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DISCRETE APPROXIMATION OF THE GRIFFITH FUNCTIONAL BY
ADAPTATIVE FINITE ELEMENTS

JEAN-FRANCOIS BABADJIAN AND ELISE BONHOMME

ABSTRACT. This paper is devoted to show a discrete adaptative finite element approximation
result for the isotropic two-dimensional Griffith energy arising in fracture mechanics. The prob-
lem is addressed in the geometric measure theoretic framework of generalized special functions
of bounded deformation which corresponds to the natural energy space for this functional. It
is proved to be approximated in the sense of I'-convergence by a sequence of discrete integral
functionals defined on continuous piecewise affine functions. The main feature of this result is
that the mesh is part of the unknown of the problem, and it gives enough flexibility to recover
isotropic surface energies.

1. INTRODUCTION

1.1. The variational approach to fracture. The Griffith functional has been introduced in the
context of brittle fracture. It finds its roots in the seminal work of Griffith [28] whose main ideas
have been revisited in [27] (see also the monograph [12]) into a variational evolution formulation.
The main point is that, in a quasi-static setting and in presence of irreversibility, a constrained
global minimization principle together with an energy balance select equilibrium states of an elastic
body experiencing brittle fracture. In a nutshell, the Griffith energy is defined by

0w k) = [ P e (), (1.1)

where Q C RY, a bounded open set, stands for the reference configuration of an elastic material,
K C Q is a codimension-one set representing the crack, u : @\ K — R¥ is the displacement field
which might be discontinuous across K, and its symmetric gradient e(u) := (Vu + VuT)/2 is the
linearized elastic strain. The constant p > 0 is a material parameter called toughness. This energy
puts in competition a bulk energy, representing the elastic energy stored in the body outside the
crack, and a surface energy penalizing the presence of the crack K through its (N — 1)-dimensional
Hausdorff measure, henceforth denoted by HN 1.

This problem falls within the framework of so-called free discontinuity problems (according to
De Giorgi’s terminology), and it presents many formal analogies with its scalar counterpart, the
Mumford-Shah functional. Although, thanks to geometric measure theory, the existence theory for
the latter is by now quite well understood (see e.g. [3] and references therein), the minimization
of the Griffith functional had to face serious additional difficulties. In particular, a satisfactory
existence theory has only recently been solved. As for the Mumford-Shah functional, it passes
through the introduction of a “weak formulation” where the crack is replaced by the jump set J,
of u. A convenient functional setting to investigate this problem is that of functions of bounded
deformation, BD(f2), which correspond to (integrable) vector fields u : Q — RY whose distri-
butional symmetric gradient Eu is a bounded Radon measure. This space has been introduced
in [40] (see also [41, 39]) as a natural space to formulate problems of perfect plasticity. Brittle
fracture however requires a finer understanding of this space and especially the introduction of the
subspace SBD(Q) of special functions of bounded deformation in [2, 10], for which the singular
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2 J.-F. BABADJIAN AND E. BONHOMME

part of Eu with respect to the Lebesgue measure is concentrated on the jump set. Unfortunately,
this step forward was still not enough because of lack of control of the values of u (due to the
failure of Poincaré-Korn and/or Korn type inequalities in that space). It is only recently that the
introduction of the space GSBD() of generalized special functions of bounded deformation in
[26] (see Section 2 for the precise definition) has given a satisfactory mathematical framework to
investigate a well founded existence theory for the weak formulation, as well as for the original
one. Some further compactness properties of that space have been investigated in [18, 17] which
has led to prove the existence of minimizers of the Griffith functional under Dirichlet boundary
conditions (formulated in a relaxed sense).

1.2. Approximation of the Griffith energy. The I'-convergence approximation of free discon-
tinuity problems (e.g. by more tractable ones from a numerical point of view) is of fundamental
importance in applications. It has been proven in [13] that it is not possible to approximate free
discontinuity functionals by means of local integral functionals. To overcome this difficulty, a first
possibility is to introduce an additional variable like, e.g., in phase field approximations where the
sharp discontinuity is smoothened into a diffuse discontinuity. It represents one of the most popular
methods which have already proven to be successful in other contexts such as the Modica-Mortola
approximation of the perimeter functional [32], or the Ambrosio-Tortorelli approximation of the
Mumford-Shah functional [4]. In the context of brittle fracture, such approximations, which have a
founded mechanical interpretation as a gradient damage model, have only recently been established
in full generality in [19] (see also [16, 30]). The main drawback is that, an additional numerical
approximation would give rise to a multiscale problem with on the one hand the parameter of
approximation, and on the other hand the mesh size (see e.g. [9, 7, 22]). Another possibility is to
use nonlocal integral functionals as e.g. in [13, 35].

For what concerns the numerical treatment of free discontinuity problems, the main difficulty
is related to the fact that the jump set is part of the unknowns and that standard discontinuous
finite element methods do not in general apply in this context. Having this problematic in mind
as well as the multiscale issues arising in phase field or nonlocal approximations, one is thus
tempted to find single scale discrete approximations of free discontinuity problems. There is a
huge literature on this subject and, without being exhaustive, we refer to discrete-to-continuous
approximations results [1, 14, 15, 29, 33, 34, 36], nonlocal finite elements approximations [31, 38|
or discrete approximations based on stochastic meshes in [8, 37].

Let us focus on the discrete approximation result obtained in [21] for the Mumford-Shah func-
tional in dimension N = 2. In that work, the classical Mumford-Shah functional

F(u) := / |Vul|? dz + pH' (J,)
Q
is approximated in the sense of I'-convergence by a functional of the form

F.(u) ::/Qfa(Vu)dx

putting a restriction on the functional space on which F; is defined. The functional F; is discrete
in the sense that u is (a scalar-valued) continuous function and piecewise affine on suitable e-
dependent meshes (see Definition 1.1). It consists in an adaptative finite element approximation
because there is an implicit mesh optimization whose numerical implementation has been carried
out in [11]. The function f.(Vu) takes the form I f(¢|Vu|?) where f is a nondecreasing function
satisfying the standard properties (1.4). Typical examples of functions f are, on the one hand
the arctan function (as e.g. in [29] following a conjecture of De Giorgi) and, on the other hand
f(t) = t A k. The main feature of this result is that, allowing the mesh to move gives enough
flexibility to approximate isotropic surface energies. The constant p appearing in the functional
F is explicit and only depends on k and the geometry of the triangulation. An analogous analysis
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has been carried out in [33], where the author constraints the mesh to be made either of equilateral
triangles, or of right isosceles ones. In that case, the result is that the functional F. I'-converges
to an anisotropic version of the Mumford-Shah functional

/|Vu|2dx—|—/ H(vy) dH?,
Q Ju

for some function ¢ : S' — R, which can be explicitly computed, depending on the normal v, to
the jump set J,.

In [36], the same problem is addressed in the two-dimensional vectorial setting. If f. is as before,
the following approximating energy is considered

/Q - (e(w)) da.

As in [33], the e-dependent mesh is fixed and made either of equilateral triangles, or of right
isosceles triangles, and the result is that this functional I'-converges to an anisotropic version of
the Griffith functional

[letwiras+ [ o) ant,
Q Tu
where ¢ : St — R is as in [33]. Note that if f(t) =t A &, then

gle(u)|? if ele(u)|? < &,

K if ele(u)|? > k. (1.2)

fe(e(u)) = {
In order to recover the isotropic Griffith energy (1.1), a similar approximation result is considered
in [34] where, now, the meshes are allowed to move as in [21], but the function f. now depends on
the full gradient Vu (instead of the symmetric gradient) and behaves like

gle(u)|? if e|Vu|? < &,

1.3
K if e|Vul|?> > & (1:3)

fe(Vu) ~ {
(compare with (1.2)). In that case, the analysis of [21] can be adapted to show a I'-convergence
result towards the isotropic Griffith energy (1.1) with the same geometric multiplicative constant
i (as in [21]) in front of the surface energy.

1.3. Our result. The objective of the present work is to generalize the previous results in the
two-dimensional vectorial case to show an analogous statement as in [21], namely an adaptative
discrete finite element approximation of the isotropic Griffith functional. To state precisely our
main result, Theorem 1.2, we need to introduce some notation (we refer to Section 2 regarding
functional spaces).

Let © be a bounded open set of R? with Lipschitz boundary. As in [21], we introduce the
following class of admissible meshes.

Definition 1.1. A triangulation of Q is a finite family of closed triangles intersecting 2, whose
union contains {2, and such that, given any two triangles of this family, their intersection, if not
empty, is exactly a vertex or an edge common to both triangles. Given some angle 6y with 0 < 6y <
45° — arctan(1/2), and a function € — w(e) with w(e) > 6 for any € > 0 and lim, ¢+ w(e) = 0,
we define, for any € > 0
Te() := T (Q,w, 6p)

as the set of all triangulations of 2 made of triangles whose edges have length between e and w(e),
and whose angles are all greater than or equal to 3. Then we consider the finite element space
V.(£2) of all continuous functions u :  — R? for which there exists T € Tz(£2) such that u is affine
on each triangle T' € T.



4 J.-F. BABADJIAN AND E. BONHOMME

Let us consider a nondecreasing continuous function f : [0, +00) — [0, +00) satisfying

IO o
f(0) =0, t1_1>r51+ = 1 and tliglo ft) =k, (1.4)

for some constant x > 0, and a symmetric fourth order tensor A € £ (MZx2, MZ%2) such that
alflP <A ¢ < BIEfP forall € € M, (1.5)

for some constants «a, 5 > 0.

Our main result is the following I'-convergence approximation of the Griffith functional.

Theorem 1.2. The functional F. : L°(;R?) — [0, +-00] defined by

1 .
Fo(u) = z /Q feAe(u) e(u)) dz  if u € Vo(Q), (1.6)
+00 otherwise

I'-converges, with respect to the L°(Q;R?)-topology of convergence in measure, to the Griffith func-
tional F : L°(;R?) — [0, 4+o0] given by

/ Ac(u) : e(u)dz + rsinOH*(J,)  if u € GSBD?*(Q),
F(u) = Q
400 otherwise.

Remark 1.3. As explained above, a meaningful choice is the function f(t) =t A &, for which the
energy reduces to

€
It corresponds to the brittle damage energy of a linearly elastic material composed of two phases:
an undamaged one whose elasticity coefficients are represented by the Hooke tensor A, and a
damaged one whose elasticity coefficients are set to 0. The constant /e stands for the toughness
of the material whose diverging character as ¢ — 0 forces the damaged zones to concentrate on
vanishingly small sets (see [6]).

/Q B Ae(u) : e(u) da.

1.4. Strategy of proof. As usual in I'-convergence, the proof is achieved by combining a com-
pactness result, a lower bound and an upper bound inequality. In order to describe our argument,
let us assume for simplicity that f(t) =t Ak and A = id.

Our compactness result, Proposition 4.3 rests on the general GSBD compactness result of [20].
Given a sequence {uc}e~o with uniformly bounded energy, one can apply [20, Theorem 1.1] to
the modified function ve := ucl{je(u.)|2<r/ey Which consists in putting the value zero inside each
triangle T' where the (symmetric) gradient of u. is “large”. It might thus create a jump on the
boundary of T' whose perimeter can be estimated by £2(T)/e. It leads to compactness in measure
for the sequence {uc}.>0 (up to subtracting a sequence of piecewise rigid motions, leaving the
energy unchanged), which thus justifies why it is natural to consider I'-convergence with respect
to this topology.

The upper bound causes no particular difficulty. It consists in using known density results
in GSBD?(Q) (see [19, 24]) to reduce to the case where the jump set of u is made of finitely
many pairwise disjoint closed line segments, and wu is smooth outside. Then, considering a similar
optimal triangulation of € as in [21] (whose vertices do not cross the jump set) and a piecewise
affine Lagrange interpolation of u, it leads to the desired upper bound (see Proposition 3.11).

The proof of the lower bound inequality is much more delicate to address and it represents, to
our opinion, the main achievement of this work. First of all, the blow-up method allows one to
identify separately the bulk part and the singular part. The bulk part can be easily recovered by
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modifying u. into a new function which vanishes in all triangles where e(u.) is “too large” as in
the compactness argument (see Proposition 3.4). The main difficulty is to get a lower bound for
the singular part of the energy.

Before describing our strategy of proof, let us briefly explain why the methods of [21] (and
similarly [11]) fail in our situation. The idea of [21] consists in modifying every minimizing sequence
{ue }eso inside each triangle T of the associated triangulation T¢ € T2(£2) according to its variations
along each edge of T'. It rests on the introduction of a jump criterion which stipulates that if the
variation of u. is large enough, it is convenient to create a jump along the edge. More precisely, if
x1, x2 and 3 stand for the vertices of the triangle T', it will be energetically favorable to create a
jump at the middle point of the segment [z;, z;] if

|ue (i) — ue(z;)| S
|z — Ve
for some constant ¢ > 0, while u. remains unchanged on [z;, z;] otherwise. This criterion has to
be defined in such a way that:

(i) the new function, say w., has a jump set in each triangle T' which satisfies H!(J,. NT) <
L2(T)/(esinfy), where g is as in Definition 1.1, and w. does not jump across 97T’;

(ii) the absolutely continuous part of the gradient, V., is controlled in L?(T') by the energy
restricted to 7.

This construction ensures that the variation of the new discontinuous and piecewise affine function
w, is always controlled along at least two edges of each triangle 7', and it yields a control of the
full gradient Vw, of w, inside T'. In [21], this is possible thanks of the scalar nature of the problem
because the gradient Vwe | is a (constant) vector in R? (see [21, Remark 3.5]).

In our case, u. is not scalar-valued anymore, but vector-valued and the energy only depends on
its symmetric gradient e(u.). If one uses the same criterion than in [21], then condition (i) above
will be satisfied for the new function w, on T. However, one will only be able to estimate the L2-
norm of the (symmetric) gradient of w. by that of the full gradient of w. which, unfortunately, is
not controlled by the energy F.(u.). Note that in [34], such a control is artificially made possible
thanks to the particular form of the energy (see (1.3) above). This is however not natural in
this linearized elasticity setting where the energy should be expressed in terms of the symmetric
gradient of the displacement.

As a consequence, the jump criterion has to be modified. As the energy only depends on the
symmetric part of the gradient of wu., it would be natural to consider a criterion involving the
longitudinal variation of u. along the edges of the triangle instead of the full variation. In other
words, one could modify the criterion by asking that if

(e (@) = ue(a)) - (@i =) o
i — ;] Ve

then we create a jump at the middle point of [z;,x;], while u. remains unchanged on [z;,z;]
otherwise. In that case, it is again not possible to control the symmetric gradient e(w,) of the new
function w. by that of u.. Indeed, in a similar way as in [21], the previous criterion ensures that
the longitudinal variation of w. along at least two edges of each triangle is controlled by the energy
restricted to T'. If we call £; and & € S! both (linearly independent) directions associated to these
“good” edges, it shows that e(w.);p : (§1 ® &1) and e(we) | : (§2 ® §2) are controlled by e(u.)r
which is not enough to control the full 2 x 2 symmetric matrix e(w.);r which has three degrees
of freedom. In addition, some (uncontrolled) discontinuities can also be created at the interface
I:= 9T N 9T’ between two adjacent triangles T and T” so that condition (i) fails as well.

Overcoming these difficulties seems to be a very serious issue so that we decided to attack this
problem from a different angle. First of all, the use of the blow-up method allows one to reduce to
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the case where () = B is the unit ball, u is a step function of the form

a ifx-v<O,
u(z) = .
b ifx-v>0,

for some a, b € R? with a # b and v € S! (with a jump set corresponding to the diameter of B
orthogonal to v), and, see Lemma 3.6, such that

/ le(ue)|? dz — 0. (1.7)
{le(ue)?<r/e}

To make our strategy of proof more transparent, we assume that a-v # b-v. A standard argument
based on Fubini’s Theorem shows that the one-dimensional section of u. in the direction v passing
through the point y, namely ¢ +— (uc)y(t) := u:(y + tv) - v converges (in measure) to the step
function

truy(t) =a-vig- +b-vigs.

