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A judicious analysis of previously published experimental data leads one to conclude that the
ground state of iron(II) phthalocyanine is an orbitally degenerate spin triplet a2

1ge
↑↓↑
g b

↑
2g (3Eg).

The ligand field parameters, in relation to Racah’s C, are approximately as follows: B20/C
= 0.84, B40/C = 0.0074. The uniqueness of this result is demonstrated by means of a special
diagram in the B20/C − B40/C plane (under additional conditions that B44/B40 = 35/3 and B/C
= 0.227). The system is in a strong-ligand-field regime, which enables the use of single-determinant
techniques corrected for correlations within the 3d shell of Fe. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4811110]

I. INTRODUCTION

Over several decades the interest in iron (II) phthalocya-
nine (FePc) has been motivated by various applications as
well as by its proximity to iron proteins. In more recent times
FePc has become popular as a model system for X-ray spec-
troscopy studies.1–3 Certain progress has been made in creat-
ing artificially ordered structures of FePc.4, 5 Perhaps the most
significant finding of the recent decade was the discovery of
an unquenched orbital moment of iron in FePc by means of
in-field Mössbauer spectroscopy6 and X-ray magnetic circu-
lar dichroism (XMCD).3

This has in turn brought about a surge of computa-
tional activity on FePc. Along with various density-functional
calculations,7–15 it is worth mentioning the multiplet struc-
ture calculations1, 2, 16 based on a phenomenological model.
The main ingredients of the latter approach are the Coulomb
repulsion, allowed for by way of the Slater-Condon parame-
ters, and the crystal (ligand) field (CF) on Fe2 +. The multi-
plet calculations1, 2, 16 were mainly aimed at simulating x-ray
absorption spectra; however, they produced an interesting by-
product. This is a map of ground states of Fe2 + in CF pa-
rameter space (Fig. 2 of Ref. 1). An early version of such
a diagram for the point group D4h was produced by König
and Schnakig,17 but the idea itself goes back to the classi-
cal work of Tanabe and Sugano,18 who dealt with the cubic
symmetry. Unfortunately, in the case of D4h one cannot plot
but 2-dimensional sections of the 3-dimensional space of CF
parameters, the choice of these sections in Refs. 17 and 1
being rather suboptimal. Besides, the diagrams in Refs. 17
and 1 have the disadvantage that CF parameters in energy
units are plotted on the axes, and so the diagrams depend
on the Slater-Condon (or Racah) parameters employed. As
against that, the original work of Tanabe and Sugano18 pre-
sented the result in terms of a dimensionless ratio of the CF
parameter to Racah’s B, which led to the celebrated series
of universal diagrams. Still, Miedema’s diagrams are of in-
terest. They have an enigmatic cornered shape, the domain
boundaries are piecewise-linear, with repeatedly encountered,

characteristic slopes. These features of the diagrams have so
far remained unexplained.

As regards agreement with experiment, the calculations
leave much to be desired. Density-functional calculations
make inconclusive predictions of the ground state. Thus,
Reynolds and Figgis7 could not decide between 3Eg and 3B2g

because the two lie too close in energy. Marom and Kronik9

found either 3B2g (e4
ga

1
1gb

1
2g) or 3A2g (a2

1gb
2
2ge

↑↑
g ), depending

on computational details.19 More recently, Nakamura et al.12

found 3A2g in an isolated FePc molecule, but 3Eg in a colum-
nar stack of such molecules. Establishing the symmetry of
the ground state does not settle the dispute: within the correct
3Eg one should further distinguish between the configurations
b2

2ge
3
ga

1
1g , as conjectured by Dale et al.,20 and a2

1ge
3
gb

1
2g , found

in the multiplet calculations.1, 2 The two ground-state config-
urations lead to distinct types of magnetic behavior.

This work aims at determining the CF parameters of
Fe(II) phthalocyanine. As we will show below, the known ex-
perimental facts on that compound (obtained by magnetic and
spectroscopic measurements) in connection with our CF anal-
ysis leave no choice: there is only one domain in the space of
CF parameters yielding a ground state that does not contradict
established knowledge. In such a way our calculations resolve
the confusing puzzle about the ground state of FePc that ex-
isted for many years. As a byproduct, the peculiar shape of
Miedema’s diagrams is explained.

In the following, we consider the 3d6 configuration in a
CF of symmetry D4h and allow for Coulomb repulsion be-
tween the 3d electrons. The CF is a priori assumed to be
neither strong nor weak as compared with the Coulomb in-
teraction. Hybridization of the Fe 3d orbitals to neighboring
ligands is thought to be included into the relevant CF param-
eters. In that sense it is better to call our theory ligand field
theory instead. But the ligand p orbitals are not treated in an
explicit way and we keep the term CF theory for simplicity.
The spin-orbit coupling is neglected at first (since it is much
weaker than either the CF or the Coulomb repulsion) but taken
into account in a later discussion of magnetic properties.
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This paper is organized as follows. In Sec. II we briefly
review the experimental facts that bear on our knowledge of
the ground state of FePc and reiterate the current status of this
knowledge. Further, in Sec. III, a diagram of ground states of
FePc is constructed from numerical calculations. Our diagram
is similar to that of Ref. 1, the main two differences being that
(i) dimensionless coordinates of the Tanabe-Sugano type are
used and (ii) the section of the 3-dimensional space of CF
parameters is chosen on the principle that the coordination
polyhedron is a plane square. In Sec. IV, the same diagram
is reproduced analytically, which includes explicit expres-
sions for all domain boundaries. The subsequent discussion in
Sec. V hinges upon the good agreement of the exact (numer-
ical) and approximate (analytical) diagrams. The piecewise-
linear shape of the domain boundaries finds a natural
explanation in the linearity of the underlying equations. A
conclusion is made that FePc is in a strong CF mode and ap-
proximate values of the CF parameters are given (or rather,
ratios of CF parameters to Racah’s C). The ground-state con-
figuration turns out to be a2

1ge
3
gb

1
2g (3Eg), as in Refs. 1 and 2.

