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A solid, withdrawn from a liquid bath, entrains a thin liquid film. This simple process, first
described by Landau, Levich and Derjaguin (LLD), is commonly observed in everyday life. It also
plays a central role in liquid capture by animals, and is widely used for surface-coating purposes
in industry. Motivated by the emerging interest in the mechanics of very soft materials, and in
particular the resulting elastocapillary coupling, we develop a dip-coating model that accounts for
the additional presence of a soft solid layer atop the rigid plate. The elastic response of this soft layer
is described by a Winkler’s foundation. Using a combination of numerical, scaling and asymptotic-
matching methods, we find a new softness-dependent power-law regime for the thickness of entrained
liquid at small capillary number, which corresponds to a modified physics at play in the dynamic
meniscus. The crossover between this regime and the classical dip-coating one occurs when the
substrate’s deformation is comparable to the thickness of the entrained liquid film.

A solid object, withdrawn from a liquid bath, entrains
a thin liquid film via viscous forces. Such a process
is called dip coating and is commonly used in industry
for surface treatment with specific (e.g. optical) proper-
ties [, 2]. The central quantity of interest is the thick-
ness hoo (see Fig. [1]) of the entrained liquid film. Using
asymptotic-matching methods, Landau, Levich [3] and
Derjaguin [4] were the first ones to calculate this thick-
ness for a Newtonian liquid coating a rigid substrate.
Over the last decades, the LLD description has been
challenged in several ways [5]. The film thickness has
been shown to drastically depend on fluid inertia [6] [7],
the presence of surfactants at the liquid-air interface [§],
the non-Newtonian properties of the liquid [9HT4], or the
roughness of the solid [I5] [16], to cite a few.

Besides, a recent and growing interest was devoted to
the mechanics of soft materials (Young’s modulus E ~
kPa), with a plethora of applications towards micromet-
ric and biomimetic systems. When wetted by droplets,
such materials exhibit rich soft-wetting properties, as
contact-line capillary forces (through e.g. the liquid-air
surface tension ) are sufficient to deform them [I7]. This
generates e.g. interfacial ridges [18| [19], which consid-
erably change the spreading and motion of droplets in
comparison with the case of rigid substrates [20] [21].

In a dip-coating process involving soft surfaces, the
Laplace pressure is expected to induce elastic deforma-
tions that modify the flow and the entrained thickness
(¢f. Fig.[l). This situation is reminiscent of soft level-
ling [22], and might have implications in liquid capture
by animals [23H25], through e.g. the softness and geom-
etry of the tongue [26]. In this Letter, we thus study
theoretically the influence of the elastic deformation of a
soft substrate on the thickness of liquid entrained in dip
coating. Mainly, a new, soft-LLD regime is identified,
and characterized using a similarity solution.
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Figure 1: Schematic of the soft dip-coating problem. The
inset exhibits a zoom in the dynamic-meniscus zone where the
flow is localized. The liquid-air interfacial profile is denoted
h(z) and its curvature induces a negative Laplace pressure
that generates a deformation d(z) of the soft substrate.

A schematic of the system is shown in Fig. We
consider a rigid substrate covered by a thin compress-
ible linear-elastic layer, modeled as a Winkler’s founda-
tion [27]. The ensemble is withdrawn with a velocity
V from a liquid reservoir of viscosity 1 and density p.
The problem is assumed to be invariant in the y direc-
tion, and is solved using a LLD-like asymptotic-matching
method [3] 28]. We focus on the dynamic meniscus zone
(see inset of Fig. [I) and use the lubrication approxima-
tion to characterize the steady liquid-air interface profile
h(z). Gravitational drainage is neglected, so that the
hydrodynamic pressure field is set by the Laplace pres-
sure. The key element introduced in this work is that
the hydrodynamic pressure induces a normal elastic de-
formation 6(z) of the soft layer. The thickness of the
liquid layer is thus given by h — §, which modifies the



thin-film equation [29] to the form

% [A(z) = 6(2)]" W"(2) + V [A(2) = 6(2)] = Voo , (1)
where a prime denotes one spatial derivative with respect
to z, and Vhe is the flow rate (per unit length). Far from
the bath, the liquid-film thickness reaches h,, such that

h(z = 00) = heo - (2)

Following the standard procedure [28| [30], matching to
the static meniscus is achieved via the boundary condi-
tion

V2

gcap

where loap = \/7/(pg) is the capillary length.