Let us denote by T¢ the triangulation on which u, is (continuous and) piecewise affine. We further
denote by Tj the familly of all triangles T € T¢ such that |e(u.)r|?> > r/e. Thanks to (1.7),
we show that almost every line orthogonal to J, N B must cross at least one triangle T' € T}
(see Lemma 3.7). The reason is that if, for some y € J, N B, the line y + Ry intersects no such
triangles, then (u)? would be bounded in H' (because |((uc)y)'| < |e(uc)(y + tv)]) and thus, it
would converge weakly in that space to a constant function, contradicting that a - v # b- v. This
information allows one to get a bad lower bound for the surface energy with 1/2 multiplicative
factor. It suggests to improve the previous argument by showing that “many” lines y + Ry passing
through y € J,, N B must actually cross at least two triangles in T}, which is the object of Lemma
3.8. To do that, we show in Lemma 3.9 that there are very few points y in J, N B such that the
line y 4+ Ry crosses exactly one triangle T' € T}. Indeed, in that case, up to a small error, the
function (u.); would have to pass from the value a - v to b- v inside 7. Due to the particular
shape of a triangle and of the fact that wu. is affine inside 7T, this could only happen for at most
two values of y. Moreover, if y is far away from these two values, the variation of (U/E)Z across the
triangle 7" is not sufficient, and it becomes necessary to cross an additional triangle 7" in Tj. With
this improvement, we can now construct two disjoint families of triangles with the property that
both families project onto J, N B into two sets of almost full H! measure (see Lemma 3.10). It
enables one to compensate the bad multiplicative factor 1/2 in the previous argument, and obtain
the expected lower bound with the correct constant corresponding to x sin 6y (see Proposition 3.5).

To conclude this introduction, let us mention that the originality of this work is twofold. First
of all, we are able to provide a deterministic discrete finite element approximation result of the
Griffith functional with isotropic surface energies. In particular, our approach does not require any
unnatural dependence of the approximating energy with respect to the skew symmetric part of the
gradient (in the context of linear elasticity) nor the use of stochastic meshes. Second, our method
relies on an unusual application of the slicing method, which is rather employed in I'-convergence
analysis to reduce the dimension of the problem to a one-dimension study. Here, we instead use
this method as a tool to enumerate in a non trivial way the number of triangles needed to derive
the correct multiplicity in the surface energy.

1.5. Organisation of the paper. In Section 2, we collect useful notation and preliminary results
that will be useful in the subsequent sections. Section 3 is devoted to show our main result, Theorem
1.2. It is divided into three parts: a first one consisting in a compactness result, Proposition 3.1,
a second one corresponding to the lower bound inequality, Proposition 3.3, and a last one for
the upper bound inequality, Proposition 3.11 through the construction of a recovery sequence.
Eventually, in Section 4, we extend the previous I'-convergence analysis allowing for Dirichlet
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boundary conditions formulated in a suitable way at the discrete and continuum levels (see Theorem
4.1). We then deduce the fundamental property of I'-convergence, Corollary 4.2, in our specific
setting, i.e., the convergence of minimizers as well as the minimum value.

2. NOTATION AND PRELIMINARIES

Vectors. The Euclidean scalar product between two vectors x and y € R™ is denoted by « - vy,
and the associated Euclidean norm by |z| := \/z-z. For 2 € R" and ¢ > 0, we denote by
By(z) := {y € R" : |z —y| < g} the open ball centered at = with radius p. If z = 0, we simply
write B, instead of B,(0). The notation S"~! stands for the unit sphere 0B;.

Matrices. The set of all real m x n matrices is denoted by M"™*"  and the subset of symmetric real
n x n matrices by MZX". Tt will be endowed with the Froebenius scalar product A : B := tr(A” B)

and the associated Froebenius norm |A4] := VA : A.
Given two vectors a and b € R™, the tensor product between a and b is defined as a®b := ab’ €

M™*™ and the symmetric tensor product by a ©®b:= (a ®b+b®a)/2 € MZX"

sym *

Measures. The Lebesgue and the k-dimensional Hausdorff measures in R™ are respectively de-
noted by £" and H*. If U is a bounded open set of R” and Y is an Euclidean space, we denote
by M(U;Y) the space of Y-valued bounded Radon measures in U which, according to the Riesz
Representation Theorem, can be identified to the dual of Cy(U;Y) (the closure of C.(U;Y") for the
sup-norm in U). For p € M(U;Y), its total variation is denoted by |u|.

Functional spaces. We use standard notation for Lebesgue and Sobolev spaces. If U is a bounded
open subset of R", we denote by L°(U;R™) the set of all £L"-measurable functions from U to R™.
We recall that a sequence {gi }ren in L(U;R™) converges in measure to g € LO(U;R™) if for all
e >0,

L' ({z eU: [g(x) —g(z)| > e}) = 0.
Note that, for any fixed constant M > 0, we can define the following mapping

da i (g,h) € L°(U;R™) x L°(U;R™) / M Al|g—h|de € RT (2.1)
U

which turns out to be a distance over L°(U;R™), with the property that gi converges in measure
to g if and only if das(gx, g) — 0. It confers to L°(U;R™) a metric space structure.

Functions of bounded variation and sets of finite perimeter. We refer to [3] for an exhaus-
tive treatment on that subject and just recall few notation. Let U C R™ be a bounded open set.
A function v € LY*(U;R™) is a function of bounded variation in U, and we write u € BV (U;R™),
if its distributional derivative Du belongs to M(U;M™*™). We use standard notation for that
space, referring to [3] for details. We just recall that a function u belongs to SBV?(U;R™) if
u € SBV(U;R™) (the distributional derivative Du has no Cantor part), its approximate gradient
Vu belongs to L2(U; M™*") and its jump set J, satisfies H*~1(J,) < oo.

A Lebesgue measurable set A C R" is a set of finite perimeter in U if its characteristic function
14 belongs to BV (U;R"™). The reduced boundary of A is denoted by 0*A and the essential (or
measure theoretic) boundary is denoted by 9, A. For every t € [0, 1], we denote by A(*) the set of
points where A has density ¢.

We also recall that a partition P = {P;};cn of an open set U is a Cacciopoli partition if each P;
have finite perimeter in U, and ), |D1p,|(U) < oco. In that case,

Ue®u |J ornop
i€EN i,jEN, i#£j
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contains H"~!-almost all of U (see [3, Section 4.4]). In the sequel (as in [20, Theorem 2.5]), we
will sometimes use the following notation for Caccioppoli partitions:

P(l) = U Pi(l), J*P = U 8*Pi.
i€N ‘€N
(Generalized) functions of bounded deformation. A function v € L'(U;R") is a function

of bounded deformation, and we write u € BD(U), if its distributional symmetric gradient Fu :=
(Du+ Du™)/2 belongs to M(U; M2X™). We refer to [40, 41, 39, 2, 10] for the main properties and

sym

notation of that space. The space SBD?*(U) is made of all functions u € SBD(U) (Eu has no
Cantor part) such that the approximate symmetric gradient e(u) (the absolutely continuous part
of Eu with respect to L") belongs to L*(U; My<") and its jump set .J, satisfies H" ™' (J,) < oc.

We now recall the definition and the main properties of the space of generalized functions of
bounded deformation introduced in [26]. We first need to introduce some notation. Let £ € S*1,
we denote by II¢ := {y € R" : y-§ = 0} the orthogonal space to £ and by pe the orthogonal
projection onto Il¢. For every set B C R", we define for ¢ € S"~! and y € R",

BS:={teR: y+t{ € B}, B :=peB)

and, for every (vector-valued) function v : B — R™ and (scalar-valued) function f: B — R,

uS(t) =uly +t€) - & f5(t) = fly+1f) forally €R™ andallt € BS.

Definition 2.1. Let U C R™ be a bounded open set and u € L°(U;R"™). Then, v € GBD(U) if
there exists a nonnegative measure A € M(U) such that one of the following equivalent conditions
holds true for every & € S*~1:

or every T € with —5 <7 < 5 an < 7" <1, the partial derivative T(w- =
1) fi CY(R) with ; ; do <1, th ial derivative D¢ &
D(1(u-£)) - € belongs to M(U), and

|De(T(u-€)|(B) < AX(B) for every Borel set B C U;
(2) uf e BV}OC(U?f) for H" l-ae. y € U, and

/ <|Du§|(B§ \ Jig) + ’HO(Bg N J15)> dH" " (y) < \(B) for every Borel set B C U,
Il v Uy

where Jig ={teJ,s: [W§](8)] > 1}

The function u belongs to GSBD(U) if u € GBD(U) and u$, € SBVioc(U§) for every & € S"~!
and for H" l-ae. y € US.

nxn

Every u € GBD(U) has an approximate symmetric gradient e(u) € L'(U; MZX") such that for
every £ € S”! and for H" -a.e. y € US,
e(u)(y +t&)E- &= (u§) (t) for L'-ae. t € U.

Moreover, the jump set J,, of u € GBD(U), defined as the set of all g € U for which there exist
(ut(20),u™ (70), vu(20)) € R™ x R™ x S"~! with ut(z0) # v~ (z0) such that the function
Y € Bi v Uy = u(zo + 0Y)
converges in measure in B; as ¢ \, 0 to
ye By s ut(zo) %f y - vy(z0) > 0,
u” (o) ify-vyu(xg) <0,
is countably (H"~!,n — 1)-rectifiable. Finally, the energy space GSBD?(U) is defined as

GSBD*(U) :={u € GSBD(U) : e(u) € L*(U; M), H" ' (Ju) < oo}
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3. PROOF OF THE MAIN RESULT

Let us introduce the I'-lower and upper limits (with respect to the topology of convergence in
measure) ' and F” : L°(Q;R?) — [0, +oc] defined by

F'(u) := inf {liminf};(ug) ! Ue — u in measure in Q} ,
e—0

and
F"(u) := inf {lim sup F(ue) : us — u in measure in Q} ,

e—0

for all u € L°(Q;R?).
3.1. Domain of the I'-limit. We begin our analysis by identifying the domain of finiteness of
the I-limit.

Proposition 3.1. Let {¢) }ren satisfying e — 0, u € LO(;R?) and {u }reny C L°(Q;R?) be such
that M := supy, Fe, (ur) < 0o and uy — u in measure in Q. Then, u € GSBD?*(1).
Proof. According to the properties (1.4) satisfied by f, for all § > 0, there exists a constant
0 < K < & such that
ft)>KA[(1—-06)t] forallt>0.

Indeed, since f(t)/t — 1 as t — 0T, there exists t* > 0 such that f(¢)/t > 1 — 4 for all t € [0,1*]
and K := (1 — 0)t* < k. Hence, for all t € [0,t*], we have f(¢) > (1 — 0)¢, while for all ¢ > t*, as f
is nondecreasing, f(t) > f(t*) > K.

By definition of F,, there exists a triangulation T* € T¢, (Q2) such that uy, € V., (2) is affine on
each triangle T € T*. We introduce the characteristic functions

Xk = g actueu > 2} € ET 01D

which are constant on each triangle T' € T, so that

Ny,
Dy, = {Xk:1}ﬁQ: U(Tfﬂﬂ)
=1

for some triangles T € T*. Remark that this choice of xj implies that
K
M > F, (ux) > (1 —9) / (1 — xr)Ae(ur) : e(uy) dr + 8—/ Xk dx,
Q kJo

forcing xi to converge to 0 in L (£2) since 0 < fQ xedr < K~ 'Me, — 0.

Let vg := (1 — xx)ug so that, by [3, Theorem 3.84], vy, € SBV?(Q; R?) with Vg, = (1 — xx)Vug
and

Ny,
Ju, CQNODy C | T}
i=1
Note that
vp — u in measure in Q and A := {zx € Q: |up(z)| — oo} is LZnegligible. (3.1)

Indeed, since uz — u in measure in  and {uy # v} C Dy with £2(Dy) — 0, for all > 0, we get
that £2 ({|vx —u| > n}) < L2 ({|ux —u| > n}) + L2(Dg) — 0. Additionally, up to a subsequence
(not relabeled), ux(z) — u(x) € R? for L2-a.e. z € Q.

On the one hand, using the energy bound F, (u;) < M and the ellipticity property (1.5) of A,
we infer that
/ le(o)|? dor < —L (3.2)
N (O '
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On the other hand, by definition of an admissible triangulation, the edges of each triangle T¥ have
length greater than or equal to 5 and their angles are all greater than or equal to 6y, so that the
heights of such triangles must be greater than or equal to e sin fy. Therefore, for all 1 < i < N,

1 k
LTk > %(Ek sin 90)%
which implies that for all open subset U CC Q :
2 Tk
HY(J,, NU) < 6 > L),

sin 6
0 i€{l,....Np}, TENU#0D

Let ky > 1 (depending on U) be such that for all k > ki, any triangle T € T* intersecting U is
contained in €2, then it follows that for all & > ky,

H (], NU) < / xndz < =M (3.3)
Q

€ sin Ksinb,’

where we used once more the energy bound F, (ux) < M.
Gathering (3.2) and (3.3), we can apply the G.SBD?*-compactness Theorem ([18, Theorem 1.1]).

Together with (3.1), it ensures the existence of a subsequence (depending on the open subset U,
which we do not relabel) such that uy € GSBD?*(U),

e(vp)jy — e(yy) weakly in L*(U; MZ%2) and H'(J, NU) < likm inf #'(J,, NU).
—00

sym

We then consider an exhaustion of € by a sequence of open subsets {U,, }men satisfying U, CC
Uns1 CC Q for all m € N and (J,,, Un, = Q. Using a diagonal extraction argument, we can find a
subsequence (still denoted by {vj}ren) such that for all m € N, )y, € GSBD?*(Uy,) and

e(vp)o,, = e(wp,,) weakly in L?(U,,; MZ2) and H' (J, N Uy,) < li}fmianl(Jvk NU). (3.4)
—00

sym

Let us now check that u belongs to GSBD?*(Q). Indeed, let £ € S! and 7 € C1(R) be such

that || < % and 0 < 7/ < 1. For all test function ¢ € C°((2), there exists m € N such that

supp ¢ C U,, so that, owing to the dominated convergence Theorem,
(De (t(u-8)),0) = —/ T(u-&)Depdr = — lem / T(vg - §)Depda = klim (De(T(vis - €)), 0).
o0 U7YL o0
Since vy - ¢ € SBV?(Q), using the chain rule formula in BV ([3, Theorem 3.96]), we get that
7(vk, - €) € SBV2(Q) with
De (r(vi - €)) = 7' (v - E)e(wr) : (€@ L2+ (1(vf - €) = 7(vp - €)) v, - EH' Ly,
Taking the variation, we infer that
|De (T(vg - €))] < |e(vp)|L2LQ +H L Ty, = Ape

As a consequence of (3.2) together with (3.3), the sequence {A }ren is bounded in M(U,,) for all
m € N, with

m

6 M
A(Um) < -
k;l’igm K(Unm) < (1-9)a + K sin 0,

so that, up to a further diagonal extraction, A, LU, — A" weakly* in M () for some nonnega-
tive measure \(™) € M(Q) satisfying, for all m € N,

A Q) < lim inf A (Upn) < Ms.
— 00

=: Ms < 400,

Therefore, we can introduce the following nonnegative measure A € M(Q) defined by

AB) := sup A (B) = lim A™)(B) for all Borel subset B C .
meN m—o0
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We thus obtain that
[(Dg (7(u-€)), $)| < lim (\eLUp, [6]) = (A", [6]) < (X, |9)),
implying both that D¢ (7(u - £)) € M(2) according to Riesz Representation Theorem and that
[De(r(u-€))l <A in M(Q),

which shows that w € GBD(f). Using next that u € GSBD(U,,) for all m € N and [26, Definition
4.2], we deduce that u € GSBD(2). Eventually, by locality of the definition of the approximate
symmetric gradient e(u) (see [26, Formula (9.1)]), as a consequence of (3.2) together with (3.4),
we infer that e(vg) — e(u) weakly in L?(Q; M2X2) with e(u) € L?(Q;M2%2). Passing to the limit

sym Sym
as m — oo in the last property of (3.4) and using (3.3) shows that H!(J,) < oo. All of this
establishes that u € GSBD?(f2) and completes the proof of the Proposition. O

Remark 3.2. We will later improve the previous result (see Proposition 4.3) by getting rid-off
the a priori knowledge that uj converges in measure in ). The price to pay will be to subtract a
sequence of piecewise rigid body motions. Proposition 4.3 will a posteriori justify why the topology
of convergence in measure is the natural one to address the ['-convergence analysis.

3.2. The lower bound. The proof of the lower bound inequality relies on the blow up method
which consists in identifying separately the Lebesgue and jump parts of the energy.

Proposition 3.3. For all u € L°(Q; R?),
F(u) < F'(u).

Proof. Without loss of generality, we can assume that F’(u) < oo. For any ¢ > 0, there exists a
sequence {u, }e~o such that u. — u in measure in Q and

limiélf]-}(ug) < Fl(u) + ¢ < oo
E—

Let us extract a subsequence {ug}ren := {ue, }ren from {u.}eo such that up — u L2a.e. in
and

lim F., (ug) = liminf F, (u:) < oo.

k—o00 e—0

This implies that, for & large enough, u, € V, (Q) and sup, F., (ux) < co. By definition of the
finite element space Vz, (), there exists a triangulation T* € T¢, (Q) such that uy is affine on each
T € T*.

We first note that, according to Proposition 3.1, u € GSBD?(Q2). Let us show the lower bound
inequality F’(u) > F(u). To this aim, we introduce the following sequence of Radon measures on
Q

A = if(EkAe(uk) : e(uk))E2I_Q.