Sec. VI recapitulates the conclusions.

II. EXPERIMENTAL FACTS AND THEIR IMPLICATIONS

A. Magnetic susceptibility

As early sources of our knowledge of the ground state of
FePc one usually cites magnetic susceptibility studies of β-
FePc powder20 and single crystals.21 The experimental data
of both papers are in reasonable agreement with each other.
At temperatures between 100 and 300 K the susceptibility
follows the Curie-Weiss law with μeff ≈ 3.8 μB (for pow-
der). This is between the spin-only values of μeff for S = 1
and S = 2 (2

√
2 μB ≈ 2.8 μB and 2

√
6 μB ≈ 4.9 μB, respec-

tively). Below about 20 K the susceptibility of β-FePc be-
comes temperature-independent.

These facts found an explanation in a simple model with
S = 1 and effective g-factors employed in both works.20, 21

The spectrum of the model consists of a singlet ground state
with MS = 0 and an excited doublet with MS = ±1 situated
at ∼70 cm−1. It is unclear why Dale et al.20 thought to jus-
tify this model by proposing b2

2ge
3
ga

1
1g (3Eg) as the ground

configuration (and calling it an orbital singlet). Their work
contains no experimental evidence of 3Eg being the ground
state of FePc. Barraclough et al.21 noticed the discrepancy
between the orbitally degenerate 3Eg and Dale’s assertion that
the ground state should be an orbital singlet, and postulated
3B2g instead. As pointed out in Ref. 23, this was no proof,
3A2g could have done equally well.

The model used in Refs. 20 and 21 is not without its dif-
ficulties. So, it cannot explain the presence of an excited state
(or states) at ∼300 cm−1, as pointed out in Ref. 20. The ex-
istence of such an excited state follows from the fact that the
susceptibility deviates from the Curie-Weiss law above room
temperature, as observed by Lever.24 (A slight downward cur-
vature is also visible in χ−1 vs T data obtained more recently
on α-FePc.6) This can be viewed as an argument in favor of
3Eg rather than an orbital singlet. The sixfold degenerate 3Eg

would be split by the spin-orbit interaction into 4 singlets and

a doublet, the overall splitting being ∼ζ ∼ 400 cm−1. The ob-
served susceptibility behavior would find a plausible explana-
tion if one of the singlets was the ground state, the doublet (or
a quasi-doublet) was situated at ∼70 cm−1, and a further state
(or states) at ∼300 cm−1.

Another difficulty of Dale’s triplet model consists in the
values of the g-factors, which differ significantly from 2.
Thus, Dale et al.20 obtain g⊥ = 2.86 (and g|| = 1.93). That is,
nearly one Bohr magneton has to come from an orbital mo-
ment. Such a large orbital contribution is explained more nat-
urally by the presence of an unquenched orbital moment (i.e.,
by orbital degeneracy of the ground state) rather than by mix-
ing in of excited states. We note that Barraclough et al.,21 who
assert most emphatically the equivalence of their approach to
that of Ref. 20, obtained an isotropic g-factor, g⊥ = g|| = 2.64.
Generally speaking, Barraclough’s g-factors should be more
trustworthy, since they were deduced from data measured on
a single crystal.21 The difficulty, however, is that according
to Eq. (4) of Ref. 20, the zero-field splitting must vanish for
g⊥ = g||. At the same time, it is emphasized that this splitting,
∼70 cm−1, is very large.21

In any case, it should be regarded as firmly established
that the susceptibility is maximum in the plane of the FePc
molecule.21 This conclusion has been recently confirmed in
an independent experiment.3 As regards the ground states
conjectured to explain the susceptibility data, they cannot be
viewed as deduced from experiment.

B. Other techniques

An x-ray diffraction experiment of Coppens et al.22

found the occupation numbers of the Fe 3d orbitals in FePc:
b1.65

2g e2.13
g a0.88

1g b0.75
1g . On account of covalency, these numbers

sum up to 5.41 rather than 6. Restoring the normalization to
6, one has b1.83

2g e2.36
g a0.98

1g b0.83
1g . Coppens et al. regarded their

result as a direct confirmation of Dale’s conjecture, b2
2ge

3
ga

1
1g

(3Eg). Yet, the analysis in Ref. 22 was limited to spin-triplet
states. An unprejudiced look at the quintet states, in particular
at b2

2ge
↑↑
g a

↑
1gb

↑
1g (5B2g), suggests a higher degree of agreement

with Coppens’ results. However, 5B2g can be ruled out be-
cause it would have resulted in too high a magnetic moment,
μeff = 4.9 μB.

Turning now to the optical absorption experiments of
Stillman and Thomson,23 we note that they were carried out
on FePc solution in dichlorobenzene. This system is chemi-
cally distinct from either the free FePc molecule or α or β

FePc. Therefore, without casting doubt upon Stillman and
Thomson’s assertion of a 3A2g ground state, we state merely
that their result is not relevant to the system under considera-
tion herein.

