Proposition 3.5, there exists an increasing sequence {k j } j∈N such that k j ∞ as j → ∞ and

         u kj -r kj (x 0 + j •) → u in measure in B, λ kj (B j (x 0 )) 2 j → dλ dH 1 (P (1) ∩ J u ) (x 0 ), ε kj / j → 0, ω(ε kj )/ j → 0.
By definition of P (1) , there exists i 0 ∈ N such that x 0 ∈ P i0 (1) . We thus infer that the function v j := u kj -r i0 kj (x 0 + j •) ∈ H 1 (B; R 2 ) converges in measure to u in B. Indeed, for all η > 0,

L 2 B ∩ {|v j -u| > η} ≤ L 2 B ∩ {| u kj -r kj (x 0 + j •) -u| > η} + L 2 B \ P i0 -x 0 j → 0,
where we used that x 0 is a point of density 1 for P i0 . We are now back to an analogous situation than (3.11), since v j is continuous on B and piecewise affine on each triangle T ∈ T kj -x 0 / j . Therefore, from here the conclusion of Proposition 4.7 results from the proof of Proposition 3.5.

We next pass to the lower bound inequality for the energy on the reduced boundary of P, which presents some non trivial adaptations of the proof of Proposition 3.5. The previous properties turn out to be satisfied for H 1 -a.e. x 0 ∈ ∂ * P. This is a consequence of the countably (H 1 , 1)-rectifiability of that set, the Besicovitch differentiation Theorem, the fact that P (1) ∪ i =j (∂ * P i ∩ ∂ * P j ) covers H 1 almost all of Ω ([3, Theorem 4.17]), and the existence of traces on (H 1 , 1)-rectifiable sets (see [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Theorem 5.2] in the case of 1-dimensional C 1 submanifolds which may be extended to countably (H 1 , 1)-rectifiable sets arguing as in [5, Proposition 4.1]).

To simplify notation, let us denote by P + := P i0 and P -:= P j0 . According to De Giorgi's Theorem (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 3.59]) we infer that 1 P ± -x 0 → 1 H ± strongly in L 1 (B) as 0, (4.14) where H ± ⊂ R 2 denote the halfspaces orthogonal to ν and containing ±ν. With these notation, we have that u = u + (x 0 )1 H + ∩B + u -(x 0 )1 H -∩B .

Note also that contrary to Proposition 3.5 where jump points were considered, it might be the case that u + (x 0 ) = u -(x 0 ), i.e. that u is constant.

Extraction of diagonal subsequences. As before, we consider a sequence of radii { j } j∈N such that j 0 and λ(∂B j (x 0 )) = 0 = H 1 ∂ * P ∩ ∂B j (x 0 ) for all j ∈ N. By our choice of x 0 , (4.4) and (4.5), with r ± k := r k|P ± , we have : We can thus find an increasing sequence {k j } j∈N such that k j ∞ as j → ∞ and

                  
                      
u kj -r kj (x 0 + j •) → u in measure in B,

arctan|r + kj -r - kj |(x 0 + j •) → π 2 in measure in B, λ kj (B j (x 0 )) 2 j → dλ dH 1 ∂ * P (x 0 ), ε kj j → 0, ω(ε kj ) j → 0.
Let v j := u kj (x 0 + j •), r ± j := r ± kj (x 0 + j •) and r j := r + j 1 H + ∩B + r - j 1 H -∩B . By (4.14) and (4.15), we have for all η > 0, L 2 {|v j -r ± j -u ± (x 0 )| > η} ∩ B ∩ H ± ≤ L 2 B ∩ H ± \ (P ± -x 0 )/ j + L 2 {|v j -r kj (x 0 + j •) -u| > η} ∩ B → 0.

Thus, up to a subsequence v j -r ± j → u ± (x 0 ) in measure in B ∩ H ± , |r + j -r - j | → +∞ L 2 -a.e. in B.

(4.16)

Selection of a slicing direction. According to [START_REF] Chambolle | Equilibrium configurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF]Lemma 2.8], there exist an H 1 -negligible set N ⊂ B ν and a countable dense subset D of S 1 such that for all ξ ∈ D and all y ∈ B ν \ N , |(r + j -r - j )(y) • ξ| → +∞ as j → +∞. Note that ∇r ± j ξ • ξ = 0, so that the quantity t → (r + j -r - j ) ξ y (t) = (r + j -r - j )(y) • ξ is independent of t ∈ B ξ y . Thus, for all y ∈ B ν \ N , we have arctan|(r + j -r - j ) ξ y | → π 2 uniformly in t ∈ B ξ y .