To close the problem, we need to specify the defor-
mation 6. As a minimal description of the mechanical
response of the elastic layer, we use the Winkler’s founda-
tion [27], that is valid for thin-enough compressible mate-
rials under small deformations [3I]. Essentially, the soft
layer is described as a mattress of independent springs.
Thus, the normal deformation is simply proportional to
the local pressure, as

h'(z — —o0) =

: 3)

t
6(2) = oh"(2) | (4)
with the layer thickness ¢ and the effective modulus

Er = (1_5/()1(712)2”), where v denotes the Poisson ratio

(v # 1/2). The length scale lo. = \/ty/E* is the rele-
vant elastocapillary length for the current geometry and
elastic response [I7]. Inserting Eq. into Eq. (1)), we
find a closed differential equation

(h—2.0")°n" = 3Ca (hoo — R+ C2,0") ,  (5)

where Ca = nV/v is the capillary number. The equa-
tion contains fe., while the matching condition (see
Eq. ) involves fc,p. Therefore, besides Ca, the prob-
lem contains another dimensionless softness parameter
L = (loc/leap)? = pgt/E*, which characterizes the rela-
tive importance of softness in the problem.

We numerically solve Eq. (5]) using a 4*"-order Runge-
Kutta scheme, where the boundary condition of Eq.
is imposed via the solution of the linearized version of
Eq. [32]. The numerical solution behaves as h ~ 22
as z — —oo, and we adapt the value of h, via a shooting
algorithm to achieve the curvature-matching condition of
Eq. .

Figure [2] reports the normalized thickness of the en-
trained liquid film as a function of the capillary num-
ber, for three different dimensionless softness parameters.
Two distinct scaling regimes can be observed. At large
Ca, we recover the classical LLD power law of the rigid

Figure 2: Normalized thickness of the entrained liquid film
versus capillary number, for different values of the dimen-
sionless softness parameter £ = pgt/E™, as obtained from the
numerical integration of Eq. . The black dotted line rep-
resents the classical LLD law of Eq. (6) and the gray dashed
line shows the soft-LLD law of Eq. . The slope triangles
indicate the power-law exponents of Eqs. @ and .

case [3]
Roo & 0.946 £y, Ca?/? (6)

At finite values of the softness parameter £, however,
one finds that the result deviates from Eq. @ at small
Ca. The larger L, the stronger the departure from the
classical scaling. At small dip-coating velocities, we find a
novel, soft-LLD power-law regime for which the thickness
of the entrained liquid film given by

2
hoo = ——/Ceanloe Cal/? . 7
3\4/§ P a ()

The determination of the scaling and prefactor of Eq. @
will be discussed below. Our central result is thus that,
at small-enough velocity, the wall softness enhances the
dip-coating efficiency with respect to the classical LLD
scenario.

The emergence of a soft-LLD regime at low velocity
can be understood by comparing the typical elastic de-
formation to the thickness of the entrained liquid film. As
z — —o0, the normal deformation of the soft layer, that
is proportional to the curvature of the liquid-air interface
in the Winkler’s model, reaches

8(z = —00) = V25 [leap (8)

as obtained from injecting Eq. (3)) into Eq. (). Interest-
ingly, Eq. does not involve the velocity. Therefore,
the relative magnitude of the elastic deformation versus
the thickness of the entrained liquid film increases with



6
(a) (b)
3 ar Ca=1072|[ Ca=10"3
2
~
= ol
0 L
6
(c) (d)
o4 Ca=1074 | Ca=10"°
< ;
= )
e
0 h—46
15 —10 —05 00 —15 —10 =05 0.0
2/ leap 2/ leap

