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DISCRETE APPROXIMATION OF THE GRIFFITH FUNCTIONAL BY

ADAPTIVE FINITE ELEMENTS

JEAN-FRANÇOIS BABADJIAN AND ÉLISE BONHOMME

Abstract. This paper is devoted to show a discrete adaptive finite element approximation result

for the isotropic two-dimensional Griffith energy arising in fracture mechanics. The problem

is addressed in the geometric measure theoretic framework of generalized special functions of
bounded deformation which corresponds to the natural energy space for this functional. It is

proved to be approximated in the sense of Γ-convergence by a sequence of discrete integral

functionals defined on continuous piecewise affine functions. The main feature of this result is
that the mesh is part of the unknown of the problem, and it gives enough flexibility to recover

isotropic surface energies.

1. Introduction

1.1. The variational approach to fracture. The Griffith functional has been introduced in the
context of brittle fracture. It finds its roots in the seminal work of Griffith [31] whose main ideas
have been revisited in [30] (see also the monograph [12]) into a variational evolution formulation.
The main point is that, in a quasi-static setting and in presence of irreversibility, a constrained
global minimization principle together with an energy balance select equilibrium states of an elastic
body experiencing brittle fracture. In a nutshell, the Griffith energy is defined by

G(u,K) :=

∫
Ω\K
|e(u)|2 dx+ µHN−1(K), (1.1)

where Ω ⊂ RN , a bounded open set, stands for the reference configuration of an elastic material,
K ⊂ Ω is a codimension-one set representing the crack, u : Ω \K → RN is the displacement field
which might be discontinuous across K, and its symmetric gradient e(u) := (∇u+∇uT )/2 is the
linearized elastic strain. The constant µ > 0 is a material parameter called toughness. This energy
puts in competition a bulk energy, representing the elastic energy stored in the body outside the
crack, and a surface energy penalizing the presence of the crack K through its (N −1)-dimensional
Hausdorff measure, henceforth denoted by HN−1.

This problem falls within the framework of so-called free discontinuity problems (according to
De Giorgi’s terminology), and it presents many formal analogies with its scalar counterpart, the
Mumford-Shah functional. Although, thanks to geometric measure theory, the existence theory for
the latter is by now quite well understood (see e.g. [3] and references therein), the minimization
of the Griffith functional had to face serious additional difficulties. In particular, a satisfactory
existence theory has only recently been solved. As for the Mumford-Shah functional, it passes
through the introduction of a “weak formulation” where the crack is replaced by the jump set Ju
of u. A convenient functional setting to investigate this problem is that of functions of bounded
deformation, BD(Ω), which correspond to (integrable) vector fields u : Ω → RN whose distri-
butional symmetric gradient Eu is a bounded Radon measure. This space has been introduced
in [43] (see also [44, 42]) as a natural space to formulate problems of perfect plasticity. Brittle
fracture however requires a finer understanding of this space and especially the introduction of the
subspace SBD(Ω) of special functions of bounded deformation in [2, 10], for which the singular
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part of Eu with respect to the Lebesgue measure is concentrated on the jump set. Unfortunately,
this step forward was still not enough because of lack of control of the values of u (due to the
failure of Poincaré-Korn and/or Korn type inequalities in that space). It is only recently that the
introduction of the space GSBD(Ω) of generalized special functions of bounded deformation in
[29] (see Section 2 for the precise definition) has given a satisfactory mathematical framework to
investigate a well founded existence theory for the weak formulation, as well as for the original
one. Some further compactness properties of that space have been investigated in [19, 18] which
has led to prove the existence of minimizers of the Griffith functional under Dirichlet boundary
conditions (formulated in a relaxed sense).

1.2. Approximation of the Griffith energy. The Γ-convergence approximation of free discon-
tinuity problems (e.g. by more tractable ones from a numerical point of view) is of fundamental
importance in applications. It has been proven in [14] that it is not possible to approximate free
discontinuity functionals by means of local integral functionals. To overcome this difficulty, a first
possibility is to introduce an additional variable like, e.g., in phase field approximations where the
sharp discontinuity is smoothened into a diffuse discontinuity. It represents one of the most popular
methods which have already proven to be successful in other contexts such as the Modica-Mortola
approximation of the perimeter functional [35], or the Ambrosio-Tortorelli approximation of the
Mumford-Shah functional [4]. In the context of brittle fracture, such approximations, which have a
founded mechanical interpretation as a gradient damage model, have only recently been established
in full generality in [20] (see also [17, 33]). The main drawback is that, an additional numerical
approximation would give rise to a multiscale problem with on the one hand the parameter of
approximation, and on the other hand the mesh size (see e.g. [9, 7, 24]). Another possibility is to
use nonlocal integral functionals as e.g. in [14, 38, 41].

For what concerns the numerical treatment of free discontinuity problems, the main difficulty
is related to the fact that the jump set is part of the unknowns and that standard discontinuous
finite element methods do not in general apply in this context. Having this problematic in mind
as well as the multiscale issues arising in phase field or nonlocal approximations, one is thus
tempted to find single scale discrete approximations of free discontinuity problems. There is a
huge literature on this subject and, without being exhaustive, we refer to discrete-to-continuous
approximations results [1, 15, 16, 32, 36, 37, 39], nonlocal finite elements approximations [34, 37]
or discrete approximations based on stochastic meshes in [8, 40].

Let us focus on the discrete approximation result obtained in [23] for the Mumford-Shah func-
tional in dimension N = 2. In that work, the classical Mumford-Shah functional

F (u) :=

∫
Ω

|∇u|2 dx+ µH1(Ju)

is approximated in the sense of Γ-convergence by a functional of the form

Fε(u) :=

∫
Ω

fε(∇u) dx

putting a restriction on the functional space on which Fε is defined. The functional Fε is discrete
in the sense that u is (a scalar-valued) continuous function and piecewise affine on suitable ε-
dependent meshes (see Definition 1.1). It consists in an adaptive finite element approximation
because there is an implicit mesh optimization whose numerical implementation has been carried
out in [11]. The function fε(∇u) takes the form 1

εf(ε|∇u|2) where f is a nondecreasing function
satisfying the standard properties (1.4). Typical examples of functions f are, on the one hand
the arctan function (as e.g. in [32] following a conjecture of De Giorgi) and, on the other hand
f(t) = t ∧ κ. The main feature of this result is that, allowing the mesh to move gives enough
flexibility to approximate isotropic surface energies. The constant µ appearing in the functional F
is explicit and only depends on κ and the geometry of the triangulation.
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An analogous analysis has been carried out in [36], where the author constraints the mesh to be
made either of equilateral triangles, or of right isosceles ones. In that case, the result is that the
functional Fε Γ-converges to an anisotropic version of the Mumford-Shah functional∫

Ω

|∇u|2 dx+

∫
Ju

φ(νu) dH1,

for some function φ : S1 → R, which can be explicitly computed, depending on the normal νu to
the jump set Ju. In [39], the same problem is addressed in the two-dimensional vectorial setting.
If fε is as before, the following approximating energy is considered∫

Ω

fε(e(u)) dx.

As in [36], the ε-dependent mesh is fixed and made either of equilateral triangles, or of right
isosceles triangles, and the result is that this functional Γ-converges to an anisotropic version of
the Griffith functional ∫

Ω

|e(u)|2 dx+

∫
Ju

φ(νu) dH1,

where φ : S1 → R is as in [36]. Note that if f(t) = t ∧ κ, then

fε(e(u)) =

{
ε|e(u)|2 if ε|e(u)|2 ≤ κ,
κ if ε|e(u)|2 > κ.

(1.2)

In order to recover the isotropic Griffith energy (1.1), a similar approximation result is considered
in [37] where, now, the meshes are allowed to move as in [23], but the function fε now depends on
the full gradient ∇u (instead of the symmetric gradient) and behaves like

fε(∇u) ∼

{
ε|e(u)|2 if ε|∇u|2 ≤ κ,
κ if ε|∇u|2 > κ

(1.3)

(compare with (1.2)). In that case, the analysis of [23] can be adapted to show a Γ-convergence
result towards the isotropic Griffith energy (1.1) with the same geometric multiplicative constant
µ (as in [23]) in front of the surface energy.

1.3. Our result. The objective of the present work is to generalize the previous results in the
two-dimensional vectorial case to show an analogous statement as in [23], namely an adaptive
discrete finite element approximation of the isotropic Griffith functional. To state precisely our
main result, Theorem 1.3, we need to introduce some notation (we refer to Section 2 regarding
functional spaces).

Let Ω be a bounded open set of R2 with Lipschitz boundary. As in [23], we introduce the
following class of admissible meshes.

Definition 1.1. A triangulation of Ω is a finite family of closed triangles intersecting Ω, whose
union contains Ω, and such that, given any two triangles of this family, their intersection, if not
empty, is exactly a vertex or an edge common to both triangles. Given some angle θ0 with 0 < θ0 ≤
45◦ − arctan(1/2), and a function ε 7→ ω(ε) with ω(ε) ≥ 6ε for any ε > 0 and limε→0+ ω(ε) = 0,
we define, for any ε > 0

Tε(Ω) := Tε(Ω, ω, θ0)

as the set of all triangulations of Ω made of triangles whose edges have length between ε and ω(ε),
and whose angles are all greater than or equal to θ0. Then we consider the finite element space
Vε(Ω) of all continuous functions u : Ω→ R2 for which there exists T ∈ Tε(Ω) such that u is affine
on each triangle T ∈ T.
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Remark 1.2. Imposing θ0 > 0 and ω(ε) ≥ ε corresponds to a non-flatness condition that ensures
the existence of a radius %(θ0) > 0 such that for all triangle T ∈ T, one can find a point x ∈ T
such that

B%(x) ⊂ T.
As for the conditions θ0 ≤ 45◦ − arctan(1/2) and ω(ε) ≥ 6ε, we will later see that they are crucial
to prove the existence of recovery sequences. Indeed, we use the same optimal triangulation
introduced in [23, Appendix A], where the authors’ explicit construction makes use of triangles
with edges of length 6ε and angles equal to 45◦ − arctan(1/2).

Let us consider a nondecreasing continuous function f : [0,+∞)→ [0,+∞) satisfying

f(0) = 0, lim
t→0+

f(t)

t
= 1 and lim

t→∞
f(t) = κ, (1.4)

for some constant κ > 0, and a symmetric fourth order tensor A ∈ L (M2×2
sym,M2×2

sym) such that

α|ξ|2 ≤ Aξ : ξ ≤ β|ξ|2 for all ξ ∈M2×2
sym, (1.5)

for some constants α, β > 0.

Our main result is the following Γ-convergence approximation of the Griffith functional.

Theorem 1.3. The functional Fε : L0(Ω;R2)→ [0,+∞] defined by

Fε(u) =


1

ε

∫
Ω

f
(
εAe(u) : e(u)

)
dx if u ∈ Vε(Ω),

+∞ otherwise
(1.6)

Γ-converges, with respect to the L0(Ω;R2)-topology of convergence in measure, to the Griffith func-
tional F : L0(Ω;R2)→ [0,+∞] given by

F(u) =


∫

Ω

Ae(u) : e(u) dx+ κ sin θ0H1(Ju) if u ∈ GSBD2(Ω),

+∞ otherwise.

Remark 1.4. As explained above, a meaningful choice is the function f(t) = t ∧ κ, for which the
energy reduces to ∫

Ω

κ

ε
∧Ae(u) : e(u) dx.

It corresponds to the brittle damage energy of a linearly elastic material composed of two phases:
an undamaged one whose elasticity coefficients are represented by the Hooke tensor A, and a
damaged one whose elasticity coefficients are set to 0. The constant κ/ε stands for the toughness
of the material whose diverging character as ε → 0 forces the damaged zones to concentrate on
vanishingly small sets (see [6]).

1.4. Strategy of proof. As usual in Γ-convergence, the proof is achieved by combining a com-
pactness result, a lower bound and an upper bound inequality. In order to describe our argument,
let us assume for simplicity that f(t) = t ∧ κ and A = id.

Our compactness result, Proposition 4.5 rests on the general GSBD compactness result of [21].
Given a sequence {uε}ε>0 with uniformly bounded energy, one can apply [21, Theorem 1.1] to
the modified function vε := uε1{|e(uε)|2≤κ/ε} which consists in putting the value zero inside each
triangle T where the (symmetric) gradient of uε is “large”. It might thus create a jump on the
boundary of T whose perimeter can be estimated by L2(T )/ε. It leads to compactness in measure
for the sequence {uε}ε>0 (up to subtracting a sequence of piecewise rigid motions, leaving the
energy unchanged), which thus justifies why it is natural to consider Γ-convergence with respect
to this topology.
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The upper bound causes no particular difficulty. It consists in using known density results
in GSBD2(Ω) (see [20, 27]) to reduce to the case where the jump set of u is made of finitely
many pairwise disjoint closed line segments, and u is smooth outside. Then, considering a similar
optimal triangulation of Ω as in [23] (whose vertices do not cross the jump set) and a piecewise
affine Lagrange interpolation of u, it leads to the desired upper bound (see Proposition 3.11).

The proof of the lower bound inequality is much more delicate to address and it represents, to
our opinion, the main achievement of this work. First of all, the blow-up method allows one to
identify separately the bulk part and the singular part. The bulk part can be easily recovered by
modifying uε into a new function which vanishes in all triangles where e(uε) is “too large” as in
the compactness argument (see Proposition 3.4). The main difficulty is to get a lower bound for
the singular part of the energy.

Before describing our strategy of proof, let us briefly explain why the methods of [23] (and
similarly [11]) fail in our situation. The idea of [23] consists in modifying every minimizing sequence
{uε}ε>0 inside each triangle T of the associated triangulation Tε ∈ Tε(Ω) according to its variations
along each edge of T . It rests on the introduction of a jump criterion which stipulates that if the
variation of uε is large enough, it is convenient to create a jump along the edge. More precisely, if
x1, x2 and x3 stand for the vertices of the triangle T , it will be energetically favorable to create a
jump at the middle point of the segment [xi, xj ] if

|uε(xi)− uε(xj)|
|xi − xj |

>
σ√
ε
,

for some constant σ > 0, while uε remains unchanged on [xi, xj ] otherwise. This criterion has to
be defined in such a way that:

(i) the new function, say wε, has a jump set in each triangle T which satisfies H1(Jwε ∩ T ) ≤
L2(T )/(ε sin θ0), where θ0 is as in Definition 1.1, and wε does not jump across ∂T ;

(ii) the absolutely continuous part of the gradient, ∇wε, is controlled in L2(T ) by the energy
restricted to T .

This construction ensures that the variation of the new discontinuous and piecewise affine function
wε is always controlled along at least two edges of each triangle T , and it yields a control of the
full gradient ∇wε of wε inside T . In [23], this is possible thanks of the scalar nature of the problem
because the gradient ∇wε|T is a (constant) vector in R2 (see [23, Remark 3.5]).

In our case, uε is not scalar-valued anymore, but vector-valued and the energy only depends on
its symmetric gradient e(uε). If one uses the same criterion than in [23], then condition (i) above
will be satisfied for the new function wε on T . However, one will only be able to estimate the L2-
norm of the (symmetric) gradient of wε by that of the full gradient of uε which, unfortunately, is
not controlled by the energy Fε(uε). Note that in [37], such a control is artificially made possible
thanks to the particular form of the energy (see (1.3) above). This is however not natural in
this linearized elasticity setting where the energy should be expressed in terms of the symmetric
gradient of the displacement.

As a consequence, the jump criterion has to be modified. As the energy only depends on the
symmetric part of the gradient of uε, it would be natural to consider a criterion involving the
longitudinal variation of uε along the edges of the triangle instead of the full variation. In other
words, one could modify the criterion by asking that if

|(uε(xi)− uε(xj)) · (xi − xj)|
|xi − xj |2

>
σ√
ε
,

then we create a jump at the middle point of [xi, xj ], while uε remains unchanged on [xi, xj ]
otherwise. In that case, it is again not possible to control the symmetric gradient e(wε) of the new
function wε by that of uε. Indeed, in a similar way as in [23], the previous criterion ensures that
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the longitudinal variation of wε along at least two edges of each triangle is controlled by the energy
restricted to T . If we call ξ1 and ξ2 ∈ S1 both (linearly independent) directions associated to these
“good” edges, it shows that e(wε)|T : (ξ1 ⊗ ξ1) and e(wε)|T : (ξ2 ⊗ ξ2) are controlled by e(uε)|T
which is not enough to control the full 2 × 2 symmetric matrix e(wε)|T which has three degrees
of freedom. In addition, some (uncontrolled) discontinuities can also be created at the interface
I := ∂T ∩ ∂T ′ between two adjacent triangles T and T ′ so that condition (i) fails as well.

Overcoming these difficulties seems to be a very serious issue so that we decided to attack this
problem from a different angle. First of all, the use of the blow-up method allows one to reduce to
the case where Ω = B is the unit ball, u is a step function of the form

u(x) =

{
a if x · ν < 0,

b if x · ν > 0,

for some a, b ∈ R2 with a 6= b and ν ∈ S1 (with a jump set corresponding to the diameter of B
orthogonal to ν), and, see Lemma 3.6, such that∫

{|e(uε)|2≤κ/ε}
|e(uε)|2 dx→ 0. (1.7)

To make our strategy of proof more transparent, we assume that a ·ν 6= b ·ν. A standard argument
based on Fubini’s Theorem shows that the one-dimensional section of uε in the direction ν passing
through the point y, namely t 7→ (uε)

ν
y(t) := uε(y + tν) · ν converges (in measure) to the step

function

t 7→ uνy(t) = a · ν1R− + b · ν1R+ .

Let us denote by Tε the triangulation on which uε is (continuous and) piecewise affine. We further
denote by Tε

b the familly of all triangles T ∈ Tε such that |e(uε)|T |2 > κ/ε. Thanks to (1.7),
we show that almost every line orthogonal to Ju ∩ B must cross at least one triangle T ∈ Tε

b

(see Lemma 3.7). The reason is that if, for some y ∈ Ju ∩ B, the line y + Rν intersects no such
triangles, then (uε)

ν
y would be bounded in H1 (because |((uε)νy)′| ≤ |e(uε)(y + tν)|) and thus, it

would converge weakly in that space to a constant function, contradicting that a · ν 6= b · ν. This
information allows one to get a bad lower bound for the surface energy with 1/2 multiplicative
factor. It suggests to improve the previous argument by showing that “many” lines y+Rν passing
through y ∈ Ju ∩B must actually cross at least two triangles in Tε

b, which is the object of Lemma
3.8. To do that, we show in Lemma 3.9 that there are very few points y in Ju ∩ B such that the
line y + Rν crosses exactly one triangle T ∈ Tε

b. Indeed, in that case, up to a small error, the
function (uε)

ν
y would have to pass from the value a · ν to b · ν inside T . Due to the particular

shape of a triangle and of the fact that uε is affine inside T , this could only happen for at most
two values of y. Moreover, if y is far away from these two values, the variation of (uε)

ν
y across the

triangle T is not sufficient, and it becomes necessary to cross an additional triangle T ′ in Tε
b. With

this improvement, we can now construct two disjoint families of triangles with the property that
both families project onto Ju ∩ B into two sets of almost full H1 measure (see Lemma 3.10). It
enables one to compensate the bad multiplicative factor 1/2 in the previous argument, and obtain
the expected lower bound with the correct constant corresponding to κ sin θ0 (see Proposition 3.5).
In [4], the right factor in the lower estimate of the jump part comes from the two transitions of the
phase field approximating Ju, one from each side of the jump set. Similarily here, the same role
is played by the characteristic function χε = 1{|e(uε)|2>κ/ε}. Indeed, having in mind the optimal

triangulation computed in the upper bound (see [23, Appendix A]) and knowing that almost every
line orthogonal to Ju ∩B crosses at least two distinct triangles of Tε

b, we expect these triangles to

form a neighbourhood of Ju as in Figure 1. Therefore, L1
({

(χε)
ν
y = 1

})
= ε sin θ0 which leads to

the right lower bound, independently of the amplitude of the jump (b− a) · ν.
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ν

B

Ju ∩B = Πν ∩B

ε sin θ0

(χε)
ν
y = 0 0

1

Bν
y

y

Figure 1

To conclude this introduction, let us mention that the originality of this work is twofold. First
of all, we are able to provide a deterministic discrete finite element approximation result of the
Griffith functional with isotropic surface energies. In particular, our approach does not require any
unnatural dependence of the approximating energy with respect to the skew symmetric part of the
gradient (in the context of linear elasticity) nor the use of stochastic meshes. Second, our method
relies on an unusual application of the slicing method, which is rather employed in Γ-convergence
analysis to reduce the dimension of the problem to a one-dimension study. Here, we instead use
this method as a tool to enumerate in a non trivial way the number of triangles needed to derive
the correct multiplicity in the surface energy.

1.5. Organisation of the paper. In Section 2, we collect useful notation and preliminary results
that will be useful in the subsequent sections. Section 3 is devoted to show our main result, Theorem
1.3. It is divided into three parts: a first one consisting in a compactness result, Proposition 3.1,
a second one corresponding to the lower bound inequality, Proposition 3.3, and a last one for
the upper bound inequality, Proposition 3.11 through the construction of a recovery sequence.
Eventually, in Section 4, we extend the previous Γ-convergence analysis allowing for Dirichlet
boundary conditions formulated in a suitable way at the discrete and continuum levels (see Theorem
4.1). We then deduce the fundamental property of Γ-convergence, Corollary 4.2, in our specific
setting, i.e., the convergence of minimizers as well as the minimum value.