(4.17)

For any η > 0, let ξ ∈ S 1 ∩ D be such that For every j ≥ j 2 (γ) and every y ∈ Y j \ Z * , let T ∈ T x0,j b,int be such that ( T ∩ B) ξ y = ∅. In particular, note that T ∈ T j . Arguing in the same way as in the proof of Lemma 3.9, we get that there exists i ∈ {1, 2} such that L ∞ (R 2 ;M 2×2 ) < κ ε on that set. Being constant equal to 1 or 0 on each triangle of T n , χ n can be identified with a vector V n ∈ {0, 1} N . Hence, up to a subsequence, there exists V ∈ {0, 1} N such that V n → V in R N . In particular, there exists n 0 ∈ N such that V n = V for all n ≥ n 0 . Up to reordering the triangles, we can thus find a integer 0 ≤ M < N such that

|ν -ξ| ≤ η, ν • ξ ≥ 1 2 , ν • ξ ⊥ ≤ η.
{χ n = 1} = M i=1 T n i , {χ n = 0} = N i=M +1
T n i for all n ≥ n 0 .

By the Hausdorff convergence property, we infer that

χ n → χ := 1 M i=1 Ti
strongly in L 1 (Ω ). (4.28)

We next show some compactness on the sequence of displacements {u n } n∈N , carefully overcoming the lack of control on {χ n e(u n )} n in L 2 (Ω ; M 2×2 sym ). Remembering that (1 -χ n )|e(u n )| 2 ≤ κ/(αε) for all n ≥ n 0 and that the sequence {(1 -χ n )e(u n )} n∈N lives in the finite dimensional space (M 2×2 ) N , up to a new subsequence (not relabeled), there exists a function ξ ∈ L ∞ (Ω ; M 2×2 sym ) which is constant on each triangle T ∈ T such that T i .

Note that Ω \ Ω ⊂ ω 0 . Indeed, if x ∈ Ω \ Ω, then for all n ≥ n 0 , there exists M + 1 ≤ i n ≤ N such that x ∈ T n in . At the expense of extracting a further subsequence, there is no loss of generality to assume that i n = i is independent of n. By the Hausdorff convergence of T n i to T i , we infer that x ∈ T i ⊂ ω 0 . By connectedness of Ω \ Ω ⊂ ω 0 , we can consider ω the connected component of ω 0 containing Ω \ Ω. Let M ≤ K < N be such that ω = N i=K+1 T i , up to reordering the triangles again.

Observe that for all T ∈ T such that T ∩ (Ω \ Ω) = ∅, then T ∈ {T K+1 , . . . , T N }. Thus, for all T ∈ {T 1 , . . . , T K }, T ∩ (Ω \ Ω) = ∅ so that T ⊂ Ω. Therefore, for all open set W ⊂⊂ Ω with 

ν y = 1 =

 1 ε sin θ 0 which leads to the right lower bound, independently of the amplitude of the jump (b -a) • ν.

  ν

B

  (x) := {y ∈ R n : |x -y| < } the open ball centered at x with radius . If x = 0, we simply write B instead of B (0). The notation S n-1 stands for the unit sphere ∂B 1 . Matrices. The set of all real m×n matrices is denoted by M m×n , and the subset of symmetric real n × n matrices by M n×n sym . It will be endowed with the Froebenius scalar product A : B := tr(A T B) and the associated Froebenius norm |A| := √ A : A. Given two vectors a and b ∈ R n , the tensor product between a and b is defined as a ⊗ b := ab T ∈ M n×n and the symmetric tensor product by a b := (a ⊗ b + b ⊗ a)/2 ∈ M n×n sym . Measures. The Lebesgue and the k-dimensional Hausdorff measures in R n are respectively denoted by L n and H k . If U is a bounded open set of R n and Y is an Euclidean space, we denote by M(U ; Y ) the space of Y -valued bounded Radon measures in U which, according to the Riesz Representation Theorem, can be identified to the dual of C 0 (U ; Y ) (the closure of C c (U ; Y ) for the sup-norm in U ). For µ ∈ M(U ; Y ), its total variation is denoted by |µ|.