A Mössbauer spectroscopy study of Filoti et al.6 found
in α-FePc a very large (66 T) hyperfine field on 57Fe. Unlike
the usual Fermi’s contact field, the hyperfine field in α-FePc
has a positive sign (meaning Hhf ↑↑ μFe) and can only origi-
nate from a large unquenched orbital moment. The latter was
estimated to be about 1,6 but no definite information about its
orientation could be obtained.
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A more recent XMCD experiment of Bartolomé et al.3

found in FePc an orbital moment of 0.53μB lying in the plane
of the molecule. In the same work3 it was demonstrated by
direct measurements that the plane of the molecule contains
the easy magnetization direction, in agreement with the early
finding of Barraclough et al.21

To summarize the section, there is no experimental evi-
dence of the ground state of FePc being either 3B2g or 3A2g.
Nor do Coppens’ data22 provide sufficient confirmation for
Dale’s conjecture of b2

2ge
↑↓↑
g a

↑
1g (3Eg). All one can say at this

point is that it should be a 3Eg state endowed with magnetic
anisotropy of an easy-plane kind.

III. NUMERICAL CALCULATIONS

A. Crystal field Hamiltonian

The CF Hamiltonian operating on a single 3d electron in
a tetragonal (D4h) environment is written as follows:

HCF = B20O
0
2 + B40O

0
4 + B44O

4
4 . (1)

Here Om
n are Stevens’ operator equivalents25 in the

�-representation (� = 2): O0
2 = 3�2

z − 6, O0
4 = 35�4

z

− 155�2
z + 72, O4

4 = 1
2 (�4

+ + �4
−); Bnm are CF parameters. In

older literature one sometimes comes across Ballhausen’s CF
parameters.26 These are related to the Bnm’s in a simple way:

Dq = 12
5 B44, Ds = 3B20, Dt = 12

5 B44 − 12B40. (2)

It is well known that the five real d orbitals belong to distinct
irreducible representations of the point group D4h. Therefore,
in the basis of those orbitals, the CF Hamiltonian (1) takes a
diagonal form, the eigenvalues being26

E(dxy) = E(b2g) = 6B20 + 12B40 − 12B44,

E(dxz,yz) = E(eg) = −3B20 − 48B40,
(3)

E(dz2 ) = E(a1g) = −6B20 + 72B40,

E(dx2−y2 ) = E(b1g) = 6B20 + 12B40 + 12B44.

Note that Ballhausen’s original equations (5-14) and (5-15)
need to be augmented with the cubic terms, +6Dq and −4Dq,
respectively, before being converted to the Stevens notation
by means of Eqs. (2).

So far no restrictions have been imposed on the CF, ex-
cept that it should be compatible with the point group D4h.
Yet, much more is known about the structure of the FePc
molecule than just the symmetry of the Fe site. Thus, the
nearest environment of the iron atom consists of four nitrogen
atoms making a plane square, the Fe–N bonds being aligned
with either the x or the y axis. This fact enables us to reduce
the number of independent CF parameters by one. A rather
general CF model known as the superposition model (see
Ref. 27 for a comprehensive review), relates pairs of CF pa-
rameters Bnm with equal n on the basis of shape of the coor-
dination polyhedron. Omitting the rather straightforward cal-
culations, we state the result: for a plane square the superpo-
sition model demands that

B44 = 35
3 B40. (4)

B. Hamiltonian matrix

Our calculations dealt with a Hamiltonian consisting of
the CF (1) and the Coulomb repulsion and operating on the
3d6 configuration. The basis states were taken in the form of
simple products of one-electron d orbitals,

6∏
i=1

|miσi〉, (5)

with mi = 0, ±1, ±2, and σ i = ±1/2. There are ( 10
6 ) = 210

such states in total.
Nonzero matrix elements of HCF (1) are of two kinds.

First of all, there are diagonal matrix elements, given by

B20

6∑
i=1

(
3m2

i − 6
) + B40

6∑
i=1

(
35m4

i − 155m2
i + 72

)
. (6)

Second, there are nonzero matrix elements between the states
(5) that differ in one pair of quantum numbers mi, mi being −2
in one of the states and +2 in the other one. All such matrix
elements equal 12B44.

The matrix elements of the Coulomb repulsion have been
treated extensively in the literature. Here we follow Griffith’s
fundamental treatise.28 Again, there are two distinct kinds of
nonzero matrix elements. The diagonal ones are given by

∑
k=0,2,4

Fk
∑
i>j

[
ck
mimi

ck
mj mj

− δσiσj

(
ck
mimj

)2
]
, (7)

where Fk are the Slater-Condon parameters (k = 0, 2, 4) and

ck
mm′ =

√
4π

2k + 1

∫
Y ∗

2mY2m′Yk,m−m′d
. (8)

The integral in Eq. (8) is known as the Gaunt coefficient. Nu-
merical values of ck

mm′ were taken from Table 4.4 of Griffith’s
book.28 The inner sum in Eq. (7) is taken over all 15 pairs of
filled d orbitals. The first term in brackets describes the so-
called Coulomb contribution, while the second one, relevant
to pairs of orbitals with parallel spins only, is the exchange
contribution.