2. Notation and preliminaries

Vectors. The Euclidean scalar product between two vectors x and y ∈ Rn is denoted by x · y,
and the associated Euclidean norm by |x| :=

√
x · x. For x ∈ Rn and % > 0, we denote by
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B%(x) := {y ∈ Rn : |x − y| < %} the open ball centered at x with radius %. If x = 0, we simply
write B% instead of B%(0). The notation Sn−1 stands for the unit sphere ∂B1.

Matrices. The set of all real m×n matrices is denoted by Mm×n, and the subset of symmetric real
n×n matrices by Mn×n

sym . It will be endowed with the Froebenius scalar product A : B := tr(ATB)

and the associated Froebenius norm |A| :=
√
A : A.

Given two vectors a and b ∈ Rn, the tensor product between a and b is defined as a⊗ b := abT ∈
Mn×n and the symmetric tensor product by a� b := (a⊗ b+ b⊗ a)/2 ∈Mn×n

sym .

Measures. The Lebesgue and the k-dimensional Hausdorff measures in Rn are respectively de-
noted by Ln and Hk. If U is a bounded open set of Rn and Y is an Euclidean space, we denote
by M(U ;Y ) the space of Y -valued bounded Radon measures in U which, according to the Riesz
Representation Theorem, can be identified to the dual of C0(U ;Y ) (the closure of Cc(U ;Y ) for the
sup-norm in U). For µ ∈M(U ;Y ), its total variation is denoted by |µ|.
Functional spaces. We use standard notation for Lebesgue and Sobolev spaces. If U is a bounded
open subset of Rn, we denote by L0(U ;Rm) the set of all Ln-measurable functions from U to Rm.
We recall that a sequence {gk}k∈N in L0(U ;Rm) converges in measure to g ∈ L0(U ;Rm) if for all
ε > 0,

Ln ({x ∈ U : |gk(x)− g(x)| > ε})→ 0.

Note that, for any fixed constant M > 0, we can define the following mapping

dM : (g, h) ∈ L0(U ;Rm)× L0(U ;Rm) 7→
∫
U

M ∧ |g − h| dx ∈ R+ (2.1)

which turns out to be a distance over L0(U ;Rm), with the property that gk converges in measure
to g if and only if dM (gk, g)→ 0. It confers to L0(U ;Rm) a metric space structure.

Functions of bounded variation and sets of finite perimeter. We refer to [3] for an exhaus-
tive treatment on that subject and just recall few notation. Let U ⊂ Rn be a bounded open set.
A function u ∈ L1(U ;Rm) is a function of bounded variation in U , and we write u ∈ BV (U ;Rm),
if its distributional derivative Du belongs to M(U ;Mm×n). We use standard notation for that
space, referring to [3] for details. We just recall that a function u belongs to SBV 2(U ;Rm) if
u ∈ SBV (U ;Rm) (the distributional derivative Du has no Cantor part), its approximate gradient
∇u belongs to L2(U ;Mm×n) and its jump set Ju satisfies Hn−1(Ju) <∞.

A Lebesgue measurable set A ⊂ Rn is a set of finite perimeter in U if its characteristic function
1A belongs to BV (U ;Rn). The reduced boundary of A is denoted by ∂∗A and the essential (or
measure theoretic) boundary is denoted by ∂∗A. For every t ∈ [0, 1], we denote by A(t) the set of
points where A has density t.

We also recall that a partition P = {Pi}i∈N of an open set U is a Cacciopoli partition if each Pi
have finite perimeter in U , and

∑
i∈N |D1Pi |(U) <∞. In that case,⋃

i∈N
(Pi)

(1) ∪
⋃

i,j∈N, i 6=j
∂∗Pi ∩ ∂∗Pj

contains Hn−1-almost all of U (see [3, Section 4.4]). In the sequel (as in [21, Theorem 2.5]), we
will sometimes use the following notation for Caccioppoli partitions:

P(1) :=
⋃
i∈N

Pi
(1), ∂∗P :=

⋃
i∈N

∂∗Pi.

(Generalized) functions of bounded deformation. A function u ∈ L1(U ;Rn) is a function
of bounded deformation, and we write u ∈ BD(U), if its distributional symmetric gradient Eu :=
(Du+DuT )/2 belongs toM(U ;Mn×n

sym ). We refer to [43, 44, 42, 2, 10] for the main properties and

notation of that space. The space SBD2(U) is made of all functions u ∈ SBD(U) (Eu has no
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Cantor part) such that the approximate symmetric gradient e(u) (the absolutely continuous part
of Eu with respect to Ln) belongs to L2(U ;Mn×n

sym ) and its jump set Ju satisfies Hn−1(Ju) <∞.

We now recall the definition and the main properties of the space of generalized functions of
bounded deformation introduced in [29]. We first need to introduce some notation. Let ξ ∈ Sn−1,
we denote by Πξ := {y ∈ Rn : y · ξ = 0} the orthogonal space to ξ and by pξ the orthogonal
projection onto Πξ. For every set B ⊂ Rn, we define for ξ ∈ Sn−1 and y ∈ Rn,

Bξy := {t ∈ R : y + tξ ∈ B}, Bξ := pξ(B)

and, for every (vector-valued) function u : B → Rn and (scalar-valued) function f : B → R,

uξy(t) := u(y + tξ) · ξ, fξy (t) = f(y + tξ) for all y ∈ Rn and all t ∈ Bξy.

Definition 2.1. Let U ⊂ Rn be a bounded open set and u ∈ L0(U ;Rn). Then, u ∈ GBD(U) if
there exists a nonnegative measure λ ∈M(U) such that one of the following equivalent conditions
holds true for every ξ ∈ Sn−1:

(1) for every τ ∈ C1(R) with − 1
2 ≤ τ ≤

1
2 and 0 ≤ τ ′ ≤ 1, the partial derivative Dξ(τ(u · ξ)) =

D(τ(u · ξ)) · ξ belongs to M(U), and

|Dξ(τ(u · ξ))|(B) ≤ λ(B) for every Borel set B ⊂ U ;

(2) uξy ∈ BVloc(Uξy ) for Hn−1-a.e. y ∈ Uξ, and∫
Πξ

(
|Duξy|(Bξy \ J1

uξy
) +H0(Bξy ∩ J1

uξy
)
)
dHn−1(y) ≤ λ(B) for every Borel set B ⊂ U,

where J1
uξy

:= {t ∈ Juξy : |[uξy](t)| ≥ 1}.

The function u belongs to GSBD(U) if u ∈ GBD(U) and uξy ∈ SBVloc(Uξy ) for every ξ ∈ Sn−1

and for Hn−1-a.e. y ∈ Uξ.

Every u ∈ GBD(U) has an approximate symmetric gradient e(u) ∈ L1(U ;Mn×n
sym ) such that for

every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ Uξ,
e(u)(y + tξ)ξ · ξ = (uξy)′(t) for L1-a.e. t ∈ Uξy .

Moreover, the jump set Ju of u ∈ GBD(U), defined as the set of all x0 ∈ U for which there exist
(u+(x0), u−(x0), νu(x0)) ∈ Rn × Rn × Sn−1 with u+(x0) 6= u−(x0) such that the function

y ∈ B1 7→ ux0,% := u(x0 + %y)

converges in measure in B1 as %↘ 0 to

y ∈ B1 7→

{
u+(x0) if y · νu(x0) > 0,

u−(x0) if y · νu(x0) ≤ 0,

is countably (Hn−1, n− 1)-rectifiable. Finally, the energy space GSBD2(U) is defined as

GSBD2(U) := {u ∈ GSBD(U) : e(u) ∈ L2(U ;Mn×n
sym ), Hn−1(Ju) <∞}.

3. Proof of the main result

Let us introduce the Γ-lower and upper limits (with respect to the topology of convergence in
measure) F ′ and F ′′ : L0(Ω;R2)→ [0,+∞] defined by

F ′(u) := inf
{

lim inf
ε→0

Fε(uε) : uε → u in measure in Ω
}
,

and

F ′′(u) := inf

{
lim sup
ε→0

Fε(uε) : uε → u in measure in Ω

}
,
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for all u ∈ L0(Ω;R2).

3.1. Domain of the Γ-limit. We begin our analysis by identifying the domain of finiteness of
the Γ-limit.

Proposition 3.1. Let {εk}k∈N satisfying εk → 0, u ∈ L0(Ω;R2) and {uk}k∈N ⊂ L0(Ω;R2) be such
that M := supk Fεk(uk) <∞ and uk → u in measure in Ω. Then, u ∈ GSBD2(Ω).

Proof. According to the properties (1.4) satisfied by f , for all δ > 0, there exists a constant
0 < K < κ such that

f(t) ≥ K ∧ [(1− δ)t] for all t ≥ 0. (3.1)

Indeed, since f(t)/t → 1 as t → 0+, there exists t∗ > 0 such that f(t)/t ≥ 1 − δ for all t ∈ [0, t∗]
and K := (1− δ)t∗ < κ. Hence, for all t ∈ [0, t∗], we have f(t) ≥ (1− δ)t, while for all t > t∗, as f
is nondecreasing, f(t) ≥ f(t∗) ≥ K.

By definition of Fεk , there exists a triangulation Tk ∈ Tεk(Ω) such that uk ∈ Vεk(Ω) is affine on
each triangle T ∈ Tk. We introduce the characteristic functions

χk := 1{
(1−δ)Ae(uk):e(uk)≥ K

εk

} ∈ L∞(Ω; {0, 1})

which are constant on each triangle T ∈ Tk, so that

Dk := {χk = 1} ∩ Ω =

Nk⋃
i=1

(T ki ∩ Ω)

for some triangles T ki ∈ Tk. Remark that this choice of χk implies that

M ≥ Fεk(uk) ≥ (1− δ)
∫

Ω

(1− χk)Ae(uk) : e(uk) dx+
K

εk

∫
Ω

χk dx,

forcing χk to converge to 0 in L1(Ω) since 0 ≤
∫

Ω
χk dx ≤ K−1Mεk → 0.

Let vk := (1−χk)uk so that, by [3, Theorem 3.84], vk ∈ SBV 2(Ω;R2) with ∇vk = (1−χk)∇uk
and

Jvk ⊂ Ω ∩ ∂Dk ⊂
Nk⋃
i=1

∂T ki .

Note that

vk → u in measure in Ω and A := {x ∈ Ω : |uk(x)| → ∞} is L2-negligible. (3.2)

Indeed, since uk → u in measure in Ω and {uk 6= vk} ⊂ Dk with L2(Dk)→ 0, for all η > 0, we get
that L2 ({|vk − u| > η}) ≤ L2 ({|uk − u| > η}) + L2(Dk) → 0. Additionally, up to a subsequence
(not relabeled), uk(x)→ u(x) ∈ R2 for L2-a.e. x ∈ Ω.

On the one hand, using the energy bound Fεk(uk) ≤M and the ellipticity property (1.5) of A,
we infer that ∫

Ω

|e(vk)|2 dx ≤ M

(1− δ)α
. (3.3)

On the other hand, by definition of an admissible triangulation, the edges of each triangle T ki have
length greater than or equal to εk and their angles are all greater than or equal to θ0, so that the
heights of such triangles must be greater than or equal to εk sin θ0. Therefore, for all 1 ≤ i ≤ Nk,

L2(T ki ) ≥ 1

2
(εk sin θ0)

H1(∂T ki )

3
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which implies that for all open subset U ⊂⊂ Ω :

H1(Jvk ∩ U) ≤ 6

sin θ0

∑
i∈{1,...,Nk}, Tki ∩U 6=∅

L2(T ki )

εk
.

Let kU ≥ 1 (depending on U) be such that for all k ≥ kU , any triangle T ∈ Tk intersecting U is
contained in Ω, then it follows that for all k ≥ kU ,

H1(Jvk ∩ U) ≤ 6

εk sin θ0

∫
Ω

χk dx ≤
6M

K sin θ0
, (3.4)

where we used once more the energy bound Fεk(uk) ≤M .

Gathering (3.3) and (3.4), we can apply the GSBD2-compactness Theorem ([19, Theorem 1.1]).
Together with (3.2), it ensures the existence of a subsequence (depending on the open subset U ,
which we do not relabel) such that u|U ∈ GSBD2(U),

e(vk)|U ⇀ e(u|U ) weakly in L2(U ;M2×2
sym) and H1(Ju ∩ U) ≤ lim inf

k→∞
H1(Jvk ∩ U).

We then consider an exhaustion of Ω by a sequence of open subsets {Um}m∈N satisfying Um ⊂⊂
Um+1 ⊂⊂ Ω for all m ∈ N and

⋃
m Um = Ω. Using a diagonal extraction argument, we can find a

subsequence (still denoted by {vk}k∈N) such that for all m ∈ N, u|Um ∈ GSBD2(Um) and

e(vk)|Um ⇀ e(u|Um) weakly in L2(Um;M2×2
sym) and H1(Ju ∩ Um) ≤ lim inf

k→∞
H1(Jvk ∩ Um). (3.5)

Let us now check that u belongs to GSBD2(Ω). Indeed, let ξ ∈ S1 and τ ∈ C1(R) be such
that |τ | ≤ 1

2 and 0 ≤ τ ′ ≤ 1. For all test function φ ∈ C∞c (Ω), there exists m ∈ N such that
suppφ ⊂ Um so that, owing to the dominated convergence Theorem,

〈Dξ (τ(u · ξ)) , φ〉 = −
∫
Um

τ(u · ξ)Dξφdx = − lim
k→∞

∫
Um

τ(vk · ξ)Dξφdx = lim
k→∞

〈Dξ(τ(vk · ξ)), φ〉.

Since vk · ξ ∈ SBV 2(Ω), using the chain rule formula in BV ([3, Theorem 3.96]), we get that
τ(vk · ξ) ∈ SBV 2(Ω) with

Dξ (τ(vk · ξ)) = τ ′(vk · ξ)e(vk) : (ξ ⊗ ξ)L2 Ω +
(
τ(v+

k · ξ)− τ(v−k · ξ)
)
νvk · ξH1 Jvk .

Taking the variation, we infer that

|Dξ (τ(vk · ξ))| ≤ |e(vk)|L2 Ω +H1 Jvk =: λk.

As a consequence of (3.3) together with (3.4), the sequence {λk}k∈N is bounded in M(Um) for all
m ∈ N, with

sup
k≥kUm

λk(Um) ≤ M

(1− δ)α
+

6M

K sin θ0
=: Mδ < +∞,

so that, up to a further diagonal extraction, λk Um ⇀ λ(m) weakly* inM(Ω) for some nonnega-
tive measure λ(m) ∈M(Ω) satisfying, for all m ∈ N,

λ(m)(Ω) ≤ lim inf
k→∞

λk(Um) ≤Mδ.

Therefore, we can introduce the following nonnegative measure λ ∈M(Ω) defined by

λ(B) := sup
m∈N

λ(m)(B) = lim
m→∞

λ(m)(B) for all Borel subset B ⊂ Ω.

We thus obtain that

|〈Dξ (τ(u · ξ)) , φ〉| ≤ lim
k→∞

〈λk Um, |φ|〉 = 〈λ(m), |φ|〉 ≤ 〈λ, |φ|〉,
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implying both that Dξ (τ(u · ξ)) ∈M(Ω) according to Riesz Representation Theorem and that

|Dξ(τ(u · ξ))| ≤ λ in M(Ω),

which shows that u ∈ GBD(Ω). Using next that u ∈ GSBD(Um) for all m ∈ N and [29, Definition
4.2], we deduce that u ∈ GSBD(Ω). Eventually, by locality of the definition of the approximate
symmetric gradient e(u) (see [29, Formula (9.1)]), as a consequence of (3.3) together with (3.5),
we infer that e(vk) ⇀ e(u) weakly in L2(Ω;M2×2

sym) with e(u) ∈ L2(Ω;M2×2
sym). Passing to the limit

as m → ∞ in the last property of (3.5) and using (3.4) shows that H1(Ju) < ∞. All of this
establishes that u ∈ GSBD2(Ω) and completes the proof of the Proposition. �

Remark 3.2. We will later improve the previous result (see Proposition 4.5) by getting rid-off
the a priori knowledge that uk converges in measure in Ω. The price to pay will be to subtract a
sequence of piecewise rigid body motions. Proposition 4.5 will a posteriori justify why the topology
of convergence in measure is the natural one to address the Γ-convergence analysis.

3.2. The lower bound. The proof of the lower bound inequality relies on the blow up method
which consists in identifying separately the Lebesgue and jump parts of the energy.

Proposition 3.3. For all u ∈ L0(Ω;R2),

F(u) ≤ F ′(u).

Proof. Without loss of generality, we can assume that F ′(u) < ∞. For any ζ > 0, there exists a
sequence {uε}ε>0 such that uε → u in measure in Ω and

lim inf
ε→0

Fε(uε) ≤ F ′(u) + ζ <∞.

Let us extract a subsequence {uk}k∈N := {uεk}k∈N from {uε}ε>0 such that uk → u L2-a.e. in Ω
and

lim
k→∞

Fεk(uk) = lim inf
ε→0

Fε(uε) <∞.

This implies that, for k large enough, uk ∈ Vεk(Ω) and supk Fεk(uk) < ∞. By definition of the
finite element space Vεk(Ω), there exists a triangulation Tk ∈ Tεk(Ω) such that uk is affine on each
T ∈ Tk.

We first note that, according to Proposition 3.1, u ∈ GSBD2(Ω). Let us show the lower bound
inequality F ′(u) ≥ F(u). To this aim, we introduce the following sequence of Radon measures on
Ω

λk :=
1

εk
f
(
εkAe(uk) : e(uk)

)
L2 Ω.

Since the sequence {λk}k∈N is uniformly bounded in M(Ω), up to a subsequence (not relabeled),

we have λk
∗
⇀ λ weakly* inM(Ω) for some nonnegative measure λ ∈M(Ω). Thanks to the lower

semicontinuity of weak* convergence in M(Ω) along open sets, we have that

F ′(u) + ζ ≥ lim
k→∞

λk(Ω) ≥ λ(Ω). (3.6)

Using that the measures L2 Ω and H1 Ju are mutually singular, it is enough to show that

dλ

dL2
≥ Ae(u) : e(u) L2-a.e. in Ω, (3.7)

and
dλ

dH1 Ju
≥ κ sin θ0 H1-a.e. on Ju. (3.8)

Indeed, once (3.7) and (3.8) are satisfied, it follows from the Radon-Nikodým decomposition and
the Besicovitch differentiation Theorems that

λ =
dλ

dL2
L2 Ω +

dλ

dH1 Ju
H1 Ju + λs,
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for some nonnegative measure λs which is singular with respect to both L2 Ω and H1 Ju. Thus,
after integration over Ω and recalling (3.6), we get that

F ′(u) + ζ ≥
∫

Ω

Ae(u) : e(u) dx+ κ sin θ0H1(Ju) = F(u).

Taking the limit as ζ → 0, we obtain the desired lower bound inequality. �

The rest of this section is devoted to the establishment of (3.7) and (3.8). We start by identifying
the lower bound for the bulk energy.

Proposition 3.4 (Lower bound for the Lebesgue part). For L2-a.e. x0 ∈ Ω,

dλ

dL2
(x0) ≥ Ae(u)(x0) : e(u)(x0).

Proof. Let x0 ∈ Ω be such that

dλ

dL2
(x0) = lim

%↘0

λ
(
B%(x0)

)
π%2

exists and is finite, and

lim
%↘0

1

%2

∫
B%(x0)

|e(u)(y)− e(u)(x0)|2 dy = 0.

According to Besicovitch and Lebesgue differentiation Theorems, L2-almost every point x0 in Ω
satisfies these properties. We next consider a sequence of radii {%j}j∈N such that %j ↘ 0 and
λ(∂B%j (x0)) = 0 for all j ∈ N.

As in the proof of Proposition 3.1, according to the properties (1.4) satisfied by f , for all δ > 0,
there exists a constant 0 < K < κ such that f(t) ≥ K ∧ [(1 − δ)t] for all t ≥ 0. Moreover, using
the characteristic functions

χk := 1{
(1−δ)Ae(uk):e(uk)≥ K

εk

} ∈ L∞(Ω; {0, 1})

we have for every Borel set B ⊂ Ω,

λk(B) ≥ (1− δ)
∫
B

(1− χk)Ae(uk) : e(uk) dx+
K

εk

∫
B

χk dx.

Note that because uk is affine on each triangle T ∈ Tk, χk is constant on each triangle T ∈ Tk.
Following the proof of Proposition 3.1, the sequence vk := (1 − χk)uk ∈ SBV 2(Ω;R2) satisfies
vk → u in measure in Ω and e(vk) ⇀ e(u) weakly in L2(Ω;M2×2

sym). Then, for all j ∈ N,

λ(B%j (x0)) = lim
k→∞

λk(B%j (x0)) ≥ (1− δ) lim inf
k→∞

∫
B%j (x0)

Ae(vk) : e(vk) dx

≥ (1− δ)
∫
B%j (x0)

Ae(u) : e(u) dx.

Dividing the previous inequality by π%2
j and passing to the limit as j → ∞ implies by the choice

of the point x0 that

dλ

dL2
(x0) = lim

j→∞

λ(B%j (x0))

π%2
j

≥ (1− δ) lim
j→∞

1

π%2
j

∫
B%j (x0)

Ae(u) : e(u) dx

= (1− δ)Ae(u)(x0) : e(u)(x0).

Taking the limit as δ → 0+ completes the proof of the lower bound for the Lebesgue part. �

We next pass to the lower bound inequality for the jump part of the energy which represents
the most difficult and original part of our result.
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Proposition 3.5 (Lower bound for the jump part). For H1-a.e. x0 ∈ Ju,

dλ

dH1 Ju
(x0) ≥ κ sin θ0.