  Figure 4

  and all y ∈ Y j \ Z * .(3.27) Fix 0 < γ < γ * and, by(3.25), let j 0 (γ) ∈ N be such that y),b(y))\(aj (y),bj (y))|((v j ) ξ y ) | 2 dt ≤ γ 2 , B ξ y M η ∧ |(v j -u) ξ y | dt ≤ γ,(|a j (y)| + |b j (y)|) ≤ γ for all j ≥ j 0 (γ) and all y ∈ Y j \ Z * . In particular, recalling (3.18), (3.19) and by the choice (3.26) of γ * , we get that 2 ≥ |b(y)| ≥ L η > γ * > γ ≥ |b j (y)| and 2 ≥ |a(y)| ≥ L η > γ * > γ ≥ |a j (y)|, hence a(y) < a j (y) ≤ b j (y) < b(y).

  ) ξ y ≤Mη} , and the nonempty open interval I + := (0 ∨ b j (y), b(y)). By the Sobolev embedding and (3.26), we have that for all t ∈ I + ,

T

  j := {T ∈ T x0,j b,int : there exists y ∈ Y j \ Z * such that ( T ∩ B) ξ y = ∅}, and, for all T ∈ T j , we introduce both following quantities :   L ref (T ) := |[u](x0)•ξ|-4Cηγ |e(vj)|T :(ξ⊗ξ)| the reference length of T, L max (T ) := max z∈p ξ (T )L 1 (T ξ z ) the maximal section's length of T along the direction ξ. (3.28) Note that because T ∈ T x0,j b , see (3.13), then |e(v j ) |T ξ • ξ| 2 ≥ (1 -δ)κ 2 j /(αAε kj ) > 0, so that L ref (T ) is well defined, and positive by (3.26) since γ < γ * . The quantity L ref (T ) stands for the required length of the section T ξ y in order for the (affine) function (v j ) ξ y to pass exactly from the values u -(x 0 ) • ξ to u + (x 0 ) • ξ across T , up to the error 4C η γ. Note that L 1 (T ξ y ) = L ref (T ) for at most two values of y, say z 1 and z 2 , only depending on j and T . If y

4. 1 .

 1 Griffith energy with Dirichlet boundary condition. In order to formulate a Dirichlet boundary condition, we need to consider a larger bounded Lipschitz open set Ω such that Ω ⊂ Ω .

Theorem 4 . 1

 41 (Γ-convergence under Dirichlet boundary conditions). The family {G ε } ε>0 Γ-converges, with respect to the L 0 (Ω ; R 2 )-topology, to the Griffith functional G.

δ

  k Ae(w k ) : e(w k ) dx.Hence, the Dominated Convergence Theorem ensures thatζ + G (u) + Ω \Ω Ae(w) : e(w) dx ≥ Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ). Recalling that J u ∩ ∂Ω = {u = w} ∩ ∂Ω and J u ∩ (Ω \ Ω) = J w ∩ (Ω \ Ω) = ∅, it entails that ζ + G (u) ≥ G(u), and the conclusion follows letting ζ 0.

Proposition 4 . 5 .

 45 Let {ε k } k∈N satisfying ε k → 0 and let {u

( 1 )

 1 ) ∪ ∂ * P = Ω \Ω Ae(w) : e(w) dx + Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ∪ ∂ * P). (4.13)

Proposition 4 . 8 ( 0 H 1 (

 4801 Lower bound on the reduced boundary ∂ * P). For H 1 -a.e. x 0 ∈ ∂ * P,dλ dH 1 ∂ * P (x 0 ) ≥ κ sin θ 0 .The rest of this subsection is devoted to prove Proposition 4.8, with essentially the same structure than the proof of Proposition 3.5.Blow-up. Let x 0 ∈ ∂ * P be such thatx 0 ∈ ∂ * P i0 ∩ ∂ * P j0 for some i 0 = j 0 , ν := ν Pi 0 (x 0 ) = -ν Pj 0 (x 0 ) where ν P k (x 0 ) := lim 0 D1 P k B (x 0 ) |D1 P k | B (x 0 ) for k ∈ {i 0 , j 0 }, dλ dH 1 ∂ * P (x 0 ) = lim 0 λ B (x 0 ) H 1 ∂ * P ∩ B (x 0 )exists and is finite,lim ∂ * P ∩ B (x 0 )) 2 = 1,and there exist traces u ± (x 0 ) ∈ R 2 such that the functionu x0, := u(x 0 + •) converges in measure in B := B 1 (0) to y ∈ B → u(y) := u + (x 0 ) if y • ν > 0, u -(x 0 ) if y • ν < 0, as 0.

