Wen Sun

Jin-Kao Hao
email: jin-kao.hao@univ-angers.fr

Yuhao Zang

Xiangjing Lai

A solution-driven multilevel approach for graph coloring

Keywords: Multilevel optimization, heuristics, k-graph coloring, tabu search

Graph coloring is one of the most studied NP-hard problems with a wide range of applications. In this work, the first solution-driven multilevel algorithm for this computationally challenging problem is investigated. Following the general idea of multilevel optimization, the proposed algorithm combines an original solutiondriven coarsening procedure with an uncoarsening procedure as well as an effective refinement procedure. The algorithm is assessed on 47 popular DIMACS and COLOR benchmark graphs, and compared with 13 state-of-the-art coloring methods in the literature. We close one large graph (wap01a.col) by providing its chromatic number for the first time. Impacts of the key ingredients of the algorithm are also investigated.

Introduction

Given an undirected graph G = (V, E) with a vertex set V = {1, 2, . . . , n} and an edge set E ⊂ V × V, a k-coloring of G is a mapping S : V → {1, . . . , k}. If the k-coloring verifies the condition S(u) = S(v) for all edges (u, v) in E (this is called the coloring constraint), then it is a legal k-coloring.

Otherwise, the k-coloring is said to be illegal or conflicting. Equivalently, a k-coloring can be defined by a partition of the vertex V into k subsets (also

called color classes) V 1 , V 2 , • • • , V k , such that ∪ k i=1 V i = V and V i ∩ V j = ∅.
A legal k-coloring implies that if u, v ∈ V i (i = 1, . . . , k), then (u, v) / ∈ E.

The graph k-coloring problem (k-GCP) is to determine if a legal k-coloring of G exists for a given k. The classical graph coloring problem (GCP) is to find the minimum integer k (chromatic number χ(G)) for which a legal kcoloring of G exists. k-GCP (decision problem) is known to be NP-complete while GCP (optimization problem) is NP-hard [START_REF] Garey | Computers and intractability[END_REF]. In addition to its theoretical importance in graph theory, graph coloring has numerous applications, such as register allocation [START_REF] Chaitin | Register allocation & spilling via graph coloring[END_REF], timetabling [START_REF] De Werra | An introduction to timetabling[END_REF], frequency assignment [START_REF] Gamst | Some lower bounds for a class of frequency assignment problems[END_REF] and scheduling [START_REF] Leighton | A graph coloring algorithm for large scheduling problems[END_REF].

To enable more applications to be formulated, several graph coloring variants and generalizations have been introduced, including for instance equitable coloring (ECP), weighted vertex coloring (WVCP), bandwidth coloring (BCP), and minimum sum coloring (MSCP) [START_REF] Kubale | Graph colorings[END_REF][START_REF] Lewis | A Guide to graph colouring: algorithms and applications[END_REF]. The ECP imposes an equity constraint on the sizes of color classes of a coloring and requires that the color classes differ in size by one unit at most. The ECP is applied in garbage collection [START_REF] Meyer | Equitable coloring[END_REF], memory allocation in parallel systems [START_REF] Das | Conflict-free star-access in parallel memory systems[END_REF], scheduling computer and manufacturing processes with load balancing [START_REF] Blazewicz | Scheduling computer and manufacturing processes[END_REF], and timetabling [START_REF]Equitable coloring of graph products[END_REF]. The WVCP of a vertex weighted graph is to partition the vertex set into k disjoint color classes such that the sum of the costs of these color classes is minimized, where the cost of a color class is given by the maximum weight of a vertex (representative) in that class. The WVCP degenerates to the GCP when the vertices have all the unit weight. From a practical perspective, the WVCP arises naturally in the context of buffer management in operating systems [START_REF] Ribeiro | An optimal column-generation-withranking algorithm for very large scale set partitioning problems in traffic assignment[END_REF], batch scheduling [START_REF] Gavranovic | Graph partitioning and set covering for the optimal design of a production system in the metal industry[END_REF] and manufacturing [START_REF] Hochbaum | Scheduling semiconductor burn-in operations to minimize total flowtime[END_REF]. As another generalization of the GCP, the BCP imposes a stronger coloring constraint and requires that the difference of the colors assigned to any two adjacent vertices (u, v) in E must not be smaller than a given value d uv ≥ 1 (the GCP corresponds to the case when d uv = 1). The BCP is notable for its applicability especially in the area of frequency assignment in mobile networks [START_REF] Aardal | Models and solution techniques for frequency assignment problems[END_REF]. Finally, the MSCP involves finding a legal kcoloring that minimizes the sum of the colors (i.e., an integer in {1, . . . , k}) assigned to the vertices. Typical applications of the MSCP include scheduling, resource allocation, and VLSI design [START_REF] Malafiejski | Sum coloring of graphs[END_REF].