The proof of Proposition 3.5 is quite long and involved. It necessitates the introduction of some
tools in order to carry out the blow-up analysis coupled with the slicing method.

Let x0 ∈ Ju be such that

dλ

dH1 Ju
(x0) = lim

%↘0

λ
(
B%(x0)

)
H1
(
Ju ∩B%(x0)

)
exists and is finite, and

lim
%↘0

H1(Ju ∩B%(x0))

2%
= 1.

According to the Besicovitch differentiation Theorem and the countably (H1, 1)-rectifiability of Ju
(see [3, Theorem 2.83]), it follows that H1-almost every point x0 in Ju fulfills these conditions.
The point x0 ∈ Ju being fixed throughout the rest of the proof of Proposition 3.5, we sometimes
intentionally omit to write the dependence with respect to x0.

By definition of the jump set Ju, there exist ν := νu(x0) ∈ S1 and u±(x0) ∈ R2 with u+(x0) 6=
u−(x0) such that the function

ux0,% := u(x0 + % ·)

converges in measure in B := B1(0) to the jump function

u : y ∈ B 7→

{
u+(x0) if y · ν > 0,

u−(x0) if y · ν < 0,

as % ↘ 0 (see [29, Definition 2.3]). Note that, the jump set Ju in B coincides with the diameter
Bν = pν(B) orthogonal to ν. Moreover, since H1

({
ξ ∈ S1 : [u](x0) · ξ = 0

})
= 0, for any η > 0,

there exists ξ ∈ S1 such that

|ν − ξ| ≤ η, ν · ξ ≥ 1

2
,
∣∣ν · ξ⊥∣∣ ≤ η and [u](x0) · ξ 6= 0, (3.9)

where [u](x0) := u+(x0)− u−(x0). If [u](x0) · ν 6= 0, we can simply take ξ = ν. We then set

Mη := |u+(x0) · ξ|+ |u−(x0) · ξ| > 0. (3.10)

From now on, when working with the convergence in measure, we will use the distance dMη defined
in (2.1) associated to this precise value of Mη. As before, we consider a sequence of radii {%j}j∈N
such that %j ↘ 0 and λ(∂B%j (x0)) = 0 = H1(Ju ∩ ∂B%j (x0)) for all j ∈ N.

By our choice of x0, we have

lim
j→∞

lim
k→∞

uk(x0 + %j ·) = lim
j→∞

ux0,%j = u in measure in B,

lim
j→∞

lim
k→∞

λk(B%j (x0))

2%j
= lim
j→∞

λ(B%j (x0))

2%j
=

dλ

dH1 Ju
(x0),

lim
j→∞

lim
k→∞

εk
%j

= lim
j→∞

lim
k→∞

ω(εk)

%j
= 0.
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The metrizability of the convergence in measure in B shows the existence of an increasing sequence
{kj}j∈N (depending on η) such that kj ↗∞ as j →∞ and

vj := ukj (x0 + %j ·)→ u in measure in B,

λkj (B%j (x0))

2%j
→ dλ

dH1 Ju
(x0),

εkj
%j
→ 0,

ω(εkj )

%j
→ 0.

(3.11a)

(3.11b)

(3.11c)

In particular, using a change of variables, we get that

2
dλ

dH1 Ju
(x0) = lim

j→∞

1

%jεkj

∫
B%j (x0)

f
(
εkjAe(ukj ) : e(ukj )

)
dx

= lim
j→∞

%j
εkj

∫
B

f

(
εkj
%2
j

Ae(vj) : e(vj)

)
dy

≥ lim sup
j→∞

%j
εkj

∫
B

f

(
εkj
%2
j

α|e(vj)ξ · ξ|2
)
dy,

where, in the last inequality, we used the ellipticity property (1.5) of A, the nondecreasing character
of f and that ξ ∈ S1.

According to the properties (1.4) satisfied by f , for all δ ∈ (0, 1), there exists a constant A > 0
such that

f(t) ≥ (At) ∧ [(1− δ)κ] for all t ≥ 0.

Indeed, since f(t) → κ as t → ∞, there exists t∗ ≥ 0 such that for all t ≥ t∗, f(t) ≥ (1 − δ)κ.
The function f(t)/t being continuous over [0, t∗] (extended by the value 1 at t = 0), it reaches its
minimum value A > 0 over this segment so that f(t) ≥ At for all t ∈ [0, t∗].

Let us introduce the characteristic functions

χj := 1{Aαεkj
%2
j

|e(vj)ξ·ξ|2≥(1−δ)κ
} ∈ L∞(B; {0, 1}),

so that

2
dλ

dH1 Ju
(x0) ≥ lim sup

j→∞

{
αA

%j

∫
B

(1− χj)|e(vj)ξ · ξ|2 dy +
(1− δ)κ%j

εkj

∫
B

χj dy

}
. (3.12)

We then introduce the translated and rescaled triangulations

Tx0,j :=
1

%j

(
Tkj − x0

)
, Tx0,j

b :=

{
T ∈ Tx0,j :

αA

%j
|e(vj)|T ξ · ξ|2 ≥

(1− δ)κ%j
εkj

}
. (3.13)

Note that vj is affine on each T ∈ Tx0,j . Let us point out that

χj |T :=

{
1 if T ∈ Tx0,j

b ,

0 otherwise.
(3.14)

Since ((vj)
ξ
z)
′(t) = e(vj)(z + tξ)ξ · ξ, then for H1-a.e. z ∈ Bξ,

(χj)
ξ
z(t) =

{
1 if αA

%j
|((vj)ξz)′(t)|2 ≥

(1−δ)κ%j
εkj

,

0 otherwise,
for L1-a.e. t ∈ Bξz . (3.15)
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The triangles belonging to the collection Tx0,j
b correspond to the sets where the longitudinal slope

of vj in the direction ξ is “very large”. They, roughly speaking, represent the places where it will
be energetically convenient to introduce a jump because of the sharp transition.

The following result, which will play a major role in the proof of Proposition 3.5, shows that
for many points y ∈ Ju ∩B, the one-dimensional energy on Bξy is arbitrarily small uniformly with
respect to y.

Lemma 3.6. For all η > 0, there exist a subset Z ⊂ Ju ∩ B with H1(Z) ≤ η and a subsequence
(not relabeled, depending on x0) such that the following property holds : for all γ > 0, there exists
j0 = j0(γ) ∈ N such that for all y ∈ Ju ∩B \ Z and all j ≥ j0,

∫
Bξy

(χj)
ξ
y dt ≤ γ,∫

Bξy

(
1− (χj)

ξ
y

)
|((vj)ξy)′|2 dt ≤ γ2,∫

Bξy

Mη ∧ |(vj − u)ξy| dt ≤ γ.

(3.16a)

(3.16b)

(3.16c)

Proof. According to Fubini’s Theorem, the convergence in measure (3.11a) and (3.12), we infer
that∫

Bξ

(∫
Bξz

Mη ∧ |(vj − u)ξz| dt+

∫
Bξz

(1− (χj)
ξ
z)|((vj)ξz)′|2 dt+

∫
Bξz

(χj)
ξ
z dt

)
dH1(z)

≤
∫
B

Mη ∧ |vj − u| dx+

∫
B

(1− χj)|e(vj)ξ · ξ|2 dx+

∫
B

χj dx→ 0.

As a consequence, up to a subsequence (not relabeled), there exists an H1-negligible set N ⊂ Bξ

such that∫
Bξz

Mη ∧ |(vj − u)ξz| dt+

∫
Bξz

(1− (χj)
ξ
z)|((vj)ξz)′|2 dt+

∫
Bξz

(χj)
ξ
z dt→ 0 for all z ∈ Bξ \N .

In order to pass from arbitrary points z ∈ Bξ to arbitrary points y ∈ Ju ∩B = Bν , let us consider
the following mapping (see Figure 2)

Φ : z ∈ R2 7−→ z − ν · z
ν · ξ

ξ ∈ Πν (3.17)

which corresponds to the linear projection onto Πν in the direction ξ. Thanks to (3.9), we can

check that the Lipschitz constant of Φ is bounded by
√

1 + 4η2. Moreover, since for all z ∈ Bξ we

have Bξz + ν·z
ν·ξ = BξΦ(z) =

{
s ∈ R : z +

(
s− ν·z

ν·ξ
)
ξ ∈ B

}
, we deduce that∫

Bξz

Mη ∧ |(vj − u)ξz| dt+

∫
Bξz

(1− (χj)
ξ
z)|((vj)ξz)′|2 dt+

∫
Bξz

(χj)
ξ
z dt

=

∫
Bξ

Φ(z)

Mη ∧ |(vj − u)ξΦ(z)| ds+

∫
Bξ

Φ(z)

(1− (χj)
ξ
Φ(z))|((vj)

ξ
Φ(z))

′|2 ds+

∫
Bξ

Φ(z)

(χj)
ξ
Φ(z) ds

thanks to the change of variables s = t + ν·z
ν·ξ . Since Bν ⊂ Φ(Bξ), setting N ′ := Φ(N) ⊂ Πν , we

get that H1(N ′) = 0 and∫
Bξy

Mη ∧ |(vj − u)ξy| ds+

∫
Bξy

(1− (χj)
ξ
y)|((vj)ξy)′|2 ds+

∫
Bξy

(χj)
ξ
y ds→ 0 for all y ∈ Bν \N ′.
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Applying Egoroff’s theorem, for all η > 0, there exists a subset Z ⊂ Bν such that H1(Z) ≤ η and
the above convergence is uniform with respect to y ∈ Bν \ Z. �

Let us consider the subsequence introduced in Lemma 3.6. For all y ∈
(
B1− η4

)ν
= Ju ∩ B1− η4 ,

we define the end points of the section passing through y in the direction ξ (see the Figure 2) :a(y) := min
{
t ∈ [−2, 2] : y + tξ ∈ B1− η4

}
∈ [−2, 0],

b(y) := max
{
t ∈ [−2, 2] : y + tξ ∈ B1− η4

}
∈ [0, 2],

(3.18)

so that
(
B1− η4

)ξ
y

= (a(y), b(y)). Note that, for all y ∈ Ju ∩B1− η2 ⊂
(
B1− η4

)ν
,

0 < Lη :=

√(
1− η

2

)2

|ξ · ν⊥|2 +
η(8− 3η)

16
−
(

1− η

2

) ∣∣ξ · ν⊥∣∣ ≤ |a(y)|, |b(y)| ≤ 2. (3.19)

Φ

η
2

η
4

ξ

ν

Πν
Πξ

B

y

y + a(y)ξ

0

y + b(y)ξ

Lη

0

Ju ∩B1− η2

Figure 2

We introduce the family

Tx0,j
b,int :=

{
T ∈ Tx0,j

b : T ∩B1− η4 6= ∅
}

of triangles which intersect B1− η4 and where vj varies enough in the direction ξ. Note that for

j ∈ N large enough (depending on η), each T ∈ Tx0,j
b,int is contained in B, since the lengths of all

triangles’s edges are controlled by ω(εkj )/%j → 0. The collection Tx0,j
b,int is introduced for technical

reasons to deal with triangles which intersect the boundary of the ball B.

In the following result, we show that, for some subset of Z ′ ⊂ Ju ∩B1− η2 of arbitrarily small H1

measure, and along a subsequence (only depending on η), all the sections in the direction ξ passing

through Ju ∩B1− η2 \ Z
′ must cross at least one triangle T ∈ Tx0,j

b,int contained in B, and on which
the longitudinal slope of vj in the direction ξ is “large”. The formal idea of the proof consists in
observing that, if for some y ∈ Ju ∩B1− η2 the one-dimensional section Bξy intersects no triangle in

the collection Tx0,j
b,int for infinitely many j’s, then the function (vj)

ξ
y would be bounded in H1(Bξy).

Lemma 3.6 would then entail that (vj)
ξ
y converges (weakly in H1(Bξy) and also L1-a.e. in Bξy) to a
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constant function. This property contradicts the fact that (vj)
ξ
y → uξy L1-a.e. in Bξy, where uξy is

a step function taking two different values u±(x0) · ξ.

Lemma 3.7. For all η > 0, there exist a subset Z ′ ⊂ Ju ∩ B containing Z with H1(Z ′) ≤ η, and
a subsequence (not relabeled) such that the following property holds : for all y ∈ Ju ∩ B1− η2 \ Z

′

and all j ∈ N, there exists a triangle T = T (y, j) ∈ Tx0,j
b,int such that (T̊ ∩B)ξy 6= ∅.

Proof. Let Z be the exceptional set given by Lemma 3.6. We first show the weaker result that
there exists an increasing mapping φ : N→ N with the following property: for all y ∈ Ju∩B1− η2 \Z
and all j ∈ N, there exists a triangle T = T (y, φ(j)) ∈ T

x0,φ(j)
b,int such that (T ∩B)ξy 6= ∅.

Suppose by contradiction that such is not the case, and define

γ∗1 := LηMη > 0, γ∗2 :=
Lη|[u](x0) · ξ|

1 + 2Lη
> 0 and γ∗ = γ∗(η) :=

γ∗1 ∧ γ∗2
4

> 0,

where we recall that the constants Mη and Lη are defined in (3.10) and (3.19), respectively. Thanks
to Lemma 3.6, there exists j∗ = j∗(γ∗) ∈ N such that for all y ∈ Ju ∩B \ Z and all j ≥ j∗,∫

Bξy

(1− (χj)
ξ
y)|((vj)ξy)′|2 dt ≤ γ∗2 and

∫
Bξy

Mη ∧ |(vj − u)ξy| dt ≤ γ∗.

We then consider the extraction φ : j ∈ N 7−→ j + j∗ ∈ N which only depends on η. By

assumption, there exists y = y(φ) ∈ Ju ∩ B1− η2 \ Z and j = j(φ) ∈ N such that (T ∩B)
ξ
y = ∅ for

all T ∈ Tx0,j+j
∗

b,int . Remembering (3.14), we deduce that (χj+j∗)
ξ
y ≡ 0 on (a(y), b(y)). Moreover,

since φ(j) = j + j∗ ≥ j∗, we have∫ b(y)

a(y)

|((vj+j∗)ξy)′|2 dt ≤ γ∗2 and

∫ b(y)

a(y)

Mη ∧ |(vj+j∗ − u)ξy| dt ≤ γ∗.

By continuity of (vj+j∗)
ξ
y on the compact [a(y), b(y)], (vj+j∗)

ξ
y being in H1(Bξy), there exist two

points t± ∈ [a(y), b(y)] ∩ R± such that

min
[a(y),b(y)]∩R±

(
Mη ∧ | (vj+j∗)ξy − u

±(x0) · ξ|
)

= Mη ∧ | (vj+j∗)ξy (t±)− u±(x0) · ξ|.

Hence,

γ∗

Lη
≥ 1

Lη

∫ 0

a(y)

Mη ∧ | (vj+j∗)ξy − u
−(x0) · ξ| dt+

1

Lη

∫ b(y)

0

Mη ∧ | (vj+j∗)ξy − u
+(x0) · ξ| dt

≥ Mη ∧ | (vj+j∗)ξy (t−)− u−(x0) · ξ| + Mη ∧ | (vj+j∗)ξy (t+)− u+(x0) · ξ|

≥ Mη ∧
(
| (vj+j∗)ξy (t−)− u−(x0) · ξ| + | (vj+j∗)ξy (t+)− u+(x0) · ξ|

)
≥ Mη ∧

(
|[u](x0) · ξ| −

∣∣∣∣∣
∫ t+

t−

(
(vj+j∗)

ξ
y

)′
(t) dt

∣∣∣∣∣
)

≥ Mη ∧ (|[u](x0) · ξ| − 2γ∗) ,

which is impossible thanks to of our choice of γ∗.

We are now in position to complete the proof of Lemma 3.7. For all j ∈ N, let

Zj :=
{
y ∈ Ju ∩B1− η2 : there exists T ∈ Tx0,j

b,int such that

(T ∩B)ξy is contained in an edge or a vertex of T
}
,
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y

T

Πν

u+(x0)u−(x0)

y + t−ξ

y + t+ξ

y + a(y)ξ

y + b(y)ξ

0
ξ

ν

Figure 3

and
Z ′ := Z ∪

⋃
j∈N

Zj .

We notice that
⋃
j Zj is H1-negligible (each Zj being finite), hence H1(Z ′) ≤ η. Moreover, for

all y ∈ Ju ∩ B1− η2 \ Z
′ and all j ∈ N, there exists a triangle T ∈ T

x0,φ(j)
b,int such that (T ∩ B)ξy is

non-empty, and it is neither reduced to a vertex of T nor contained in an edge of it. It thus implies
that (T̊ ∩B)ξy 6= ∅. �

Let us consider the further subsequence introduced in Lemma 3.7. As a consequence, for all
j ∈ N, the family of triangles

Fj :=
{
T ∈ Tx0,j

b,int : there exists y ∈ Ju ∩B1− η2 such that (T̊ ∩B)ξy 6= ∅
}

(3.20)

is nonempty. Thanks to Lemma 3.7, it is possible to obtain a bad lower bound. Indeed, from
that result, we infer that Ju ∩B1− η2 \ Z

′ ⊂
⋃
T∈Fj

Φ(pξ(T )) with Φ the projection onto Πν in the

direction ξ defined in (3.17). Using next that L2(T ) ≥ H1(pξ(T ))(εkj/%j) sin θ0/2 and that the

Lipschitz constant of Φ is bounded by
√

1 + 4η2, we deduce from (3.12) and our choice of x0 that

2
dλ

dH1 Ju
(x0) ≥ lim inf

j→∞

(1− δ)κ%j
εkj

∫
B

χj dy ≥ lim inf
j→∞

∑
T∈Fj

(1− δ)κ%jL2(T )

εkj

≥ (1− δ)κ sin θ0

2
√

1 + 4η2
lim inf
j→∞

H1

 ⋃
T∈Fj

Φ(pξ(T ))


≥ (1− δ)κ sin θ0

2
√

1 + 4η2
H1
(
Ju ∩B1− η2 \ Z

′
)
≥ (1− δ)κ sin θ0√

1 + 4η2
(1− η).
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Letting η → 0 and δ → 0 leads to

dλ

dH1 Ju
(x0) ≥ κ sin θ0

2

which corresponds to a too low lower bound because of the factor 1/2 in the right-hand side of the
previous inequality. In order to improve the previous argument, we need to establish that many
lines Bξy parallel to ξ and passing through the jump set at some point y ∈ Ju ∩ B must actually

intersect at least two triangles of the collection Tx0,j
b,int, where the longitudinal variation of vj in

the direction ξ is “large”. This idea is precisely formulated in the following result which is an
improvement of Lemma 3.7.

Lemma 3.8. For all η > 0, there exist Z ′′ ⊂ Ju ∩B containing Z ′ with H1(Z ′′) ≤ 3η, and a (not
relabeled) subsequence such that for all j ∈ N and for all y ∈ Ju ∩B1− η2 \ Z

′′,

#
{
T ∈ Tx0,j

b,int : (T̊ ∩B)ξy 6= ∅
}
≥ 2.

The proof of Lemma 3.8 consists in constructing both Z ′′ and the subsequence inductively by
means of the following technical result, Lemma 3.9. It stipulates that the set of all points y ∈ Ju∩B
such that Bξy intersects exactly one triangle T in the collection Tx0,j

b,int, has arbitrarily small H1

measure. To establish this property, we first show that if such situation arises, then the function
(vj)

ξ
y is uniformly close (with respect to y) to the step function uξy taking the values u±(x0) · ξ.

Thus, up to a small error which is uniform in y, the function (vj)
ξ
y must pass from the value

u−(x0) · ξ to u+(x0) · ξ in an affine way inside the only triangle T ∈ Tx0,j
b,int which is crossed by Bξy.

However, due to the shape of a triangle, this can happen for at most two different values of y, say
z1 and z2. Then, if y ∈ Ju ∩B is far away from these two values z1 and z2, the variation of (vj)

ξ
y

is not sufficient to connect the values u±(x0) · ξ in an affine way. It thus becomes necessary for Bξy
to intersect an additional triangle T ′ ∈ Tx0,j

b,int, where the variation of (vj)
ξ
y is substantial, in order

to recover the full jump.

Lemma 3.9. For all η > 0, there exist constants C∗ = C∗(η) > 0, γ∗ = γ∗(η) > 0 and a subset
Z∗ = Z∗(η) ⊂ Ju ∩ B containing Z ′ and satisfying H1(Z∗) ≤ 2η such that the following property
holds: for all 0 < γ < γ∗, there exists j(γ) ∈ N such that for all j ≥ j(γ), the set

Yj :=
{
y ∈ Ju ∩B1− η2 \ Z

′ : there exists a unique T ∈ Tx0,j
b,int such that (T̊ ∩B)ξy 6= ∅

}
(3.21)

satisfies
H1(Yj \ Z∗) ≤ C∗γ.

Proof of Lemma 3.9. The proof is divided into three steps.