Since the sequence {A }ren is uniformly bounded in M(2), up to a subsequence (not relabeled),
we have A\, — X weakly* in M () for some nonnegative measure A € M(Q). Thanks to the lower
semicontinuity of weak™ convergence in M(2) along open sets, we have that

Fl(u)+¢ > klim A () > A(Q). (3.5)
— 00
Using that the measures £21_Q and H!'L .J, are mutually singular, it is enough to show that
d\
e > Ae(u) :e(u) L*-ae. in Q, (3.6)
and
d\

> ksinfy H'-ae. on J,. (3.7)
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Indeed, once (3.6) and (3.7) are satisfied, it follows from the Radon-Nikodym decomposition and
the Besicovitch differentiation Theorems that

A

A= —5

ac?

dX

2
0O+ 2
LLas dH'L T,

HIL J, + )%,

for some nonnegative measure A\* which is singular with respect to both £2L_Q and H'L J,. Thus,
after integration over €2 and recalling (3.5), we get that

F'(u)+¢ > / Ac(u) : e(u) dx + rsinOgH (J,) = F(u).
Q
Taking the limit as ( — 0, we obtain the desired lower bound inequality. O

The rest of this section is devoted to the establishment of (3.6) and (3.7). We start by identifying
the lower bound for the bulk energy.

Proposition 3.4 (Lower bound for the Lebesgue part). For £L?-a.e. xg € (2,

Y
dLz?
Proof. Let xg € 2 be such that

(z0) > Ae(u)(xp) : e(u)(xo).

exists and is finite, and

According to Besicovitch and Lebesgue differentiation Theorems, £2-almost every point xg in
satisfies these properties. We next consider a sequence of radii {g;};en such that g; \, 0 and
AOBy; (x0)) = 0 for all j € N.

As in the proof of Proposition 3.1, according to the properties (1.4) satisfied by f, for all 6 > 0,
there exists a constant 0 < K < & such that f(¢) > K A [(1 — §)t] for all ¢ > 0. Moreover, using
the characteristic functions

Xk ‘= ]l{(lfé)Ae(uk):e(uk) > %} € L (Q7 {07 1})

we have for every Borel set B C €2,

M(B) > (1-3) /

K
(1 — xx)Ae(ug) : e(ug) dx + —/ Xk dz.
B €k JB

Note that because wuy, is affine on each triangle T' € T*, y; is constant on each triangle T € T*.
Following the proof of Proposition 3.1, the sequence vy := (1 — xz)up € SBV?2(£2;R?) satisfies
v — u in measure in  and e(vy) — e(u) weakly in L?(€2;MZ2X2). Then, for all j € N,

sym

k—o0

A(By, (z0)) = klijgo Ak (By, (20)) > (1-9) liminf/B ( )Ae(vk) :e(vg) dx

> (1- 5)/B . )Ae(u) e(u) dx.
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Dividing the previous inequality by 7rg§ and passing to the limit as j — oo implies by the choice
of the point z that

— = lim ———* > (1-9) lim — A : d
a0 = i 2 U A
= (1—=9)Ae(u)(zo) : e(u)(xo).
Taking the limit as § — 07 completes the proof of the lower bound for the Lebesgue part. O

We next pass to the lower bound inequality for the jump part of the energy which represents
the most difficult and original part of our result.
Proposition 3.5 (Lower bound for the jump part). For H'-a.e. 2o € J,,
dA
dH' L J,
The proof of Proposition 3.5 is quite long and involved. It necessitates the introduction of some
tools in order to carry out the blow-up analysis coupled with the slicing method.

Let ¢ € J, be such that

(z9) > Ksinby.

A i A(By(w0))
dH!L J, N0 H (T, N By(xo))

exists and is finite, and

lim H'(Ju N By(z0))

AN 20
According to the Besicovitch differentiation Theorem and the countably (H!, 1)-rectifiability of .J,
(see [3, Theorem 2.83]), it follows that H!-almost every point zq in J, fulfills these conditions.

=1

By definition of the jump set .J,, there exist v := v, (2¢) € S! and u*(z¢) € R? with u*(zo) #
u~ (xg) such that the function ug, , := u(xo + ¢-) converges in measure in B := B;(0) to the jump
function

+ if y-v>0
u:y € B— w(wo) ?yy ’
u (o) ify-v<O,

as 0 \( 0 (see [26, Definition 2.3]). Note that, the jump set Jz in B coincides with the diameter
B = p,(B) orthogonal to v. Moreover, since H* ({£ € S' : [u](x0) - £ =0}) = 0, for any 1 > 0,
there exists £ € St such that

> |v- £J“ <n and [u](zo)-&#0, (3.8)

1
5 57
where [u](zo) := u™(zg) — u™ (zg). If [u](x0) - ¥ # 0, we can simply take £ = v. We then set
My = |u™ (wo) - ] + [u (z0) - €] > 0. (3.9)

From now on, when working with the convergence in measure, we will use the distance dy, defined
in (2.1) associated to this precise value of M,. As before, we consider a sequence of radii {o;};en
such that g; \, 0 and A(0B,, (o)) = 0 for all j € N.

By our choice of xg, we have

\V—f|§77» v

lim lim ug(zo+ 0j-) = lim gy, =T in measure in B,
j—00 k—o0 j— 00 7=

j—00 k—oo 20; j—00 20 dHIL J, 0)s
lim lim S5 — lim 1im YC8) _ o,

j—00 k—o0 0j j—00 k—o0 0j
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The metrizability of the convergence in measure in B shows the existence of an increasing sequence
{k;};jen (depending on n) such that k; oo as j — oo and

vj = uy, (To + ;) — W in measure in B, (3.10a)
Ak; (B, (%0)) X
3.10b
20, @7, ") (3.10b)
L IC ) N (3.10¢)
95 95

In particular, using a change of variables, we get that

dA
22— = 1 A - M d
dH! I—Ju (mO) JLI& Qj5kj /Bej (zo) f (Ek] e(Uk]) e(ukJ )) €z

. Qj / Ek; .
= lim —— Ace(v;) :e(v; d
j—ro0 5kj Bf ( QQ- ( ]) ( ])> 4

J

limsupﬁ/Bf (Zgak(”j)f'ﬂz) dy,
j

vV

j—oo €k

where, in the last inequality, we used the ellipticity property (1.5) of A, the nondecreasing character
of f and that £ € S!.

According to the properties (1.4) satisfied by f, for all 6 € (0,1), there exists a constant A > 0
such that
f@) > (A A[(1—=0)k] forallt>0.
Indeed, since f(t) — k as t — oo, there exists t* > 0 such that for all ¢t > t*, f(t) > (1 — 0)k.

The function f(t)/t being continuous over [0,t*] (extended by the value 1 at ¢t = 0), it reaches its
minimum value A > 0 over this segment so that f(t) > At for all ¢ € [0,¢*].

Let us introduce the characteristic functions

,::]1 aey, . GL B’ 0,1 ,
Xj {Agg"f \e(vj>§~§|22(175),$} (B;{0,1})
so that
d\ . aA 1 S
“aHT T =1 o L 05 L=X; DE- €7 d 44444Jl/ e a1
LT, ) 2 l?sup{ 0 /B( xa)le(vs)é &7 dy + £k Xy (3.11)

We then introduce the translated and rescaled triangulations

1 e ad 1— 6)ko;
T = — (Th — o), T = {T € T*0d . O‘?|e(vj)‘Tg €2 > (5)*’“93} (3.12)
J

Qj Ek;
Note that v; is affine on each T € T*J. Let us point out that
1 ifTeTid
e = ’ 3.13
X { 0 otherwise. ( )

Since ((v;)8)'(t) = e(v;)(z + t&)E - €, then for Hl-ae. z € BS,

o —0)Koj
5 ):{1 if 24](0)§) (1) 2 S,

(x;)2(t for £'-a.e. t € BE. (3.14)

0 otherwise,
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The triangles belonging to the collection Tzo’j correspond to the sets where the longitudinal slope
of v; in the direction ¢ is “very large”. They, roughly speaking, represent the places where it will
be energetically convenient to introduce a jump because of the sharp transition.

The following result, which will play a major role in the proof of Proposition 3.5, shows that
for many points y € Jz N B, the one-dimensional energy on Bg is arbitrarily small uniformly with
respect to y.

Lemma 3.6. For all n > 0, there exist a subset Z C Jy N B with HY(Z) < n and a subsequence
(not relabeled) such that the following property holds : for all v > 0, there exists jo = jo(v) € N
such that for ally € JyN B\ Z and all j > jo,

/ () dt <, (3.15a)

Bj

[ = )y de < 2 (3.150)

/ My N (v = a)g| dt <. (3.15¢)
Bj

Proof. According to Fubini’s Theorem, the convergence in measure (3.10a) and (3.11), we infer
that

/Bé( y Mn/\(Wj_U)£|dt+L§(1—(Xj)§)|((vj)§)’2dt+/B§(Xj)§dt> (=)
SLMnA|Uj_ﬂ|dx+/B(1_Xj)|€(’[}j)€-€|2dx+/Bdex_>0'

As a consequence, up to a subsequence (not relabeled), there exists an H'-negligible set N C B¢
such that

[ Monlw —wglars [ =D Pt [ (0)fd >0 forall z€ BN,
Bz B Bz

In order to pass from arbitrary points z € B¢ to arbitrary points y € Jz N B = BY, let us consider
the following mapping (see Figure 1)

@:26R2i—>z—y—éfeﬂy (3.16)
V .

which corresponds to the linear projection onto II, in the direction £. Thanks to (3.8), we can
check that the Lipschitz constant of ® is bounded by /1 + 412. Moreover, since for all z € B¢ we

have BS + = Bé(z), we deduce that
Sty —mi s [ 0= 09I Pars [ oS a
I _ A\é \E 12 N\é
- [ Ml UMM%+/§(1(M@MW%&M|®+/£(M&@®

8 B@(z) Ba)
thanks to the change of variables s = ¢ + 2. Since BY C ®(B*), setting N’ := ®(N) C II,,, we
get that H1(N’) =0 and

/B5 M, A |(vj —ﬂ)g\ds—&—/Bg(l—(Xj)§)|((vj)§)’|2ds+/B£(xj)§ds—>O for all y € BY \ N'.

Yy

Applying Egoroff’s theorem, for all > 0, there exists a subset Z C BY such that H!(Z) < n and
the above convergence is uniform with respect to y € B” \ Z. (]
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For all y € (Bl,%)y =JzN Bl,%, we define the end points of the section passing through y in
the direction & (see the Figure 1) :

a(y) := min {t €[-2,2]: y+te Bl_g} € [-2,0],

by) = max{t € (2,2 y+1€ € By } (0,2, (3.17)

so that (Bl,g)z = (a(y),b(y)). Note that, for all y € Jz N Bz C (Bl,%)y,

0<Ln:=\/(1—) e vt T (Y et < pa) )l <2 (3.18)

& b(y)é

FIGURE 1

We introduce the family
Tyo = {TeTid s TnBy g £0)

b,int

of triangles which intersect Bl,% and where v; varies enough in the direction £. Note that for
Z0,]

j € N large enough (depending on 7), each T € Tyt 18 contained in B, since the lengths of all

triangles’s edges are controlled by w(eg,;)/0; — 0. The collection T‘Zoz;ft is introduced for technical

reasons to deal with triangles which intersect the boundary of the ball B.

In the following result, we show that, for some subset of Z' C JzN B;_ 3 of arbitrarily small H!
measure, and along a subsequence (only depending on 7)), all the sections in the direction £ passing
through Jz N By_n \ Z’ must cross at least one triangle 7' € Tzo’Jt contained in B, and on which
the longitudinal blope of v; in the direction ¢ is “large”. The formal idea of the proof consists in
observing that, if for some y € JzyN Bi_n the one-dimensional section B5 intersects no triangle in
the collection Tm%t for infinitely many ] ’s, then the function (v;)} Would be bounded in H'(Bj).
Lemma 3.6 would then entail that (v;)5 converges (weakly in H'(BS) and also L'-a.e. in B) to a
constant function. This property contradicts the fact that (vj)g — ﬂg Ll-a.e. in B5 , Where ug is
a step function taking two different values u™ () - €.
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Lemma 3.7. For all ) > 0, there exist a subset Z' C Jyz N B containing Z with H*(Z') <1, and
a subsequence (not relabeled) such that the following property holds : for all y € Jz N Bl,% \ 7’

and all j € N, there exists a triangle T = T(y, j) € T, such that (T N B)S # 0.

b,int

Proof. Let Z be the exceptional set given by Lemma 3.6. We first show the weaker result that
there exists an increasing mapping ¢ : N — N with the following property: for all y € JzN Bl,g \Z

and all j € N| there exists a triangle T = T(y, ¢(j)) € Tff;;‘ft(j) such that (T N B)§ # 0.

Suppose by contradiction that such is not the case, and define

5 = L, M, >0, 72::M>0 and 7" =~%(n):

B
1+2Ln

0
4 )

where we recall that the constants M,, and L,, are defined in (3.9) and (3.18), respectively. Thanks
to Lemma 3.6, there exists a rank j* = j*(v*) € N such that for all y € J;N B\ Z and all j > j*,

/s

Yy

(1= Ce)I(vy)5)' P dt <% and /B5 My A |(vy = w)5] dt < v

We then consider the extraction ¢ : j € N — j + 57 € N which only depends on n. By
assumption, there exists y = y(¢) € Jz N By_2 \ Z and j = j(¢) € N such that (T'N B)i = () for

all T e T;Oi;{jj*. Remembering (3.13), we deduce that (x;4;+)5 = 0 on (a(y),b(y)). Moreover,
since ¢(j) = j + j* > j*, we have

b(y) 112 *2 b(y) ¢
/() (w4505 P dt < 4% and /() My A (55— dt < 7"
aly a(y

y+b(y)
y+tte &
%
u't(xo)

1L,

FIGURE 2
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By continuity of (vj+j*)z§/ on the compact [a(y),b(y)], (vj1;+)§ being in H'(B5), there exist two
points t+ € [a(y), b(y)] N R* such that

(Mn A (i) — u (o) - §|> = My A (vj450)5 (#5) = u*(x0) - &].

min
[a(y),b(y)]NR+E
Hence,
,Y* 1 0 { _ 1 b(y) f n
I, > T (y)M 0 AN (Vjge)y — u (Jt:())~§|dt—|—L—?7 ; My A (vj4+);, — ut (o) - €| dt
> My Al (vjgge)S (67) —u(20) - €| + My A (vj45+)5 (£7) = ut (o) - €]
> My A (] i) () = u™ (w0) - €] + | (vy5)5 (£) = wt (o) -€1)
t+
> My A <|[U]($o)'§| - /t— (w20 ()dt>

> My A ([u](zo) - €l —277),
which is impossible thanks to of our choice of v*.

We are now in position to complete the proof of Lemma 3.7. For all j € N, let

Z; = {y € JyN By _n : there exists T' € Twoz’]t such that

(Tn B)g is contained in an edge or a vertex of T},

7'=zul] 2
jEN
We notice that |J; Z; is H'-negligible (each Z; being finite), hence H'(Z') < n. Moreover, for
all y € JyN By \ Z’ and all j € N, there exists a triangle T' € T;ii(]) such that (T'N B)g is
non-empty, and it is neither reduced to a vertex of T nor contained in an edge of it. It thus implies

and

that (TN B)S # 0. 0
As a consequence of Lemma 3.7, for all j € N, the family of triangles
Fj = {T € Tf%t : there exists y € Jz N By _1 such that (TN B); # (Z)} (3.19)

is nonempty. Thanks to Lemma 3.7, it is possible to obtain a bad lower bound. Indeed, from
that result, we infer that Jz N Bi—2 \ Z’' C Urc gz, P(pe(T)) with © the projection onto IT, in the
direction ¢ defined in (3.16). Using next that £2(T) > H'(pe(T))(ex,/0;)sinfy/2 and that the
Lipschitz constant of ® is bounded by +/1 + 452, we deduce from (3.11) and our choice of z( that

dA .. . (1=9)ko; voiL2(T
2m($0) = h}ﬂ}}gf%/ y>hm1nf Z M

J

V

(1 —=9)ksin 90 0 inf 3
2\/m ]_mo Te?
(1 —9)ksinby
2¢/1+ 4n?
Letting n — 0 and 6 — 0 leads to

— d)ksinby

VT (1 =mn).

Hl(J mBl_,\Z)z

d\ (20) > K sin 6y
dHIL g, =T
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which corresponds to a too low lower bound because of the factor 1/2 in the right-hand side of the
previous inequality. In order to improve the previous argument, we need to establish that many
lines Bg parallel to & and passing through the jump set at some point y € Jz N B must actually

intersect at least two triangles of the collection Tf"i;ft, where the longitudinal variation of v; in
the direction £ is “large”. This idea is precisely formulated in the following result which is an

improvement of Lemma 3.7.