Given the intrinsic difficulty of graph coloring, many efforts have been devoted to developing approximate or heuristic algorithms. Comprehensive reviews on graph coloring algorithms can be found in [START_REF] Galinier | Recent advances in graph vertex coloring[END_REF][START_REF] Galinier | A survey of local search methods for graph coloring[END_REF][START_REF] Malaguti | A survey on vertex coloring problems[END_REF]. Representative examples include, but are not limited to, the following algorithms:

constructive algorithms (DSATUR [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF], RLF [START_REF] Leighton | A graph coloring algorithm for large scheduling problems[END_REF]), local search algorithms (TabuCol [START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF], IGrAl [START_REF] Caramia | Coloring graphs by iterated local search traversing feasible and infeasible solutions[END_REF], VSS [START_REF] Hertz | Variable space search for graph coloring[END_REF], PLSCOL [START_REF] Zhou | Improving probability learning based local search for graph coloring[END_REF]) and population-based hybrid algorithms (HEA [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF], AMA [START_REF] Galinier | An adaptive memory algorithm for the kcoloring problem[END_REF], MMT [START_REF] Malaguti | A metaheuristic approach for the vertex coloring problem[END_REF], MACOL [START_REF] Hao | A memetic algorithm for graph coloring[END_REF], Evo-Div [START_REF] Porumbel | An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring[END_REF], QACOL [START_REF] Titiloye | Quantum annealing of the graph coloring problem[END_REF], HEAD [START_REF] Moalic | Variations on memetic algorithms for graph coloring problems[END_REF]). It is worth mentioning that the populationbased hybrid algorithms represent the state-of-the-art methods, which often typically employ local search (e.g., TabuCol [START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF]) as their key local optimization component.

Meanwhile, we notice that even if various approaches have been studied for graph coloring, the well-known multilevel (also called multiscale) optimization approach [START_REF] Hendrickson | A multilevel algorithm for partitioning graphs[END_REF][START_REF] Walshaw | Multilevel refinement for combinatorial optimisation problems[END_REF] has attracted very little attention in the literature for this important problem. The basic idea of the multilevel approach for graph optimization problems is to reduce the complexity of the initial (large) graph by creating a sequence of intermediate smaller graphs (coarsening phase), solving the smallest graph (initial solution phase) and projecting the solution back to the initial graph through the intermediate graphs (uncoarsening phase). This approach has been applied with great success to many difficult problems including graph partitioning [START_REF] Hendrickson | A multilevel algorithm for partitioning graphs[END_REF][START_REF] Benlic | A multilevel memetic approach for improving graph kpartitions[END_REF][START_REF] Shaydulin | Relaxation-based coarsening for multilevel hypergraph partitioning[END_REF], graph drawing [START_REF] Walshaw | A multilevel algorithm for force-directed graph-drawing[END_REF], manifold learning [START_REF] Fang | Multilevel manifold learning with application to spectral clustering[END_REF], graph clustering [START_REF] Dhillon | A fast kernel-based multilevel algorithm for graph clustering[END_REF], segmentation [START_REF] Sharon | Hierarchy and adaptivity in segmenting visual scenes[END_REF], VLSI design [START_REF] Nam | Modern circuit placement: Best practices and results[END_REF], and vertex separator problem [START_REF] Hager | A multilevel bilinear programming algorithm for the vertex separator problem[END_REF].