Step 1. In this first step, we show that for j large enough and for many points y ∈ Yj , the set

(B ∩T )ξy (where T is the only triangle in Tx0,j
b,int which crosses Bξy) is close to (Ju)ξy, uniformly with

respect to y.
For all j ∈ N and all y ∈ Yj , let Tj(y) ∈ Tx0,j

b,int be the unique triangle such that (T̊j(y)∩B)ξy 6= ∅.
We define the end points of the section in the direction ξ passing through y inside Tj(y) (see the
Figure 4) by {

aj(y) := min {t ∈ [−2, 2] : y + tξ ∈ Tj(y)} ,
bj(y) := max {t ∈ [−2, 2] : y + tξ ∈ Tj(y)} ,

(3.22)

so that (Tj(y))
ξ
y = [aj(y), bj(y)]. Note that Tj(y) ⊂ B (since Tj(y) ∩ B1− η4 6= ∅), hence −2 ≤

aj(y) ≤ b(y) and 2 ≥ bj(y) ≥ a(y). Let us show that

fj(y) := (|aj(y)|+ |bj(y)|)1Yj (y)→ 0 for all y ∈ Ju ∩B1− η2 \ Z
′. (3.23)
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y
Tj(y)

y + a(y)ξ y + aj(y)ξ y + bj(y)ξ

y + b(y)ξ

ξ

ν

Πν

Figure 4

Let y ∈ Ju ∩ B1− η2 \ Z
′ and set ` := lim supj fj(y) ∈ [0, 4]. Assume by contradiction that

` > 0 and extract a subsequence depending on y (not relabeled) such that fj(y)→ `. Then, there
exists j0 ∈ N such that y ∈ Yj for all j ≥ j0. Moreover, according to Lemma 3.6 and setting
Ij(y) := (a(y), b(y)) \ (aj(y), bj(y)) ⊂ Bξy, we have

|bj(y)− aj(y)| ≤
∫
Bξy

(χj)
ξ
y dt→ 0,∫

Ij(y)

|((vj)ξy)′|2 dt ≤
∫
Bξy

(
1− (χj)

ξ
y

)
|((vj)ξy)′|2 dt→ 0,∫ b(y)

a(y)

Mη ∧ |(vj − u)ξy| dt ≤
∫
Bξy

Mη ∧ |(vj − u)ξy| dt→ 0.

(3.24)

Up to another subsequence (still not relabeled), the first condition in (3.24) ensures that aj(y)→ m
and bj(y) → m for some m ∈ [a(y), b(y)]. Thus, for all τ > 0, there exists j1 = j1(τ) ≥ j0 such
that for all j ≥ j1,

Iτ := (a(y),m− τ) ∪ (m+ τ, b(y)) ⊂ Ij(y),

with the convention that (x, y) = ∅ if y < x. We set

I−τ := (a(y),m− τ) , I+
τ := (m+ τ, b(y)) ,

so that (vj)
ξ
y |I±τ

∈ H1(I±τ ) and the truncated function wj :=
(
Mη ∧ (vj)

ξ
y

)
∨ (−Mη) ∈ H1(I±τ )

satisfies w′j = ((vj)
ξ
y)′1{|(vj)ξy|≤Mη}. According to the second condition in (3.24), the sequence

{wj}j∈N is bounded in H1(I±τ ) and w′j → 0 in L2(I±τ ). As a consequence, up to a subsequence,

there exist constants c± ∈ R such that wj → c± in H1(I±τ ) and L1-a.e. in I±τ . Yet, as (vj)
ξ
y

converges in measure to uξy in I±τ , up to another subsequence (still not relabeled), we have that

(vj)
ξ
y pointwise converges to uξy L1-a.e. in I±τ . Hence c± = (Mη ∧ u±(x0) · ξ)∨ (−Mη) = u±(x0) · ξ

by our choice (3.10) of Mη. Thus, for all τ > 0,

u−(x0) · ξ 1(a(y),m−τ) + u+(x0) · ξ 1(m+τ,b(y)) = uξy |Iτ
L1-a.e. in Iτ .
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Taking the limit as τ → 0+, we obtain that

u−(x0) · ξ 1(a(y),m) + u+(x0) · ξ 1(m,b(y)) = uξy L1-a.e. in (a(y), b(y)),

leading to m = 0 since [u](x0) · ξ 6= 0 by our choice (3.9) of ξ. As a consequence fj(y) =
(|aj(y)|+ |bj(y)|)1Yj (y)→ 0 which is against ` > 0.

Using (3.23), Lemma 3.6 and owing to Egoroff’s Theorem, we can find a set Z∗ ⊂ Ju ∩ B
containing Z ′ with H1(Z∗) ≤ 2η such that for all γ > 0, there exists j0(γ) ∈ N satisfying

∫
Bξy

(1− (χj)
ξ
y)|((vj)ξy)′|2 dt ≤ γ2,∫

Bξy

Mη ∧ |(vj − u)ξy| dt ≤ γ,

(|aj(y)|+ |bj(y)|)1Yj (y) ≤ γ

for all y ∈ Ju ∩B1− η2 \ Z∗ and all j ≥ j0(γ). (3.25)

Step 2. In this step, we show that for many points y ∈ Yj , the variation of (vj)
ξ
y inside the

only triangle T in Tx0,j
b,int which is crossed by Bξy, is uniformly close with respect to y to the jump

of uξy. More precisely, let

Cη := 8

(
1 +

1

Lη

)
> 0, γ∗ = γ∗(η) :=

1

2
min

(
1,
Mη

Cη
, Lη,

|[u](x0) · ξ|
4Cη

)
> 0. (3.26)

Let us show that for all 0 < γ < γ∗, there exists j1(γ) ∈ N such that∣∣(vj)ξy(bj(y))− (vj)
ξ
y(aj(y))− [u](x0) · ξ

∣∣ ≤ Cηγ for all j ≥ j1(γ) and all y ∈ Yj \ Z∗. (3.27)

Fix 0 < γ < γ∗ and, by (3.25), let j0(γ) ∈ N be such that

∫
(a(y),b(y))\(aj(y),bj(y))

|((vj)ξy)′|2 dt ≤ γ2,∫
Bξy

Mη ∧ |(vj − u)ξy| dt ≤ γ,

(|aj(y)|+ |bj(y)|) ≤ γ

for all j ≥ j0(γ) and all y ∈ Yj \ Z∗.

In particular, recalling (3.18), (3.19) and by the choice (3.26) of γ∗, we get that 2 ≥ |b(y)| ≥ Lη >
γ∗ > γ ≥ |bj(y)| and 2 ≥ |a(y)| ≥ Lη > γ∗ > γ ≥ |aj(y)|, hence

a(y) < aj(y) ≤ bj(y) < b(y).

Writing

Mη ∧
∣∣(vj)ξy(bj(y))− (vj)

ξ
y(aj(y))− [u](x0) · ξ

∣∣ ≤ Mη ∧
∣∣(vj)ξy (0 ∨ bj(y))− u+(x0) · ξ

∣∣
+Mη ∧

∣∣(vj)ξy(0 ∨ bj(y))− (vj)
ξ
y(bj(y))

∣∣
+Mη ∧

∣∣(vj)ξy (0 ∧ aj(y))− u−(x0) · ξ
∣∣

+Mη ∧
∣∣(vj)ξy(aj(y))− (vj)

ξ
y(0 ∧ aj(y))

∣∣
=: J1 + J2 + J3 + J4,

it remains to control each of the last four terms.

Let us first estimate the terms J2 and J4. If bj(y) ≥ 0, J2 = 0. Otherwise, by the Cauchy-
Schwarz inequality,

J2 = Mη ∧

∣∣∣∣∣
∫ 0

bj(y)

((vj)
ξ
y)′ dt

∣∣∣∣∣ ≤√|bj(y)|

(∫ 0

bj(y)

|
(
(vj)

ξ
y

)′|2 dt) 1
2

≤ γ3/2 ≤ γ.

Similarly, we have that J4 ≤ γ.
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Let us now estimate the term J1. We consider the function

zj := Mη ∧ |(vj)ξy − u+(x0) · ξ| ∈ H1(Bξy)

with

z′j = ((vj)
ξ
y)′1{0≤(vj)

ξ
y−u+(x0)·ξ≤Mη} − ((vj)

ξ
y)′1{0≤u+(x0)·ξ−(vj)

ξ
y≤Mη},

and the nonempty open interval I+ := (0∨ bj(y), b(y)). By the Sobolev embedding and (3.26), we
have that for all t ∈ I+,

|zj(t)| ≤
√
b(y)− 0 ∨ bj(y) ‖z′j‖L2(I+) +

1

b(y)− 0 ∨ bj(y)
‖zj‖L1(I+)

≤
√

2‖((vj)ξy)′‖L2(I+) +
2

Lη
‖Mη ∧ |(vj)ξy − u+(x0) · ξ|‖L1(I+)

≤
(√

2 +
2

Lη

)
γ.

By continuity of (vj)
ξ
y in Bξy, the above inequality remains true up to the end point 0 ∨ bj(y)

of I+, so that J1 ≤ (
√

2 + 2
Lη

)γ. A similar argument shows that J3 ≤ (
√

2 + 2
Lη

)γ, and thus

J1 + J2 + J3 + J4 ≤ 8(1 + 1
Lη

)γ = Cηγ, which shows that

Mη ∧
∣∣(vj)ξy(bj(y))− (vj)

ξ
y(aj(y))− [u](x0) · ξ

∣∣ ≤ Cηγ.
Eventually, as Cηγ < Mη for all 0 < γ < γ∗ by (3.26), we conclude the validity of (3.27).

Step 3. We now show that it is possible to include Yj \ Z∗ inside a finite union of arbitrarily
small segments contained in Ju ∩B (see Figure 7).

Let 0 < γ < γ∗ and j1(γ) ∈ N be given by (3.27). For all j ≥ j1(γ), we define

T̂j := {T ∈ Tx0,j
b,int : there exists y ∈ Yj \ Z∗ such that (T̊ ∩B)ξy 6= ∅},

and, for all T ∈ T̂j , we introduce both following quantities :L
ref(T ) :=

|[u](x0)·ξ|−4Cηγ

|e(vj)|T :(ξ⊗ξ)| the reference length of T,

Lmax(T ) := max
z∈pξ(T )

L1(T ξz ) the maximal section’s length of T along the direction ξ.
(3.28)

Note that because T ∈ Tx0,j
b , see (3.13), then |e(vj)|T ξ · ξ|2 ≥ (1 − δ)κ%2

j/(αAεkj ) > 0, so that

Lref(T ) is well defined, and positive by (3.26) since γ < γ∗. The quantity Lref(T ) stands for the
required length of the section T ξy in order for the (affine) function (vj)

ξ
y to pass exactly from the

values u−(x0) · ξ to u+(x0) · ξ across T , up to the error 4Cηγ. Note that L1(T ξy ) = Lref(T ) for
at most two values of y, say z1 and z2, only depending on j and T . If y ∈ Yj \ Z∗ is such that

(T̊ ∩B)ξy 6= ∅, we know from Step 2 that the variation of (vj)
ξ
y across T is close to [u](x0) · ξ, up to

a small error of order O(γ) which is uniform with respect to y. Therefore, we will show that if y
is far away from z1 and z2, then the variation of (vj)

ξ
y across T is not sufficient to recover the full

jump [u](x0) · ξ.
Let x1, x2 and x3 ∈ T be the three vertices of T and Xi := pξ(xi) ∈ Bξ. We easily see that

there exists i0 ∈ {1, 2, 3} such that Xi0 = arg max
z∈pξ(T )

L1(T ξz ). Up to a permutation of {x1, x2, x3},

there is no loss of generality to assume that i0 = 3 and X3 · ξ⊥ ≤ X1 · ξ⊥, with ξ⊥ ∈ S1 being one
of the two orthogonal vectors to ξ.
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Let hT ≥
εkj sin(θ0)

%j
> 0 be the smallest height of T . We claim that, for all z, z′ ∈ pξ(T ) be such

that T̊ ξz 6= ∅, T̊
ξ
z′ 6= ∅ and either z · ξ⊥, z′ · ξ⊥ ≥ X3 · ξ⊥ or z · ξ⊥, z′ · ξ⊥ ≤ X3 · ξ⊥, then,

|z − z′| ≤ 2L2(T )

hT

|L1(T ξz )− L1(T ξz′)|
max(L1(T ξz ),L1(T ξz′))

. (3.29)

Indeed, consider for instance the case where

X1 · ξ⊥ ≥ z · ξ⊥ > z′ · ξ⊥ ≥ X3 · ξ⊥

(see Figure 5). Let

L := L1(T ξz ), L′ := L1(T ξz′), d := |X1 − z| , d′ := |X1 − z′| .

ξ⊥ ν
⊥

ξ
ν

x1

x1

x3

x3
X3

z′

z

X1

L

L′

Lmax
T

T
d

d′

L

L′

Lmax

Πξ

Figure 5

Then, L′ > L > 0, d′ > d > 0 and using Thalès’ Theorem, we have that

d

d′
=
d′ − |z − z′|

d′
=

L

L′
.

Since d′ ≤ |X1 −X3| = H1(pξ([x1, x3])) ≤ |x1 − x3| ≤ 2L2(T )
hT

, we obtain that

|z − z′| = d′
L′ − L
L′

≤ 2L2(T )

hT

|L− L′|
L′

,

so that (3.29) holds in that case. The proof of the other case X2 · ξ⊥ ≤ z · ξ⊥, z′ · ξ⊥ ≤ X3 · ξ⊥ is
similar and we omit it.

For all j ≥ j1(γ) and all T ∈ T̂j , we have Lmax(T ) > Lref(T ). Indeed, if such would not be

the case, denoting by y ∈ Yj \ Z∗ a point such that (T̊ ∩ B)ξy 6= ∅, then L1(T ξpξ(y)) = L1(T ξy ) =

bj(y)− aj(y) ≤ Lmax(T ) ≤ Lref(T ), entailing that

|(vj)ξy(bj(y))− (vj)
ξ
y(aj(y))| =

∣∣e(vj)|T : (ξ ⊗ ξ)
∣∣ (bj(y)− aj(y)) ≤ |[u](x0) · ξ| − 4Cηγ,

by definition (3.28) of Lref(T ). Therefore, we would obtain that

4Cηγ ≤ |[u](x0) · ξ| −
∣∣(vj)ξy(bj(y))− (vj)

ξ
y(aj(y))

∣∣ ≤ ∣∣(vj)ξy(bj(y))− (vj)
ξ
y(aj(y))− [u](x0) · ξ

∣∣ ,
which is against (3.27). Applying the Intermediate Value Theorem to the strictly monotone and
continuous functions y ∈ [X1, X3] 7→ L1(T ξy ) ∈ [0, Lmax(T )] and y ∈ [X2, X3] 7→ L1(T ξy ) ∈
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[0, Lmax(T )], there are at least one and at most two points z1
ref , z

2
ref ∈ pξ(T ) (according to whether

T has an edge along the direction ξ or not, see Figure 6), only depending on j and T , such that

L1(T ξ
z1
ref

) = L1(T ξ
z2
ref

) = Lref(T ).

(We set z1
ref = z2

ref in the case where T has an edge along the direction ξ). Without loss of
generality, we can assume that z1

ref · ξ⊥ ≥ z2
ref · ξ⊥.

ξ⊥
ν⊥

ξ
ν

z1
ref = z2

ref

Lmax

Lref Lref

Lmax

Lref
z1

ref

z2
ref

Πξ

T

T

Figure 6. Two possible configurations of T .

Let us introduce the following segments (orthogonal to ξ) associated to T (see Figure 7),

Ti(T ) :=

{
z ∈ Πξ :

∣∣z − ziref

∣∣ ≤ C ′η %jL2(T )

εkj
γ

}
for i ∈ {1, 2}, (3.30)

where

C ′η :=
20Cη

sin θ0 |[u](x0) · ξ|
is a constant only depending on η.

For every j ≥ j1(γ) and every y ∈ Yj \ Z∗, let T ∈ Tx0,j
b,int be such that (T̊ ∩B)ξy 6= ∅. Note that

T ∈ T̂j . If pξ(y) · ξ⊥ ≥ X3 · ξ⊥ and z1
ref · ξ⊥ ≥ X3 · ξ⊥ (the other cases being treated similarly),

applying (3.29) above, with z = pξ(y) and z′ = z1
ref , we get that∣∣pξ(y)− z1

ref

∣∣ ≤ 2L2(T )

hT

∣∣(bj(y)− aj(y))− Lref(T )
∣∣

max (bj(y)− aj(y), Lref(T ))

≤ 2L2(T )

hT

∣∣|(vj)ξy(bj(y))− (vj)
ξ
y(aj(y))| − |[u](x0) · ξ|+ 4Cηγ

∣∣∣∣e(vj)|T : (ξ ⊗ ξ)
∣∣ Lref(T )

≤ 2L2(T )

hT

5Cηγ

|[u](x0) · ξ| − 4Cηγ

≤ C ′η
%jL2(T )

εkj
γ,

where we also used (3.27) and (3.26).
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L

L

z1ref

T1(T )

T2(T )

z2ref

X3

y

x3

Lref

Lref

Lmax

Πν

Πξ

T

ξ⊥
ν⊥

ξ
ν Φ

η
4

Figure 7. The length of Ti(T ) is given by L =
2C′η%jL

2(T )

εkj
γ.

We have just shown that for all j ≥ j1(γ) and all y ∈ Yj \ Z∗, there exists T ∈ T̂j such that
pξ(y) ∈ T1(T ) ∪ T2(T ). Since y ∈ Πν , then y = Φ(pξ(y)) ∈ Φ (T1(T ) ∪ T2(T )), with Φ introduced

in (3.17). Recalling that the Lipschitz constant of Φ is less than
√

1 + 4η2 ≤ 2 for η small enough,
we deduce that

H1(Φ (T1(T ) ∪ T2(T ))) ≤ 2H1(T1(T ) ∪ T2(T )) ≤ 8C ′η
%jL2(T )

εkj
γ.

Together with the fact that each triangle in T̂j ⊂ Tx0,j
b,int is contained in B, we obtain that for all

j ≥ j1(γ),

H1(Yj \ Z∗) ≤
∑
T∈T̂j

H1(Φ (T1(T ) ∪ T2(T )))

≤ 8C ′η γ
%j
εkj

∑
T∈T̂j

L2(T ) ≤
8C ′ηγ

κ(1− δ)
(1− δ)κ%j

εkj

∫
B

χj dx ≤
8C ′ηγ

κ(1− δ)
λkj (B%j (x0))

%j
.

Possibly taking a larger j1(γ) ∈ N, we finally get that for all j ≥ j1(γ),

H1(Yj \ Z∗) ≤
8C ′η

κ(1− δ)

(
2

dλ

dH1 Ju
(x0) + 1

)
γ =: C∗γ,

for some constant C∗ > 0 only depending on η. �

We are now in position to prove Lemma 3.8.
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Proof of Lemma 3.8. Let j0 = j0(η) ∈ N such that η
2j0C∗

< γ∗, where C∗ and γ∗ are given by

Lemma 3.9. For all j ≥ j0, as 0 < γj := η
2jC∗

< γ∗, Lemma 3.9 ensures the existence of an integer

i(γj) ≥ j0 such that for all i ≥ i(γj),

H1(Yi \ Z∗) ≤ C∗γj =
η

2j
.

Thereby, we define the following extraction{
φ(j0) := i(γj0) ≥ j0,
φ(j + 1) := max (φ(j) + 1, i(γj+1)) for all j ≥ j0.

(3.31)

Since φ(j) ≥ i(γj), then H1(Yφ(j) \ Z∗) ≤ η
2j . Hence, we set

Z ′′ := Z∗ ∪
+∞⋃
j=j0

Yφ(j), (3.32)

which satisfies
H1(Z ′′) ≤ 2η +

∑
j≥j0

η

2j
≤ 3η.

Moreover, for all j ≥ j0 and all y ∈ Ju ∩B1− η2 \ Z
′′, Lemma 3.7 ensures that

#
{
T ∈ T

x0,φ(j)
b,int : (T̊ ∩B)ξy 6= ∅

}
≥ 1,

and since y /∈ Yφ(j) for all j ≥ j0, it actually follows that

#
{
T ∈ T

x0,φ(j)
b,int : (T̊ ∩B)ξy 6= ∅

}
≥ 2,

concluding the proof of Lemma 3.8. �

Let us consider the further subsequence introduced in Lemma 3.8. In order to derive a lower
bound for the surface energy without the factor 1/2, we now construct two disjoint subfamilies F 1

j

and F 2
j from Fj (see (3.20)) with the property that both sets⋃

T∈F1
j

T,
⋃

T∈F2
j

T

project onto Bν = Ju ∩B, thanks to the mapping Φ ◦ pξ, into two sets of almost full H1 measure
in Ju ∩B. This is the object of the following technical result.

Lemma 3.10. Let K ⊂ Ju ∩ B1− η2 \ Z
′′ be a compact set. For all j ∈ N, there exist two disjoint

subfamilies F 1
j and F 2

j of Fj such that

K ⊂ Φ

 ⋃
T∈F1

j

pξ(T̊ )

 ∩ Φ

 ⋃
T∈F2

j

pξ(T̊ )

 .

Proof. For the sake of clarity, we omit to write the explicit dependance on j for the different objects
considered herafter (triangles, intervals, and so forth).

For all y ∈ Ju ∩B1− η2 \ Z
′′, we consider a pair of distinct triangles of Fj satisfying{

T 1(y), T 2(y)
}
∈ arg min

{
H1
(

Φ(pξ(T̊ 1) ∩ pξ(T̊ 2))
)

:

T 1, T 2 ∈ Tx0,j
b,int, T̊

1 ∩ T̊ 2 = ∅, (T̊ 1 ∩B)ξy 6= ∅, (T̊ 2 ∩B)ξy 6= ∅
}
. (3.33)

Note that Lemma 3.8 ensures that the set{
{T 1, T 2} ⊂ Tx0,j

b,int : (T̊ i ∩B)ξy 6= ∅ for all i ∈ {1, 2}
}
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is nonempty and finite, hence the minimum in (3.33) is achieved and we have at our disposal such
a pair of distinct triangles

{
T 1(y), T 2(y)

}
. Then, we introduce the following open segment in

Bν = Ju ∩B

I(y) := Φ
(
pξ(T̊ 1(y)) ∩ pξ(T̊ 2(y))

)
⊂ Bν = Ju ∩B. (3.34)

Since y ∈ I(y), it follows that

K ⊂ Ju ∩B1− η2 \ Z
′′ ⊂

⋃
y∈Ju∩B1− η

2
\Z′′

I(y).