Figure 3: Profiles of the liquid-air interface (blue) and the
normal deformation of the elastic layer (green) normalized by
the thickness of the entrained liquid film, as functions of the
vertical position normalized by the capillary length, as ob-
tained from the numerical integration of Eq. . The orange
dashed lines display the normalized thickness profiles of the
liquid layer. The dimensionless softness parameter is set to
£ = 0.01. The capillary numbers are Ca = 1072,1073,107*
and 107°, in (a)-(d) respectively.

decreasing Ca. This explains why the soft regime emerges
at small velocity. Estimating the rigid-to-soft crossover
to take place when the normal elastic deformation and
the thickness of the entrained liquid film are of the same
order (i.e. §(z = —00) ~ fcapCa2/3), we obtain a critical
capillary number Ca* ~ £3/2 which is exactly the scal-
ing obtained by balancing Eqs. @ and @ To verify the
above scenario, we show in Fig. [3| both the liquid-air in-
terface profile and the normal deformation profile of the
elastic layer versus the vertical position, for a situation
where Ca* = 1073. For Ca < Ca*, the normal elastic de-
formation is found to be larger than the thickness of the
entrained liquid film (and vice versa), thus confirming
the above criterion.

We now turn to a detailed analysis of the soft LLD
regime, including the derivation of Eq. @ Figure a)
depicts the typical problem structure in the soft regime,
i.e. Ca < Ca”, through four main regions. In contrast
to the rigid case, the flat-film region (i) does not imme-
diately connect to the dynamic meniscus/boundary layer
(iii): instead, one observes an intermediate elastocapil-
lary region (ii) for which the elastic layer deforms signif-
icantly while the liquid-film thickness h — § remains ap-
proximately constant and equal to h, (see also Figs. c)
and (d)). This fundamentally changes the structure of
the boundary layer, and the subsequent matching to the
static meniscus (iv).

We describe the elastocapillary region by assuming
that it is essentially static, i.e. devoid of hydrodynamics,
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Figure 4: (a) Schematic showing the four regions of inter-
est: i) at large z, the entrained liquid film is flat and the
elastic layer is not deformed; ii) reducing z, one enters the
elastocapillary region, with a constant fluid thickness and a
progressively-deformed elastic layer; iii) a dynamic meniscus
(“boundary layer”) then connects the elastocapillary region
to the static meniscus; iv) the static meniscus. Note that the
schematic is reoriented with respect to Fig. (b) Profiles
of the liquid-air interface (blue) and the normal deformation
of the elastic layer (green) normalized by the thickness of
the entrained liquid film, as functions of the vertical position
rescaled by the capillary length, as obtained from the numer-
ical integration of Eq. (5) with Ca =10"" and £ = 0.01. The
orange dashed line displays the normalized thickness profile
of the liquid layer. The dotted pink line corresponds to the
outer elastocapillary solution given by Eq. . The inset
shows a zoom of the boundary layer, where the black dashed
line displays the boundary-layer solution of Eq. (12).

owing to the nearly-constant liquid-film thickness. In-
serting h — § = ho, in Eq. and solving the obtained
differential equation, we get the liquid-air interface pro-
file in the elastocapillary region

hee(2) ~ hoo + A e %/ bee | (9)

where A is an integration constant. Note that this so-
lution corresponds to nullifying the right-hand-side of
Eq. , i.e. by removing hydrodynamic effects.

Next, we need to connect the static elastocapillary
solution (ii) to the static meniscus (iv). The lat-
ter exhibits a finite curvature ﬂ/fcap, so that the
exponentially-growing curvature of the elastocapillary so-
lution in Eq. @ with decreasing z must saturate. This



saturation is achieved via a hydrodynamic boundary
layer (iii). Introducing the location z. of the boundary
layer, we first rewrite the outer elastocapillary solution
as

62
Bee(2) 2 oo 4 V2 e(Fe2) /e (10)

cap

This elastocapillary solution perfectly describes the nu-
merical liquid-air interface profile for z > 2z, (see
Fig.[db)). Below z, the elastic deformation § saturates
to its limiting value of Eq. . The inset of Fig. b)
provides a zoom in the boundary layer where the elastic
deformation smoothly approaches its saturation value.