The Coulomb repulsion also has off-diagonal matrix ele-
ments. These are nonzero only between the states with equal
ML and MS that differ in two occupied d orbitals, say, |mi1σ i1〉
and |mj1σ j1〉 in State #1, as against |mi2σ i2〉 and |mj2σ j2〉
in State #2. It must hold that mi1 + mj1 = mi2 + mj2 and
σ i1 + σ j1 = σ i2 + σ j2. The matrix element between the states
#1 and #2 is expressed as follows:

∑
k=0,2,4

Fk
[
δσi1σi2δσj1σj2c

k
mi1mi2

ck
mj2mj1

− δσj1σi2δσi1σj2c
k
mj1mi2

ck
mj2mi1

]
. (9)

Thus, the matrix elements of the Hamiltonian are linear com-
binations of the CF parameters, B20, B40, and B44, as well as
the Slater-Condon parameters, F0, F2, and F4. The latter are
conveniently replaced by the Racah parameters,

F 0 = A + 7
5C, F 2 = 49B + 7C, F 4 = 63

5 C. (10)
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The parameter A is hereafter set to zero, because its only ef-
fect is to shift the energies of all the states of dn by the same
amount, An(n − 1)/2.

C. Degeneracy diagram

The calculation consisted in setting and numerically di-
agonalizing the Hamiltonian matrix for given sets of parame-
ters B20, B40, B44, B, and C, and subsequently determining the
degeneracy of the ground state. Five characteristic values of
degeneracy were encountered:

1 : 1A S = 0, no orbital degeneracy,
3 : 3A S = 1, no orbital degeneracy,
5 : 5A S = 2, no orbital degeneracy,
6 : 3E S = 1, double orbital degeneracy,

10 : 5E S = 2, double orbital degeneracy.

At this stage the ground states are labeled tentatively. So A
can be any of the following: A1g, A2g, B1g, or B2g, which we
are unable to distinguish. On the other hand, 3E = 3Eg and 5E
= 5Eg, as will be explained in Sec. IV.

The construction of the diagram (Figure 1) was organized
as follows. All energies were expressed in the units of the
Racah parameter C. The ratios B20/C and B40/C were treated
as independent variables defined on a dense mesh. In the spirit
of Tanabe and Sugano,18 the ratio B/C was fixed to a value ap-
propriate for Fe2 +, B/C = 0.227, as in Table 7.3 of Ref. 29.
The CF parameter B44 was not regarded as an independent
one. Rather, it was found from Eq. (4), as prescribed by the
superposition model.27 As a result, the B20/C − B40/C plane
was partitioned into domains of five different kinds, according
to the degeneracy found at each point. The diagram (Figure 1)
has a cornered shape reminiscent of the diagrams in Refs. 1
and 17. The domain boundaries appear as straight lines with
characteristic slopes. Several sets of parallel lines are encoun-
tered. The central part of the diagram is an area of weak CF;
in compliance with Hund’s first rule, the ground state here has
S = 2. The periphery of Figure 1 is a region of strong CF; here
S = 0 or 1.

FIG. 1. Partition of CF parameter space among differently degenerate
ground states, as found from numerical calculations in the absence of spin-
orbit interaction. The possible ground states are denoted according to their
total spin and the absence (2S + 1A) or presence (2S + 1E) of orbital degener-
acy. They will be further specified in Figure 3.

The numerical calculations have the advantage of pro-
ducing an immediate graphical result. However, it is not easy
to analyze the character of a ground state expressed in a 210-
dimensional basis. Of special interest to us is 3Eg, which ap-
pears in six non-adjacent domains in Figure 1. So we would
like to know if those 3Eg are similar or distinct. Furthermore,
we would like to find out the origin of the cornered shape of
the diagram, why the boundaries are straight and the slopes
repeated. Finally, we pose a question, how the diagram would
change if B/C and/or B44/B40 were different to the ones used
so far. Answers to the above questions should be sought by
means of analytical calculations.

IV. ANALYTICAL TREATMENT

A. Weak crystal field: Quintet states

In the weak-field approximation the CF is treated as a
perturbation with respect to the intra-atomic Coulomb inter-
action, whose eigenstates are spectral terms with certain L and
S. Since the CF acts on spatial but not on spin variables, terms
with different S do not mix together (as long as the spin-orbit
coupling is neglected). In the d6 configuration there is a single
quintet term, 5D, whose Coulomb energy is28

ECoulomb = −35B + 7C. (11)

The remaining task consists of diagonalizing the CF
Hamiltonian (1) on the wave functions of 5D, since there are
no other terms with S = 2. To this end, it is convenient to in-
terpret Eq. (1) in a slightly different way than it was done in
Sec. III. Namely, Om

n are now regarded as Stevens’ operators
in the L representation (L = 2): O0

2 = 3L2
z − 6, etc. Since 5D

contains a single d electron above a closed semi-shell, it is
only this one electron that is exposed to the CF. Therefore,
L = � and the coefficients Bnm in Eq. (1) are the same in both
representations. So we can simply take over the one-electron
CF energies (3). In doing so, we capitalize the irrep labels,
to indicate that they now refer to many-electron states, and
append the multiplicity 5. We also prefix ECoulomb (11). The
resulting energies of the quintet states are as follows:

E(5B2g) = −35B + 7C + 6B20 + 12B40 − 12B44, (Q1)

E(5Eg) = −35B + 7C − 3B20 − 48B40, (Q2)

E(5A1g) = −35B + 7C − 6B20 + 72B40, (Q3)

E(5B1g) = −35B + 7C + 6B20 + 12B40 + 12B44. (Q4)

B. Strong crystal field: Singlet states

In the strong-CF approximation the zeroth-order states
are constructed from one-electron eigenstates of the CF
Hamiltonian (1), then their energies are corrected for the
Coulomb repulsion. First question that arises is: which six
one-electron d states are filled in a CF of symmetry D4h? To
give a possibly general answer, it is convenient to express all
relevant energies in the units of B44. Thus, the one-electron
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FIG. 2. Partition of the B20/B44 − B40/B44 plane among all possible permu-
tations of the four one-electron CF levels.