Lemma 3.8. For all n > 0, there exist Z" C JzN B containing Z' with H(Z") < 3n, and a (not
relabeled) subsequence such that for all j € N and for all y € JzN By \ 2",

#{T eyl (TNB)£0} =2

The proof of Lemma 3.8 consists in constructing both Z” and the subsequence inductively by
means of the following technical result, Lemma 3.9. It stipulates that the set of all points y € JzNB
such that Bg intersects exactly one triangle 7" in the collection TZ,Oi;{t’ has arbitrarily small H'
measure. To establish this property, we first show that if such situation arises, then the function
(v;)§ is uniformly close (with respect to y) to the step function ﬂg taking the values u®(z¢) - €.
Thus, up to a small error which is uniform in y, the function (vj)g must pass from the value
u™(xg) - € to ut(zg) - € in an affine way inside the only triangle T' € T;‘;;{t which is crossed by Bg.
However, due to the shape of a triangle, this can happen for at most two different values of y, say
z1 and zy. Then, if y € Jz N B is far away from these two values z; and zs, the variation of (vj)§
is not sufficient to connect the values u™ () - € in an affine way. It thus becomes necessary for Bg

to intersect an additional triangle T" € Tf";;ft, where the variation of (v;)§ is substantial, in order

to recover the full jump.

Lemma 3.9. For all n > 0, there exist constants C, = Cix(n) > 0, v« = 7(n) > 0 and a subset
Z, = Z.(n) C JzN B containing Z' and satisfying H'(Z.) < 2n such that the following property
holds: for all 0 < v < vx, there exists j(v) € N such that for all j > j(v), the set

b,int

Y, = {y € JaNBy_y \ Z': there exists a unique T € T2, such that (T'N B); # (Z)} (3.20)

satisfies
H(Y;\ 2.) < Cur.

Proof of Lemma 3.9. The proof is divided into three steps.

Step 1. In this first step, we show that for j large enough and for many points y € Yj;, the set
(BNT) (where T is the only triangle in Tff’i;ft which crosses BS) is close to (Jz)5, uniformly with
respect to y. _

For all j € N and all y € Yj, let Tj(y) € T}5;7; be the unique triangle such that (T] (y)NB)§ # 0.
We define the end points of the section in the direction ¢ passing through y inside T;(y) (see the
Figure 3) by

’ (3.21)

)

N

a;(y) :=min{t € [-2,2] : y+t& € T;(y)
bi(y) :=max{t € [-2,2] : y+t& € T;(y)
b;(y)]-

)
so that (T](y))fj = [a;(y),b;j(y)]. Note that T;(y) C B (since T;(y) N By_a1 # (), hence —2 <
a;(y) < b(y) and 2 > b;(y) > a(y). Let us show that

Fiw) = (la; ()] + 1b; (W) Ly, (y) = 0 forally € JzNBy_y\ Z". (3.22)

Let y € Jg N By_n \ Z’ and set £ := limsup, f;(y) € [0,4]. Assume by contradiction that £ > 0
and extract a subsequence depending on y (not relabeled) such that f;(y) — ¢. Then, there exists
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yrae  VHYWE Cyndpk ¢

11,

FIGURE 3

a rank jo € N such that y € Y; for all j > jo. Moreover, according to Lemma 3.6 and setting
Ii(y) = (a(y), b)) \ (a;(y), b;(y)) C By, we have

b — 0 < [ Go)fa—o

AmmwﬁVﬁSégL%M@KW@Vﬁ%Q (3.23

b(y)

My A |(v; — )5 dt < /E My A |(v; — )5 | dt — 0.
By

a(y)

Up to another subsequence (still not relabeled), the first condition in (3.23) ensures that a;(y) — m
and b;(y) — m for some m € [a(y),b(y)]. Thus, for all 7 > 0, there exists a rank j; = ji(7) > jo
such that for all j > ji,

I+ := (a(y),m = 7) U (m+7,b(y)) C I;(y),
with the convention that (z,y) =0 if y < z. We set

ID = (aly),m—7), I = (m+7by),
so that ('Uj)gllTi € H'(IF) and the truncated function w; := (M, A (v;)§) V (=M,) € H'(I¥)
satisfies w) = ((Uj)g)/]l{\(vj)gKMn}‘ According to the second condition in (3.23), the sequence

{w;}jen is bounded in H'(IF) and w} — 0 in L*(IF). As a consequence, up to a subsequence,

there exist constants ¢* € R such that w; — ¢* in H*(IF) and L'-a.e. in IF. Yet, as (v;)§
converges in measure to Hfl in IF, up to another subsequence (still not relabeled), we have that
(vj)g pointwise converges to ﬂg L'-a.e. in IF. Hence ¢* = (M, ANu®(x0) - &) V (=M,) = uF(z0) - €
by our choice (3.9) of M,,. Thus, for all 7 > 0,

u” (20) - E L (a(y),m—r) + ut (20) &l mprply)) = ﬂgllf Ll-ae. in I,.
Taking the limit as 7 — 07, we obtain that

u” (20) - £ Lay)m) + Ut (20) - E Ly = U5 L'-ae. in (a(y), by)),
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leading to m = 0 since [u](zo) - £ # 0 by our choice (3.8) of {&. As a consequence f;(y) =
(la;(y)| + bj(y)) 1y, (y) — 0 which is against £ > 0.

Using (3.22), Lemma 3.6 and owing to Egoroff’s Theorem, we can find a set Z, C Jz N B
containing Z’ with H!(Z,) < 2n such that for all v > 0, there exists jo(v) € N satisfying

| a0 Pa < 52

5 M, A|(v; _ﬂ)gl dt <, forally € JgN By _1 \ Z, and all j > jo(7). (3.24)

y

(la; ()| + 165 ()D) Ly, () <~
Step 2. In this step, we show that for many points y € Y}, the variation of (vj)g inside the
only triangle T" in Tlf,(;;zt which is crossed by Bg, is uniformly close with respect to y to the jump
of ﬂg More precisely, let
1 [ M, |[u](zo) - €|
C,:=8(1+— 0 e =Y(n) = = 1,21 L,, ———~> 0. 3.25
n <+Ln)>’ Yo =7x(n) Qmm( o, I e, > (3.25)
Let us show that for all 0 < 7 < ,, there exists a rank j;(v) € N such that
[(0)5(05 (1)) — (v))5(a;(y)) — [ul(z0) - €] < Cyy  forall j > ji(y) and all y € Yj \ Zs.  (3.26)
Fix 0 < 7 < v« and, by (3.24), let jo() € N be such that
/ (w)§) e <7,
(a(),b(w)\(a; (¥),b; (¥))
[y 8oy - wS e <
B;

(la; ()] + 1b; (w)]) <~
In particular, recalling (3.17), (3.18) and by the choice (3.25) of ., we get that 2 > |b(y)| > L, >
Yo > 7 2 [by ()] and 2 > [a(y)] = Ly > 7. > 7 = |a;(y)]; hence
a(y) < a;(y) < b;(y) <b(y)-

for all j > jo(v) and all y € Y; \ Z,.

Writing
My A (07)50;(1) = (07)5(a; () — [ul(xo) - €| < My A|(v)5 0V b (y) — ut (wo) - ¢
+ My A (03)500V b () — (07)5(b; ()]
+My A J(07)5 (0 A aj(y)) —u™ (x0) - €]
+ M,y A (03)5(a; (1) — (v)5(0 Aay(y))]
= JSi+Jo+ I3+ Ja,
it remains to control each of the last four terms.

Let us first estimate the terms Jo and Jy. If bj(y) > 0, J» = 0. Otherwise, by the Cauchy-

Schwarz inequality,
1

0 / 1
< /165 (®)] </b )I((fuj)g) |2dt> <32 < .

J

0
T M| ()
b;(y)

Similarly, we have that Jy < ~.

Let us now estimate the term J;. We consider the function
2y = My A () — ut(ao) - € € HY(BY)
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with

2 = ()5) Lio<(us—ut roye<iry ~ (W5 Tocus (ro)e—y)§<ary)
and the nonempty open interval I := (0V b;(y),b(y)). By the Sobolev embedding and (3.25), we
have that for all t € I,

1
lz;®)] < b(y) =0V b;(y) 125l L2+ + Bly) =0V b, () 25 llLr(r+)
2
< V2(((0)5) L2y + 7 1My A |(v3)5 — ut (o) - ElllLr 1)
n
<

2
24— 7.
(f * Ln) ]
By continuity of (v;)5 in B§, the above inequality remains true up to the end point 0 V b;(y)

of IT, so that J; < (\/5—1— Li)'y A similar argument shows that J3 < (\/5—1— Li)'y, and thus
n n
Ji+ o+ Js+J <8(1+ Li)*y = Cyy, which shows that

My A (03)5(05(y)) = (05)5(a;(y)) = [u] (o) - €] < Cyy.
Eventually, as Cyy < M, for all 0 <y < ~* by (3.25), we conclude the validity of (3.26).

Step 3. We now show that it is possible to include Y; \ Z, inside a finite union of arbitrarily
small segments contained in Jz N B (see Figure 6).

Let 0 < v < v« and j1(v) € N be given by (3.26). For all j > j1(v), we define

’i‘j ={T ¢ ng;{t : there exists y € Y; \ Z. such that (7'N B)g # 0},

and, for all T' € ’f‘j7 we introduce both following quantities :

LT = [Co)-€1 24y 416 reference length of T,

T Je(uy)ri(®8)|

LmaX(T) = ma(xT) L1(T§) the maximal section’s length of T along the direction &.
ZEPe

(3.27)

Note that because T € T}°7, see (3.12), then |e(v;);r€ - €[> > (1 — 0)k03/(aAeg;) > 0, so that
L™f(T) is well defined, and positive by (3.25) since v < .. The quantity L™(T") stands for the
required length of the section T; in order for the (affine) function (vj)g to pass exactly from the
values u™ (20) - £ to u™(zo) - £ across T', up to the error 4C,~. Note that £'(T5) = L(T) for
at most two values of y, say z; and 23, only depending on j and T. If y € Y; \ Z, is such that
(TN B)§ # 0, we know from Step 2 that the variation of (v;)$ across T is close to [u](zo) - €, up to
a small error of order O(«y) which is uniform with respect to y. Therefore, we will show that if y
is far away from z; and 29, then the variation of (’Uj)g across 1 is not sufficient to recover the full
jump [u](zo) - €.

Let 21, 2 and a3 € T be the three vertices of T' and X; := pe(a;) € B¢, We easily see that

there exists ip € {1,2,3} such that X;, = argmax £!(T¢). Up to a permutation of {xy,z2, 73},
z€pe (T)

there is no loss of generality to assume that 7o = 3 and X3 - &+ < X - &4, with £+ € S! being one
of the two orthogonal vectors to &.

€k sin(6p)

Let hr > > 0 be the smallest height of T. We claim that, for all z, 2’ € ps(T") be such
that T¢ # 0, T # 0 and either z- &4 2/ - €1 > X3¢t or 2. €4, 2/ - &1 < X3 - €1, then,
_ 21 |£NTE) - £1(T9)

T hr max(LY(TE), LY(TY))

|z — 2| (3.28)
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Indeed, consider for instance the case where
X162z 6> 60 > X560
(see Figure 4). Let

L:=LNTY), L' :=LNTS), d:=|Xi—z2, d:=|X;-7].

z

FIGURE 4

Then, L' > L > 0, d > d > 0 and using Thalés’ Theorem, we have that
d d-lz-%| L
A N T
. / 1 2L7(T) :
Since d’ < |X1 — X3| = H' (pe([21,23])) < |21 — 23] < =5, we obtain that
L'-L < 2L%(T) |L— L'

L = hr i
so that (3.28) holds in that case. The proof of the other case Xo - &+ < z- &4 2/ 61 < X3¢t is
similar and we omit it.

For all j > ji(v) and all T € Tj, we have L™*(T) > L*{(T). Indeed, if such would not be
the case, denoting by y € Y; \ Z, a point such that (7' N B)§ # 0, then ﬁl(Tpi(y)) = LN(T%) =
bi(y) — aj(y) < L™aX(T) < L*Y(T), entailing that

()5 (05 (1)) = (v)5(a; W) = |e(v)ir : (€@ )] (bs(y) — a;(y)) < [[ul(zo) - €] — 4Cy,
by definition (3.27) of L**!(T'). Therefore, we would obtain that

ACyy < [[ul(wo) - €] = [(v;)5(b5(y)) — (v3)5(a; (W))| < |(v;)5(55 (%)) — (v)5(a;(y)) — [ul(=o) - €],
which is against (3.26). Applying the Intermediate Value Theorem to the continuous functions
y € [X1,X5] = LYTS) € [0,L™(T)] and y € [X2, X3] = L}(TF) € [0, L™(T)], there are at

least one and at most two points zL;, 22, € pe(T) (according to whether 7" has an edge along the
direction £ or not, see Figure 5), only depending on j and T, such that

L‘l(Tfrlcf) = ,cl(Tfif) = LN(T).

|z =2 =d

(We set zl; = 22, in the case where T has an edge along the direction ). Without loss of
generality, we can assume that zrlef St > zrzef et
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FIGURE 5. Two possible configurations of T'.

Let us introduce the following segments (orthogonal to £) associated to T' (see Figure 6),
, L2(T
(1) = {zeﬂg D |z = 2hy] §C’7’IQJ()7} for i € {1,2}, (3.29)
Ek;

where
o 20C,,
7 sinbo |[u](zo) - €]
is a constant only depending on 7.
For every j > j1(7y) and every y € Y; \ Z,, let T € Tf‘;rft be such that (T'N B)g # (). Note that
T eT;. If pe(y) - €+ > X3 - &+ and Zhep €T > X3 - &5 (the other cases being treated similarly),
applying (3.28) above, with z = p¢(y) and 2z’ = z};, we get that

ref?
2L2(T) |(bj(y) — a;(y)) — L*N(T)|

hr  max (bj(y) — a;(y), L*H(T))
2 2L4(T) [1(0,)5(b5(y)) = (v3)5(a;(w)] — I[ul(xo) - €| + 4C,1]|

|p§ (y) - Zrlef| <

= hr le(vj)ir : (E@&)| LH(T)
2L%(T) 5C,y
= hr |ul(zo) - €| - 4Cyy
2
<c QJ;@ :

where we also used (3.26) and (3.25).

We have just shown that for all j > j1() and all y € Y; \ Z,, there exists T € 'i‘j such that
pe(y) € T1(T) UZ,(T). Since y € I, then y = ®(pe(y)) €  (T1(T) UZ(T)), with @ introduced

in (3.16). Recalling that the Lipschitz constant of ® is less than /1 + 412 < 2 for 5 small enough,
we deduce that
1 1 ’ Qj‘CQ(T)
HH(P (T (T)UZ(T))) <2H (T1(T)UZ(T)) < 8C, =———7

Ek;
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2C; 0, L2 (T)
€k

FIGURE 6. The length of T;(T) is given by L =

J

Together with the fact that each triangle in ’i‘j C Tfoi;ft is contained in B, we obtain that for all
Jz 1),

H (YN Z) < ) HH®(TU(T) UT2(T)))

TeT;

0 8C,y (1—6)ko; 8C)y Ak, (By, (z0))
SSC/’}/i] 52(T)§ n J Xdl'g n J J .
T ey, ng;?j K(1—68) e, 5 k(1 —9) 0;
Possibly taking a larger ji(v) € N, we finally get that for all j > j;(7),

8C! X
1 . < n =
H (YJ\Z*)*H(l—é) <2dH1LJu(xO)+1>'y 1 Cy,

for some constant C, > 0 only depending on 7. (]
We are now in position to prove Lemma 3.8.

Proof of Lemma 3.8. Let jo = jo(n) € N such that % < 7%, where C, and =, are given by

Lemma 3.9. For all j > jo, as 0 < 7; := 575~ < 7%, Lemma 3.9 ensures the existence of a rank
i(7y;) > jo such that for all ¢ > i(y;),

HU(Yi\ 2.) < Cuyj = 5
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Thereby, we define the following extraction
¢(j +1) == max (¢(j) + 1,i(v;41))  forall j > jo.

Since ¢(j) > i(v;), then H* (Y \ Zi) < 4. Hence, we set

+oo

7" = 7. U | Yo (3.31)

J=jo

which satisfies 0
1 "
HUZ") <2+ Yo <3,

Jj=Jjo

Moreover, for all j > jo and all y € Jz N By _1 \ Z”, Lemma 3.7 ensures that

#{reTyi s (FnB) A0} =1,

b,int
and since y ¢ Yy (; for all j > jo, it actually follows that
#{reTy (FnB) £} =2,
concluding the proof of Lemma 3.8. (]

In order to derive a lower bound for the surface energy without the factor 1/2, we now construct
two disjoint subfamilies .7 and .#? from .%; (see (3.19)) with the property that both sets

Jr Ur
TeZ} TeZF?

project onto B” = Jz N B, thanks to the mapping ® o pe, into two sets of almost full H! measure
in Jz N B. This is the object of the following technical result.