To our knowledge, there is only one early attempt [START_REF] Walshaw | A multilevel approach to the graph colouring problem[END_REF] on using the multilevel approach to solve the graph coloring problem. However, the reported results are disappointing given that it is just a simple and straightforward application of the general multilevel method with no dedicated strategies.

In this work, we revisit the multilevel approach for graph coloring by adopting more advanced strategies and techniques in its key components. We summarize the main contributions as follows.

First, we propose the solution-driven multilevel algorithm (SDMA) (Section 2) that for the first time integrates a special solution-guided coarsening strategy with an effective local refinement based on a weight tabu search procedure within the multilevel paradigm. To reinforce its search capacity, SDMA also uses a perturbation-based strategy to iterate the underlying multilevel process.

Second, we provide extensive computational assessments on well-known DIMACS benchmark graphs and perform comparisons with state-of-theart coloring algorithms (Section 3). We also investigate the impacts of key components of the proposed algorithm on its performance (Section 4).

In the next section, we present the proposed approach as well as its components.

Solution-driven multilevel algorithm for GCP

As explained in [START_REF] Galinier | Recent advances in graph vertex coloring[END_REF], GCP can be approximated by solving a series of k-GCP with decreasing k values where k is the number of available colors.

Specifically, we start with a large k (e.g., the number of vertices of the input graph G), and try to find a legal k-coloring. Once such a solution is found (k gives an upper bound of the chromatic number of G), we decrease k by one and then try to solve the new k-GCP instance. This process is repeated until no legal k-coloring can be found. Therefore, the proposed SDMA algorithm is designed to solve the k-coloring problem.

For a given graph G = (V, E), the algorithm explores the search space Ω k that is composed of all legal (non-conflicting) and illegal (conflicting

) can- didate k-colorings, i.e., Ω k = {{V 1 , V 2 , • • • , V k } : ∪ k i=1 V i = V, V i ∩ V j = ∅}.
For a candidate solution S ∈ Ω k , its quality is assessed by the objective func-

tion f (S) = ∑ k i=1 |C(V i)|, where C(V i
) is the set of conflicting edges in color class V i (a conflicting edge means that its endpoints are in the same color class, or equivalently, receive the same color). In other words, this function counts the conflicting edges in the color classes of S. Thus, a solution for G is a non-conflicting coloring S with f (S) = 0. The objective of SDMA is then to minimize f to find a non-conflicting k-coloring.

General approach

The proposed SDMA approach (Algorithm 1) starts with an initial solution S 0 (line 3) for the input graph G 0 . Then, SDMA iterates the multilevel optimization process (lines 4-15, m represents the current level) and a perturbation phase (lines [START_REF] Malafiejski | Sum coloring of graphs[END_REF][START_REF] Galinier | Recent advances in graph vertex coloring[END_REF][START_REF] Galinier | A survey of local search methods for graph coloring[END_REF] to find improved solutions.

(1) Initialization phase: SDMA constructs its initial solution (i.e., a k-coloring solution with as few conflicts as possible) in two steps: 1) create a k-coloring solution with as few conflicts as possible by the greedy DANGER algorithm of [START_REF] Glover | Coloring by tabu branch and bound[END_REF]; 2) improve the solution by the tabu search procedure of [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF]. Basically, the tabu search procedure progressively reduces the number of coloring constraint violations by changing the color of a conflicting vertex once a time (see Section 2.3).