CF energies (3) are divided by B44. Then, equating pairs of
the so modified expressions, one obtains 5 equations linear in
B20/B44 and B40/B44. The corresponding lines in the parame-
ter plane B20/B44 − B40/B44 (Figure 2) are loci of points where
the sequence of CF levels changes. For example, the levels a1g

and b1g cross over on a line described by

− B20/B44 + 5B40/B44 = 1, (12)

as readily obtained by equating the last two equations (3).
Equation (12) describes the upper one of the two parallel
lines in Figure 2; the lower line arises from the condition
E(a1g) = E(b2g). Likewise, the equation E(eg) = E(b1g, 2g)
generates a pair of parallel lines with a negative slope. A sin-
gle line passing through the origin is produced by the relation
E(a1g) = E(eg). Finally, the equation E(b1g) = E(b2g) leads to
no line; this is why there are 5 solid lines in Figure 2, rather
than 6 as expected combinatorially. The CF levels b1g and b2g

do not swap at any inner point of Figure 2, but do so at in-
finity, where B44 changes sign. Therefore, b2 (a short for b2g)
stands always to the left of b1 (b1g) in the level sequences indi-
cated within each one of the 12 domains. The sequence labels,
read from left to right, name the CF levels in order of ascend-
ing energy if B44 > 0, and in order of descending energy if
B44 < 0.

Up to this point no restrictions have been placed on the
CF, apart from those imposed by the D4h symmetry. Now
we do restrict the CF by demanding that it must addition-
ally comply with the superposition model, Eq. (4). This im-
plies that the system is now bound to the horizontal dashed
line in Figure 2. The dashed line cuts through six domains.
The corresponding intervals on the abscissa axis are num-
bered 1 to 6 in order of ascending B20/B44, with B44 > 0.
Thus, the interval #1 stands for B20/B44 < − 40

21 , #2 means
that − 40

21 < B20/B44 < − 4
7 , etc. The same intervals, but with

B44 < 0, will be referred to by overscore numbers 1 to 6.

Now, examining the CF level sequences in the above 12
intervals, one encounters only 3 situations where there is a CF
gap between the highest occupied and the lowest unoccupied
orbitals. The corresponding ground-state electronic configu-
rations are as follows:

b2
2ge

4
g intervals #2, #3, #4,

a2
1ge

4
g intervals #5, #6, #1,

a2
1gb

2
1gb

2
2g intervals #4, #5.

(13)

Within the above intervals of B20/B44 the ground state is
a singlet, provided that the CF is sufficiently strong. In all
other cases the Fermi level is caught at the partially occupied
quadruply degenerate eg level and there is a possibility of both
a singlet and a (spin) triplet ground state with the same energy.
A subsequent allowance for intra-atomic (Hund’s) exchange
makes the triplet states energetically more favorable than the
singlet ones. Therefore, singlets are not viable candidates for
ground state in all intervals where triplets with the same CF
energy are possible. In such intervals only the triplets will be
considered (in Subsection IV C).

Conversely, in the three cases where there are viable sin-
glet states (13), competing triplet states will be taken into
consideration as well, constructed from excited CF configu-
rations. Such triplets still have a chance of becoming ground
state on account of Hund’s exchange in situations where the
CF is not strong enough, near interval boundaries, etc.

Let us now turn to our direct task—computing the en-
ergies of the singlet states (13). The CF energies are com-
puted most readily, by summing up the energies of the six
occupied one-electron states as given by Eqs. (3). First-order
correlation corrections are then computed following Slater’s
prescription:30 for each pair of occupied d states a so-called
Coulomb integral J(d1, d2) is added; a further exchange con-
tribution K(d1, d2) is deducted for pairs with equal spins. J’s
and K’s between the real d orbitals were expressed in terms of
the Racah parameters by Griffith, see Table A26 of his book.28

The resulting singlet energies are as follows:

E
(
b2

2ge
4
g

) = −168B40 − 24B44 − 30B + 15C, (S1)

E
(
a2

1ge
4
g

) = −24B20 − 48B40 + 10B + 15C, (S2)

E
(
a2

1gb
2
1gb

2
2g

) = 12B20 + 192B40 − 20B + 15C. (S3)

We note that for low-lying single-product states, such as those
considered in this work, the factor of C depends solely on S
and is given by

(factor of C) = (Smax + 1)2 − (S + 1)2, (14)

where Smax = n/2 is the hypothetical maximum spin of n elec-
trons in the absence of the Pauli principle. For fewer than six d
electrons, states with S = Smax are allowed and their energies
have no contribution in C. For d6, Smax = 3 and the factors of
C equal 15, 12, and 7 for S = 0, 1, and 2, respectively. Equa-
tion (14) is a consequence of the great simplicity acquired by
the Coulomb and exchange integrals when A and B are set to
zero:

J (di, dj ) = K(di, dj ) = (1 + 2δij )C,
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cf. Table A26 of Ref. 28. No simple relations are known for
the factors of B, which have to be calculated in each case
separately.