Furthermore, I(y) is optimal in the sense that any other triangle T ∈ Tx0,j
b,int satisfying (T̊ ∩B)ξy 6= ∅

is such that

I(y) ⊂ Φ(pξ(T̊ )). (3.35)

y

z

z

Tia

Tib

b

a

T

T

Πν

ξ⊥ ν
⊥

ν
ξ

Figure 8

Indeed, setting J := Φ(pξ(T̊ )), there exist points a, b, ã and b̃ in Bν = Ju∩B such that I(y) = (a, b),

J = (ã, b̃) with a · ν⊥ < b · ν⊥ and ã · ν⊥ < b̃ · ν⊥. By construction, there exist ia (resp. ib) ∈ {1, 2}
such that a (resp. b) is the image by Φ ◦ pξ of a vertex of T ia(y) (resp. T ib(y)), see Figure 8.
Assume by contradiction that there exists a point z ∈ I(y) \ J . If y · ν⊥ < z · ν⊥, then J ⊂ (ã, z)

since J is a segment containing y. In particular, Φ(pξ(T̊
ia(y))) ∩ J ⊂ (a, z). Together with (3.33)

and recalling that J := Φ(pξ(T̊ )), it ensures that

H1((a, z)) ≥ H1
(

Φ(pξ(T̊
ia(y))) ∩ Φ(pξ(T̊ ))

)
≥ H1(I(y)) = H1((a, z)) +H1((z, b)) > H1((a, z)),

which is impossible. A similar argument shows that the other situation y · ν⊥ > z · ν⊥ is also
impossible. This shows the validity of (3.35).
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By compactness of K, there exist an integer N = N(j,K) ≥ 1 and points y1, . . . , yN ∈ Ju ∩
B1− η2 \ Z

′′ such that

K ⊂
N⋃
i=1

I(yi). (3.36)

Up to relabeling the points yi, we can assume that y1 · ν⊥ < · · · < yN · ν⊥ (See Figure 9). Let us
now construct two disjoint subfamilies F 1

j and F 2
j of Fj by induction in N iterations.

Iteration 1. Set F 1(1) := {T 1(y1)} and F 2(1) := {T 2(y1)}. Clearly F 1(1) ∩F 2(1) = ∅ and,

for all k ∈ {1, 2}, there is T ∈ F k(1) such that (B ∩ T̊ )ξy1
6= ∅ and I(y1) ⊂ Φ(pξ(T̊ )) .

Iteration 2. We distinguish two cases:

i) If {T 1(y2), T 2(y2)} ∩
(
F 1(1) ∪F 2(1)

)
= ∅, then we set F 1(2) := F 1(1) ∪ {T 1(y2)} and

F 2(2) := F 2(1) ∪ {T 2(y2)}. We have that F 1(2) ∩F 2(2) = ∅ and, for all i, k ∈ {1, 2},
there exists T ∈ F k(2) such that (B ∩ T̊ )ξyi 6= ∅ and I(yi) ⊂ Φ(pξ(T̊ )).

ii) Otherwise, there exist i, k ∈ {1, 2} such that T i(y2) ∈ F k(1), i.e. T i(y2) = T k(y1), and
T 3−i(y2) /∈ F k(1). In that case, we set F k(2) := F k(1) and F 3−k(2) := F 3−k(1) ∪
{T 3−i(y2)}. Note that, it might be the case that T 3−i(y2) ∈ F 3−k(1). We have that

F 1(2)∩F 2(2) = ∅ and, for all i, k ∈ {1, 2}, there exists T ∈ F k(2) such that (B∩T̊ )ξyi 6= ∅
and I(yi) ⊂ Φ(pξ(T̊ )).

Iteration n+ 1 for some n ∈ {1, . . . , N − 1}. Assume that we have constructed two disjoint
subfamilies F 1(n) and F 2(n) of Fj with the following properties: for all k ∈ {1, 2} and all

i ∈ {1, . . . , n}, there exists T ∈ F k(n) such that (B ∩ T̊ )ξyi 6= ∅ and I(yi) ⊂ Φ(pξ(T̊ )). Let us now

construct F 1(n+ 1) and F 2(n+ 1):

i) If {T 1(yn+1), T 2(yn+1)} ∩
(
F 1(n) ∪F 2(n)

)
= ∅, then we set F 1(n + 1) := F 1(n) ∪

{T 1(yn+1)} and F 2(n + 1) := F 2(n) ∪ {T 2(yn+1)}. In that case, we have that F 1(n +
1) ∩ F 2(n + 1) = ∅ and that for all k ∈ {1, 2} and all i ∈ {1, . . . , n + 1}, there exists

T ∈ F k(n+1) such that (B∩ T̊ )ξyi 6= ∅ and I(yi) ⊂ Φ(pξ(T̊ )). For i ∈ {1, . . . , n}, it follows

from the previous iteration n and because F k(n) ⊂ F k(n+ 1), while for i = n+ 1, it is a
consequence of the fact that T k(yn+1) ∈ F k(n+ 1).

ii) Otherwise, there exist p, q ∈ {1, 2} such that T p(yn+1) ∈ F q(n). Let us further distinguish
two subcases:
(a) If T 3−p(yn+1) /∈ F q(n), then we set F q(n + 1) := F q(n) and F 3−q(n + 1) :=

F 3−q(n) ∪ {T 3−p(yn+1)}. Then F 1(n + 1) ∩F 2(n + 1) = ∅ and, for all k ∈ {1, 2}
and all i ∈ {1, . . . , n + 1}, there exists T ∈ F k(n + 1) such that (B ∩ T̊ )ξyi 6= ∅ and

I(yi) ⊂ Φ(pξ(T̊ )). Indeed, for i ∈ {1, . . . , n} this is a consequence of the previous
iteration n and of the fact that F k(n) ⊂ F k(n + 1), while, for i = n + 1, it results
from T p(yn+1) ∈ F q(n+ 1) and T 3−p(yn+1) ∈ F 3−q(n+ 1).

(b) If both T 1 := T 1(yn+1) ∈ F q(n) and T 2 := T 2(yn+1) ∈ F q(n), we introduce the
indexes

i1 := arg min
{
i ∈ {1, . . . , n+ 1} : (B ∩ T̊ 1)ξyi 6= ∅

}
and

i2 := arg min
{
i ∈ {1, . . . , n+ 1} : (B ∩ T̊ 2)ξyi 6= ∅

}
.

Up to interchanging T1 and T2, there is no loss of generality to assume that i1 ≥ i2 (see
Figure 9). We set F q(n+ 1) := F q(n) \ {T 1} and F 3−q(n+ 1) := F 3−q(n) ∪ {T 1}.
Once more, we have F 1(n + 1) ∩ F 2(n + 1) = ∅ and, for all k ∈ {1, 2} and all

i ∈ {1, . . . , n + 1}, there exists T ∈ F k(n + 1) such that (B ∩ T̊ )ξyi 6= ∅ and I(yi) ⊂
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Φ(pξ(T̊ )). This is immediate for i = n + 1 because T 2 = T 2(yn+1) ∈ F q(n + 1) and
T 1 = T 1(yn+1) ∈ F 3−q(n+ 1). For i ∈ {1, . . . , n}, there are two possibilities:
• for k = 3− q, it follows from F 3−q(n) ⊂ F 3−q(n+ 1).
• for k = q and i ∈ {1, . . . , i1 − 1}, by the previous iteration n there exists

T ∈ F q(n) such that (B ∩ T̊ )ξyi 6= ∅ and I(yi) ⊂ Φ(pξ(T̊ )). As (B ∩ T̊ 1)ξyi = ∅,
by definition of i1, this implies that T 6= T 1, so that actually T ∈ F q(n + 1)
satisfies the above requirements. Assuming next that i ∈ {i1, . . . , n}, we deduce

that n + 1 > i ≥ i2. By definition of i2, we have (B ∩ T̊ 2)ξyi2 6= ∅ while

(B ∩ T̊ 2)ξyn+1
6= ∅ so that the convexity of T̊ 2 together with the ordering of

the points yi lead to (B ∩ T̊ 2)ξyi 6= ∅. Hence, owing to (3.35), we infer that

I(yi) ⊂ Φ(pξ(T̊ 2)) and T 2 ∈ F q(n+ 1) satisfies the above requirements.

We proceed this construction up to the N th iteration, and finally define

F k
j := F k(N) for k ∈ {1, 2}, (3.37)

which define two disjoint subfamilies of Fj satisfying in particular, thanks to (3.36),

K ⊂
N⋃
i=1

I(yi) ⊂

 ⋃
T∈F1

j

Φ(pξ(T̊ ))

 ∩
 ⋃
T∈F2

j

Φ(pξ(T̊ ))


= Φ

 ⋃
T∈F1

j

pξ(T̊ )

 ∩ Φ

 ⋃
T∈F2

j

pξ(T̊ )

 .

The proof of Lemma 3.10 is now complete. �

ξ⊥ ν
⊥

ξ
ν

yN

yn+1

yi1

yi2

yi2−1

y1

Πν

T1

T2

...

...

Figure 9

We are now in position to complete the proof of Proposition 3.3.
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Proof of Proposition 3.3. Since all triangles T in Fj are contained in B, we get from (3.11b) and
(3.12),

dλ

dH1 Ju
(x0) = lim

j→∞

λkj (B%j (x0))

2%j
≥ lim inf

j→∞

(1− δ)κ%j
2εkj

∫
B

χj dx ≥ lim inf
j→∞

(1− δ)κ%j
2εkj

∑
T∈Fj

L2(T ).

Using next the inequality L2(T ) ≥ H1(pξ(T ))(εkj/%j) sin θ0/2, we deduce that

2
dλ

dH1 Ju
(x0) ≥ (1− δ)κ sin θ0

2
lim inf
j→∞

∑
T∈Fj

H1(pξ(T )).

Let K ⊂ Ju ∩B1− η2 \Z
′′ be a compact set and F 1

j and F 2
j be two disjoint subfamilies of Fj given

by Lemma 3.10. Thus

2
dλ

dH1 Ju
(x0) ≥ (1− δ)κ sin θ0

2
lim inf
j→∞

 ∑
T∈F1

j

H1(pξ(T )) +
∑
T∈F2

j

H1(pξ(T ))

 ,

and remembering that Φ has a Lipschitz constant bounded by
√

1 + 4η2,

2
dλ

dH1 Ju
(x0) ≥ (1− δ)κ sin θ0

2
√

1 + 4η2
lim inf
j→∞

 ∑
T∈F1

j

H1(Φ(pξ(T ))) +
∑
T∈F2

j

H1(Φ(pξ(T )))


≥ (1− δ)κ sin θ0

2
√

1 + 4η2
lim inf
j→∞

H1

 ⋃
T∈F1

j

Φ (pξ(T ))

+H1

 ⋃
T∈F2

j

Φ (pξ(T ))


≥ (1− δ)κ sin θ0√

1 + 4η2
H1(K).

By inner regularity of the Radon measure H1 (Ju ∩ B1− η2 \ Z
′′), passing to the supremum with

respect to all compact sets K ⊂ Ju ∩B1− η2 \ Z
′′, we get that

2
dλ

dH1 Ju
(x0) ≥ (1− δ)κ sin θ0√

1 + 4η2
H1(Ju ∩B1− η2 \ Z

′′).

Remembering that Ju ∩B = Bν , we have

2 = H1(Ju ∩B) = H1(Ju ∩B1− η2 ) + η ≤ H1(Ju ∩B1− η2 \ Z
′′) + 4η

because H1(Z ′′) ≤ 3η. Hence

2
dλ

dH1 Ju
(x0) ≥ (1− δ)κ sin θ0√

1 + 4η2
(2− 4η).

Finally passing to the limit as η → 0 and δ → 0, we deduce that

dλ

dH1 Ju
(x0) ≥ κ sin θ0,

which corresponds to the desired lower bound with the correct multiplicative constant. �
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3.3. The upper bound. The proof of the Γ-lim sup inequality relies on suitable approximation
results in GSBD (see [17, 33, 20, 27]) which allow us to reduce to the case where the jump set
of u is a finite union of pairwise disjoint closed line segments, and u is smooth outside the jump
set. Then, an explicit mesh construction introduced in [23], adapted to this simple geometrical
situation, provides the desired upper bound.

Proposition 3.11. For all u ∈ L0(Ω;R2),

F ′′(u) ≤ F(u).

Proof. We can assume that F(u) < ∞, and thus that u ∈ GSBD2(Ω). Using the density result
for GSBD functions (see [20, Theorem 1.1]) as well as the lower semicontinuity of F ′′ with respect
to the convergence in measure (see [28, Proposition 6.8]), we can further assume without loss of
generality that u ∈ SBV 2(Ω;R2) ∩ L∞(Ω;R2).

Writing u = (u1, u2), we can apply [23, Lemma 4.2] to both components u1 and u2 ∈ SBV 2(Ω)∩
L∞(Ω) of u. For Ω′ := (a, b) × (c, d) ⊂ R2 with Ω ⊂⊂ Ω′, we can find an extension v ∈
SBV 2(Ω′;R2) ∩ L∞(Ω′;R2) such that

v|Ω = u, ‖v‖L∞(Ω′;R2) ≤
√

2‖u‖L∞(Ω;R2) and H1(∂Ω ∩ Jv) = 0. (3.38)

Next owing to the density result in SBV (see [27, Theorem 3.1]), there exists a sequence {vk}k∈N
in SBV 2(Ω′;R2) ∩ L∞(Ω′;R2) as well as Nk disjoint closed segments Lk1 , . . . , L

k
Nk
⊂ Ω′ with the

following properties:

Jvk =

Nk⋃
i=1

Lki , H1(Jvk \ Jvk) = 0, vk ∈W 2,∞(Ω′ \ Jvk ;R2)

and 
vk → v strongly in L1(Ω′;R2),

∇vk → ∇v strongly in L2(Ω′;M2×2),

lim supkH1(A ∩ Jvk) ≤ H1(A ∩ Jv) for all open subset A ⊂⊂ Ω′.

(3.39)

Using (3.39) and the lower semicontinuity of F ′′ in L0(Ω;R2) with respect to the convergence in
measure, we obtain that

F ′′(u) ≤ lim inf
k→∞

F ′′(vk|Ω).

The proof is complete once we know that lim infk F ′′(vk|Ω) ≤ F(u). This follows from Lemma 3.12
below, applied to each function vk. Indeed, using that result, we get that

lim inf
k→∞

F ′′(vk|Ω) ≤ lim inf
k→∞

{∫
Ω

Ae(vk) : e(vk) dx+ κ sin θ0H1(Jvk ∩ Ω)

}
.

Recalling the convergences (3.39), we conclude that

F ′′(u) ≤
∫

Ω

Ae(v) : e(v) dx+ κ sin θ0H1(Jv ∩ Ω) =

∫
Ω

Ae(u) : e(u) dx+ κ sin θ0H1(Ju) = F(u),

where we used H1(Jv ∩ ∂Ω) = 0 and that v = u in Ω. �

We are back to establishing the following result.

Lemma 3.12. Let v ∈ SBV 2(Ω′;R2) ∩ L∞(Ω′;R2) be such that

Jv =

N⋃
i=1

Li, H1(Jv \ Jv) = 0, v ∈W 2,∞(Ω′ \ Jv;R2),

for some pairwise disjoint closed segments L1, . . . , LN ⊂ Ω′. Then,

F ′′(v|Ω) ≤
∫

Ω

Ae(v) : e(v) dx+ κ sin θ0H1(Jv ∩ Ω).
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Proof. Since Ω ⊂⊂ Ω′, then d := dist(Ω,R2 \ Ω′) > 0. For all δ ∈ (0, d), let us consider the open
sets

Ωδ := {x ∈ Ω′ : dist(x,R2 \ Ω′) > δ}
which satisfy Ω ⊂⊂ Ωδ ⊂⊂ Ω′. We introduce a cut-off function φδ ∈ C∞c (R2; [0, 1]) which is
supported in Ω′ and such that φδ = 1 in Ωδ, φδ = 0 in R2 \ Ω δ

2
. We next introduce the function

v := φδv ∈ SBV 2(R2;R2) ∩ L∞(R2;R2). We remark that

v ∈W 2,∞

(
R2 \

N⋃
i=1

Li;R2

)
, Jv ⊂ Jv, and Jv \ Jv ⊂ Jv \ Ωδ. (3.40)

Since Jv ⊂ Jv and H1(Jv) <∞, the disjoint closed segments Li ⊂ Ω′ satisfy

H1(Jv) = H1(Jv) =

N∑
i=1

H1(Li).

Then according to [23, Appendix A], since θ0 is smaller than or equal to Θ0 := 45◦ − arctan(1/2),
for all ε > 0 there exists an admissible triangulation Tε ∈ Tε(R2, ω, θ0) such that, setting T′ε :=
{T ∈ Tε : T ∩

⋃
i Li 6= ∅},

• The vertices of Tε are never situated on any Li :

for all i ∈ {1, . . . , N}, Li ∩Vertices(Tε) = ∅,

• Using [23, Formula (4.9)], ∑
T∈T′ε

L2(T )

ε
→ sin θ0H1(Jv). (3.41)

We define the set Dε :=
⋃
T∈T′ε

T and χε := 1Dε ∈ L∞(R2; {0, 1}), while vε is the Lagrange

interpolation of the values of v at the vertices of the triangulation Tε. Note that, if x1, x2 and
x3 are the vertices of T ∈ Tε, the values v(xi) are well defined since, by construction of the
triangulation Tε, the points x1, x2 and x3 do not belong to

⋃
i Li. In particular, vε ∈ Vε(Ω′, ω, θ0)

and 
χε → 0 strongly in L1(Ω′),

vε → v strongly in L2(Ω′;R2),

e(vε)1Ω′\Dε → e(v) strongly in L2(Ω′;M2×2
sym).

(3.42)

Indeed, the first convergence is a consequence of (3.41) since

‖χε‖L1(Ω′) ≤ L2(Dε) =
∑
T∈T′ε

L2(T )→ 0.

Next, noticing that every T ∈ Tε \ T′ε is contained in R2 \
⋃
i Li and v ∈ W 2,∞(R2 \

⋃
i Li;R2),

we infer that for all ε > 0 and T ∈ Tε \T′ε,

‖vε − v‖H1(T ;R2) ≤ Cε‖D2v‖L2(T ), (3.43)

for some constant C = C(θ0) > 0 depending only on θ0 (see e.g. [25, Theorem 3.1.5]). On the one
hand, since ‖vε‖L∞(T ;R2) ≤ ‖v‖L∞(T ;R2) for all T ∈ Tε, we get that

‖vε − v‖2L2(Ω′;R2) ≤ 2‖v‖2L∞(R2;R2)

∑
T∈T′ε

L2(T ) +
∑

T∈Tε\T′ε, T∩Ω′ 6=∅

∫
T

|vε − v|2 dx.
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Then, using (3.43) yields

‖vε − v‖2L2(Ω′;R2) ≤ 2‖v‖2L∞(R2;R2)L
2(Dε) + C2ε2

∑
T∈Tε\T′ε, T∩Ω′ 6=∅

‖D2v‖2L2(T )

≤ 2‖v‖2L∞(R2;R2)L
2(Dε) + C2ε2‖D2v‖2L2(R2\

⋃
i Li)
→ 0,

leading to the second convergence in (3.42). Note in particular that vε converges in measure to v
in Ω′. On the other hand, writing

‖e(vε)1Ω′\Dε − e(v)‖2
L2(Ω′;M2×2

sym)
=

∫
Ω′∩Dε

|e(v)|2 dx+

∫
Ω′\Dε

|e(vε)− e(v)|2 dx,

and using that L2(Dε) → 0, that ∇v ∈ L2(R2;M2×2) (because v ∈ SBV 2(R2;R2)) as well as
(3.43), we get that

‖e(vε)1Ω′\Dε − e(v)‖2
L2(Ω′;M2×2

sym)
≤
∫

Ω′∩Dε
|e(v)|2 dx+ C2ε2‖D2v‖2L2(R2\

⋃
i Li)
→ 0,

which implies the third convergence in (3.42).

We next show that

F ′′(v|Ω) ≤
∫

Ω

Ae(v) : e(v) dx+ κ sin θ0

(
H1(Jv ∩ Ω) +H1(Jv \ Ωδ)

)
. (3.44)

Indeed, as f ≤ κ thanks to the growth properties (1.4), we get∫
Ω′

1

ε
f (εAe(vε) : e(vε)) dx ≤

∑
T∈Tε\T′ε, T∩Ω′ 6=∅

L2(T∩Ω′)
1

ε
f
(
εAe(vε)|T : e(vε)|T

)
+
κ

ε

∑
T∈T′ε

L2(T ).