(2) Coarsening phase: The coarsening phase aims to transform the input graph G 0 into a hierarchy of monotonically smaller coarsened graphs by merging vertices. Specifically, let m be the current level, then the graph G m is transformed into a smaller graph G m+1 based on the current solution (i.e., a candidate k-coloring for G m). Given that the algorithm used to color each coarsened graph is a heuristic procedure (see Section 2.3), some ver-

Algorithm 1

The SDMA algorithm for solving k-GCP tices may wrongly receive the same color and therefore can be incorrectly merged. To remedy this problem, in the coarsening phase we adopt a coarsening strategy that merges non-conflicting vertices in a probabilistic way (see Section 2.2). The coarsening operation repeats L times (a parameter, set to 5 by default), leading to L coarsened graphs.

1: Input: Graph G 0 = (V 0 , E 0),
(3) Weight tabu coloring phase: For each new coarsened graph G m+1 , we first generate a k-coloring S m+1 by inheriting from the solution S m . Then we apply the weight tabu coloring algorithm (see Section 2.3) to ameliorate S m+1 . The improved solution is then used to create the next coarsened graph as explained above.

(4) Uncoarsening phase: When the coarsening phase attains its last level L, the uncoarsening phase is triggered, which unfolds the current coarsened graph G m to the less coarsened graph G m-1 . Then, the solution S m for G m is correspondingly projected back to S m-1 for G m-1 , which is further improved by the weight tabu coloring algorithm of Section 2.3. As a result, the uncoarsening phase recovers L intermediate coarsened graphs (up to G 0) in the reverse order of the coarsening phase, while the weight tabu coloring algorithm is applied to each uncoarsened graph to improve the solution.

(5) Perturbation phase: When the uncoarsening phase terminates, SDMA moves to the next round of the multilevel process if the best solution for G 0 has been improved during the last rounds of the multilevel process. Otherwise, if the best solution cannot be improved for λ (λ is set to 10 in this work) consecutive rounds of the multilevel process, the search is judged to be in a deep local optimum trap. To escape the trap, the perturbation phase is triggered to change the colors of some specifically identified vertices (see Section 2.5). The perturbed solution is then used to seeding the next round of the multilevel process.

In the next subsections, we explain the coarsening phase, the weight tabu coloring algorithm, the uncoarsening phase and the perturbation phase.

Coarsening phase

Algorithm 2

The coarsening phase Let G m = (V m , E m) be the graph at level m. The coarsening phase coarsens G m to G m+1 . Contrary to the classical coarsening strategy that only merges vertices based on structural information of the input graph, we adopt an original coarsening strategy that relies on additional information provided by the current solution.

Specifically, the proposed coarsening phase, as illustrated in Algorithm 2, performs the following steps.

21 1 / 4 2 N       1 G 2 51 31 21 11={10,40} 1 G 1 / 4 2 N      
Fig. 1. Illustrative example for the coarsening phase.

Step 1: Initialize the to-be-coarsened graph G m+1 by setting the G m+1 as G m , the solution S m+1 as S m and the weight of edge w m+1 as w m (lines 3-5, Algorithm 2). In the example of Figure 1, G 1 is the coarsened graph of G 0 with 5 vertices and is initialized to G 0 at the first step in Figure 1.

Step 2: Increase the weight of edge between conflicting vertices. In the weight tabu search algorithm, the weight of edge affects the coloring solution generated at the mth level. Thus, in the coarsening phase, we adjust the weight dynamically. In order to avoid the same conflict of the vertices, the algorithm adopts a heuristic strategy, which dynamically adds a large value (set to be |E|) to the weight of a conflicting edge. In Figure 1 (second step), the weight of the aggregated edge between 2 1 and 3 1 increases by a large number, w(2 1 , 3 1) = w(2 0 , 3 0) + |E| = 8.