C. Strong crystal field: Triplet states

Construction and finding the energies of the (spin) triplet
states are carried out in a similar fashion. One peculiarity is
the large number of triplets (9 in total), which have to be con-
structed for all 12 intervals of B20/B44. Where no triplet state
is permitted by the ground CF configuration, the first excited
configuration will be considered instead.

We proceed from the interval #1, B20/B44 < − 40
21 ,

B44 > 0. Here (as well as in the interval #6, B20/B44 > 24
7 ,

B44 < 0) the ground CF configuration is b2
1gb

2
2ge

2
g , which

allows one triplet state, d2
x2−y2d

2
xyd

↑
xzd

↑
yz, as well as three sin-

glet ones. According to the first Hund’s rule, it will be the
triplet that will become ground state upon allowance for the
Coulomb interaction. (It was for this reason that the singlets
were left out in Subsection IV B.) The symmetry of the triplet
state is 3A2g, as determined by the antisymmetrized product
of dxz and dyz. The energy is computed following the same
prescription as in Subsection IV B and equals

E
(
b2

1gb
2
2ge

↑↑
g

) = 18B20 − 48B40 − 9B + 12C. (T1)

Let us move to the interval #2, − 40
21 < B20/B44 < − 4

7 ,
B44 > 0. The ground CF configuration, b2

2ge
4
g , consists of fully

occupied orbitals and is necessarily a singlet. To construct a
spin triplet state, one spin-down electron is promoted, with a
simultaneous reversal of spin, from the eg orbital to the first
unoccupied CF level b1g. The result is either d2

xyd
2
xzd

↑
yzd

↑
x2−y2

or d2
xyd

2
yzd

↑
xzd

↑
x2−y2 . This is a doubly orbitally degenerate state

3Eg. Its energy is

E
(
b2

2ge
↑↓↑
g b

↑
1g

) = 9B20 − 108B40 − 12B44 − 24B + 12C.

(T2)
Proceeding as before, we find that the most favorable spin
triplet state in the interval #3 is another 3Eg, whose energy is
given by

E
(
b2

2ge
↑↓↑
g a

↑
1g

) = −3B20 − 48B40 − 24B44 − 28B + 12C.

(T3)
The remaining six spin-triplet states include: a 3B2g in the

intervals #4 and #5, with

E
(
e4
gb

↑
2ga

↑
1g

) = −12B20 − 108B40 − 12B44 − 22B + 12C,

(T4)
a 3Eg in the interval #6, with

E
(
a2

1ge
↑↓↑
g b

↑
2g

) = −15B20 + 12B40 − 12B44 − 14B + 12C,

(T5)
a 3Eg in the interval #1, with

E
(
a2

1ge
↑↓↑
g b

↑
1g

) = −15B20 + 12B40 + 12B44 − 14B + 12C,

(T6)
a 3A2g in the intervals #2 and #3, with

E
(
a2

1gb
2
1ge

↑↑
g

) = −6B20 + 72B40 + 24B44 − 29B + 12C,

(T7)

a 3Eg in the interval #4, with

E
(
a2

1gb
2
1gb

↑
2ge

↑
g

) = 3B20 + 132B40 + 12B44 − 29B + 12C,

(T8)
and a 3Eg in the interval #5, with

E
(
b2

1gb
2
2ga

↑
1ge

↑
g

) = 15B20 + 72B40 − 13B + 12C. (T9)

Note that the factor of C in Eqs. (T1)–(T9) is invariably 12, as
follows from Eq. (14) with S = 1 and Smax = 3.

D. The B20/C − B40/C diagram

The search for the ground state consists in a system-
atic comparison of energies of pairs of candidate states, as
given by Eqs. (Q1)–(Q4), (S1)–(S2), (T1)–(T9). For example,
equating (Q1) to (T1) results in

− 12B20 + 60B40 − 12B44 = 26B + 5C. (15)

Eliminating B44 by means of Eq. (4) and dividing the result
by C, one arrives at an equation of a straight line in the plane
of the parameters B20/C and B40/C:

B40

C
= −0.15

B20

C
− 0.0625 − 0.325

B

C
. (16)

Left of this line there should be a domain where the ground
state is the triplet T1 (3A2g or b2

1gb
2
2ge

↑↑
g ), right of the line,

towards the origin, lies the domain where the ground state is
the quintet Q1 (5B2g). In the spirit of Tanabe-Sugano, the ratio
B/C is fixed, B/C = 0.227, as in Table 7.3 of Ref. 29.

Proceeding as above, one obtains equations for all 33 bor-
derlines appearing in Figure 3. (It suffices to consider pairs of
states belonging to the same, or perhaps, to adjacent intervals
of B20/B44.) By analogy with Eq. (16), these expressions are
presented as

B40

C
= a

B20

C
+ b + b′ B

C
. (17)

The numerical factors a, b, and b′ are listed in Table I. A line is
referred to by naming the two domains it separates. Remark-
ably, one finds in the second column of Table I repeatedly six

B 4
0 

/C

B20 /C

-0.1

-0.05

 0

 0.05

 0.1

-1.5 -1 -0.5  0  0.5  1  1.5
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Q4
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FIG. 3. Partition of CF parameter space among possible ground states of
FePc. The labels are mnemonic: so S1 is a singlet whose energy is given by
Eq. (S1). The borderlines are as described by Eq. (17) with the coefficients
of Table I.
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TABLE I. Values of coefficients in Eq. (17).