On the one hand, (3.41) implies that

κ

ε

∑
T∈T′ε

L2(T )→ κ sin θ0H1(Jv). (3.45)

On the other hand, since every triangle T ∈ Tε \T′ε is contained in R2 \
⋃N
i=1 Li, then∣∣∣∣∇vε|T xi − xj

|xi − xj |

∣∣∣∣ =
|v(xi)− v(xj)|
|xi − xj |

≤ ‖∇v‖L∞(R2\
⋃
i Li;M2×2),

where x1, x2 and x3 are the vertices of T . Hence, applying [23, Remark 3.5], it results that

‖e(vε)‖L∞(R2\Dε;M2×2
sym) ≤

√
5

sin θ0
‖∇v‖L∞(R2\

⋃
i Li;M2×2) =: K <∞. (3.46)

Therefore, setting

δε := sup
0<t<εβK2

f(t)

t
,

we deduce, using f(0) = 0 and the property (1.5) of A, that

1

ε
f (εAe(vε) : e(vε)(1− χε)) ≤ δεAe(vε) : e(vε)(1− χε) in Ω′
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From the properties (1.4) of f , we infer that δε → 1 as ε→ 0. Hence, using the third convergence
in (3.42), it ensures that∑
T∈Tε\T′ε, T∩Ω′ 6=∅

L2(T ∩ Ω′)
1

ε
f
(
εAe(vε)|T : e(vε)|T

)
=

∫
Ω′

1

ε
f (εAe(vε) : e(vε)(1− χε)) dx

≤ δε

∫
Ω′

Ae(vε) : e(vε)1Ω′\Dε dx

→
∫

Ω′
Ae(v) : e(v) dx. (3.47)

Gathering (3.45) and (3.47), we obtain that

lim sup
ε→0+

∫
Ω′

1

ε
f (εAe(vε) : e(vε)) dx ≤

∫
Ω′

Ae(v) : e(v) dx+ κ sin θ0H1(Jv). (3.48)

Besides, after decomposing the above integral over Ω′ \ Ω and Ω, we can apply the lower bound
estimate of Propostion 3.3 to the open bounded set with Lipschitz boundary Ω′ \ Ω (for which
Tε is also an admissible triangulation, vε|Ω′\Ω ∈ Vε(Ω′ \ Ω) and vε converges in measure to v in

Ω′ \ Ω), which leads to

lim sup
ε→0+

∫
Ω′

1

ε
f(εAe(vε) : e(vε)) dx

≥ lim sup
ε→0

∫
Ω

1

ε
f(εAe(vε) : e(vε)) dx+ lim inf

ε→0

∫
Ω′\Ω

1

ε
f(εAe(vε) : e(vε)) dx

≥ F ′′(v|Ω) +

∫
Ω′\Ω

Ae(v) : e(v) dx+ κ sin θ0H1(Jv ∩ Ω′ \ Ω).

Gathering (3.48) and (3.40), as by construction v|Ω = v|Ω, we deduce that

F ′′(v|Ω) ≤
∫

Ω

Ae(v) : e(v) dx+ κ sin θ0H1(Jv \ Jv) + κ sin θ0H1(Jv ∩ Ω)

≤
∫

Ω

Ae(v) : e(v) dx+ κ sin θ0H1(Jv \ Ωδ) + κ sin θ0H1(Jv ∩ Ω),

which settles (3.44). Passing to the limit as δ ↘ 0+ thanks to the monotone convergence Theorem,
we obtain that H1(Jv \ Ωδ)→ H1(Jv \ Ω′) = 0, hence

F ′′(v|Ω) ≤
∫

Ω

Ae(v) : e(v) dx+ κ sin θ0H1(Jv ∩ Ω),

which completes the proof of Lemma 3.12. �

4. Convergence of minimizers

In order to investigate the approximation of minimizers for the Griffith energy, it is natural to
impose boundary conditions to avoid trivial minimizers such as rigid displacements. This section
is devoted to an approximation of the Griffith functional under a Dirichlet boundary condition by
means of brittle damage energies.

4.1. Griffith energy with Dirichlet boundary condition. In order to formulate a Dirichlet
boundary condition, we need to consider a larger bounded Lipschitz open set Ω′ such that Ω ⊂ Ω′.
Let w ∈W 2,∞(R2;R2) be a prescribed boundary displacement. Given an admissible triangulation
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Tε ∈ Tε(Ω′) of Ω′, we define wTε as the piecewise affine Lagrange interpolation of w on Tε. Note
that by standard finite element estimates (see [25, Theorem 3.1.5]),

wTε ∈ Vε(Ω′), wTε → w strongly in H1(Ω′;R2) and sup
ε>0
Fε(wTε) < +∞. (4.1)

We define V Dir
ε (Ω′) to be the set of all continuous functions u : Ω′ → R2 for which there exists a

triangulation Tε ∈ Tε(Ω′) so that u is affine on each triangle T ∈ Tε and u = wTε on each triangle
T ∈ Tε such that T ∩ (Ω′ \ Ω) 6= ∅. We consider the following discrete functionals

Gε : u ∈ L0(Ω′;R2) 7→


1

ε

∫
Ω

f
(
εAe(u) : e(u)

)
dx if u ∈ V Dir

ε (Ω′),

+∞ otherwise.

The Griffith energy with Dirichlet boundary condition w is defined, for u ∈ L0(Ω′;R2), by

G(u) :=


∫

Ω

Ae(u) : e(u) dx

+κ sin θ0

[
H1(Ju ∩ Ω) +H1(∂Ω ∩ {u 6= w})

] if

{
u ∈ GSBD2(Ω′),

u = w L2-a.e. in Ω′ \ Ω,

+∞ otherwise.

Note that the additional boundary term accounts for possible jumps at the boundary, where the
boundary condition fails to be satisfied. In the previous expression and in the sequel, we still
denote by u the trace of u|Ω ∈ GSBD2(Ω) on ∂Ω (see [29, Theorem 5.5]).

We will first prove the following result, generalizing Theorem 1.3 to the case of Dirichlet bound-
ary conditions.

Theorem 4.1 (Γ-convergence under Dirichlet boundary conditions). The family {Gε}ε>0

Γ-converges, with respect to the L0(Ω′;R2)-topology, to the Griffith functional G.

Next, we will show a compactness result for sequences of dispacements uε with uniformly
bounded energy, with respect to the L0(Ω′;R2)-topology of convergence in measure, under the
simplifying assumption that f : [0,+∞)→ [0,+∞) reduces to

f(t) = κ ∧ t

for t ∈ R+. Considering eventually a sequence of minimizers of Gε (see Lemma 4.13), we will
show that, up to a subsequence and up to subtracting a sequence of piecewise rigid body motions,
it converges in measure in Ω′ to a minimizer of G and the minimal value of Gε converges to the
minimal value of G. In other words, we obtain the fundamental theorem of Γ-convergence in our
specific context.

Corollary 4.2 (Convergence of minimizers). Assume further that Ω and Ω′ are connected.
For each ε > 0 small, let uε ∈ V Dir

ε (Ω′) be a minimizer of Gε. Then, there exist a subsequence
(not relabeled), a sequence of piecewise rigid body motions {rε}ε>0 and a function u ∈ GSBD2(Ω′)
with u = w L2-a.e. in Ω′ \ Ω, such that uε − rε → u in measure in Ω, Gε(uε) → G(u) and u is a
minimizer of G.

Remark 4.3. Let us clarify that the improved lower bound (4.6) in Proposition 4.5 is crucial only
for the compactness and convergence of minimizing sequences, to ensure that after the removal of
piecewise rigid body motions, minimizers of the approximating functionals converge to a minimizer
of the Griffith functional and their energies converge as well. Instead, the Γ-convergence result
under Dirichlet boundary conditions directly follows from Theorem 1.3 and Proposition 3.1. Indeed,
the proof of the lower bound in Theorem 4.1 is the consequence of the lower bound in Theorem
1.3 applied in Ω′ together with the identification of the volume terms in Ω′ \ Ω.
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4.2. Γ-limit under Dirichlet boundary conditions. Let us introduce the Γ-lower and upper
limits G′ and G′′ defined, for all u ∈ L0(Ω′;R2), by

G′(u) := inf
{

lim inf
ε→0

Gε(uε) : uε → u in measure in Ω′
}
,

and

G′′(u) := inf

{
lim sup
ε→0

Gε(uε) : uε → u in measure in Ω′
}
.

Proof of Theorem 4.1. Lower bound. Let u ∈ L0(Ω′;R2). Without loss of generality, we can
assume that G′(u) < +∞. For any ζ > 0, there exists a sequence {uε}ε>0 such that uε → u in
measure in Ω′ and

lim inf
ε→0

Gε(uε) ≤ G′(u) + ζ < +∞.

Let us extract a subsequence {uk}k∈N := {uεk}k∈N such that uk → u L2-a.e. in Ω′ and

lim
k→∞

Gεk(uk) = lim inf
ε→0

Gε(uε) < +∞.

This implies that, for k large enough, uk ∈ V Dir
εk

(Ω′) and supk Gεk(uk) < +∞. Especially, we get
that uk ∈ Vεk(Ω′). Hence, according to Proposition 3.1 and Theorem 1.3 applied in Ω′, we infer
that

u ∈ GSBD2(Ω′)

and

lim inf
k→∞

∫
Ω′

1

εk
f
(
εkAe(uk) : e(uk)

)
dx ≥

∫
Ω′

Ae(u) : e(u) dx+ κ sin θ0H1(Ju).

Setting wk := wTεk
and using (4.1) together with the convergence in measure of uk = wk to u

in Ω′ \ Ω, we get that u = w L2-a.e. in Ω′ \ Ω. Setting now δk := sup
{
f(t)/t : 0 < t < εkβK

2
}

where

K =

√
5

sin θ0
‖∇w‖L∞(R2;R2) <∞,

one can check that δk converges to 1 as k →∞ according to (1.4) and∫
Ω′

1

εk
f
(
εkAe(uk) : e(uk)

)
dx ≤ Gεk(uk) +

∫
Ω′\Ω

δk Ae(wk) : e(wk) dx.

Hence, the Dominated Convergence Theorem ensures that

ζ + G′(u) +

∫
Ω′\Ω

Ae(w) : e(w) dx ≥
∫

Ω′
Ae(u) : e(u) dx+ κ sin θ0H1(Ju).

Recalling that Ju ∩ ∂Ω = {u 6= w} ∩ ∂Ω and Ju ∩ (Ω′ \ Ω) = Jw ∩ (Ω′ \ Ω) = ∅, it entails that
ζ + G′(u) ≥ G(u), and the conclusion follows letting ζ ↘ 0.

Upper bound. Let u ∈ L0(Ω′;R2). We can assume that G(u) < +∞ so that u ∈ GSBD2(Ω′)
and u = w L2-a.e. in Ω′\Ω. According to the density results for GSBD functions (see [20, Theorem
1.1] and [20, Formula (5.11)]), there exists a sequence of functions un ∈ SBV 2(Ω;R2)∩L∞(Ω;R2)
such that 

un → u in measure in Ω,

un = w in an open bounded neighborhood of ∂Ω,

lim supn G(un) ≤ G(u).

(4.2)

Extending (continuously) un by w on Ω′ \ Ω, we get that un → u in measure in Ω′. The proof is
thus complete once we know that G′′(un) ≤ G(un), for all n ∈ N, as it would imply G′′(u) ≤ G(u),
using the lower semicontinuity of G′′ in L0(Ω′;R2) with respect to the convergence in measure
together with the last point of (4.2).
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Therefore, we can assume without loss of generality that u ∈ SBV 2(Ω′;R2) ∩ L∞(Ω′;R2) and
u = w on V ∪(Ω′\Ω) with V an open bounded neighborhood of ∂Ω. Next according to Proposition
5.1 (see Appendix) there exist a sequence {uk}k∈N in SBV 2(Ω;R2) ∩ L∞(Ω;R2) as well as Nk
disjoint closed segments Lk1 , . . . , L

k
Nk
⊂ Ω satisfying :

Juk =

Nk⋃
i=1

Lki , H1(Juk \ Juk) = 0, uk ∈W 2,∞(Ω \ Juk ;R2),


uk = w in an open neighborhood of ∂Ω,

uk → u strongly in L1(Ω;R2),

∇uk → ∇u strongly in L2(Ω;M2×2),

lim supk→∞H1(Juk) ≤ H1(Ju).

(4.3)

Thus, extending continuously uk to Ω′ by setting uk = w on Ω′ \ Ω and using again the lower
semicontinuity of G′′ in L0(Ω′;R2) with respect to the convergence in measure together with the
convergences in (4.3), we are back to establishing that G′′(uk) ≤ G(uk) as the conclusion follows
letting k → +∞. Arguing almost word for word as in the proof of Lemma 3.12, we show the
following Lemma 4.4, which leads to the desired inequality. �

Lemma 4.4. Let v ∈ SBV 2(Ω′;R2) ∩ L∞(Ω′;R2) and W be a bounded open neighborhood of ∂Ω
be such that v = w on W ∪ (Ω′ \ Ω) and

Ω \W ⊃ Jv =

N⋃
i=1

Li, H1(Jv \ Jv) = 0, v ∈W 2,∞(Ω′ \ Jv;R2),

for some pairwise disjoint closed segments L1, . . . , LN ⊂ Ω \W . Then,

G′′(v) ≤
∫

Ω

Ae(v) : e(v) dx+ κ sin θ0H1(Jv) = G(v).

We do not detail the proof of Lemma 4.4. We only stress that, following Lemma 3.12, for
ε > 0 small enough, if Tε is the admissible triangulation given by [23, Appendix A] and vε is the
Lagrange interpolation of the values of v at the vertices of Tε, each triangle T ∈ Tε such that
T ∩ (Ω′ \Ω) 6= ∅ is contained in W ∪R2 \Ω, so that vε = wTε on T . In particular, it ensures that
vε ∈ V Dir

ε (Ω′).

4.3. Compactness for sequences with uniformly bounded energy and convergence of
minimizers. In this paragraph, the density f reduces to f(t) = κ∧ t for t ∈ R, so that the energy
Gε corresponds to

Gε(u) =

∫
Ω

κ

ε
∧Ae(u) : e(u) dx for u ∈ V Dir

ε (Ω′).

The reason of this simplifying assumption on f comes from the difficulty to obtain compactness
for sequences with uniformly bounded energies and from the difficulty to prove the existence of
minimizers, as it will be detailed below. This is however a meaningful case since it corresponds to
a brittle damage type energy from the mechanical point of view.‘

The following result shows a compactness and lower bound estimate for any sequence with
uniformly bounded energy.

Proposition 4.5. Let {εk}k∈N satisfying εk → 0 and let {uk}k∈N ⊂ L0(Ω′;R2) be such that
M := supk Gεk(uk) < ∞. Then there exist a subsequence (not relabeled), a Caccioppoli partition
P =

{
Pj
}
j∈N of Ω′, a sequence of piecewise rigid motions {rk}k∈N with

rk :=
∑
j∈N

rjk 1Pj ,
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and a function u ∈ GSBD2(Ω′) such that u = w L2-a.e. in Ω′ \ Ω,

|rik(x)− rjk(x)| → +∞ for L2-a.e. x ∈ Ω′, for all i 6= j, (4.4)

uk − rk → u in measure in Ω′, (4.5)

and

lim inf
k→∞

∫
Ω

κ

εk
∧Ae(uk) : e(uk) dx ≥

∫
Ω

Ae(u) : e(u) dx+ κ sin θ0H1(Ju ∪ ∂∗P). (4.6)

Remark 4.6. The lower bound inequality (4.6) strongly relies on the simplifying assumption

f(t) = κ ∧ t for t ∈ R.

Indeed, when working with a more general density f : [0,+∞) → [0,+∞) satisfying (1.4), the
main issue arises when one needs to fix some δ > 0 to use (3.1), in order to exhibit an extraction,
a Caccioppoli partition, rigid motions and a limit displacement which satisfy (4.4) and (4.5). As
all of them depend on δ > 0, it becomes difficult to derive the lower bound, even for the Lebesgue
part (4.9) below, since one simultaneously needs δ to be fixed (so that P, {rk}k∈N and u are well
defined) and to converge to 0 (in order to recover (4.9) as in the proof of Proposition 3.4).

Proof. By definition of V Dir
εk

(Ω′), there exists an admissible triangulation Tk ∈ Tεk(Ω′) such that

uk is affine on each triangle T ∈ Tk and uk = wTk on each triangle T ∈ Tk intersecting Ω′ \ Ω.
We introduce the characteristic functions

χk := 1{Ae(uk):e(uk)≥ κ
εk
} ∈ L∞(Ω′; {0, 1})

which are constant on each triangle T ∈ Tk. Since uk = wTk on each triangle T ∈ Tk intersecting
Ω′ \ Ω and w ∈W 2,∞(R2;R2), we deduce that, for k large enough, χk = 0 in Ω′ \ Ω. Thus

Dk := {χk = 1} =

Nk⋃
i=1

T ki ⊂ Ω

for some triangles T ki ∈ Tk, and L2(Dk) =
∫

Ω
χk dx→ 0.

Let vk := (1 − χk)uk ∈ SBV 2(Ω′;R2) with ∇vk = (1 − χk)∇uk and Jvk ⊂
⋃Nk
i=1 ∂T

k
i ⊂ Ω.

Arguing as in the proof of Proposition 3.1, we infer that

sup
k∈N

{∫
Ω′
|e(vk)|2 dx+H1(Jvk)

}
<∞.

In view of the GSBD2-compactness Theorem ([21, Theorem 1.1]), there exist a subsequence (not
relabeled), a Caccioppoli partition P =

{
Pj
}
j∈N of Ω′, a sequence of piecewise rigid motions

{r̃k}k∈N with

r̃k :=
∑
j∈N

r̃jk 1Pj ,

and a function ũ ∈ GSBD2(Ω′) such that
|r̃ik(x)− r̃jk(x)| → +∞ for L2-a.e. x ∈ Ω′, for all i 6= j,

vk − r̃k → ũ in measure in Ω′,

e(vk) ⇀ e(ũ) weakly in L2(Ω′;M2×2
sym).

Since L2(Dk)→ 0, we deduce that uk − r̃k → ũ in measure in Ω′.

For all j ∈ N such that L2(Pj ∩Ω′ \Ω) > 0, the convergence in measure of uk− r̃jk to ũ together

with the convergence in measure of uk to w in Pj ∩Ω′ \Ω =: Vj ensure that r̃jk → w− ũ in measure
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in Vj . Since the space of rigid body motions is a closed finite dimensional subspace of L0(Ω′;R2),

we can find a rigid body motion rj such that rj|Vj = w − ũ L2-a.e. in Vj . Therefore, with

r :=
∑

j∈N,L2(Pj∩Ω′\Ω)>0

rj 1Pj ,

the piecewise rigid body motion rk := r̃k − r and the function u = ũ + r ∈ GSBD2(Ω′) are such
that 

uk − rk → u in measure in Ω′,

u = w L2-a.e. in Ω′ \ Ω,

e(vk) ⇀ e(u) weakly in L2(Ω′;M2×2
sym).

(4.7)

We are now back to prove (4.6). As in the proof of Proposition 3.3, we define the following
Radon measures on Ω′

λk :=
κ

εk
∧Ae(uk) : e(uk)L2 Ω′ ∈M(Ω′).

Using (4.1) and the energy bound assumption on uk, we obtain that the sequence {λk}k∈N is

uniformly bounded inM(Ω′). Thus, up to a subsequence (not relabeled), we have λk
∗
⇀ λ weakly*

inM(Ω′) for some nonnegative measure λ ∈M(Ω′). Thanks to the lower semicontinuity of weak*
convergence in M(Ω′) along open sets, we have that

lim inf
k→∞

∫
Ω′

κ

εk
∧Ae(uk) : e(uk) dx = lim inf

k→∞
λk(Ω′) ≥ λ(Ω′). (4.8)

Recalling that P(1) ∪ ∂∗P contains H1-almost all of Ω′, and using that the measures L2 Ω′,
H1 (P(1) ∩ Ju) and H1 ∂∗P are mutually singular, it is enough to show that

dλ

dL2 Ω′
≥ Ae(u) : e(u) L2-a.e. in Ω′, (4.9)

dλ

dH1 (P(1) ∩ Ju)
≥ κ sin θ0 H1-a.e. in P(1) ∩ Ju, (4.10)

and
dλ

dH1 ∂∗P
≥ κ sin θ0 H1-a.e. in ∂∗P. (4.11)

Indeed, once (4.9), (4.10) and (4.11) are satisfied, it follows from the Radon-Nikodým decomposi-
tion and the Besicovitch differentiation Theorems that

λ =
dλ

dL2 Ω′
L2 Ω′ +

dλ

dH1 (P(1) ∩ Ju)
H1 (P(1) ∩ Ju) +

dλ

dH1 ∂∗P
H1 ∂∗P + λs,

for some nonnegative measure λs which is singular with respect to L2 Ω′, H1 (P(1) ∩ Ju) and
H1 ∂∗P. Thus, after integration over Ω′ and recalling (4.8), we would get that

lim inf
k→∞

∫
Ω′

κ

εk
∧Ae(uk) : e(uk) dx ≥

∫
Ω′

Ae(u) : e(u) dx+ κ sin θ0H1
(
(Ju ∩ P(1)) ∪ ∂∗P

)
.

On the one hand, the convergence in H1(Ω′;R2) of wTk to w (see (4.1)) ensures that

lim inf
k→∞

∫
Ω′

κ

εk
∧Ae(uk) : e(uk) dx ≤ lim sup

k→∞

∫
Ω′\Ω

Ae(wTk) : e(wTk) dx+ lim inf
k→∞

Gεk(uk)

≤
∫

Ω′\Ω
Ae(w) : e(w) dx+ lim inf

k→∞
Gεk(uk). (4.12)
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On the other hand, using that u = w in Ω′ \Ω and that P(1) ∪ ∂∗P covers H1 almost every Ω′, we
obtain that∫

Ω′
Ae(u) : e(u) dx+ κ sin θ0H1

(
(Ju ∩ P(1)) ∪ ∂∗P

)
=

∫
Ω′\Ω

Ae(w) : e(w) dx+

∫
Ω

Ae(u) : e(u) dx+ κ sin θ0H1(Ju ∪ ∂∗P). (4.13)

Gathering (4.12) and (4.13) leads to (4.6), which completes the proof of Proposition 4.5. �

Using the last convergence in (4.7), we easily get inequality (4.9) arguing in an identical manner
than in the proof of Proposition 3.4. We do not reproduce the argument. The rest of this section
is devoted to the establishment of (4.10) and (4.11). We start with the lower bound inequality for
the jump part of the energy in the measure theoretic interior of P.