Step 3: Merge non-conflicting vertices. If vertices v m+1 and u m+1 are not conflicting, they will be taken as a pair whose score will be calculated then. Repeat this process until all non-conflicting vertices are traversed. Then, we collapse probabilistically these non-conflicting vertices according to the scores and update the weights of the edges that are adjacent to vertices v m+1 and u m+1 (line 9-15, Algorithm 2). The merge procedure is decomposed into three operations:

(a) Score each pair of vertices by using historical information. We define a function score[u m+1][v m+1] to score each pair of vertices u m+1 and vertex v m+1 on the m + 1th level. Let Record[u m+1][v m+1] be the number of times that vertices u m+1 and v m+1 have been assigned to the same color class in the past solutions. Besides, we define the sum of times that vertices have been coarsened as sumCoarsen. The scoring function is then given by score

[u m+1][v m+1] = Record[u m+1][v m+1]/(sumCoarsen + 1).
(b) Choose coarsened vertices. According to the score of each pair of vertices, we merge the vertices if the rank of their score is in the top p (line 12, Algorithm 2), where p is an integer from 0 to N (N being the number of vertices) randomly generated at each coarsening phase.

(c) Update the weights of the coarsened vertices. The weight of the edge (v m+1 , u m+1) of the coarsened graph G m+1 equals the weight sum of the edges of the last level graph G m . Suppose that the coarsened vertex v m+1 is formed by merging v m and u m , p m+1 is the result of merging p m and q m , the weight of the edge (v m+1 , p m+1) of the coarsened graph G m+1 equals the weight sum of the edges (v m , p m), (v m , q m), (u m , p m) and (u m , q m) of the last level graph G m .

The last step of Figure 1 shows a possible coarsening situation of nonconflicting vertices in the coarsening procedure. Suppose that vertices 1 0 and 4 0 are to be merged according to the coarsening rule, leading to the coarsened vertex 1 1 of G 1 . Then, the corresponding edge weights are updated, i.e., w(1

1 , 5 1) = w(1 0 , 5 0) + w(4 0 , 5 0) = 2, w(1 1 , 3 1) = w(1 0 , 3 0) + w(4 0 , 3 0) = 2.
After coarsening the graph G m to G m+1 , we apply the weight tabu coloring algorithm to improve the solution of the graph G m+1 (see the Section 2.3).

Normally, the solution S m+1 that is inherited from S m has less degree of freedom.

Solution refinement by weight tabu coloring algorithm

Recall that the coarsening phase is to obtain a coarsened graph G m+1 at the m + 1th level from the graph G m at the mth level while the uncoarsening phase is to recover G m from G m+1 . After the coarsening phase and uncoarsening phase, we adopt the weight tabu coloring algorithm (WTS) to refine the quality of the solution S m for each new graph. For the reason of clarity, we use below G = (V , E) to represent the new graph and S to represent the solution inherited from its originating graph.

Given G = (V , E), WTS explores all possible k-colorings (candidate solutions), similar to what is presented at the beginning of Section 2. However, given that G is a weight graph, WTS adopts an adjusted weight ob-

jective function f (S) = ∑ k i=1 |C w (V i)| where |C w (V i)| is the sum of the weights of conflicting edges in color class V i . Accordingly, a k-coloring S
with f (S) = 0 corresponds to a legal k-coloring. For the purpose of optimization, WTS extends the popular TabuCol algorithm [START_REF] Hertz | Using tabu search techniques for graph coloring[END_REF][START_REF] Dorne | A new genetic local search algorithm for graph coloring[END_REF][START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF] to the case of weight graphs.