  r k (x 0 + j •) = lim j→∞ u x0, j = u in measure in B, lim j→∞ lim k→∞ arctan|r + k -r - k |(x 0 + j •)

(4. 18 )B κ ε kj ∧ α 2 jL

 182 As in the proof of Proposition 3.5, using a change of variables and the ellipticity property (1.5) of A and (4.15d), we get2 dλ dH 1 ∂ * P (x 0 ) ≥ lim sup j→∞ j |e(v j )ξ • ξ| 2 dyTherefore, for all j ≥ j 2 (γ) and all T ∈ T j , we introduce the following quantities :ref (T ) := [u](x 0 ) • ξ + µ j α • y T + β -C η + m α,β 2 µ j γ e(v j ) |T : (ξ ⊗ ξ)the reference length of T, L max (T ) := max z∈p ξ (T )L 1 (T ξ z ) the maximal section's length of T along the direction ξ.

(4. 25 ) 1 ref) = L 1 (T ξ z 2 ref)

 25112 Note that L ref (T ) is well defined (since |e(v j ) |T ξ • ξ| 2 ≥ κ 2 j /(αε kj ) > 0 as T ∈ T x0,j b) and positive for j large enough since µ j → +∞ and |α • y T + β| > m α,β γ/2 > 0. Moreover, we have L max (T ) > L ref (T ). Indeed, if such would not be the case, denoting byy ∈ Y j \ Z * a point such that ( T ∩ B) ξ y = ∅, then L 1 (T ξ p ξ (y) ) = L 1 (T ξ y ) = b j (y) -a j (y) ≤ L max (T ) ≤ L ref (T ), entailing that |(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y))| = e(v j ) |T : (ξ ⊗ ξ) (b j (y) -a j (y)) ≤ [u](x 0 ) • ξ + µ j α • y T + β -C η + m α,β 2 µ j γ,by definition (4.25) of L ref (T ). Therefore, we would obtain thatC η γ + m α,β 2 µ j γ ≤ [u](x 0 ) • ξ + µ j α • y T + β -(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) ≤ (v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) -[u](x 0 ) • ξ -(r + j -r - j ) ξ y + (r + j -r - j ) ξ y -µ j α • y + β + |µ j α • (y -y T )| ≤C η γ + m α,β 8 µ j γ + m α,β 8 µ j γ,where we used (4.22), (4.24a) and (4.24b) (since y, y T ∈ Φ • p ξ (T )), leading to a contradiction.Therefore, arguing as in the proof of Lemma 3.9, there are exactly one or two points z 1 ref , z 2 ref ∈ p ξ (T ), only depending on j and T , such that L 1 (T ξ z = L ref (T ). Then, as in (3.30), we introduce the following segments (orthogonal to ξ) associated to T (see Figure7),T i (T ) := z ∈ Π ξ : z -z i ref ≤ C η j L 2 (T ) ε kj γ for i ∈ {1, 2},where the constant C η , only depending on η, now changes intoC η := 8 sin θ 0 2C η m α,β + 1 .