Lemma 3.10. Let K C Jz N By_n \ Z" be a compact set. For all j € N, there exist two disjoint

subfamilies fjl and ff of F; such that

Eco| |J p(@|ne| | pe(?)
TGQ} Teﬂ]?

Proof. For the sake of clarity, we omit to write the explicit dependance on j for the different objects
considered herafter (triangles, intervals, and so forth).
Forally € JgN B2 \ Z", we consider a pair of distinct triangles of .%; satisfying

{T'W), 7%(p)} € argmin{H" (S(pe(T") N pe(12))) :
TV, T2 € Ty, TUNT2 =0, (11N B)S £ 0, (120 B)§ 40} (3.32)
Note that Lemma 3.8 ensures that the set
{{Tl,T?} C T (TPNB)S # 0 for all i € {1,2}}

is nonempty and finite, hence the minimum in (3.32) is achieved and we have at our disposal such
a pair of distinct triangles {T'(y),T?(y)}. Then, we introduce the following open segment in
BY=JzNB

1(y) = ® (pe(T' () Npe(T2(1)) € BY = Ja 1 B. (3.33)
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Since y € I(y), it follows that

KCJgnB_3\Z"'C U I(y).
YyEJaNB, _ g\ 2"

Furthermore, I(y) is optimal in the sense that any other triangle T' € ng;{t satisfying (T ﬂB)g £ 0
is such that

o

I(y) € @(pe(T))- (3.34)

gt

FIGURE 7

Indeed, setting J := ®(pg (T)), there exist points a, b, @ and b in BY = JzNB such that I(y) = (a, b),
J = (a,b) with a-v+ < b-v+ and a-v+ < b-v*. By construction, there exist i, (resp. i) € {1,2}
such that a (resp. b) is the image by ® o pe of a vertex of T%(y) (resp. T7(y)), see Figure 7.
Assume by contradiction that there exists a point z € I(y) \ J. If y - v+ < z- v+, then J C (a, 2)
since J is a segment containing y. In particular, @(pg(f’i“ (y)))NJ C (a,z). Together with (3.32)

o

and recalling that J := ®(p¢(T)), it ensures that

H ((,2)) = H' (@(pe(T™ (1)) N @(pe(1)) ) = H (1)) = H'((a,2)) + H (2,0) > H'((a,2)),

1 1

which is impossible. A similar argument shows that the other situation y - v— > z - v~ is also

impossible. This shows the validity of (3.34).
By compactness of K, there exist an integer N = N(j,K) > 1 and points y1,...,yn € Jz N
By_y \ Z" such that
N
K c | JI(). (3.35)
i=1
Up to relabeling the points y;, we can assume that y; - v+ < --- < yy - v+ (See Figure 8). Let us
now construct two disjoint subfamilies 55]-1 and 55]-2 of #; by induction in N iterations.
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Iteration 1. Set Z1(1) := {T'(y1)} and F2(1) := {T?(y1)}. Clearly F1(1) N.Z%(1) = () and,
for all k € {1,2}, there is T € .#*(1) such that (B T)g # 0 and I(y1) C ®(pe(T)) .

Iteration 2. We distinguish two cases:

i) If {T"(y2), T%(y2)} N (F1(1) UF2(1)) = 0, then we set .F'(2) := .Z1(1) U{T" (y2)} and
F2(2) := ZF21) U {T?(y2)}. We have that .F1(2) N .#2%(2) = 0 and, for all i,k € {1,2},
there exists T € .#%(2) such that (BN T)g # 0 and I(y;) C @(pg(f’)).

ii) Otherwise, there exist i,k € {1,2} such that T%(ys) € F*(1), i.e. T%(y2) = T*(y1), and
T3 % (y2) ¢ F*(1). In that case, we set Fk(2) := F*(1) and F37k(2) := F37F (1)U
{T3(y2)}. Note that, it might be the case that T3 %(y,) € Z37%(1). We have that
FL2)N.F2%(2) = 0 and, for all i, k € {1,2}, there exists T' € .#%(2) such that (BﬁT)i #0
and I(y;) C ®(pe(T))-

Iteration n + 1 for some n € {1,..., N — 1}. Assume that we have constructed two disjoint
subfamilies .#1(n) and #2(n) of .%; with the following properties: for all k¥ € {1,2} and all
i€ {l,...,n}, there exists T € .#¥(n) such that (BN T)gl # 0 and I(y;) C @(pg(f’)). Let us now
construct ﬁl(n +1) and F2%(n+1):

i) I {T " (Ynt1), T?(Yns1)} N (F Y F%(n)) = 0, then we set Fl(n+1) := Fl(n)U
{TY(yps1)} and F2(n+1) == 92( )U{T?(yn+1)}. In that case, we have that #!(n +
1)N.Z2(n + 1) = § and that for all k € {1,2} and all i € {1,...,n + 1}, there exists
T € Z#*¥(n+1) such that (BﬁT)fh # 0 and I(y;) C @(pg(’f’)). Fori e {1,...,n}, it follows
from the previous iteration n and because .F*(n) C #*(n+ 1), while for i =n + 1, it is a
consequence of the fact that 7% (y,+1) € F*(n + 1).

ii) Otherwise, there exist p, ¢ € {1, 2} such that T?(y,+1) € -Z9(n). Let us further distinguish
two subcases:

(a) If T37P(y,1) ¢ F9(n), then we set F9(n + 1) = F9(n) and F37I(n +1) =
F379n) U{T* P(yps1)}. Then Fl(n+1)N F23(n+1) =0 and, for all k € {1,2}
and all i € {1,...,n + 1}, there exists T € #*(n + 1) such that (BN T)§ # 0 and
I(y;) C @(pg(f)). Indeed, for i € {1,...,n} this is a consequence of the previous
iteration n and of the fact that .#*(n) C .#*(n + 1), while, for i = n + 1, it results
from TP(yn41) € FiUn+1) and T3P (y,41) € F379(n + 1).

(b) If both T! := T (yp41) € F9(n) and T? = T?(y,11) € F9(n), we introduce the
indexes

i = argmin{i e{l,...,n+1}: (Bﬂfl)gi 75@}

and
DRE argmin{i e{l,...,n+1}: (BﬂfQ)gi # Q)}.
Up to interchanging 737 and Ts, there is no loss of generality to assume that i; > is (see
Figure 8). We set Z9(n+1) := Z9(n)\ {T"} and F3>~9(n+1) := F379(n) U{T'}.
Once more, we have Zl(n + 1) N .Z2(n+ 1) = () and, for all k£ € {1,2} and all
i€ {1,...,n+ 1}, there exists T € #*(n + 1) such that (B ﬂT)gl # 0 and I(y;) C
@(pf(j.“)). This is immediate for i = n + 1 because T2 = T?(y,+1) € F(n + 1) and
T =T (yp1) € F379(n+1). Fori € {1,...,n}, there are two possibilities:
e for k = 3 — ¢, it follows from .#379(n) C #3749(n + 1).
e for k = g and i € {1,...,i3 — 1}, by the previous iteration n there exists
T € F9(n) such that (BNT)S, # 0 and I(y;) C ®(pe(T)). As (BNTH)E, =0,
by definition of 4;, this irnphes that T # T!, so that actually T € .F%(n + 1)
satisfies the above requirements. Assuming next that ¢ € {41,...,n}, we deduce
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that n + 1 > ¢ > iy. By definition of iy, we have (B N 1:2)51-2 # () while
(BN Tz)gn ., # 0 so that the convexity of T2 together with the ordering of
the points y; lead to (B N TQ)?i # (. Hence, owing to (3.34), we infer that

I(y;) C <I>(p5(7:2)) and T? € Z4(n + 1) satisfies the above requirements.

We proceed this construction up to the N*® iteration, and finally define
k._ gk
F; = F"(N) for k € {1,2}, (3.36)

which define two disjoint subfamilies of .%; satisfying in particular, thanks to (3.35),

N
K ¢ Ulw)c| U 2w |n| U ®we()

i=1 Teyjl Tey]?

= 0| | p@|n@| |J pe(D)

TeF} TeZF?
The proof of Lemma 3.10 is now complete. O
YN /
: T
fL vt A *
3 T
v
Yiq
/yi2
2
2
1L,
FIGURE 8

We are now in position to complete the proof of Proposition 3.3.

Proof of Proposition 3.3. Since all triangles T' in .%; are contained in B, we get from (3.10b) and
(3.11),

A . Ak, (Bg,(x0)) _ .. . (1—d)ko; o (1= 0)kg;
A — = lim =% > ) Cda > 1 PR 2(7).
dHIL J, (20) P 20; =R 2¢ek; /BXJ S AR 2ek, T;@E o
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Using next the inequality £*(T') > H'(pe(T))(ek,/05) sin /2, we deduce that

d\ (1—90)ksinby . . L
L, )2 Ty it ) M (e(T))

2

Let K C JzNBy_y \ Z" be a compact set and .#} and 77 be two disjoint subfamilies of .7 given
by Lemma 3.10. Thus

o) 2 LI S )+ Y ()

Jj—o00
Teﬂ; Teﬂj?

and remembering that ® has a Lipschitz constant bounded by +/1 + 472,

d\ (1-9)ksinby . . 1 1
Yt ) 2 et i Y HE(T) + Y H@T))
TeF} TeF?

()w ].m‘ ]’I] H 1 U @ (p{( )) H (pf( ))
2 77 J Te
] 4 9]] fj

(1 =9)ksinby , 4
V1+4n?

By inner regularity of the Radon measure H'L (Jz N By n \ Z'"), passing to the supremum with
respect to all compact sets K C Jz N By _n \ Z", we get that

d\ (1 —4)ksinby , 4 "
9 I (gg) > LI g pA B\ 2.
AL, gy RN B )

Remembering that Jz N B = BY, we have
2=H'(JaNB)=H'(JaNBi_g)+n<H'(JaNBi_z \ Z") + 41

because H'(Z") < 3n. Hence

d\ (1 =6)ksinby
22— > ————(2—4n).
dHIL J, (z0) > Tran? A ( n)

Finally passing to the limit as 7 — 0 and § — 0, we deduce that

dX
dH'L T,

which corresponds to the desired lower bound with the correct multiplicative constant. (Il

(x9) > K sin by,

3.3. The upper bound. The proof of the I'-lim sup inequality relies on suitable approximation
results in GSBD (see [16, 30, 19, 24]) which allow us to reduce to the case where the jump set
of u is a finite union of pairwise disjoint closed line segments, and u is smooth outside the jump
set. Then, an explicit mesh construction introduced in [21], adapted to this simple geometrical
situation, provides the desired upper bound.

Proposition 3.11. For all u € L°(Q;R?),
F'(u) < F(u).
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Proof. We can assume that F(u) < oo, and thus that u € GSBD?(Q). Using the density result
for GSBD functions (see [19, Theorem 1.1]) as well as the lower semicontinuity of 7" with respect
to the convergence in measure (see [25, Proposition 6.8]), we can further assume without loss of
generality that u € SBV?2(;R?) N L*>°(Q; R?).

Writing v = (u1, uz), we can apply [21, Lemma 4.2] to both components u; and us € SBV?(Q)N
L>(Q) of u. For @ = (a,b) x (¢,d) C R? with Q CC ', we can find an extension v €
SBVZ(Q/;R?) N L>(Y;R?) such that

Vo = U, ||U||LOO(Q/;R2) < \/§|‘u||Lm(Q;R2) and 7‘[1(89 N Jv) = 0. (337)

Next owing to the density result in SBV (see [24, Theorem 3.1]), there exists a sequence {vy }ren
in SBV2(V;R?) N L>(Q';R?) as well as N, disjoint closed segments LY, ..., L% C € with the
following properties:

U LF, HY(Ty \Ju,) =0, v € W22\ T, ;R?)

and
vp — v strongly in L'(Q;R?),
Vg — Vv strongly in L2(€); M?2%2), (3.38)
limsup, H' (AN J,,) < H'(ANJ,) for all open subset A CC (V.

Using (3.38) and the lower semicontinuity of F” in L°(Q2;R?) with respect to the convergence in
measure, we obtain that

F"(u) <liminf F" (vyq).
k— o0

The proof is complete once we know that lim infy 7" (vg|o) < F(u). This follows from Lemma 3.12
below, applied to each function vg. Indeed, using that result, we get that

lim inf 7 (vg o) < lim inf {/ Ae(vy) @ e(vy) dz + K sin GgH (T, ﬂQ)} :
k—o0 k—o0 Q
Recalling the convergences (3.38), we conclude that

F'(u) < | Ae(v):e(v)dr+ rsinfgH' (J,NQ) = | Ae(u) : e(u)dr + ksinOgH (J,) = F(u),
Q Q

where we used H!(J, N9Q) =0 and that v = u in Q. O

We are back to establishing the following result.
Lemma 3.12. Let v € SBV2(QY;R?) N L>(Q/;R?) be such that

Ty _UL“ YT\ Jy) =0, ve W'\ J,;R?),
for some pairwise disjoint closed segments Li,...,Ly C . Then,
F"(v)0) / Ae(v v)de + ksinOgH' (J, N Q).

Proof. Since 2 CC €/, then d := dist(2,R? \ Q) > 0. For all § € (0,d), let us consider the open
sets
Qs :={x € Q : dist(z,R*\ Q') > 6}
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which satisfy Q cC Qs CC /. We introduce a cut-off function ¢5 € C°(R?;[0,1]) which is
supported in €' and such that ¢5 = 1 in Qs, g5 = 0 in R?\ Q 5 We next introduce the function

v = ¢sv € SBVZ(R?%;R?) N L>°(R?;R?). We remark that

N
T € W <R2 \UZs R2> . JoCJy, and J,\ Jy C Jy\ Qs (3.39)
i=1

Since J, C J, and H!(J,) < oo, the disjoint closed segments L; C V' satisfy
N
H(J,) =H (T) =D H (La).
i=1

Then according to [21, Appendix A], since 6 is smaller than or equal to Og := 45° — arctan(1/2),
for all € > 0 there exists an admissible triangulation T. € T:(R? w, ) such that, setting T. :=
{T eT.: TN, L: #0},
e The vertices of T, are never situated on any L; :
forallie {1,...,N}, L; N Vertices(T.) =0,

e Using [21, Formula (4.9)],

2
> £ iT) — sin M (J,). (3.40)
TET!

We define the set D, := (Jpeq T and x. := 1p, € L>(R?;{0,1}), while v, is the Lagrange
interpolation of the values of © at the vertices of the triangulation T.. Note that, if z1, x5 and
x3 are the vertices of T € T., the values ©(x;) are well defined since, by construction of the
triangulation T, the points 2, 2 and x3 do not belong to | J; L;. In particular, 7. € V.(€',w, )

and
X: — 0 strongly in L1(Q'),
T =T strongly in L2(Q; R?), (3.41)
(@) lgnp, — e(v) strongly in L?(Q; MZx2).