To characterize the boundary layer, we consider the
vicinity of z., and define the similarity variable £ = (z —
2¢)/A, where A is the unknown boundary-layer width (see
Fig. [4] (a)). We make the following Ansatz

h(z) = hoo + \@fi (1 - Z+ ;Z2> + BH() . (11)

cap

This expression contains the second-order expansion of
hec(z) expressed with the variable Z = (z — z¢)/lec,
while the boundary layer is described by a self-similar
function H(£) and a constant B. The self-similar func-
tion must ensure the saturation of the curvature, and
for that reason we define the natural auxilliary func-
tion K = H”. The boundary condition in Eq. im-
poses K(§ — —oo) = 0. On the other side, matching to
the third order of the expansion of hec(z) requires that
K — 00) = —V2EN3/(Blecleap), which after setting
B = V2X3/(£ocleap) Teduces to K(§ — o0) = —€. In-
serting Eq. in Eq. , we obtain at leading order in
A

K+¢&
=3 ~Fs 12
(K: + 5 - Hoo)3 ( )
where we set A = 2*3/4Ca1/2€§é§€;1/2 to remove the

capillary number from the problem, and we introduce
hoo = \/ﬂec)\Hoo/fcap, with H., a numerical prefactor.
These relations lead to

hoo = 27V Hoo \flocloapCal/? | (13)

where we recover the scaling of Eq. .

The remaining task is to solve Eq. subjected to
the boundary conditions, which will select the value of
H.,. Towards the static meniscus, i.e. as § — —oo,
Eq. has an asymptotic solution of the form k(&) ~
3/& which does not depend on H,. Besides, towards the
elastocapillary region, we expect the asymptotic behavior
of the boundary layer to be of the form K ~ —¢ + C +
K1(€) where K1(€) is a function vanishing at £ — oo.
Here, the asymptotic solution does depend on H, as C

4

must satisfy 3C/(C — Ho)® = 1. Performing a linear-
stability analysis, we find that H,, = 2/3 (and thus C' =
—1/3) is the only value that ensures an algebraic decay
of K1 at large &, as required for the matching to the
elastocapillary region [33] [34].

The solution of Eq. with Hy = 2/3 is plotted in
the inset of Fig. b), offering a perfect description of the
elastic deformation inside the boundary layer. More im-
portantly, H,, = 2/3 provides the sought-after prefactor
present in Eq. (7)), which is in perfect agreement with
direct numerical integration of Eq. (see Fig. .

We conclude here by some rough estimates towards
practical relevance of the soft-LLD scenario exhibited in
this Letter. In the case of a substrate coated with a thick
elastic layer, the deformation does not depend anymore
on the layer thickness t, and the relevant elastocapillary
number becomes v/ FE [17,[19]. If the scenario identified in
the current work through a Winkler’s foundation remains
valid for other elastic responses, the crossover to the soft-
LLD regime should occur for thick elastic materials at a
critical capillary number Ca* ~ (ﬁmp)y 2. Using typical
values for soft gels, i.e. fcap =~ 1 mm and v/E ~ 10 ym,
we find a critical capillary number on the order of 1073,
which is in the accessible range experimentally [5].

As a perspective, extensions of the present model to
other forms of elastic response and comparisons to ex-
periments would be interesting. In addition, viscoelastic
properties of the soft solid may affect the results [35].
Lastly, the displacement of a liquid meniscus on a solid
occurs in various other situations [36], such as the motion
of confined bubbles in a channel [37], or the spreading of
a droplet [38 B9]. These problems also involve LLD-
like solutions. Hence, it would be interesting to revisit
them with soft boundaries using the present soft-LLD
theory [40].
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