4 ≤

 4 |p ξ (y) -z i ref | ≤ 2L 2 (T ) h T (b j (y) -a j (y)) -L ref (T ) L ref (T ) = 2L 2 (T ) h T |(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y))| -|[u](x 0 ) • ξ + µ j (α • y T + β)| + C η + m α,β 2 µ j γ [u](x 0 ) • ξ + µ j α • y T + β -C η + m α,β 2 µ j γ ≤ 2L 2 (T ) h T C η γ + (r + j -r - j ) ξ y -µ j (α • y T + β) + C η + m α,β 2 µ j γ µ j m α,β /2L 2 (T ) h T 2C η + m α,β µ j γ µ j m α,β /4 ≤ C η j L 2 (T ) ε kj γ,First, by definition of ε 0 and since ε < ε 0 , we have that χ n = 0 in Ω \ Ω for all n ∈ N, since Ae(u n ) : e(u n ) = Ae(w Tn ) : e(w Tn ) ≤ β|e(w Tn )| 2 ≤ β|∇w Tn | 2 ≤ β ∇w 2

( 1 -

 1 χ n )e(u n ) → ξ strongly in L 2 (Ω ; M 2×2 sym )

T

  i in the sense of Hausdorff, there exists n 1 ≥ n 0 such thatK i=1 T n i ⊂ W for all n ≥ n 1 {χ n = 0},owing to (4.26), (4.27) and that u n = w T n in Ω \ Ω, we infer thatΩ \W |e(u n )| 2 dx ≤ C * ,for some constant C * > 0 independent of n and W . Using that u n -wT n ∈ H 1 (Ω \ W ; R2 ) is equal to 0 on the open set (Ω \ W ) ∩ (Ω \ Ω) = ∅, the Poincaré-Korn inequality ensures that (up

  Besides, after decomposing the above integral over Ω \ Ω and Ω, we can apply the lower bound estimate of Propostion 3.3 to the open bounded set with Lipschitz boundary Ω \ Ω (for which T ε is also an admissible triangulation, v ε |Ω \Ω ∈ V ε (Ω \ Ω) and v ε converges in measure to v in Ω \ Ω), which leads to lim sup

						dx.	(3.47)
	Gathering (3.45) and (3.47), we obtain that			
	lim sup ε→0 +	Ω	1 ε	f (εAe(v ε ) : e(v ε )) dx ≤	Ω	Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ).	(3.48)
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so that, introducing the following characteristic functions, χ j := 1 (1 -χ j )|e(v j )ξ • ξ| 2 dy + κ j ε kj B χ j dy . (4.19) We define the translated and rescaled triangulations:

and the family of triangles which intersect B 1-η 4 :

Note that v j -r ± j is affine and χ j is constant on each T ∈ T x0,j , and that (4.15d) ensures that for j ∈ N large enough (depending on η), each T ∈ T x0,j b,int is contained in B. As in (3.18), for all y ∈ (B 1-η 4 ) ν , we denote by a(y) and b(y) the end points of the section passing through y in the direction ξ (see the Figure 2) in such a way that (B 1-η 4 ) ξ y = (a(y), b(y)). We also recall that L η is defined as in (3.19) and satisfies 0 < L η ≤ |a(y)|, |b(y)| ≤ 2.

Using (4.16), (4.17), (4.19), Fubini's and Egoroff's Theorem, we can adapt the proof of Lemma 3.6 to show the following result. Lemma 4.9. For all η > 0, there exist a subset Z ⊂ B ν containing N with H 1 (Z) ≤ η, and a subsequence (not relabeled) such that the following property holds : for all γ > 0, there exists j 0 = j 0 (γ) ∈ N such that for all y ∈ B ν \ Z and all j ≥ j 0 , B ξ y (χ j ) ξ y dt ≤ γ,

and

As in the proof of Proposition 3.5, we next show that, for some subset Z ⊂ (B 1-η 2 ) ν of arbitrarily small H 1 measure, and along a subsequence (only depending on η), all the sections in the direction

Lemma 4.10. For all η > 0, there exist a subset Z ⊂ B ν containing Z with H 1 (Z ) ≤ η, and a subsequence (not relabeled) such that the following property holds : for all y ∈ (B 1-η 2 ) ν \ Z and all j ∈ N, there exists a triangle T = T (y, j) ∈ T x0,j b,int such that ( T ∩ B) ξ y = ∅.