Indeed, the first convergence is a consequence of (3.40) since
Ixellzr oy < L2(D.) = Z L3(T) — 0.
TET!,

Next, noticing that every T € T, \ T. is contained in R? \ |J; L; and v € W*>(R? \ |, L;; R?),
we infer that for all e > 0 and T' € T \ T%,

[0 =Bl a1 (rmey < Cel| D0 L2y, (3.42)

for some constant C' = C'(6p) > 0 depending only on 6y (see e.g. [23, Theorem 3.1.5]). On the one
hand, since ||[Vc|| o (r;r2) < |[0]| £oo (7;r2) for all T' € T, we get that

0 = Bll72(0r ey < 201017 oy Y, L3(T) + > / 7. — o] da.
TeT!, TeT T, T 07 T
Then, using (3.42) yields
[T = 0l|72(0rm2) < 2007 o0 (re2;m2) L3 (De) + C%e? Z D232
TET\TL, TN #0
< 2”§H%°°(]R2;IR2)’C2(DE) + 02€2HD2@”%2(R2\U,~,L1‘) — 0,
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leading to the second convergence in (3.41). Note in particular that 7. converges in measure to ©
in ©’. On the other hand, writing

le@)tanp, — <O aqszgsy = | le@Pdot [ Je) e da.
Q'ND. Q\D.

sym)

and using that £2(D.) — 0, that Vo € L?(R?* M?*?) (because v € SBV?(R?;R?)) as well as
(3.42), we get that

He(@E)]IQ/\D5 — e(E)HiZ(Q/ M2X2 < /Q b ‘6(5”2 dx + 0252||D2§||%2(R2\Ui L;) — 0,
'nD,

Sym)
which implies the third convergence in (3.41).
We next show that

F'(v0) / Ae(v v)dz + ksino (H'(J, N Q) + H' (J, \ Q) . (3.43)
Indeed, as f < k thanks to the growth properties (1.4), we get
1 _ _ 1
gf (eAe(De) : e(v:)) dz < Z £2(TQQ’)gf <5Ae(v5)‘T e(ve |T) Z L3(T
@ TETN\TL, TN #) € rer,

On the one hand, (3.40) implies that
ST £X(T) 5 rsinboH (). (3.44)

TET.,
On the other hand, since every triangle T' € T. \ T is contained in R? \ Uf\il L;, then
_ [o(e) = 9la)
s — 2]
where x1, x5 and x3 are the vertices of T. Hence, applying [21, Remark 3.5], it results that

/B

sin 6

.Q?‘-.Z‘j

V’UE|T < ||V5||LW(R2\U1_ L;;M2%2),

|zi — 2]

||e@e)||Loo(R2\DE;M§yX,§) =

||VU||L°°(]R2\U LiM2x2) = : K < o0. (3.45)

Therefore, setting

t
bc := sup —f( ),
O<t<eBK2 T

we deduce, using f(0) = 0 and the property (1.5) of A, that

éf (eAe(@.) : e(W)(1 — xe)) < 8:Ae(Te) : e(We)(1 — xe) in

From the properties (1.4) of f, we infer that 6. — 1 as ¢ — 0. Hence, using the third convergence
n (3.41), it ensures that

Y ATn Q’)%f (cAe()pe(@)r) = Lt (eAe@m) s @)1 - x2) do

€
TET\TL, TN £0 v

S 55 Ae(@s) : 6(@5)]]_9/\D5 dx
QI
— Ae(D) : e(D) dx. (3.46)
Q/
Gathering (3.44) and (3.46), we obtain that
lim sup 1f (eAe(Te) : e(Te)) dx < Ae(T) : e(T) dx + K sin GgH (J,). (3.47)

e—0t Jor € Q
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Besides, after decomposing the above integral over Q' \ Q and Q, we can apply the lower bound
estimate of Propostion 3.3 to the open bounded set with Lipschitz boundary Q' \ Q (for which
T, is also an admissible triangulation, Uejong € V(2 \ Q) and v, converges in measure to v in
'\ Q), which leads to

lim sup 1f(EAe(@) ce(ve)) dx

e—0t Q€

1 1
> limsup | —f(cAe(Te) : e(Te)) dx + lim 1nf/ —f(eAe(Te) : e(T.)) dx
e—=0 Ja € e=0 Jong €

> F'(7)0) + Ae(D) : e(D) dx + rsinOgH (Jz N\ Q).
ona

Gathering (3.47) and (3.39), as by construction 7jq = v|q, we deduce that
F'vg) < /Ae v)dx + ksinOH' (J, \ Jo) + ksinOgH (J, N Q)
< / Ae(v v)dx + ksin Qg (J, \ Qs) + rsinOgH' (J, N Q),

which settles (3.43). Passing to the limit as § \, 0" thanks to the monotone convergence Theorem,
we obtain that H!(J, \ Qs) — H(J, \ ') = 0, hence

F'(vg) / Ae(v v)dx + ksin O H (J, N Q),

which completes the proof of Lemma 3.12. O

4. CONVERGENCE OF MINIMIZERS

In order to investigate the approximation of minimizers for the Griffith energy, it is natural to
impose boundary conditions to avoid trivial minimizers such as rigid displacements. This section
is devoted to an approximation of the Griffith functional under a Dirichlet boundary condition by
means of brittle damage energies, where the density f reduces to f(t) = k At for ¢t € R, and the
energy J. corresponds to

Fe(u) = /Q g AAe(u):e(u)dz for u € Vo(Q).

4.1. Griffith energy with Dirichlet boundary condition. In order to formulate a Dirichlet
boundary condition, we need to consider a larger bounded Lipschitz open set ' such that Q C Q.
Let w € W2 (R?;R?) be a prescribed boundary displacement. Given an admissible triangulation
T. € T.(Q) of ', we define wr_ as the piecewise affine Lagrange interpolation of w on T.. Note
that by standard finite element estimates (see [23, Theorem 3.1.5]),

wr, € Vo(Y), wr, — w strongly in H'(;R?) and sup F.(wr,) < +o0. (4.1)

e>0

We define VP (€)') to be the set of all continuous functions u : €' — R? for which there exists a
triangulation T. € 7-(€') so that u is affine on each triangle T' € T. and u = wr, on each triangle
T € T, such that TN (Q'\ ) # 0. We consider the following discrete functionals

/ g AAe(u) :e(u)dz if v e VPT(Q),
Q

400 otherwise.

G.:uec LO(Y;R?) =
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The Griffith energy with Dirichlet boundary condition w is defined, for u € L°(Q'; R?), by

[ At sefu)da f {u € GSBD*(Q),

Q ) _

G(u) = " isiny [HL(J, NQ) + H (2N {u # w})] u=wlae in @\
+00 otherwise.

Note that the additional boundary term accounts for possible jumps at the boundary, where the
boundary condition fails to be satisfied. In the previous expression and in the sequel, we still
denote by u the trace of ujq € GSBD?*(Q) on 99 (see 26, Theorem 5.5]).

We will show a compactness result for sequences of dispacements u. with uniformly bounded
energy, with respect to the L°(Q';R?)-topology of convergence in measure, from which we will
deduce the following result, generalizing Theorem 1.2 to the case of Dirichlet boundary conditions.

Theorem 4.1 (T'-convergence under Dirichlet boundary conditions). The family {G.}->0
['-converges, with respect to the L°(Q';R?)-topology, to the Griffith functional G.

Considering eventually a sequence of minimizers of G. (see 4.11), we will show that, up to a
subsequence and up to subtracting a sequence of piecewise rigid body motions, it converges in
measure in 2 to a minimizer of G and the minimal value of G. converges to the minimal value of
G. In other words, we obtain the fundamental theorem of I'-convergence in our specific context.

Corollary 4.2 (Convergence of minimizers). Assume further that Q and Q' are connected.
For each ¢ > 0 small, let u. € VPT(Q) be a minimizer of G.. Then, there exist a subsequence
(not relabeled), a sequence of piecewise rigid body motions {re}e~o and a function u € GSBD*(Q')
with u = w L%-a.e. in Q' \ Q, such that ue — re — u in measure in Q, G.(u.) — G(u) and u is a
minimizer of G.

4.2. Compactness for sequences with uniformly bounded energy. The following result
shows a compactness and lower bound estimate for any sequence with uniformly bounded energy.

Proposition 4.3. Let {e;}ren satisfying e — 0 and let {ug}ren C L°(Y;R?) be such that
M := sup,, G., (ug) < oo. Then there exist a subsequence (not relabeled), a Caccioppoli partition
P = {Pj}jEN of ', a sequence of piecewise rigid motions {ry}ren with

Tk = Z Ti ]lpj y
JEN
and a function u € GSBD*(Q') such that u = w L?-a.e. in '\ Q,
ri(z) — rl(z)] = 400 for L:-ae. x €Y, for alli # 7, (4.2)

up — T —> u in measure in ', (4.3)
and

liminf [ 2 A Ae(uy) : e(ug) dx > / Ae(u) : e(u) dz + K sin OgH (J, U O*P). (4.4)
k—oo Jo €k Q

Proof. By definition of V2'r(Q), there exists an admissible triangulation T} € T, (€') such that
uy, is affine on each triangle T € Ty and uj, = wr, on each triangle T' € Ty, intersecting '\ Q.
We introduce the characteristic functions

Xk = ]l{Ae(uk):e(uk)ZsL;} € L>(9;{0,1})
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which are constant on each triangle T' € T}. Since uy = wr, on each triangle T' € T}, intersecting
'\ Q and w € W2>°(R?;R?), we deduce that, for k large enough, xx = 0 in '\ Q. Thus

N
Dk::{xk:].}:U’TikCQ

i=1
for some triangles T € Ty, and L2(Dy,) = fQ Xk dx — 0.

Let vg := (1 — xx)ur € SBVZ(Q;R?) with Vo, = (1 — x)Vug and J,, C vazkl oTF c Q.
Arguing as in the proof of Proposition 3.1, we infer that

sup{ e(vk)|2dx+7{1(]vk)} < 0.
keN Lo

In view of the GSBD?-compactness Theorem ([20, Theorem 1.1]), there exist a subsequence (not

relabeled), a Caccioppoli partition P = {Pj }j eN of €, a sequence of piecewise rigid motions
{7kt ren with
=Y M lp,
jEN

and a function @ € GSBD?(Q') such that

|7 (z) — Fi(x)| — 400 for L%a.e. z €, for all i # j,
v — T, — U@ in measure in §,
e(vg) = e(@) weakly in L*(Q'; MZ%2).

Since £2(Dy,) — 0, we deduce that uj — 7 — @ in measure in '.

For all j € N such that £2(P; N\ Q) > 0, the convergence in measure of uy, — fi to @ together

with the convergence in measure of uy to w in P;NQ'\ Q =: V; ensure that 7, — w — @ in measure
in V. Since the space of rigid body motions is a closed finite dimensional subspace of L°(€'; R?),
J

\%
= Z r 1 P;s

JEN, L2(P;NQ/\Q)>0

we can find a rigid body motion r/ such that 7, = w — @ £?-a.e. in V. Therefore, with

the piecewise rigid body motion ry := 7 — 7 and the function u = @ +r € GSBD?*({)') are such
that

ur — 7', — u in measure in €Y/,

u=w L2ae. inQ\Q, (4.5)

e(vg) = e(u)  weakly in L*(Q'; M2%2).

We are now back to prove (4.4). As in the proof of Proposition 3.3, we define the following
Radon measures on
Ap = = A Ae(uy) : e(ug) L2LQ € M(Q).
€k

Using (4.1) and the energy bound assumption on uy, we obtain that the sequence {A\;}ren is
uniformly bounded in M(Q'). Thus, up to a subsequence (not relabeled), we have A, — X\ weakly*
in M(§') for some nonnegative measure A € M(Q'). Thanks to the lower semicontinuity of weak*
convergence in M(') along open sets, we have that

lim inf/ EA Ae(ug) : e(ug) dr = liminf \g(Q') > \(). (4.6)
k—o0 Q' €k k—o0
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Recalling that P U 9*P contains H'-almost all of €, and using that the measures £2L ¢,
HIL(PM N.J,) and H'L 0*P are mutually singular, it is enough to show that

X 9 .
m Z Ae(u) : €(U) L-a.e. in Ql7 (47)
dX : 1 : 1
PO AT > ksinfy H'-ae in PV NJ,, (4.8)
and
o 6y Hl-ae. in 0P (4.9)
d”;’-lll_a*P_HmO -a.e. in . .

Indeed, once (4.7), (4.8) and (4.9) are satisfied, it follows from the Radon-Nikodym decomposition
and the Besicovitch differentiation Theorems that

o d
it "t o ny

X
dHLO*P

A HILPY NI, + HILO™P + )%,

for some nonnegative measure \* which is singular with respect to £2L_ ', H'L (P n.J,) and
H1L 0*P. Thus, after integration over 2’ and recalling (4.6), we would get that

liminf/ LA Ae(ug) s e(uy)dr > | Ae(u): e(u)dz + rsinGeH' ((J, N PWLYU I*P).
k—oo Jor €k Q/

On the one hand, the convergence in H!(Q'; R?) of wr, to w (see (4.1)) ensures that

lim inf/ LA Ae(ug) : e(ur)dr < limsup Ae(wr,) : e(wr, ) dx + liminf G, (uy)
k—oo Jor €k k— 00 Q\Q k— o0
< Ac(w) : e(w) dz + liminf G, (ug). (4.10)
Q\Q k—oo

On the other hand, using that u = w in Q" \ Q and that P U9*P covers H' almost every €', we
obtain that

Ac(u) : e(u) da + rsinfoH ((J, N PL)UI*P)
Q/
= Ac(w) : e(w)dz + / Ae(u) : e(u) dz + ksinOgH' (J, UO*P). (4.11)
o\Q Q

Gathering (4.10) and (4.11) leads to (4.4), which completes the proof of Proposition 4.3. |

Using the last convergence in (4.5), we easily get inequality (4.7) arguing in an identical manner
than in the proof of Proposition 3.4. We do not reproduce the argument. The rest of this section
is devoted to the establishment of (4.8) and (4.9). We start with the lower bound inequality for
the jump part of the energy in the measure theoretic interior of P.

Proposition 4.4 (Lower bound for the jump part in PM). For H'-a.e. 2o € PM N J,,
dA
dH'(PM N J,)

Proof. The proof is very similar to that of Proposition 3.5. We just sketch it, underlying the main
differences.
Let 2o € P N J, be such that
dX AB
(z9) = lim ( g(l”o))
dHIL(PM N .J,) oNO H(PMW N J, N B,(x0))

(20) > K sinby.
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exists and is finite, and
1/p(1) B
lim HY (P N T, N By(xo))
AN 20
According to the Besicovitch differentiation Theorem and the countably (H!,1)-rectifiability of
PO N J,, it follows that H!'-almost every point zo in P N .J, fulfills these conditions.

=1.

By definition of the jump set J,, there exist v := v, (2¢) € S* and u*(zo) € R? with ut(zq) #
u~ (o) such that the function u,, , := u(xo + ¢-) converges in measure in B := B;(0) to the jump
function

+ ify-v>0
TiyeBs " (o) nyr =t
u (xo) ify-v<O,
as 0 \( 0. As before, we consider a sequence of radii {g;} jen such that o; ~\, 0 and A\(9B,, (x0)) = 0
for all j € N. Arguing as in Proposition 3.5, there exists an increasing sequence {k;};cn such that
k; /oo as j — 0o and

(uk]. — rkj)(aco +0j-) = U in measure in B,
M. (B, (x dA
kJ( Q]( 0)) N - - (Z‘()),
20; dH'L(PM N J,)
er; /05 =0, wlex,)/0; — 0.

By definition Qf PM) | there exists ip € N such that zo € Pz-o(l). We thus infer that the function
v; == (uk, — rlk‘;)(:ro + 0; ) € H'(B;R?) converges in measure to u in B. Indeed, for all > 0,

(BN {lv; —al >n})
Pi — X
< £2(Bﬂ {|(ukj — Tkj)(l‘o + 0; ) —ﬂ| > ’17}) + L2 (B\ (090)> — 0,
j
where we used that xg is a point of density 1 for P,,. We are now back to an analogous situation

than (3.10), since v; is continuous on B and piecewise affine on each triangle T € (Tkj — xo)/gj.
Therefore, from here the conclusion of Proposition 4.4 results from the proof of Proposition 3.5. O

We next pass to the lower bound inequality for the energy on the reduced boundary of P, which
presents some non trivial adaptations of the proof of Proposition 3.5.
Proposition 4.5 (Lower bound on the reduced boundary 9*P). For H!'-a.e. zo € 0*P,

dX

_ > i .
d?—[ll_a*”P(xo) > K sin g

The rest of this subsection is devoted to prove Proposition 4.5, with essentially the same structure
than the proof of Proposition 3.5.

Blow-up. Let xg € 0*P be such that
xg € 0" P, NO*P;, for some i # jo,

. Dlp, (By(x0)) -
= X = — . h = 1 f k S ) )
v:=vp, (xg) vp,, (xo) where vp, (z0) 91{% |D]1Pk\(Bg(SU0)) or {i0, o}
dX , A (Bg(20)) . e
————(xp) = lim — exists and is finite,
dH1 |_3*73( 0) oNO Hl(a*'PﬂBQ(wo))
1 *
lim H(0*P N By(xo)) _1

9

N0 20
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and there exist traces u™ (z¢) € R? such that the function u,, , := u(z¢+ 0-) converges in measure
in B := B1(0) to

ut(zg) ify-v>0,

0.
u (xg) ify-v<O, 85 0 N

y € B—a(y) := {
The previous properties turn out to be satisfied for H!-a.e. g € 8*P. This is a consequence of the
countably (H!,1)-rectifiability of that set, the Besicovitch differentiation Theorem, the fact that
POy Ui, (0" P;N0" P;) covers H! almost all of ' ([3, Theorem 4.17]), and the existence of traces
on (H!,1)-rectifiable sets (see [26, Theorem 5.2] in the case of 1-dimensional C'!' submanifolds
which may be extended to countably (H!,1)-rectifiable sets arguing as in [5, Proposition 4.1]).

To simplify notation, let us denote by Pt := P,; and P~ := P;,. According to De Giorgi’s
Theorem (see [3, Theorem 3.59]) we infer that

1p:_,, = 1g= strongly in L'(B) as 0 \, 0, (4.12)
where H* C R? denote the halfspaces orthogonal to v and containing +v. With these notation,
we have that

u=u"(

20)Lg+np +u” (z0)Llu-np-
Note also that contrary to Proposition 3.5 where jump points were considered, it might be the case

that u™(29) = u™(xp), i.e. that @ is constant.