Label a b b′

T1Q1 − 3/20 − 1/16 − 13/40
T2Q1 1/40 1/24 11/120
T1T2 − 9/200 0 − 3/40
S1T2 − 9/200 3/200 − 3/100
S1Q1 − 3/160 1/40 1/64
S1T3 1/40 1/40 − 1/60
S1T4 3/50 3/200 − 1/25
T3Q1 − 9/200 1/40 7/200
T3Q2 0 1/56 1/40
T4Q2 − 9/200 1/40 13/200
T4Q3 − 3/160 1/64 13/320
T5Q3 − 9/200 1/40 21/200
S2Q3 − 3/20 1/15 3/8
S2T5 9/80 − 3/80 − 3/10
S2T4 3/50 − 3/200 − 4/25
Q1Q2 9/80 0 0
Q2Q3 1/40 0 0
T3T4 9/80 0 − 3/40
T4T5 1/40 0 − 1/15
T6Q3 9/80 − 1/16 − 21/80
T7Q3 0 − 1/56 − 3/140
T7Q4 3/50 − 1/40 − 3/100
S2T6 − 9/200 3/200 3/25
T6T7 − 9/200 0 3/40
Q3Q4 − 3/20 0 0
T8Q4 1/40 − 1/24 − 1/20
T7T8 9/80 0 0
S3Q4 − 3/20 − 1/5 − 3/8
S3T8 9/80 3/80 9/80
T9Q4 9/80 1/16 11/40
S3T9 1/40 − 1/40 7/120
T1Q4 3/50 1/40 13/100
T1T9 1/40 0 1/30

characteristic slopes,

0,− 9
200 ,− 3

20 , 9
80 , 3

50 , and 1
40 . (18)

These are obtained by means of Eq. (4) from the interval
boundaries in Figure 2: so B20/B44 = 24/7 leads to B20/B40

= 1/40, etc. One exception that is not on the list (18) but is
encountered twice in the second column of Table I is −3/160.

V. DISCUSSION

In Sec. IV we constructed a diagram of ground states of
FePc in the absence of spin-orbit coupling (Figure 3). A to-
tal of 16 distinct ground states are present in the diagram: 3
singlets (S1 − S3), 9 spin triplets (T1 − T9), and 4 spin quin-
tets (Q1 − Q4). The respective energies are given by Eqs.
(S1)–(S3), (T1)–(T9), (Q1)–(Q4). Explicit expressions were
derived for the domain boundaries, Eq. (17) and Table I. The
boundaries are segments of straight lines, which is a conse-
quence of the linearity of Eqs. (S1)–(S3), (T1)–(T9), (Q1)–
(Q4). This gives the diagram its peculiar cornered shape, with
characteristic, repeated slopes. As clear from the structure of
Eq. (17), the slopes do not depend on the ratio B/C. Taking
a slightly different B/C would shift the domain boundaries

somewhat, but will not affect their slopes. As against that,
the slopes will change if the ratio B44/B40 deviates from the
value prescribed by the superposition model, Eq. (4). More-
over, such a deviation of B44/B40 from 35/3 may lead to a loss
of parallelity of certain boundary lines. For example, from a
simple analysis of the one-electron CF energies (3) one finds

(slope of T1Q1) = (slope of Q3Q4) = (5 − B44/B40)−1,

(slope of S3Q4) = (2B44/B40 − 30)−1,

(slope of S2Q3) = −3/20.

Apparently the above lines are only parallel if the condition
(4) is fulfilled. In reality, the superposition model is an ap-
proximation and small deviations from Eq. (4) are to be ex-
pected. In the above example, the borderlines T1Q1 and Q3Q4

will remain parallel exactly, while the others only approxi-
mately. A more extensive analysis of this matter is beyond the
scope of the present work.

On the whole, the diagram constructed analytically
(Figure 3) is remarkably similar to that calculated numerically
(Figure 1). We take it as a sign of validity of the strong-CF ap-
proximation used to compute the energies of the singlet and
triplet states, Eqs. (S1)–(S3), (T1)–(T9). (N.B. The quintet en-
ergies (Q1)–(Q4) are essentially exact, without relying on the
weakness of the CF.) This demonstrates the applicability of
techniques based on single-determinant wave functions, even
though it is important to allow for correlations (nonzero B
and C).

Our next task is to locate the standpoint of FePc in
Figures 1 and 3. In the subsequent discussion the domain
boundaries are assumed to be positioned as in the more ac-
curate Figure 1, whereas the ground states associated with
the domains are as constructed analytically and indicated in
Figure 3. The search can be limited to an acute angle adjacent
to the abscissa axis, within the first quadrant of Figure 3:

0 < B40 < 0.45B20. (19)

Indeed, the dx2−y2 orbital of Fe overlaps most strongly with
the ligand orbitals and therefore has a much higher energy
than the other 3d orbitals, in particular, dxy. By Eqs. (3),
E(dx2−y2 ) − E(dxy) = 24B44 > 0, whence by Eq. (4),
B40 > 0. To prove the right-hand part of the double inequality
(19), one should rewrite the CF Hamiltonian (1), taken in
conjunction with Eq. (4), as a classical anisotropy energy,