Proposition 4.7 (Lower bound for the jump part in P(1)). For H1-a.e. x0 ∈ P(1) ∩ Ju,

dλ

dH1 (P(1) ∩ Ju)
(x0) ≥ κ sin θ0.

Proof. The proof is very similar to that of Proposition 3.5. We just sketch it, underlying the main
differences.

Let x0 ∈ P(1) ∩ Ju be such that

dλ

dH1 (P(1) ∩ Ju)
(x0) = lim

%↘0

λ
(
B%(x0)

)
H1
(
P(1) ∩ Ju ∩B%(x0)

)
exists and is finite, and

lim
%↘0

H1(P(1) ∩ Ju ∩B%(x0))

2%
= 1.

According to the Besicovitch differentiation Theorem and the countably (H1, 1)-rectifiability of
P(1) ∩ Ju, it follows that H1-almost every point x0 in P(1) ∩ Ju fulfills these conditions.

By definition of the jump set Ju, there exist ν := νu(x0) ∈ S1 and u±(x0) ∈ R2 with u+(x0) 6=
u−(x0) such that the function

ux0,% := u(x0 + % ·)

converges in measure in B := B1(0) to the jump function

u : y ∈ B 7→

{
u+(x0) if y · ν > 0,

u−(x0) if y · ν < 0,

as %↘ 0. As before, we consider a sequence of radii {%j}j∈N such that %j ↘ 0 and λ(∂B%j (x0)) =

0 = H1(P(1)∩Ju∩∂B%j (x0)) for all j ∈ N. Arguing as in Proposition 3.5, there exists an increasing
sequence {kj}j∈N such that kj ↗∞ as j →∞ and

(
ukj − rkj

)
(x0 + %j ·)→ u in measure in B,

λkj (B%j (x0))

2%j
→ dλ

dH1 (P(1) ∩ Ju)
(x0),

εkj/%j → 0, ω(εkj )/%j → 0.
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By definition of P(1), there exists i0 ∈ N such that x0 ∈ Pi0
(1). We thus infer that the function

vj :=
(
ukj − r

i0
kj

)
(x0 + %j ·) ∈ H1(B;R2) converges in measure to u in B. Indeed, for all η > 0,

L2
(
B ∩ {|vj − u| > η}

)
≤ L2

(
B ∩ {|

(
ukj − rkj

)
(x0 + %j ·)− u| > η}

)
+ L2

(
B \

(
Pi0 − x0

%j

))
→ 0,

where we used that x0 is a point of density 1 for Pi0 . We are now back to an analogous situation
than (3.11), since vj is continuous on B and piecewise affine on each triangle T ∈

(
Tkj − x0

)
/%j .

Therefore, from here the conclusion of Proposition 4.7 results from the proof of Proposition 3.5. �

We next pass to the lower bound inequality for the energy on the reduced boundary of P, which
presents some non trivial adaptations of the proof of Proposition 3.5.

Proposition 4.8 (Lower bound on the reduced boundary ∂∗P). For H1-a.e. x0 ∈ ∂∗P,

dλ

dH1 ∂∗P
(x0) ≥ κ sin θ0.

The rest of this subsection is devoted to prove Proposition 4.8, with essentially the same structure
than the proof of Proposition 3.5.

Blow-up. Let x0 ∈ ∂∗P be such that

x0 ∈ ∂∗Pi0 ∩ ∂∗Pj0 for some i0 6= j0,

ν := νPi0 (x0) = −νPj0 (x0) where νPk(x0) := lim
%↘0

D1Pk
(
B%(x0)

)
|D1Pk |

(
B%(x0)

) for k ∈ {i0, j0},

dλ

dH1 ∂∗P
(x0) = lim

%↘0

λ
(
B%(x0)

)
H1
(
∂∗P ∩B%(x0)

)
exists and is finite,

lim
%↘0

H1(∂∗P ∩B%(x0))

2%
= 1,

and there exist traces u±(x0) ∈ R2 such that the function

ux0,% := u(x0 + % ·)
converges in measure in B := B1(0) to

y ∈ B 7→ u(y) :=

{
u+(x0) if y · ν > 0,

u−(x0) if y · ν < 0,
as %↘ 0.

The previous properties turn out to be satisfied for H1-a.e. x0 ∈ ∂∗P. This is a consequence of the
countably (H1, 1)-rectifiability of that set, the Besicovitch differentiation Theorem, the fact that
P(1)∪

⋃
i 6=j(∂

∗Pi∩∂∗Pj) covers H1 almost all of Ω′ ([3, Theorem 4.17]), and the existence of traces

on (H1, 1)-rectifiable sets (see [29, Theorem 5.2] in the case of 1-dimensional C1 submanifolds
which may be extended to countably (H1, 1)-rectifiable sets arguing as in [5, Proposition 4.1]).

To simplify notation, let us denote by P+ := Pi0 and P− := Pj0 . According to De Giorgi’s
Theorem (see [3, Theorem 3.59]) we infer that

1P±−x0
%

→ 1H± strongly in L1(B) as %↘ 0, (4.14)

where H± ⊂ R2 denote the halfspaces orthogonal to ν and containing ±ν. With these notation,
we have that

u = u+(x0)1H+∩B + u−(x0)1H−∩B .
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Note also that contrary to Proposition 3.5 where jump points were considered, it might be the case
that u+(x0) = u−(x0), i.e. that u is constant.

Extraction of diagonal subsequences. As before, we consider a sequence of radii {%j}j∈N
such that %j ↘ 0 and λ(∂B%j (x0)) = 0 = H1

(
∂∗P ∩ ∂B%j (x0)

)
for all j ∈ N. By our choice of x0,

(4.4) and (4.5), with r±k := rk|P± , we have :

lim
j→∞

lim
k→∞

(
uk − rk

)
(x0 + %j ·) = lim

j→∞
ux0,%j = u in measure in B,

lim
j→∞

lim
k→∞

arctan|r+
k − r

−
k |(x0 + %j ·) =

π

2
in measure in B,

lim
j→∞

lim
k→∞

λk(B%j (x0))

2%j
= lim
j→∞

λ(B%j (x0))

2%j
=

dλ

dH1 ∂∗P
(x0),

lim
j→∞

lim
k→∞

εk
%j

= lim
j→∞

lim
k→∞

ω(εk)

%j
= 0.

We can thus find an increasing sequence {kj}j∈N such that kj ↗∞ as j →∞ and

(
ukj − rkj

)
(x0 + %j ·)→ u in measure in B,

arctan|r+
kj
− r−kj |(x0 + %j ·)→

π

2
in measure in B,

λkj (B%j (x0))

2%j
→ dλ

dH1 ∂∗P
(x0),

εkj
%j
→ 0,

ω(εkj )

%j
→ 0.

(4.15a)

(4.15b)

(4.15c)

(4.15d)

Let vj := ukj (x0 +%j ·), r±j := r±kj (x0 +%j ·) and rj := r+
j 1H+∩B +r−j 1H−∩B . By (4.14) and (4.15),

we have for all η > 0,

L2
(
{|vj − r±j − u

±(x0)| > η} ∩B ∩H±
)

≤ L2
(
B ∩H± \ (P± − x0)/%j

)
+ L2

(
{|vj − rkj (x0 + %j ·)− u| > η} ∩B

)
→ 0.

Thus, up to a subsequence{
vj − r±j → u±(x0) in measure in B ∩H±,
|r+
j − r

−
j | → +∞ L2-a.e. in B.

(4.16)

Selection of a slicing direction. According to [21, Lemma 2.8], there exist an H1-negligible
set N ⊂ Bν and a countable dense subset D of S1 such that for all ξ ∈ D and all y ∈ Bν \N ,

|(r+
j − r

−
j )(y) · ξ| → +∞

as j → +∞. Note that ∇r±j ξ · ξ = 0, so that the quantity t 7→ (r+
j − r

−
j )ξy(t) = (r+

j − r
−
j )(y) · ξ is

independent of t ∈ Bξy. Thus, for all y ∈ Bν \N , we have

arctan|(r+
j − r

−
j )ξy| →

π

2
uniformly in t ∈ Bξy. (4.17)

For any η > 0, let ξ ∈ S1 ∩D be such that

|ν − ξ| ≤ η, ν · ξ ≥ 1

2
,
∣∣ν · ξ⊥∣∣ ≤ η. (4.18)

As in the proof of Proposition 3.5, using a change of variables and the ellipticity property (1.5)
of A and (4.15d), we get

2
dλ

dH1 ∂∗P
(x0) ≥ lim sup

j→∞
%j

∫
B

κ

εkj
∧ α

%2
j

|e(vj)ξ · ξ|2 dy
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so that, introducing the following characteristic functions,

χj := 1{
α

%2
j

|e(vj)ξ·ξ|2≥ κ
εkj

} ∈ L∞(B; {0, 1}),

we obtain that

2
dλ

dH1 ∂∗P
(x0) ≥ lim sup

j→∞

{
α

%j

∫
B

(1− χj)|e(vj)ξ · ξ|2 dy +
κ%j
εkj

∫
B

χj dy

}
. (4.19)

We define the translated and rescaled triangulations:

Tx0,j :=
1

%j

(
Tkj − x0

)
, Tx0,j

b :=

{
T ∈ Tx0,j :

α

%j
|e(vj)|T ξ · ξ|2 ≥

κ%j
εkj

}
,

and the family of triangles which intersect B1− η4 :

Tx0,j
b,int :=

{
T ∈ Tx0,j

b : T ∩B1− η4 6= ∅
}
.

Note that vj − r±j is affine and χj is constant on each T ∈ Tx0,j , and that (4.15d) ensures that

for j ∈ N large enough (depending on η), each T ∈ Tx0,j
b,int is contained in B. As in (3.18), for all

y ∈ (B1− η4 )ν , we denote by a(y) and b(y) the end points of the section passing through y in the

direction ξ (see the Figure 2) in such a way that (B1− η4 )ξy = (a(y), b(y)). We also recall that Lη is

defined as in (3.19) and satisfies 0 < Lη ≤ |a(y)|, |b(y)| ≤ 2.

Using (4.16), (4.17), (4.19), Fubini’s and Egoroff’s Theorem, we can adapt the proof of Lemma
3.6 to show the following result.

Lemma 4.9. For all η > 0, there exist a subset Z ⊂ Bν containing N with H1(Z) ≤ η, and
a subsequence (not relabeled) such that the following property holds : for all γ > 0, there exists
j0 = j0(γ) ∈ N such that for all y ∈ Bν \ Z and all j ≥ j0,∫

Bξy

(χj)
ξ
y dt ≤ γ,

∫
Bξy

(
1− (χj)

ξ
y

)
|((vj)ξy)′|2 dt ≤ γ2,

and ∫
Bξy∩R±

1 ∧ |(vj − r±j )ξy − u±(x0) · ξ| dt ≤ γ

2
, |(r+

j − r
−
j )ξy| ≥ |[u](x0) · ξ|+ 1.

As in the proof of Proposition 3.5, we next show that, for some subset Z ′ ⊂ (B1− η2 )ν of arbitrarily

small H1 measure, and along a subsequence (only depending on η), all the sections in the direction

ξ passing through (B1− η2 )ν \ Z ′ must cross at least one triangle T ∈ Tx0,j
b,int contained in B.

Lemma 4.10. For all η > 0, there exist a subset Z ′ ⊂ Bν containing Z with H1(Z ′) ≤ η, and a
subsequence (not relabeled) such that the following property holds : for all y ∈ (B1− η2 )ν \ Z ′ and

all j ∈ N, there exists a triangle T = T (y, j) ∈ Tx0,j
b,int such that (T̊ ∩B)ξy 6= ∅.

Proof. Let Z be the exceptional set given by Lemma 4.9. We first show that there exists an
increasing mapping φ : N → N such that : for all y ∈ (B1− η2 )ν \ Z and all j ∈ N, there exists a

triangle T = T (y, φ(j)) ∈ T
x0,φ(j)
b,int such that (T ∩ B)ξy 6= ∅. Suppose by contradiction that such is

not the case, and define

γ∗1 := Lη > 0, γ∗2 :=
Lη

1 + 2Lη
> 0 and γ∗ = γ∗(η) :=

γ∗1 ∧ γ∗2
4

> 0.
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Thanks to Lemma 4.9, there exists j∗ = j∗(γ∗) ∈ N such that for all y ∈ Bν \ Z and all j ≥ j∗,∣∣(r+
j − r

−
j )ξy
∣∣ ≥ |[u](x0) · ξ|+ 1 and∫

Bξy

(1− (χj)
ξ
y)|((vj)ξy)′|2 dt ≤ γ∗2,

∫
Bξy∩R±

1 ∧ |(vj − r±j )ξy − u±(x0) · ξ| dt ≤ γ∗

2
.

As in Lemma 3.7, we consider the extraction φ : j ∈ N 7−→ j + j∗ ∈ N. By assumption, there

exist y ∈ (B1− η2 )ν \ Z and j ∈ N such that (T ∩B)
ξ
y = ∅ for all T ∈ Tx0,j+j

∗

b,int , implying that

(χj+j∗)
ξ
y ≡ 0 on (a(y), b(y)),

∣∣(r+
j+j∗ − r

−
j+j∗)

ξ
y

∣∣ ≥ |[u](x0) · ξ|+ 1 and∫ b(y)

a(y)

|((vj+j∗)ξy)′|2 dt ≤ γ∗2,
∫

[a(y),b(y)]∩R±
1 ∧ |(vj+j∗ − r±j+j∗)

ξ
y − u±(x0) · ξ| dt ≤ γ∗

2
,

since φ(j) = j + j∗ ≥ j∗. By continuity of (vj+j∗ − r±j+j∗)ξy on the compact sets [a(y), b(y)] ∩ R±,
there exist two points

t± ∈ arg min
[a(y),b(y)]∩R±

(
1 ∧ |

(
vj+j∗ − r±j+j∗

)ξ
y
− u±(x0) · ξ|

)
.

Hence, recalling (3.19)

γ∗

Lη
≥ 1 ∧ |

(
vj+j∗ − r−j+j∗

)ξ
y

(t−)− u−(x0) · ξ|+ 1 ∧ |
(
vj+j∗ − r+

j+j∗

)ξ
y

(t+)− u+(x0) · ξ|

≥ 1 ∧

(∣∣[u](x0) · ξ + (r+
j+j∗ − r

−
j+j∗)

ξ
y

∣∣ − ∣∣∣∣∣
∫ t+

t−

(
(vj+j∗)

ξ
y

)′
(t) dt

∣∣∣∣∣
)
≥ 1− 2γ∗,

which is impossible thanks to of our choice of γ∗. We conclude the proof of Lemma 4.10 in the
same way as for Lemma 3.7. �

As a consequence of Lemma 4.10, introducing the family of triangles

Fj :=
{
T ∈ Tx0,j

b,int : there exists y ∈ (B1− η2 )ν such that (T̊ ∩B)ξy 6= ∅
}

for all j ∈ N, it is possible to obtain a too low lower bound, roughly speaking because Lemma
4.10 does not exhibit enough triangles in Tx0,j

b,int, as explained after (3.20). Therefore, we need to

establish that many lines Bξy parallel to ξ and passing through Bν must actually intersect at least

two triangles of the collection Tx0,j
b,int. To this aim, we show that the set of points y ∈ Bν such that

Bξy intersects exactly one triangle T in the collection Tx0,j
b,int, has arbitrarily small H1 measure.

Lemma 4.11. For all η > 0, there exist constants C∗ = C∗(η) > 0, γ∗ = γ∗(η) > 0 and a subset
Z∗ = Z∗(η) ⊂ Bν containing Z ′ and satisfying H1(Z∗) ≤ 3η such that the following property holds:
for all 0 < γ < γ∗, there exists j(γ) ∈ N such that for all j ≥ j(γ), the set

Yj :=
{
y ∈ (B1− η2 )ν \ Z ′ : there exists a unique T ∈ Tx0,j

b,int such that (T̊ ∩B)ξy 6= ∅
}

satisfies

H1(Yj \ Z∗) ≤ C∗γ.

Proof of Lemma 4.11. We follow the same three steps structuring the proof of Lemma 3.9.

Step 1. We start by showing that for j large enough and for many points y ∈ Yj , the only

triangle T in Tx0,j
b,int crossing Bξy is getting closer to the diameter Bν .
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For all j ∈ N and all y ∈ Yj , let Tj(y) ∈ Tx0,j
b,int be the unique triangle such that (T̊j(y)∩B)ξy 6= ∅.

We keep the notation (3.22) for the end points aj(y) and bj(y) of the section in the direction ξ
passing through y inside Tj(y) (see the Figure 4). Let us show that

fj(y) := (|aj(y)|+ |bj(y)|)1Yj (y)→ 0 for all y ∈ (B1− η2 )ν \ Z ′.

Let y ∈ (B1− η2 )ν \ Z ′. Assume by contradiction that ` := lim supj fj(y) > 0 and extract a

subsequence (depending on y, not relabeled) such that fj(y)→ `. Then, there exists j0 ∈ N such
that y ∈ Yj for all j ≥ j0. Moreover, according to Lemma 4.9 and setting Ij(y) := (a(y), b(y)) \
(aj(y), bj(y)) ⊂ Bξy, we infer that

|bj(y)− aj(y)| +

∫
Ij(y)

|((vj)ξy)′|2 dt +

∫
[a(y),b(y)]∩R±

1 ∧ |(vj − r±j )ξy − u±(x0) · ξ| dt→ 0. (4.20)

Up to another subsequence (still not relabeled), it ensures that aj(y), bj(y) → m for some m ∈
[a(y), b(y)]. Thus, for all τ > 0, Iτ := (a(y),m− τ) ∪ (m+ τ, b(y)) ⊂ Ij(y) for j ∈ N sufficiently
large. In particular, we deduce that m − τ ≤ 0. Indeed, assuming that m − τ > 0, by continuity
of (vj − r+

j )ξy on
(
0,m− τ

)
and of (vj − r−j )ξy on

(
a(y), 0

)
, there exist

t+j ∈ arg min
(0,m−τ)

1 ∧ |(vj − r+
j )ξy − u+(x0) · ξ| and t−j ∈ arg min

(a(y),0)

1 ∧ |(vj − r−j )ξy − u−(x0) · ξ|,

which satisfy

1 ∧ |(vj − r+
j )ξy(t+j )− u+(x0) · ξ|+ 1 ∧ |(vj − r−j )ξy(t−j )− u−(x0) · ξ|

≥ 1 ∧

(∣∣[u](x0) · ξ + (r+
j − r

−
j )ξy
∣∣− 2

√∫
Ij(y)

|((vj)ξy)′|2 dt

)
→ 1

according to (4.20) and (4.17). However,

1 ∧ |(vj − r+
j )ξy(t+j )− u+(x0) · ξ|+ 1 ∧ |(vj − r−j )ξy(t−j )− u−(x0) · ξ|

≤ 1

Lη

∫ 0

a(y)

1 ∧ |(vj − r−j )ξy − u−(x0) · ξ| dt+
1

m− τ

∫ m−τ

0

1 ∧ |(vj − r+
j )ξy − u+(x0) · ξ| dt→ 0

according again to (4.20), which leads to a contradiction. We similarly show that m + τ ≥ 0,
leading to |m| ≤ τ . Taking the limit as τ → 0+, we obtain that m = 0 which is against ` > 0.

Therefore, owing to Lemma 4.9 and Egoroff’s Theorem, we can find a set Z1
∗ ⊂ Bν containing

Z ′ with H1(Z1
∗) ≤ 2η such that for all γ > 0, there exists j0(γ) ∈ N satisfying

∫
Bξy

(1− (χj)
ξ
y)|((vj)ξy)′|2 dt ≤ γ2,∫

Bξy∩R±
1 ∧ |(vj − r±j )ξy − u±(x0) · ξ| dt ≤ γ

2
,

(|aj(y)|+ |bj(y)|)1Yj (y) ≤ γ

(4.21)

for all y ∈ (B1− η2 )ν \ Z1
∗ and all j ≥ j0(γ).

Step 2. Arguing in the same manner as for (3.27), one can show that for many points y ∈ Yj ,
the variation of (vj − rj)ξy inside the only triangle T in Tx0,j

b,int which is crossed by Bξy, is close to

that of uξy. Precisely, setting the constants

Cη := 8

(
1 +

1

Lη

)
> 0, γ∗ = γ∗(η) :=

1

2
min

(
1,

1

Cη
, Lη

)
> 0,
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we get that for all 0 < γ < γ∗, there exists j1(γ) ∈ N such that for all j ≥ j1(γ) and all y ∈ Yj \Z1
∗ ,∣∣(vj)ξy(bj(y))− (vj)

ξ
y(aj(y))− (r+

j − r
−
j )ξy − [u](x0) · ξ

∣∣ ≤ Cηγ. (4.22)

Step 3. We now show that, after enlarging slightly the set Z1
∗ into a set Z∗ ⊂ Bν with

H1(Z∗) ≤ 3η, it is possible to include Yj \ Z∗ inside a finite union of arbitrarily small segments
contained in Bν (see Figure 7).