Extraction of diagonal subsequences. As before, we consider a sequence of radii {g;};en
such that o; \, 0 and A(9B,,(z0)) = 0 for all j € N. By our choice of zg, (4.2) and (4.3), with
r,f := Tk |p+, We have :

lim lim (uk — rk)(xo +0j-) = lim gz, o, =T in measure in B,
j—00 k—oo j—00 i 7

lim lim arctan|r} —r, |(zo +¢j-) = = in measure in B,

lim lim 7)\16(3& (20)) = lim )\(ng (@) = ax (x0)

lim lim &= lm m 2GR o,

Jj—00 k—o00 0j Jj—o00 k—o00 0j

We can thus find an increasing sequence {k;};en such that k; 0o as j — oo and

(up, =k, ) (w0 + 0j-) = U  in measure in B, (4.13a)
arctan|r,jj =i l(xo+05°) = g in measure in B, (4.13b)
Ak; (B, (%0)) dA
i\Poj 4.13
2, dHiLop ") (4.13¢)
g, WEw) g (4.13d)
Qj 9j

Let vj == u, (w0 +0; ), r;t = r,i (xo+0j-) and rj := T;_]IHJrﬁB_"rj_ﬂH*ﬁB' By (4.12) and (4.13),
we have for all n > 0,
Ez({|vj - r]i —ut(z) >n}NB ﬂHi)
§£2 (BﬂHi\(Pi—xo)/gj)—kEQ ({|vj—rkj(x0—|—gj )—ﬂ| >’I7}OB) — 0.
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Thus, up to a subsequence

{vj - rji — u(zg)  in measure in BN H*, (4.14)

rf —r7| > 400 L2a.e. in B.
| J J

Selection of a slicing direction. According to [20, Lemma 2.8], there exist an H!-negligible
set N C BY and a countable dense subset D of S! such that for all £ € D and all y € B” \ N,

|(rf =) (y) - €] = +o0

as j — +o00. Note that wfg -¢ =0, so that the quantity ¢ — (r;r - r;)g(t) = (rf — i )(y) - € is
independent of ¢ € Bg. Thus, for all y € B \ N, we have

™

+_
arctan|(r;” —r; )y — 5 (4.15)
For any n > 0, let £ € S' N D be such that
1
v—gl<n vegzg, vt <n (4.16)

As in the proof of Proposition 3.5, using a change of variables and the ellipticity property (1.5)
of A and (4.13d), we get

dX K a
22— > i A Ve €12d
dH1 La*p(xo) = 1;1801;1) 0; /B £k, Q? \e(vj)g §| Y
so that, introducing the following characteristic functions,

=1 € L>(B;{0,1}),
X {sleeerzz=] (B:{0.1)
J J

we obtain that

dA « KO;
2——(xg) > limsup ¢ — 1—x;)e(v;)€-€*d +—J/ -d}. 4.17
Lo = msw { £ [ 01— letw ey + 22 [ sy (117)
We define the translated and rescaled triangulations:
, 1 " , .
T*9 = — (T —ao), T;" = {T e T+ Lle(v))r€ - € > W} :
05 Qj k;

and the family of triangles which intersect By _a:

Trod . {TeTf“’j: Tﬂﬂ#@}

b,int

Note that v; — rjt is affine and x; is constant on each T' € T®0J, and that (4.13d) ensures that

for j € N large enough (depending on 7)), each T' € Tff’i;ft is contained in B. As in (3.17), for all
y € (Bl,g)”, we denote by a(y) and b(y) the end points of the section passing through y in the
direction & (see the Figure 1) in such a way that (Bl_%)g = (a(y),b(y)). We also recall that L, is
defined as in (3.18) and satisfies 0 < L,, < |a(y)], [b(y)| < 2.

Using (4.14), (4.15), (4.17), Fubini’s and Egoroff’s Theorem, we can adapt the proof of Lemma
3.6 to show the following result.

Lemma 4.6. For all n > 0, there exist a subset Z C BY containing N with H'(Z) < 5, and
a subsequence (not relabeled) such that the following property holds : for all v > 0, there exists
Jo = Jo(7y) € N such that for ally € B¥ \ Z and all j > jo,

[ oasar<a [ - 0f)iesrrd <

Y Y
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and
+ + Y _
/Bmf“(“-”‘” Sy —ut(@o) gl dt < oy 1) =)l 2 [lul(wo) - €] + 1.

As in the proof of Proposition 3.5, we next show that, for some subset Z’ C (Bl,g )¥ of arbitrarily
small #! measure, and along a subsequence (only depending on 7), all the sections in the direction

J
n

passing through (B;_»)¥ \ Z’ must cross at least one triangle T' € T7%7, contained in B.
g g 4 g b,int

Lemma 4.7. For all n > 0, there exist a subset Z' C BY containing Z with H'(Z') < n, and a
subsequence (not relabeled) such that the following property holds : for all y € (Bl,g)” \ Z' and

all j € N, there exists a triangle T = T(y,j) € Tx‘)’jt such that (T N B)g £ 0.

b,in
Proof. Let Z be the exceptional set given by Lemma 4.6. We first show that there exists an
increasing mapping ¢ : N — N such that : for all y € (Bl,g)” \ Z and all j € N, there exists a

triangle T' = T'(y, #(j)) € Tigﬁ(j) such that (TN B)g # (). Suppose by contradiction that such is
not the case, and define

Ly _ A
1+2L, 4
Thanks to Lemma 4.6, there exists a rank j* = j*(v*) € N such that for all y € B” \ Z and all
> 5%, |(TJ+ frj_)§| > |[u](zo) - €| + 1 and

* 7
/ (1= ()P ()5) 1P dt < 77, / LA (v —15)5 — u™ (o) - €] dt < .
B} BSNR+ 2

v =L,>0, 7 := >0 and " =~"(n): 0.

As in Lemma 3.7, we consider the extraction ¢ : j € N — j + j* € N. By assumption, there
exist y € (By_2)”\ Z and j € N such that (TﬂB)i =0 forall T € TZ(;T{;” , implying that
(Xj+5+)5 = 0 on (a(y). b(y)), [(r) ;- —r73)5] 2 [[ul(zo) - €] + 1 and

b(y) *
* Y
/ [((wy450)5) 17 dt < 72, / LA (g = 75505 — ut (o) - €l dt < T,
a(y) la(y),b(y)]NRE

since ¢(j) = j + j* > j*. By continuity of (vj4j« — rﬁj*)g on the compact sets [a(y), b(y)] N RE,
there exist two points
. 3
t¥ € argmin (1 A (Ve — T;'t+j*)y — ut(z0) §|) )
[a(y),b(y)INRE

Hence, recalling (3.18)

|
Y

LA (U745 = 1735 )5 () = u™ (o) - €] + 1AL (viage = 1) S (47) = u¥ (20) - €]

>>1_2’Y*,

which is impossible thanks to of our choice of v*. We conclude the proof of Lemma 4.7 in the same
way as for Lemma 3.7. O

Ly

T

/t ((07+5)5) () dt

Y

1A (Hu}(wo) E+ (rjtrj* - rjjrj*)g’ —

As a consequence of Lemma 4.7, introducing the family of triangles

b,int

Fj= {T € T, . there exists y € (By_n)" such that (TN B)g # (Z)}

for all j € N, it is possible to obtain a too low lower bound, roughly speaking because Lemma
4.7 does not exhibit enough triangles in Tf’oi;ft, as explained after (3.19). Therefore, we need to

establish that many lines B§ parallel to & and passing through BY must actually intersect at least
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two triangles of the collection Tb%t To this aim, we show that the set of points y € B” such that

0,]

527, has arbitrarily small H! measure.

B§ intersects exactly one triangle T in the collection T

Lemma 4.8. For all n > 0, there exist constants C, = Cy(n) > 0, v« = 7(n) > 0 and a subset
Z. = Z.(n) C BY containing Z' and satisfying H*(Z.) < 3n such that the following property holds:
for all 0 < v < 7, there exists j(v) € N such that for all j > j(v), the set

Y, = {y € (Bi_y)" \ Z": there ewists a unique T € Txogt such, that (T N B)S # @}

satisfies

H(Y;\ 2.) < Cr.
Proof of Lemma 4.8. We follow the same three steps structuring the proof of Lemma 3.9.

Step 1. We start by showing that for j large enough and for many points y € Y}, the only

triangle T in Tb[;’ﬂbt crossing Bg is drawing closer to the diameter B".

Forall j € Nand all y € Y}, let T}(y) € Tfonft be the unique triangle such that (7} (y) NB)5 # 0.
We keep the notation (3.21) for the end points a;(y) and b;(y) of the section in the direction &

passing through y inside Tj(y) (see the Figure 3). Let us show that
£iw) = (la;()| + 6 (¥)) Ly, (y) = 0 forall y € (B1-g)" \ Z".

Let y € (Bi_2)” \ Z'. Assume by contradiction that ¢ := limsup; f;(y) > 0 and extract a
subsequence (depending on y, not relabeled) such that f;(y) — ¢. Then, there exists a rank
jo € N such that y € Y; for all j > jy. Moreover, according to Lemma 4.6 and setting I;(y) :=
(a(y),b(y) \ (a;(y), b;(y)) C By, we infer that

@@*%@N+/

Ii(y)

|((vj)§)'\2dt+/ LA (0 = 15)S — wt(wo) - €] dt — 0. (4.18)

[a(y),b(y)]NRE

Up to another subsequence (still not relabeled), it ensures that a;(y),b;(y) — m for some m €
[a(y),b(y)]. Thus, for all 7 > 0, I; := (a(y),m — 1) U (m+7,b(y)) C I;(y) for j € N sufficiently
large. In particular, we deduce that m — 7 < 0. Indeed, assuming that m — 7 > 0, by continuity

of (v; — r;r)g on (0,m —7) and of (v; — r;)g on (a(y),0), there exist

t;‘Gzz%‘gmir)ll/\|(vjfrj)§fu+(x0)~§| and t; Ea(r%r)né?l/\\( 7"j_)§fu*(:£0)~§|7
m—T a(y

which satisfy

1A|(vj—Tf)i(tf)—u+(xo)~§|+1A|(Uj—Tj_)f,(t])—u (wo) - €

>1/\<|[]( 0) &+ (r \—2\//1() 2dt>

according to (4.18) and (4.15). However,

LA (v = r)5 () = ut (zo) - €[+ 1A |(vj = r7)5(t5) — u™ (wo) - €]
0

1 1 m—T
< — 1/\|(v-—rf)f—u*(xo)f\dt—i—i/ LA (vj —r)s —ut(zg) - €| dt — 0
Ly Jagy) Lo m-—=TJo R

according again to (4.18), which leads to a contradiction. We similarly show that m + 7 > 0,
leading to |m| < 7. Taking the limit as 7 — 07, we obtain that m = 0 which is against £ > 0.
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Therefore, owing to Lemma 4.6 and Egoroff’s Theorem, we can find a set Z! C BY containing
Z' with H1(Z}) < 2n such that for all v > 0, there exists jo(v) € N satisfying

[ 0= DIy P i <2,
/ 1/\|(Uj—7’f)§—ui(xo)-§|dt§ 1, (4.19)
BjNR* 2

(la; ()] + [6;(W)]) Ly (y) <~
for all y € (By_y)” \ Z; and all j > jo(7).

Step 2. In this step, we show that for many points y € Y}, the variation of (v; — 7"])5 inside the

only triangle T in Tfoi;ft which is crossed by Bg, is close to that of uE We consider the constants
Cy, and . defined by

1 1 . 1
Cy .8(1+L> >0, v ="7(n):= 5 min <1,C17,L,]> > 0.

n

Let us show that for all 0 < v < ~,, there exists a rank j;(v) € N such that for all j > j;(v) and
ally € Y\ Z1,

(0565 (1)) — (v)5(a3 () — (rF —r7)5 = lul(wo) - €] < Ty (4.20)

Fix 0 < v < 7, and let jo(vy) € N be such that (4.19) holds for all j > jo(y) and all y € Y; \ Z1.
As before, the choice of ~, leads to a(y) < a;(y ) <bj(y) < ( ) and we have

|(0;)5,(0; (1)) — (v;)(a;(y)) — (rF — 7)) — [ul(@o) - €] <|(v;) (0V () — () — ut(wo) - €]
Hw 0V b;(y) — (v5)5(b; ()]
+] ()5 (0 A aj(y) — (r7) — u (o) - €
+ [(0))5(a;(y) — (0)5(0 A a;(y))|
=J1+ Jo+ J3+ Jy.

The terms Jy and Jy are controlled by 7 thanks to the Cauchy-Schwarz inequality and (4.19),
as shown in the proof of (3.26). As for the terms J; and J3, they are being treated almost
exactly as in the proof of (3.26), except that the function z; is replaced by zj = 1A |(v; —

r;r)g —ut(xo) - & € HY(BS) for Ji, and z; == 1A |(v; —77)5 —u™(z0) - §| € H'(BS) for J,

both satisfying |(z jE)’| < |((v;)5)']- Using the Sobolev embedding, (4.19) and our definition of
Cy and 7", it leads to z; FOVbi(y) < (V2+ Ll)’y < Cyy« < 1, which eventually shows that

Ji =z FOVb(y) < (\f—I— )'y Similarly, J5 < (V2 + £ )7, which concludes the validity of
(4.20).

Step 3. We now show that, after enlarging slightly the set Z! into a set Z, C BY with
H'(Z,) < 3n, it is possible to include Y; \ Z, inside a finite union of arbitrarily small segments
contained in B (see Figure 6).

2%2

skew and

By definition of rigid body motions, there exist skew symmetric matrices M; € M

vectors m; € R? such that
7“; —’l"; = Mj idRz —l—mj

for all j € N. Recalling (4.15), we get that for all y € BV \ Z! C BV \ N,

| =5 = |(MF€) -y +my - €] = +o0
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as j — +oo. In particular, setting oy := MjTg € R? and B; == mj - €& € R, we get that p; :=
laj| + B8] = 400 as j — 4o00. Hence, up to a subsequence (depending only on &, not relabeled),
there exist o € R? and 8 € R such that

&—M)z, &—MB, and |a|+ |8 = 1.
Hj Hy
In particular,
1
—(aj - idge + 5j) — « - idg2 + S uniformly on B. (4.21)
iz

Notice that the affine line A := {z € R? : -z + 8 = 0} cannot coincide with II,. Indeed, if such

would be the case, it would entail that 8 = 0 and o = £v € S'. Yet, M; € Mkaefv being skew

symmetric, we would obtain that

CMiEE Y e ey
Hj Hj

0

which is against our choice (4.16) of £ € S'N D. As a consequence A intersects B” in at most one
point z,.

If ANT, = {2}, we define Z7 := B” N By (z.) while if ANTI, = 0, we define Z7 = (. The
continuity of « - idgz + 3 on the compact set B” \ Z2 entails that
0 < ma,5(n) = minfla-y+ 6| y € B\ ZZ}.
Set Z, := Z} U Z? C BY, which satisfies H'(Z.) < 3n, and for all j € N, we define

’fj = {T € T, : there exists y € Y; \ Z, such that (TN B)g # 0}.

b,int
Thus, for all j € N and for each triangle T' € 'f‘j, there exists a point yr € Popg (T)\Zf C B\ Z2
which satisfies
la - yr + Bl = ma,s(n) >0,
with @ introduced in (3.16).
Remembering that w(e;)/0; — 0 and that the Lipschitz constant of @ is less than /1 4 4n? < 2

for n small enough, together with the uniform convergence (4.21) and (4.20), it follows that for all
v > 0, there exists a rank ja(v) > j1(7) such that for all j > ja(y),

1
H—(r;”—Tj_)i— (a-y+pB)| < %7 for all y € B\ Z,, (4.22a)

J
HY(D 0 pe(T)) < 2wler,)/0; < %7 for all T € T (4.22D)

Therefore, for all j > jo(y) and all T € Tj, we introduce the following quantities :

. (e - — MaB
Hu] (x0) - &+ 14 (a yr + 6)‘ (Cn i ,u])fy the reference length of T

le(v;)ir : (€ ®9)] (4.23)

L™(T) == ma(xT) LY(T¢) the maximal section’s length of T along the direction &.
ZEPp¢

L*NT) =

Note that L*'(T) is well defined (since |e(v)ir€ - &|* > ro}/(aek,) > 0 as T € T;°7) and

positive for j large enough since p; — 400 and |a - yr + 5| > ma,gv/2 > 0. Moreover, we have
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LmaX(T) > L*(T). Indeed, if such would not be the case, denoting by y € Y; \ Z. a point such
that ("N B) # 0, then El(ng(y)) =LNTE) =bj(y) — a;(y) < L™>(T) < L*(T), entailing that

|(05)5 (0 (y)) = (v3)5(a; W))] = [e(vy)r : (€@ &) (b;(y) — a;(y))

< |ful(wo) - & + 1y (- yr 4+ 8)| = (Cy + =5 i),

by definition (4.23) of L'f(T'). Therefore, we would obtain that
< (o) - € + 3 (e + B)] — ()5 05(0)) — ()5 a5(0))]
< (05 (85 () — ()5 (a;(y)) — [ul(zo) - € — (rF —7})§]

+ | =) = mila-y+B)| + e (y —yr)|

M, M,
<Oy + =gy + =g,

Gy

where we used (4.20), (4.22a) and (4.22b) (since y,yr € ® o pe(T)), leading to a contradiction.