Ea = B20(3 cos2 θ − 1)

+B40(35 cos4 θ − 30 cos2 θ + 3 + 35
3 sin4 θ cos 4φ),

and demand that θ = π /2, φ = π /4 be a local minimum. This
is to account for the well established fact that the easy mag-
netization direction lies in the plane of the FePc molecule.3, 21

A further experimental fact to take into consideration is
that the ground state is a spin triplet (S = 1) and that it is or-
bitally degenerate (3Eg).3, 6 Within the sector defined by the
condition (19) there are only two domains where 3Eg is the
ground state — a quadrangle T3 and a triangle T5. We carried
out an extensive numerical study of the magnetic susceptibil-
ity (with due allowance for the spin-orbit coupling) and found
that χ ||(T) > χ⊥(T) everywhere within T3, but χ ||(T) < χ⊥(T)
inside T5. (Here the subscript “||” refers to the direction
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FIG. 4. Temperature dependence of reciprocal susceptibility. Closed circles
are experimental data,21 solid line is 1.22 times the calculated χ−1.

parallel to the 4-fold symmetry axis.) One has to conclude,
therefore, that the standpoint of FePc in Figure 3 lies inside
the triangle T5. The corresponding ground-state configuration
is a2

1ge
↑↓↑
g b

↑
2g , cf. Eq. (T5). It is distinct from the configuration

T3, or b2
2ge

↑↓↑
g a

↑
1g , postulated by Dale et al.20 and adopted by

Filoti et al.6 On a simple model the latter authors have demon-
strated that T3 has necessarily an easy-axis anisotropy, which
agrees with our analysis. The experiment,3, 21 however, insists
on an easy-plane anisotropy and so T3 has to be definitively
abandoned. After all, Dale’s choice of T3 was a mere conjec-
ture, without a sufficient experimental foundation. It should
also be noted that Miedema et al.1, 2 proceeded from the cor-
rect ground-state configuration T5, even though they did not
explain their choice.

The difference between the two 3Eg configurations is
easy to understand. In both cases there is one eg hole; the
two real eg orbitals (dxz and dyz) can be combined to give
states with �z = ±1. An extra singly occupied orbital in T3

is a1g (dz2 ), with �z = 0. Therefore, the z-component of the
total orbital moment is Lz = ±1 and the spin-orbit coupling
leads to an easy-axis anisotropy in T3. In T5 it is the dxy orbital
(b2g) that is singly occupied and the situation is quite differ-
ent. Now three orbitals, dxy, dxz, and dyz, are accessible to the
holes. If the eg and b2g levels were perfectly degenerate, there
would be no anisotropy at all. The fact that the degeneracy is
lifted results in a weak easy-plane anisotropy, such as the one
observed.

We undertook an attempt to refine the position of the sys-
tem inside the triangle T5 on the basis of the available sus-
ceptibility data.21 We find that the most likely standpoint is
near the left corner of the triangle, at B20/C = 0.84, B40/C
= 0.0074. Powder susceptibility was calculated as 1

3χ||
+ 2

3χ⊥, with B = 917 cm−1 and C = 4040 cm−1 (as in
Table 7.3 of Ref. 29). The spin-orbit coupling constant ζ

was set to 400 cm−1. The so computed susceptibility proved
higher than the experimental one and had to be reduced by
a factor of 0.8, to make both curves match. (Accordingly,
in Fig. 4 the experimental reciprocal susceptibility21 is com-
pared with the calculated χ−1 times 1.22.) The reduction fac-
tor 0.8 can be attributed to covalency, neglected in our model.

Apart from the rescaling, the calculated χ−1(T) does
agree with the experiment. In our calculation the sextet 3Eg

is split by the spin-orbit interaction. The ground state is a sin-
glet and so is the first excited state, situated 20 cm−1 above
the ground state. The second excited state, at 52 cm−1, is a
doublet, followed by two singlets, at 165 cm−1 and 225 cm−1.
It will be recalled that the model spectrum of Refs. 20 and
21 consisted of a ground singlet and an excited doublet at
64 cm−1. The most essential distinction of our spectrum is the
presence of an excited singlet at 20 cm−1. A clue to this point
might be provided by a measurement of the specific heat. The
isolated molecule has no magnetic moment but the applica-
tion of an external magnetic field Hx in easy-plane direction
gives rise to a spin moment mx

S = −2 μB〈Ŝx〉 that saturates
at about mx

S ≈ 2 μB for fields exceeding 40 T in agreement
with S = 1. We find a ratio of orbital and spin moments
mx

L/mx
S = 〈L̂x〉/(2〈Ŝx〉) ≈ 0.65 for our refined parameter set

in reasonable agreement with the ratio of 0.83 that was mea-
sured by XMCD.3, 31 Therefore, we confirm the existence of
an extraordinarily large, highly unquenched orbital moment
in FePc.

VI. CONCLUSION

Published experimental data suggest that FePc has an or-
bitally degenerate ground state with S = 1, the easy magne-
tization direction lying in the plane of the molecule. There is
a single domain in the CF parameter space where these con-
ditions are met—the triangle T5 in Figure 3. The correspond-
ing ground-state configuration is a2

1ge
3
gb

1
2g . The standpoint of

FePc is situated in the left corner of the triangle, about B20/C
= 0.84, B40/C = 0.0074, whereas B44 is given by Eq. (4). This
point lies in a strong-CF region, where the notion of single-
determinant states has a certain validity.
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