Proof. Let Z be the exceptional set given by Lemma 4.9. We first show that there exists an increasing mapping φ : N → N such that : for all y ∈ (B 1-η 2 ) ν \ Z and all j ∈ N, there exists a triangle T = T (y, φ(j)) ∈ T x0,φ(j) b,int such that (T ∩ B) ξ y = ∅. Suppose by contradiction that such is not the case, and define

Thanks to Lemma 4.9, there exists j * = j * (γ * ) ∈ N such that for all y ∈ B ν \ Z and all j ≥ j * , (r

As in Lemma 3.7, we consider the extraction φ : j ∈ N -→ j + j * ∈ N. By assumption, there exist y ∈ (B 1-η 2 ) ν \ Z and j ∈ N such that (T ∩ B)

, implying that (χ j+j * ) ξ y ≡ 0 on (a(y), b(y)), (r

since φ(j) = j + j * ≥ j * . By continuity of (v j+j * -r ± j+j * ) ξ y on the compact sets [a(y), b(y)] ∩ R ± , there exist two points

which is impossible thanks to of our choice of γ * . We conclude the proof of Lemma 4.10 in the same way as for Lemma 3.7.

As a consequence of Lemma 4.10, introducing the family of triangles

for all j ∈ N, it is possible to obtain a too low lower bound, roughly speaking because Lemma 4.10 does not exhibit enough triangles in T x0,j b,int , as explained after (3.20). Therefore, we need to establish that many lines B ξ y parallel to ξ and passing through B ν must actually intersect at least two triangles of the collection T x0,j b,int . To this aim, we show that the set of points y ∈ B ν such that B ξ y intersects exactly one triangle T in the collection T x0,j b,int , has arbitrarily small H 1 measure.

Lemma 4.11. For all η > 0, there exist constants

such that the following property holds: for all 0 < γ < γ * , there exists j(γ) ∈ N such that for all j ≥ j(γ), the set

Proof of Lemma 4.11. We follow the same three steps structuring the proof of Lemma 3.9.

Step 1. We start by showing that for j large enough and for many points y ∈ Y j , the only triangle T in T x0,j b,int crossing B ξ y is getting closer to the diameter B ν .

For all j ∈ N and all y ∈ Y j , let T j (y) ∈ T x0,j b,int be the unique triangle such that ( Tj (y) ∩ B) ξ y = ∅. We keep the notation (3.22) for the end points a j (y) and b j (y) of the section in the direction ξ passing through y inside T j (y) (see the Figure 4). Let us show that

Assume by contradiction that := lim sup j f j (y) > 0 and extract a subsequence (depending on y, not relabeled) such that f j (y) → . Then, there exists j 0 ∈ N such that y ∈ Y j for all j ≥ j 0 . Moreover, according to Lemma 4.9 and setting I j (y) := (a(y), b(y)) \ (a j (y), b j (y)) ⊂ B ξ y , we infer that

Up to another subsequence (still not relabeled), it ensures that a j (y), b j (y) → m for some m ∈ [a(y), b(y)]. Thus, for all τ > 0, I τ := (a(y), m -τ ) ∪ (m + τ, b(y)) ⊂ I j (y) for j ∈ N sufficiently large. In particular, we deduce that m -τ ≤ 0. Indeed, assuming that m -τ > 0, by continuity of (v j -r + j ) ξ y on 0, m -τ and of (v j -r - j ) ξ y on a(y), 0 , there exist

according to (4.20) and (4.17). However,

according again to (4.20), which leads to a contradiction. We similarly show that m + τ ≥ 0, leading to |m| ≤ τ . Taking the limit as τ → 0 + , we obtain that m = 0 which is against > 0.

Therefore, owing to Lemma 4.9 and Egoroff's Theorem, we can find a set

* and all j ≥ j 0 (γ).

Step 2. Arguing in the same manner as for (3.27), one can show that for many points y ∈ Y j , the variation of (v j -r j ) ξ y inside the only triangle T in T x0,j b,int which is crossed by B ξ y , is close to that of u ξ y . Precisely, setting the constants

we get that for all 0 < γ < γ * , there exists j 1 (γ) ∈ N such that for all j ≥ j 1 (γ) and all y ∈

Step 3. We now show that, after enlarging slightly the set Z 1 * into a set Z * ⊂ B ν with H 1 (Z * ) ≤ 3η, it is possible to include Y j \ Z * inside a finite union of arbitrarily small segments contained in B ν (see Figure 7). By definition of rigid body motions, there exist skew symmetric matrices M j ∈ M 2×2 skew and vectors m j ∈ R 2 such that r + j -r - j = M j id R 2 + m j for all j ∈ N. Recalling (4.17), we get that for all y

In particular, setting α j := M T j ξ ∈ R 2 and β j := m j • ξ ∈ R, we get that µ j := |α j | + |β j | → +∞ as j → +∞. Hence, up to a subsequence (depending only on ξ, not relabeled), there exist α ∈ R 2 and β ∈ R such that α j µ j → α, β j µ j → β, and |α| + |β| = 1.