By definition of rigid body motions, there exist skew symmetric matrices Mj ∈ M2×2
skew and

vectors mj ∈ R2 such that

r+
j − r

−
j = Mj idR2 +mj

for all j ∈ N. Recalling (4.17), we get that for all y ∈ Bν \ Z1
∗ ⊂ Bν \N ,∣∣(r+

j − r
−
j )ξy
∣∣ =

∣∣(MT
j ξ
)
· y +mj · ξ

∣∣→ +∞

as j → +∞. In particular, setting αj := MT
j ξ ∈ R2 and βj := mj · ξ ∈ R, we get that µj :=

|αj |+ |βj | → +∞ as j → +∞. Hence, up to a subsequence (depending only on ξ, not relabeled),
there exist α ∈ R2 and β ∈ R such that

αj
µj
→ α,

βj
µj
→ β, and |α|+ |β| = 1.

In particular,
1

µj

(
αj · idR2 + βj

)
→ α · idR2 + β uniformly on B. (4.23)

Notice that the affine line ∆ := {z ∈ R2 : α · z + β = 0} cannot coincide with Πν . Indeed, if such
would be the case, it would entail that β = 0 and α = ±ν ∈ S1. Yet, Mj ∈ M2×2

skew being skew
symmetric, we would obtain that

0 =
Mjξ · ξ
µj

=
αj
µj
· ξ → α · ξ = ±ν · ξ

which is against our choice (4.18) of ξ ∈ S1 ∩D. As a consequence ∆ intersects Bν in at most one
point z∗.

If ∆ ∩ Πν = {z∗}, we define Z2
∗ := Bν ∩ B η

2
(z∗) while if ∆ ∩ Πν = ∅, we define Z2

∗ = ∅. The

continuity of α · idR2 + β on the compact set Bν \ Z2
∗ entails that

0 < mα,β(η) := min{|α · y + β| : y ∈ Bν \ Z2
∗}.

Set Z∗ := Z1
∗ ∪ Z2

∗ ⊂ Bν , which satisfies H1(Z∗) ≤ 3η, and for all j ∈ N, we define

T̂j := {T ∈ Tx0,j
b,int : there exists y ∈ Yj \ Z∗ such that (T̊ ∩B)ξy 6= ∅}.

Thus, for all j ∈ N and for each triangle T ∈ T̂j , there exists a point yT ∈ Φ◦pξ(T̊ )\Z2
∗ ⊂ Bν \Z2

∗
which satisfies

|α · yT + β| ≥ mα,β(η) > 0,

with Φ introduced in (3.17).

Remembering that ω(εkj )/%j → 0 and that the Lipschitz constant of Φ is less than
√

1 + 4η2 ≤ 2
for η small enough, together with the uniform convergence (4.23) and (4.22), it follows that for all
γ > 0, there exists j2(γ) ≥ j1(γ) such that for all j ≥ j2(γ),

∣∣∣∣ 1

µj
(r+
j − r

−
j )ξy −

(
α · y + β

)∣∣∣∣ ≤ mα,β

8
γ for all y ∈ Bν \ Z∗,

H1(Φ ◦ pξ(T )) ≤ 2ω(εkj )/%j ≤
mα,β

8
γ for all T ∈ Tx0,j .

(4.24a)

(4.24b)
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Therefore, for all j ≥ j2(γ) and all T ∈ T̂j , we introduce the following quantities :
Lref(T ) :=

∣∣[u](x0) · ξ + µj
(
α · yT + β

)∣∣− (Cη +
mα,β

2 µj
)
γ∣∣e(vj)|T : (ξ ⊗ ξ)

∣∣ the reference length of T,

Lmax(T ) := max
z∈pξ(T )

L1(T ξz ) the maximal section’s length of T along the direction ξ.
(4.25)

Note that Lref(T ) is well defined (since |e(vj)|T ξ · ξ|2 ≥ κ%2
j/(αεkj ) > 0 as T ∈ Tx0,j

b ) and
positive for j large enough since µj → +∞ and |α · yT + β| > mα,β γ/2 > 0. Moreover, we have
Lmax(T ) > Lref(T ). Indeed, if such would not be the case, denoting by y ∈ Yj \ Z∗ a point such

that (T̊ ∩B)ξy 6= ∅, then L1(T ξpξ(y)) = L1(T ξy ) = bj(y)− aj(y) ≤ Lmax(T ) ≤ Lref(T ), entailing that

|(vj)ξy(bj(y))− (vj)
ξ
y(aj(y))| =

∣∣e(vj)|T : (ξ ⊗ ξ)
∣∣ (bj(y)− aj(y))

≤
∣∣[u](x0) · ξ + µj

(
α · yT + β

)∣∣− (Cη +
mα,β

2
µj
)
γ,

by definition (4.25) of Lref(T ). Therefore, we would obtain that

Cηγ +
mα,β

2
µjγ ≤

∣∣[u](x0) · ξ + µj
(
α · yT + β

)∣∣− ∣∣(vj)ξy(bj(y))− (vj)
ξ
y(aj(y))

∣∣
≤
∣∣(vj)ξy(bj(y))− (vj)

ξ
y(aj(y))− [u](x0) · ξ − (r+

j − r
−
j )ξy
∣∣

+
∣∣(r+

j − r
−
j )ξy − µj

(
α · y + β

)∣∣ + |µjα · (y − yT )|

≤Cηγ +
mα,β

8
µjγ +

mα,β

8
µjγ,

where we used (4.22), (4.24a) and (4.24b) (since y, yT ∈ Φ ◦ pξ(T )), leading to a contradiction.

Therefore, arguing as in the proof of Lemma 3.9, there are exactly one or two points z1
ref ,

z2
ref ∈ pξ(T ), only depending on j and T , such that L1(T ξ

z1
ref

) = L1(T ξ
z2
ref

) = Lref(T ). Then, as in

(3.30), we introduce the following segments (orthogonal to ξ) associated to T (see Figure 7),

Ti(T ) :=

{
z ∈ Πξ :

∣∣z − ziref

∣∣ ≤ C ′η %jL2(T )

εkj
γ

}
for i ∈ {1, 2},

where the constant C ′η, only depending on η, now changes into

C ′η :=
8

sin θ0

(
2Cη
mα,β

+ 1

)
.

For every j ≥ j2(γ) and every y ∈ Yj \Z∗, let T ∈ Tx0,j
b,int be such that (T̊ ∩B)ξy 6= ∅. In particular,

note that T ∈ T̂j . Arguing in the same way as in the proof of Lemma 3.9, we get that there exists
i ∈ {1, 2} such that

|pξ(y)− ziref |

≤ 2L2(T )

hT

∣∣(bj(y)− aj(y))− Lref(T )
∣∣

Lref(T )

=
2L2(T )

hT

∣∣|(vj)ξy(bj(y))− (vj)
ξ
y(aj(y))| − |[u](x0) · ξ + µj(α · yT + β)|+

(
Cη +

mα,β
2 µj

)
γ
∣∣∣∣[u](x0) · ξ + µj

(
α · yT + β

)∣∣− (Cη +
mα,β

2 µj
)
γ

≤ 2L2(T )

hT

Cηγ +
∣∣(r+

j − r
−
j )ξy − µj(α · yT + β)

∣∣+
(
Cη +

mα,β
2 µj

)
γ

µjmα,β/4

≤ 2L2(T )

hT

(
2Cη +mα,βµj

)
γ

µjmα,β/4
≤ C ′η

%jL2(T )

εkj
γ,
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where we used (4.22), (4.24a), (4.24b) and the fact that∣∣[u](x0) · ξ + µj
(
α · yT + β

)∣∣− (Cη +
µjmα,β

2

)
γ ≥ µjmα,β

4

up to enlarging j2(γ) ∈ N. As in the proof of Lemma 3.9, we deduce that for all j ≥ j2(γ),

H1(Yj \ Z∗) ≤
∑
T∈T̂j

H1(Φ (T1(T ) ∪ T2(T ))) ≤ 8C ′η γ
%j
εkj

∑
T∈T̂j

L2(T ) ≤
8C ′ηγ

κ

κ%j
εkj

∫
B

χj dx.

Recalling (4.19) and possibly taking a larger j2(γ) ∈ N, we finally get that for all j ≥ j2(γ),

H1(Yj \ Z∗) ≤
8C ′η
κ

(
2

dλ

dH1 ∂∗P
(x0) + 1

)
γ =: C∗γ,

for some constant C∗ > 0 only depending on η, which settles Lemma 4.11. �

Arguing exactly as in the proof of Lemma 3.8, having Lemma 4.11 at hand, we deduce the
following result.

Lemma 4.12. For all η > 0, there exist Z ′′ ⊂ Bν containing Z ′ with H1(Z ′′) ≤ 4η, and a (not
relabeled) subsequence such that for all j ∈ N and for all y ∈ (B1− η2 )ν \ Z ′′,

#
{
T ∈ Tx0,j

b,int : (T̊ ∩B)ξy 6= ∅
}
≥ 2.

Finally, owing to Lemma 4.12, the proof of Proposition 4.8 is identical to that of Proposition 3.5.

In the following result, we prove the existence of minimizers of the discrete brittle damage energy
Gε on V Dir

ε (Ω′).

Lemma 4.13. Assume that Ω and Ω′ are connected. For ε > 0 sufficiently small, there exists a
minimizer uε ∈ V Dir

ε (Ω′) of Gε.

Proof. Let ε0 := κ/(β‖∇w‖2L∞(R2;M2×2)) and fix ε < ε0. Since Gε(wTε) < +∞, we can consider a

minimizing sequence {un}n∈N ⊂ V Dir
ε (Ω′) satisfying

lim
n→∞

Gε(un) = inf
L0(Ω;R2)

Gε ∈ [0,+∞). (4.26)

By definition of the finite element space V Dir
ε (Ω′), there exists a triangulation Tn ∈ Tε(Ω′) such

that un is affine on each T ∈ Tn and un = wTn on every triangle T ∈ Tn such that T ∩(Ω′\Ω) 6= ∅.
Let Ω′′ be a bounded open set such that Ω′ ⊂⊂ Ω′′ and

⋃
T∈Tn T ⊂ Ω′′ for all n ∈ N. Since, for

all T ∈ Tn, L2(T ) ≥ ε2 sin θ0/2, it is easily seen that

#Tn ≤ 2L2(Ω′′)

ε2 sin θ0
.

As a consequence, the sequence of integers {#Tn}n∈N admits a subsequence converging as n→ +∞
to an integer N ∈ N. We can thus assume, without loss of generality, that

#Tn = N for all n ∈ N.
We write Tn = {Tn1 , . . . , TnN} for all n ∈ N. Up to a subsequence, we can check that for all
i ∈ {1, . . . , N}, the closed triangle Tni converges to a closed limit triangle Ti in the sense of
Hausdorff, with the property that the limit triangulation T := {T1, . . . , TN} ∈ Tε(Ω′) remains an
admissible triangulation of Ω′.

Introducing the characteristic functions χn := 1{εAe(un):e(un)≥κ} ∈ L∞(Ω′; {0, 1}), we can write
the energy as

Gε(un) =

∫
Ω

(1− χn)Ae(un) : e(un) dx+
κ

ε

∫
Ω

χn dx. (4.27)
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First, by definition of ε0 and since ε < ε0, we have that χn = 0 in Ω′ \ Ω for all n ∈ N, since

Ae(un) : e(un) = Ae(wTn) : e(wTn) ≤ β|e(wTn)|2 ≤ β|∇wTn |2 ≤ β‖∇w‖2L∞(R2;M2×2) <
κ

ε

on that set. Being constant equal to 1 or 0 on each triangle of Tn, χn can be identified with a
vector Vn ∈ {0, 1}N . Hence, up to a subsequence, there exists V ∈ {0, 1}N such that Vn → V in
RN . In particular, there exists n0 ∈ N such that Vn = V for all n ≥ n0. Up to reordering the
triangles, we can thus find a integer 0 ≤M < N such that

{χn = 1} =

M⋃
i=1

Tni , {χn = 0} =

N⋃
i=M+1

Tni for all n ≥ n0.

By the Hausdorff convergence property, we infer that

χn → χ := 1⋃M
i=1 Ti

strongly in L1(Ω′). (4.28)

We next show some compactness on the sequence of displacements {un}n∈N, carefully overcoming
the lack of control on {χne(un)}n in L2(Ω′;M2×2

sym). Remembering that (1− χn)|e(un)|2 ≤ κ/(αε)
for all n ≥ n0 and that the sequence {(1 − χn)e(un)}n∈N lives in the finite dimensional space
(M2×2)N , up to a new subsequence (not relabeled), there exists a function ξ ∈ L∞(Ω′;M2×2

sym)
which is constant on each triangle T ∈ T such that

(1− χn)e(un)→ ξ strongly in L2(Ω′;M2×2
sym), (4.29)

and ξ = 0 on
⋃M
i=1 Ti. Let us define the set

ω0 :=

N⋃
i=M+1

Ti.

Note that Ω′ \Ω ⊂ ω0. Indeed, if x ∈ Ω′ \Ω, then for all n ≥ n0, there exists M + 1 ≤ in ≤ N such
that x ∈ Tnin . At the expense of extracting a further subsequence, there is no loss of generality to
assume that in = i is independent of n. By the Hausdorff convergence of Tni to Ti, we infer that
x ∈ Ti ⊂ ω0. By connectedness of Ω′ \ Ω ⊂ ω0, we can consider ω the connected component of ω0

containing Ω′ \ Ω. Let M ≤ K < N be such that ω =
⋃N
i=K+1 Ti, up to reordering the triangles

again.
Observe that for all T ∈ T such that T ∩ (Ω′ \ Ω) 6= ∅, then T ∈ {TK+1, . . . , TN}. Thus, for

all T ∈ {T1, . . . , TK}, T ∩ (Ω′ \ Ω) = ∅ so that T ⊂ Ω. Therefore, for all open set W ⊂⊂ Ω′ with⋃K
i=1 Ti ⊂W , having that

K⋃
i=1

Tni →
K⋃
i=1

Ti in the sense of Hausdorff,

there exists n1 ≥ n0 such that
⋃K
i=1 T

n
i ⊂W for all n ≥ n1. Since

Ω′ \W ⊂
N⋃

i=K+1

Tni ⊂
N⋃

i=M+1

Tni = {χn = 0},

owing to (4.26), (4.27) and that un = wTn in Ω′ \ Ω, we infer that∫
Ω′\W

|e(un)|2 dx ≤ C∗,

for some constant C∗ > 0 independent of n and W . Using that un − wTn ∈ H1(Ω′ \W ;R2) is
equal to 0 on the open set (Ω′ \W )∩ (Ω′ \Ω) 6= ∅, the Poincaré–Korn inequality ensures that (up
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to a subsequence) there exists u ∈ H1(Ω′ \W ;R2) such that

un ⇀ u weakly in H1(Ω′ \W ;R2),

u = wT on (Ω′ \W ) ∩ (Ω′ \ Ω) since wTn → wT strongly in H1(Ω′;R2) and, thanks to (4.29),
e(u) = ξ in Ω′ \W . In addition, by weak lower semicontinuity of the norm, we get that∫

Ω′\W
|e(u)|2 dx ≤ lim inf

n→∞

∫
Ω′\W

|e(un)|2 dx ≤ C∗.

Considering a decreasing sequence of open sets {Wj}j∈N such that
⋃K
i=1 Ti ⊂ Wj ⊂⊂ Ω′ for

each j ∈ N, and
⋂
jWj =

⋃K
i=1 Ti, we deduce through a diagonalisation argument that there exists

u ∈ H1(ω̊∩Ω′;R2) such that u = wT on ω̊∩ (Ω′ \Ω) = Ω′ \Ω and e(u) = ξ in ω̊∩Ω′. In particular,
since ξ is constant in each triangle of ω, we infer that u is affine in the interior of each triangle
of ω. Being in H1(ω̊ ∩ Ω′;R2), we get that u is continuous at the interfaces of each triangle in ω.
Moreover, since u = wT on Ω′ \ Ω, we deduce that u|T = wT on each triangle T ∈ T such that

T ∩ (Ω′ \ Ω) 6= ∅. Note that u is defined on such triangles T , as they are included in ω.

In order to extend u outside ω, we introduce the family of triangles which are at a distance of
at least one triangle from ω, i.e.

Tfar := {T ∈ T : T ∩ ω = ∅} ⊂ {T1, . . . , TK},

so that every remaining triangle T 6∈ Tfar and such that T 6⊂ ω, has its three vertices in
Vertices(ω) ∪ Vertices

(
Tfar

)
. Note that {TM+1, . . . TK} ⊂ Tfar since, by construction of the con-

nected component ω of ω0, each triangle T ∈ T included in ω0 \ ω̊ is at a distance of at least
one triangle from ω. We extend the function u to all triangles by setting u ≡ 0 on every triangle
T ∈ Tfar, and by interpolating on each remaining triangle which happens to have its three vertices’
values imposed. It defines a function u ∈ V Dir

ε (Ω′) which satisfies e(u) = ξ on ω and e(u) ≡ 0 on
each triangle T ∈ {TM+1, . . . TK} ⊂ Tfar.

On the one hand, ξ = 0 in {χ = 1}, hence ξ = (1− χ)ξ. On the other hand, e(u) = ξ in ω and
e(u) = 0 in ω0 \ω, so that (1−χ)Aξ : ξ ≥ (1−χ)Ae(u) : e(u) by positivity of A. Thus, by (4.28)
together with (4.29),

inf
L0(Ω;R2)

Gε = lim
n→∞

{∫
Ω

(1− χn)Ae(un) : e(un) dx+
κ

ε

∫
Ω

χn dx

}
=

∫
Ω

(1− χ)Aξ : ξ dx+
κ

ε

∫
Ω

χdx ≥
∫

Ω

(1− χ)Ae(u) : e(u) dx+
κ

ε

∫
Ω

χdx = Gε(u),

which settles that u is a minimizer of Gε. �

Remark 4.14. The above proof strongly relies on the choice of the density f(t) = κ ∧ t, mainly
because of the identification (4.27), which would unfortunately result into a too low lower bound
on the energy for a general f . Indeed for a generic f satisfying (1.4) one only gets, for all δ > 0,
the existence of a constant 0 < Kδ < κ such that

Gε(un) ≥ (1− δ)
∫

Ω

(1− χδn)Ae(un) : e(un) dx+
Kδ

ε

∫
Ω

χδn dx

where the characteristic function χδn := 1{ε(1−δ)Ae(un):e(un)≥Kδ} ∈ L∞(Ω′; {0, 1}) depends on δ.
Even in the case where the above proof could be adapted to show the existence of a displacement
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uδ ∈ V Dir
ε (Ω′) and a characteristic function χδ such that (up to a subsequence, not relabeled)

lim
n→∞

{
(1− δ)

∫
Ω

(1− χδn)Ae(un) : e(un) dx+
Kδ

ε

∫
Ω

χδn dx

}
≥ (1− δ)

∫
Ω

(1− χδ)Ae(uδ) : e(uδ) dx+
Kδ

ε

∫
Ω

χδ dx,

the above lower bound might be too low since f(t) > supδ>0

{
Kδ ∧ (1− δ)t

}
a priori.

We are now in position to prove the fundamental property of Γ-convergence.

Proof of Corollary 4.2. On the one hand, for all ε > 0, we remark that Gε(uε) ≤ Gε(wTε) is
uniformly bounded due to (4.1). Therefore, Proposition 4.5 implies that, up to a subsequence,
there exist a sequence of piecewise rigid motions {rε}ε>0 and a function u ∈ GSBD2(Ω′) with
u = w L2-a.e. in Ω′ \ Ω, such that uε − rε → u in measure in Ω′ and lim infε Gε(uε) ≥ G(u).

On the other hand, the Γ-convergence of Gε to G ensures that, for all v ∈ GSBD2(Ω′) with
v = w L2-a.e. in Ω′ \ Ω, there exists a recovery sequence vε ∈ L0(Ω;R2) such that vε → v in
measure in Ω′ and Gε(vε)→ G(v). Hence

G(v) = lim
ε→0
Gε(vε) ≥ lim sup

ε→0
Gε(uε) ≥ lim inf

ε→0
Gε(uε) ≥ G(u),

implying both that u ∈ arg minG and Gε(uε)→ G(u). �

5. Appendix

Proposition 5.1. Let N,m ∈ N \ {0}, p ∈ (1, 2], k ∈ N \ {0, 1}, w ∈W k,∞(RN ;Rm) and Ω ⊂ RN
be a bounded open set with Lipschitz boundary. For all u ∈ SBV p(Ω;Rm) ∩ L∞(Ω;Rm) such that
u = w in an open bounded neighborhood of ∂Ω, there exist a sequence {uh}h∈N in SBV p(Ω;Rm)∩
L∞(Ω;Rm) as well as Nh disjoint closed (N−1)-dimensional simplexes Σh1 , . . . ,Σ

h
Nh
⊂ Ω satisfying:

Juh =

Nh⋃
i=1

Σhi , HN−1(Juh \ Juh) = 0, uh ∈W k,∞(Ω \ Juh ;Rm),


uh = w in an open bounded neighborhood of ∂Ω,

uh → u strongly in L1(Ω;Rm),

∇uh → ∇u strongly in Lp(Ω;Mm×N ),

lim suph→∞HN−1(Juh) ≤ HN−1(Ju).

(5.1)

We do not detail the proof of this result which follows the steps of the constructive proofs of
[13, Lemma 5.2], [27, Theorem 3.1] and [26, Theorem 3.9, Corollary 3.11] with minor adaptations
to the Dirichlet setting. The key point here is that, due to our definition of V Dir

ε (Ω′), we need the
approximating sequence to coincide with w in an open neighborhood of the boundary and not only
on ∂Ω (as in Theorem 4.2, Remark 4.3 and formula (4.1) in [22]).
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