Therefore, arguing as in the proof of Lemma 3.9, there are exactly one or two points zl.,
22 € pe(T), only depending on j and T, such that LZI(T5 ) El(Tf ) L™(T). Then, as in
(3.29), we introduce the following segments (orthogonal to 5) associated to T (see Figure 6),

LT
(T = {zeﬂg |2 — 2] <C’7’79J£()7} for i € {1,2},

Ek;

where the constant C,’,7 only depending on 7, now changes into

8 2C
= T +1).
Cn sin 6 (ma,g * )

For every j > ja(y) and every y € Y; \ Z,, let T' € ng;{t be such that (TO B)§ # (). In particular,

note that T' € ’i‘j. Arguing in the same way as in the proof of Lemma 3.9, we get that there exists
i € {1,2} such that

[Pe(y) — 2resl

_2L2(T) [(5(y) = a;(y) = L™H(T))|

% Lref(T)
22T |I(v)5(b5(y) — (v3)5(a; ()] = [[ul(2o) - € + pj (- yr + B) + (Cy ® 1)
- hr |[U]($0)'§+Hj(a'yT+5)|—(C + 555 5)y
_282(T) Gy +[(rf = ry)f = ms(e-yr + B)| + (O + =54415)
-  hr 1221 ma,ﬁ/4
< 2L%(T) (2C, + ma, i)y < 0; L2(T)
= by 1 Ma,p/4 -7 e, 7

where we used (4.20), (4.22a), (4.22b) and the fact that

|[u(20) - € + s (- yT+[3)|7(C + Qaﬁ)vzujiza,ﬁ

up to enlarging ja(y) € N. As in the proof of Lemma 3.9, we deduce that for all j > ja(7v),

M\ Z) < 3D W@ US(T) £8C,0 2 3 £2<T>é—"@/3xjdw-
I e,

K €kj
TET
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Recalling (4.17) and possibly taking a larger j2(7v) € N, we finally get that for all j > ja(7),

2d’H1 Lo

for some constant C, > 0 only depending on 7, which settles Lemma 4.8. ]

8C’ d\
iz <= S0+ 1) 7= C

Arguing exactly as in the proof of Lemma 3.8, having Lemma 4.8 at hand, we deduce the
following result.

Lemma 4.9. For all n > 0, there exist Z"" C B" containing Z' with H'(Z") < 4n, and a (not
relabeled) subsequence such that for all j € N and for all y € (B1—g)u \Z",

#{T eyl (TNB)£0} =2
Finally, owing to Lemma 4.9, the proof of Proposition 4.5 is identical to that of Proposition 3.5.

4.3. T-limit and convergence of minimizers. Let us introduce the I'-lower and upper limits
G' and G” defined, for all u € L°(Q';R?), by

G'(u) := inf {lirgn_j(r)lf G- (ue) : ue — u in measure in Q/} ,

and

G"(u) := inf {lim sup Ge (ue) : ue — u in measure in Q’} .
e—0

Proof of Theorem 4.1. Lower bound. Let u € L°(Q;R?). Without loss of generality, we can
assume that G'(u) < 4o0. For any ¢ > 0, there exists a sequence {u,}.>0 such that u. — u in
measure in ' and

lim inf Ge(ue) < G'(u) + ¢ < +o0.

E—>

Let us extract a subsequence {ug }ren := {ue, }ren such that uj, — u L2-a.e. in Q' and
lim G., (ug) = liminf G, (u;) < +oc.
k—oc0 e—0

This implies that, for k large enough, uy € VEE”(Q') and supy, Ge, (u) < +o0o. Hence, according to
Proposition 4.3, there exist a subsequence (not relabeled), a Caccioppoli partition P = {P;}en of
', a sequence of piecewise rigid body motions {ry}reny with

TR = Z ri 1p,
JEN
and a function v € GSBD?*(Q') such that uy — 7 — v in measure in @', v = w L2-a.e. in '\ Q,
and
likminf Ge, (ug) > / Ae(v) : e(v)dx + ksingH (J, UO*P).
— 00 Q

In particular, 7, — u —v in measure in ', implying that for all j € N, ri — w—v in measure in
P;. In particular, for all j € N, there exists a rigid body motion 77 such that r‘jpj =u—v L2-ae.
in P;. Therefore, the piecewise rigid body motion

ri= Z i 1p,
jEN
is such that u =r +v L2%-a.e. in ', hence u = r +v € GSBD?*(Q). It follows that e(u) = e(v)
L2%-a.e. in Q and that J, C J, Ud*P up to a H!l-negligible set. Thus,

likminf Ge, (ug) > / Ae(u) : e(u) dz + wsinOgH (J,,).
— 00 9]
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Recalling that J, N 9Q = {u # w} NIQ and J, N (V' \ Q) = J, N (V' \ Q) = 0, it entails that
¢+ G'(u) > G(u), and the conclusion follows letting ¢ \, 0.

Upper bound. Let u € L°(£;R?). We can assume that G(u) < +o0 so that u € GSBD?*(Q')
and u = w L2-a.e. in Q'\Q. According to the density results for GSBD functions (see [19, Theorem
1.1] and [19, Formula (5.11)]), there exists a sequence of functions u,, € SBV?(;R?) N L>(£; R?)
such that

U, — u in measure in 2,
U, = w in an open bounded neighborhood of 012, (4.24)
lim sup,, G(u,) < G(u).

Extending (continuously) u, by w on Q' \ Q, we get that u, — u in measure in €. The proof is
thus complete once we know that G”(u,) < G(uy), for all n € N, as it would imply G”(u) < G(u),
using the lower semicontinuity of G” in L°(Q';R?) with respect to the convergence in measure
together with the last point of (4.24).

Therefore, we can assume without loss of generality that u € SBV?2(); R?) N L>°(Y'; R?) and
u=won VU(Q\Q) with VV an open bounded neighborhood of Q. Next owing to the density
result in SBV (see [24, Theorem 3.1]), there exist a sequence {uy }ren in SBV2(Q; R?)NL>(Q; R?)
as well as N, disjoint closed segments LY, ..., L’ka C Q satisfying :

Ny
T =JLE H (T \Ju) =0, w € W»(Q\ T3 R?),
=1

ur — u  strongly in L1(Q;R?),
Vug — Vu  strongly in L2(Q; M2*2),
limsup, H'(AN J,,) < HY(ANJ,) for all open subset A CC €,

and with the additional property that, because u = w is smooth on V', there exists a slightly
smaller neighborhood of 92, say W C V| on which the approximating functions w simply are the
convolution between w and a given standard smooth mollifier ¢y, i.e. ux = w * ¢ on W N Q. We
can thus consider the corrected approximating functions @y := ug + w — w * ¢y, which still satisfy

Ny
Tow =J L, H'(Ta\ Ja,) =0, dx € WH(Q\ 5,3 R?),
=1

{ak —u  strongly in L'(Q; R?), (4.25)

Vi, — Vu  strongly in L2(2; M2%2),
and now
A = w on W N .

Moreover, with A CC € an open subset such that Q\W C A, since J,, and Jg, = J,, are contained
in Q\ W, we infer that

limsup H! (Ja,) = limsup H (AN Ja,) < H (AN T,) = H (). (4.26)

k—o0 k—o0

We extend continuously iy to Q' by setting 4 = w on Q' \ €, so that 4x € SBV2(2;R?) N
L>(Q;R?), its jump set Ja, C Q\ W is unchanged, 4y € W2>°(Q' \ Jy,;R?) and 4x — u in
LY (€Y;R?). Using again the lower semicontinuity of G” in L°(Q’;R?) with respect to the conver-
gence in measure together with the convergences in (4.25) and (4.26), we are back to establishing
that G (k) < G(iyx), as the conclusion follows letting k — +o00. Arguing almost word for word
as in the proof of Lemma 3.12, we show the following Lemma 4.10, which leads to the desired
inequality. O
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Lemma 4.10. Let v € SBVZ(Q/;R?) N L>(Q;R?) be such that v = w on W U (' \ Q) with W
an open bounded neighbourhood of 0S), and
N
O\W O T, =JLi, H'(T\J)=0, veW>>(Q\J;R?),

=1

for some pairwise disjoint closed segments Ly,...,Ly C Q\ W. Then,
G"(v) < / Ae(v) : e(v)dx + ksin O H (J,) = G(v).
Q

We do not detail the proof of Lemma 4.10. We only stress that, following Lemma 3.12, for
¢ > 0 small enough, if T is the admissible triangulation given by [21, Appendix A] and v, is the
Lagrange interpolation of the values of v at the vertices of T., each triangle T € T, such that
TN\ Q) # 0 is contained in W UR? \ €, so that v. = wp_ on T. In particular, it ensures that
v € VSDir(Q/).

In the following result, we prove the existence of minimizers of the discrete brittle damage energy
gs on ‘/EDir(Q/)'

Lemma 4.11. Assume that Q and Q' are connected. For € > 0 sufficiently small, there exists a
minimizer u. € VP (') of ..

Proof. Let gg := H/(/3||Vw||2m(R2.szz)) and fix € < gg. Since G.(wr,) < 400, we can consider a
minimizing sequence {u, }nen C VP (Q') satisfying

Jim G(uw) = | inf G € [0, +00) (4.27)

By definition of the finite element space V¥ (€)'), there exists a triangulation T" € T=(&) such
that u, is affine on each T € T™ and u,, = wr~ on every triangle T € T™ such that TN(Q'\Q) # 0.

Let Q" be a bounded open set such that Q' CC Q" and Upcp, T C Q" for all n € N. Since, for
all T € T, L2(T) > 2sin 6y /2, it is easily seen that
2£2 (Q”)
™ < ————+~.
#I" < €2 sin 0
As a consequence, the sequence of integers {#T" },,cn admits a subsequence converging as n — +0o
to an integer N € N. We can thus assume, without loss of generality, that

#T" =N forallm e N.

We write T = {I7,..., T} for all n € N. Up to a subsequence, we can check that for all
i € {1,...,N}, the closed triangle T}* converges to a closed limit triangle T; in the sense of
Hausdorff, with the property that the limit triangulation T := {T1,..., Ty} € T(£') remains an
admissible triangulation of €.

Introducing the characteristic functions X, := L{cac(un):e(un)>x} € L7(2';{0,1}), we can write
the energy as

Ge(uy) = /Q(l — xn)Ae(uy,) : e(uy,) dx + g /Q Xn d. (4.28)

First, by definition of g9 and since ¢ < &g, we have that x,, = 0 in Q' \ Q for all n € N, since
K
Ac(un) : e(un) = Ae(wr,) : e(wr,) < Ble(wr, )* < BV, [* < BV} ge gz < 2
on that set. Being constant equal to 1 or 0 on each triangle of T", x, can be identified with a
vector V,, € {0,1}". Hence, up to a subsequence, there exists V € {0,1}" such that V;, — V in
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RY. In particular, there exists ng € N such that V,, = V for all n > ng. Up to reordering the
triangles, we can thus find a integer 0 < M < N such that

M N
a=0=UT" {w=0= {J 77 foralln>n
i=1 i=M+1

By the Hausdorff convergence property, we infer that
Xn = X :=1m g, strongly in LY. (4.29)
We next show some compactness on the sequence of displacements {u, }nen. Remembering that
(1 — xn)le(un)|* < k/(ag) for all n > ng and that the sequence {(1 — Xy, )e(un)}nen lives in the

finite dimensional space (M?*2)™ up to a new subsequence (not relabeled), there exists a function
€ € L>=(Q; M2%2) which is constant on each triangle T' € T such that

sym
(1 = xn)e(un) — € strongly in L2(Q; M2X2), (4.30)

Sym

and £ =0 on U7]\i1 T;. Let us define the set

N
W = U TZ
i=M+1

Note that Q'\ Q C wp. Indeed, if z € Q' \ Q, then for all n > ng, there exists M +1 < 4,, < N such
that z € T]". At the expense of extracting a further subsequence, there is no loss of generality to
assume that ¢,, = ¢ is independent of n. By the Hausdorff convergence of T* to T;, we infer that
x € T; C wg. By connectedness of Q' \ Q C wp, we can consider w the connected component of wy
containing '\ Q. Let M < K < N be such that w = UiliK_H T;, up to reordering the triangles
again.

Observe that for all T € T such that 7N (' \ Q) # 0, then T € {Tk+1,...,Tn}. Thus, for
all T € {T1,..., T}, TN (L \ Q) =0 so that T C Q. Therefore, for all open set W CC Q' with
Ufil T; ¢ W, having that

K K
U " — U T, in the sense of Hausdorff,
i=1 i=1

there exists ni > ng such that UZK=1 T Cc W for all n > n;. Since

N N
o\wec (J e J T ={w=0}
i=K+1 i=M+1

owing to (4.27), (4.28) and that u,, = wpx in Q" \ Q, we infer that
/ le(un)|? dox < C,,
oW

for some constant C, > 0 independent of n and W. Using that u, — wr. € HY(Q' \ W;R?) is
equal to 0 on the open set (Q'\ W) N (¢ \@ # (), the Poincaré-Korn inequality ensures that (up
to a subsequence) there exists u € H(Q \ W;R?) such that

u, — u weakly in H'(Q'\ W;R?),
u = wr on (Q\W)N(Q\ Q) since wpn — wy strongly in H(';R?) and, thanks to (4.30),
e(u) = ¢ in Q' \ W. In addition, by weak lower semicontinuity of the norm, we get that

/ le(u)]? dx < liminf/ le(u,)|? dz < C,.
Q\W Q\W

n—oo
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Considering a decreasing sequence of open sets {W;},en such that Ufil T, C W; cC  for
each j € N, and Wi = UZK:1 T;, we deduce through a diagonalisation argument that there exists
u € HY (0N Q';R?) such that v = wr on N (' \Q) = '\ Qand e(u) = € in 0N In particular,
since ¢ is constant in each triangle of w, we infer that u is affine in the interior of each triangle
of w. Being in H' (& N Q';R?), we get that u is continuous at the interfaces of each triangle in w.
Moreover, since v = wr on '\ Q, we deduce that ujr = wr on each triangle T € T such that
TN (Y\ Q) #0. Note that u is defined on such triangles T, as they are included in w.

In order to extend u outside w, we introduce the family of triangles which are at a distance of
at least one triangle from w, i.e.

TR .= (T ecT: TNw="0} c{T,..., Tk},

so that every remaining triangle 7 ¢ T™ and such that T ¢ w, has its three vertices in
Vertices(w) U Vertices (T™). Note that {Tar41,... Tk} C T™ since, by construction of the con-
nected component w of wp, each triangle T € T included in wy \ @ is at a distance of at least
one triangle from w. We extend the function u to all triangles by setting © = 0 on every triangle
T € T and by interpolating on each remaining triangle which happens to have its three vertices’
values imposed. It defines a function u € VP (€)') which satisfies e(u) = & on w and e(u) = 0 on
each triangle T' € {Tn/11,... Tk} C T

On the one hand, £ =0 in {x = 1}, hence £ = (1 — x)&. On the other hand, e(u) = £ in w and
e(u) = 0in wp \ w, so that (1 —x)AE&: &> (1 —x)Ae(u) : e(u) by positivity of A. Thus, by (4.29)
together with (4.30),

inf G.= lim {/(1 — xn)Ae(uy,) : e(uy,) dx + E/ Xn da:}
Q €Ja

LO(R2) n—00
K K
:/(1 —x)AE : Edx + —/ xdx > /(1 —x)Ae(u) : e(u) dx + 7/ x dz = G.(u),
Q €Ja Q € Ja
which settles that « is a minimizer of G.. O
We are now in position to prove the fundamental property of I'-convergence.

Proof of Corollary 4.2. On the one hand, for all € > 0, we remark that G.(u.) < G.(wr,) is
uniformly bounded due to (4.1). Therefore, Proposition 4.3 implies that, up to a subsequence,
there exist a sequence of piecewise rigid motions {r¢}.~o and a function u € GSBD?(Y’) with
u=w L%a.e. in O\ Q, such that u. — r. — u in measure in Q' and liminf. G. (u.) > G(u).

On the other hand, the I'-convergence of G. to G ensures that, for all v € GSBD?*(Q)') with
v =w L%ae. in Q' \ Q, there exists a recovery sequence v. € L°(Q;R?) such that v. — v in
measure in ' and G.(v.) — G(v). Hence

G(v) = lir% G.(ve) > limsup G. (ue) > lim i(r)lf G:(ue) > G(u),
E—r e—0 E—r

implying both that u € argmin G and G.(u.) — G(u). O
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