In particular, 1

Notice that the affine line ∆ := {z ∈ R 2 : α • z + β = 0} cannot coincide with Π ν . Indeed, if such would be the case, it would entail that β = 0 and α = ±ν ∈ S 1 . Yet, M j ∈ M 2×2 skew being skew symmetric, we would obtain that

which is against our choice (4.18) of ξ ∈ S 1 ∩ D. As a consequence ∆ intersects B ν in at most one point z * .

, and for all j ∈ N, we define T j := {T ∈ T x0,j b,int : there exists y ∈ Y j \ Z * such that ( T ∩ B) ξ y = ∅}.

Thus, for all j ∈ N and for each triangle T ∈ T j , there exists a point

Remembering that ω(ε kj )/ j → 0 and that the Lipschitz constant of Φ is less than 1 + 4η 2 ≤ 2 for η small enough, together with the uniform convergence (4.23) and (4.22), it follows that for all γ > 0, there exists j 2 (γ) ≥ j 1 (γ) such that for all j ≥ j 2 (γ),

γ for all T ∈ T x0,j .

where we used (4.22), (4.24a), (4.24b) and the fact that

As in the proof of Lemma 3.9, we deduce that for all j ≥ j 2 (γ),

Recalling (4.19) and possibly taking a larger j 2 (γ) ∈ N, we finally get that for all j ≥ j 2 (γ),

for some constant C * > 0 only depending on η, which settles Lemma 4.11.

Arguing exactly as in the proof of Lemma 3.8, having Lemma 4.11 at hand, we deduce the following result. Lemma 4.12. For all η > 0, there exist Z ⊂ B ν containing Z with H 1 (Z ) ≤ 4η, and a (not relabeled) subsequence such that for all j ∈ N and for all y

Finally, owing to Lemma 4.12, the proof of Proposition 4.8 is identical to that of Proposition 3.5.

In the following result, we prove the existence of minimizers of the discrete brittle damage energy G ε on V Dir ε (Ω ). Lemma 4.13. Assume that Ω and Ω are connected. For ε > 0 sufficiently small, there exists a minimizer

By definition of the finite element space V Dir ε (Ω ), there exists a triangulation T n ∈ T ε (Ω ) such that u n is affine on each T ∈ T n and u n = w T n on every triangle T ∈ T n such that T ∩(Ω \Ω) = ∅.

Let Ω be a bounded open set such that Ω ⊂⊂ Ω and T ∈Tn T ⊂ Ω for all n ∈ N. Since, for all

As a consequence, the sequence of integers {#T n } n∈N admits a subsequence converging as n → +∞ to an integer N ∈ N. We can thus assume, without loss of generality, that #T n = N for all n ∈ N.

We write T n = {T n 1 , . . . , T n N } for all n ∈ N. Up to a subsequence, we can check that for all i ∈ {1, . . . , N }, the closed triangle T n i converges to a closed limit triangle T i in the sense of Hausdorff, with the property that the limit triangulation T := {T 1 , . . . , T N } ∈ T ε (Ω ) remains an admissible triangulation of Ω .

Introducing the characteristic functions χ n := 1 {εAe(un):e(un)≥κ} ∈ L ∞ (Ω ; {0, 1}), we can write the energy as

to a subsequence) there exists u ∈ H 1 (Ω \ W ; R 2 ) such that

) and, thanks to (4.29), e(u) = ξ in Ω \ W . In addition, by weak lower semicontinuity of the norm, we get that

Considering a decreasing sequence of open sets {W j } j∈N such that K i=1 T i ⊂ W j ⊂⊂ Ω for each j ∈ N, and j W j = K i=1 T i , we deduce through a diagonalisation argument that there exists u ∈ H 1 (ω ∩ Ω ; R 2 ) such that u = w T on ω ∩ (Ω \ Ω) = Ω \ Ω and e(u) = ξ in ω ∩ Ω . In particular, since ξ is constant in each triangle of ω, we infer that u is affine in the interior of each triangle of ω. Being in H 1 (ω ∩ Ω ; R 2 ), we get that u is continuous at the interfaces of each triangle in ω. Moreover, since u = w T on Ω \ Ω, we deduce that u |T = w T on each triangle T ∈ T such that T ∩ (Ω \ Ω) = ∅. Note that u is defined on such triangles T , as they are included in ω.

In order to extend u outside ω, we introduce the family of triangles which are at a distance of at least one triangle from ω, i.e.

T far := {T ∈ T : T ∩ ω = ∅} ⊂ {T 1 , . . . , T K }, so that every remaining triangle T ∈ T far and such that T ⊂ ω, has its three vertices in Vertices(ω) ∪ Vertices T far . Note that {T M +1 , . . . T K } ⊂ T far since, by construction of the connected component ω of ω 0 , each triangle T ∈ T included in ω 0 \ ω is at a distance of at least one triangle from ω. We extend the function u to all triangles by setting u ≡ 0 on every triangle T ∈ T far , and by interpolating on each remaining triangle which happens to have its three vertices' values imposed. It defines a function u ∈ V Dir ε (Ω ) which satisfies e(u) = ξ on ω and e(u) ≡ 0 on each triangle T ∈ {T M +1 , . . . T K } ⊂ T far .

On the one hand, ξ = 0 in {χ = 1}, hence ξ = (1 -χ)ξ. On the other hand, e(u) = ξ in ω and e(u) = 0 in ω 0 \ ω, so that (1 -χ)Aξ : ξ ≥ (1 -χ)Ae(u) : e(u) by positivity of A. Thus, by (4.28) together with (4.29), inf

which settles that u is a minimizer of G ε .

Remark 4.14. The above proof strongly relies on the choice of the density f (t) = κ ∧ t, mainly because of the identification (4.27), which would unfortunately result into a too low lower bound on the energy for a general f . Indeed for a generic f satisfying (1.4) one only gets, for all δ > 0, the existence of a constant 0 < K δ < κ such that

where the characteristic function χ δ n := 1 {ε(1-δ)Ae(un):e(un)≥K δ } ∈ L ∞ (Ω ; {0, 1}) depends on δ. Even in the case where the above proof could be adapted to show the existence of a displacement u δ ∈ V Dir ε (Ω ) and a characteristic function χ δ such that (up to a subsequence, not relabeled)

the above lower bound might be too low since f (t) > sup δ>0 K δ ∧ (1 -δ)t a priori.

We are now in position to prove the fundamental property of Γ-convergence.

Proof of Corollary 4.2. On the one hand, for all ε > 0, we remark that G ε (u ε ) ≤ G ε (w Tε ) is uniformly bounded due to (4.1). Therefore, Proposition 4.5 implies that, up to a subsequence, there exist a sequence of piecewise rigid motions {r ε } ε>0 and a function u ∈ GSBD 2 (Ω ) with

On the other hand, the Γ-convergence of G ε to G ensures that, for all v ∈ GSBD 2 (Ω ) with v = w L 2 -a.e. in Ω \ Ω, there exists a recovery sequence v ε ∈ L 0 (Ω; R 2 ) such that v ε → v in measure in Ω and G ε (v ε ) → G(v). Hence

implying both that u ∈ arg min G and G ε (u ε ) → G(u). 

Appendix

w in an open bounded neighborhood of ∂Ω, u h → u strongly in L 1 (Ω; R m ), ∇u h → ∇u strongly in L p (Ω; M m×N ), lim sup h→∞ H N -1 (J u h ) ≤ H N -1 (J u ).

(5.1)

We do not detail the proof of this result which follows the steps of the constructive proofs of [13, Lemma 5.2], [27, Theorem 3.1] and [26, Theorem 3.9, Corollary 3.11] with minor adaptations to the Dirichlet setting. The key point here is that, due to our definition of V Dir ε (Ω ), we need the approximating sequence to coincide with w in an open neighborhood of the boundary and not only on ∂Ω (as in Theorem 4.2, Remark 4.3 and formula (4.1) in [START_REF] Chambolle | Phase-field approximation for a class of cohesive fracture energies with an activation threshold[END_REF]).