Given a conflicting k-coloring solution S = {V 1 , V 2 , . . . , V k }, the basic idea of WTS is to move a conflicting vertex v from its color class V i to another color class V j . To ensure a high computational efficiency of such moves, we maintain a matrix B of size n * k with elements

B[v][i] recording the number of vertices adjacent to v in color class V i (1 i k). The move 2 1 1 5 1 3 1 2 1 G 1 2 5 1 3 1 2 1 1 1 G 1
Weight coloring Fig. 2. Illustrative example for the weight coloring of the coarsened graph G 1 .

gain that represents the change in the objective function is expressed as

∆ f = B[v][j] -B[v][i].
According to an incremental technique, each time a vertex v is moved to another color class, we just need to update a subset of values affected by this move as follows. For each vertex

u adjacent to vertex v , B[u][i] ← B[u][i] -w[v][u], and B[u][j] ← B[u][j] + w[v][u].
At each iteration, WTS selects a best (according to f) eligible vertex to perform the move. An eligible vertex is a conflicting vertex, which is not forbidden by the tabu list or its move leads to a solution better than any seen solution. WTS stops when f (S) = 0 or when the objective function cannot be improved within a given number of iterations.

Figure 2 shows a possible iteration of the WTS procedure. Given the conflicting 3-coloring for G 1 in the last graph of Figure 1 and suppose that the vertex 3 1 is forbidden by the tabu list, the vertex 2 1 will be colored red, leading to a new solution with f = 1.

Uncoarsening phase

The uncoarsening phase is the reverse of the coarsening phase that recovers the graph G m-1 from the collapsed graph G m level by level until the initial graph G 0 is reached from the graph G 1 . Specifically, the underlying steps from the mth level to the m -1th level are described as follows.

(1) Initialize the graph G m-1 with G m , the solution S m-1 with S m and the edge weights w m-1 with w m .

(2) Unfold the coarsened vertices and update the corresponding solution and edge weights. As each pair of coarsened vertices is never adjacent, when the k-coloring S m for G m is extended to G m-1 , we simply assign the same color to them when the vertices are unfold. Finally, update the corresponding weights of the edges of the unfolded vertices. As shown in Figures 1 and2, after the coarsening procedure and the weight tabu search procedure, the graph G 0 is coarsened to the graph G 1 , which is colored with the solution S 1 . An initialization of the uncoarsening phase is shown in the first step of Figure 3,

G 0 = G 1 , S 0 = S 1 , w 0 = w 1 . Then, vertex 1 1 of G 1 is
recovered and its color is passed to the vertices 1 0 and 4 0 .

Meanwhile, those edges between the vertices incident to vertices 1 0 and 4 0 are restored and the corresponding weights are updated, i.e., w(1 0 , 3 0) = w(1 0 , 5 0) = 1, w(4 0 , 3 0) = w(4 0 , 5 0) = 1. Finally, the weight of the edge between conflicting vertices 1 0 and 2 0 is increased,

w(1 0 , 2 0) = w(1 1 , 2 1) + |E| = 8.

Perturbation process

The above multilevel process combining coarsening, uncoarsening and weight tabu search is able to progressively improve the initial solution S 0 . To further improve the quality of the solution, we iteratively repeat the multilevel process until no solution improvement can be reached during 10 consecutive rounds of the multilevel process. At this point, the search is judged to be trapped deeply. To get rid of the trap, we apply a simple perturbation before entering the next round of the multilevel process.

The perturbation displaces a fixed number of vertices (set to 0.1 * N, N being the number of vertices) in the following way. To avoid a too strong deterioration of the perturbed solution, the perturbation takes into consideration the objective value and makes sure that the reverse move is forbidden during tt = f + rand(1000) steps where rand(1000) is a random number between 0 to 999. The resulting solution from the perturbation procedure is then used as the new starting solution of the next round of the coarsening phase.

Experimental results and comparisons

This section is dedicated to an experimental assessment of the proposed SDMA algorithm. The study was based on 47 conventional benchmark instances that are commonly used in the literature and initially proposed for the DIMACS and COLOR competitions for graph coloring problems1 2 .

Benchmark instances

The 47 benchmark instances are classified into three categories in this paper: easy graphs, small difficult graphs and large difficult graph [START_REF] Galinier | Recent advances in graph vertex coloring[END_REF][START_REF] Galinier | An adaptive memory algorithm for the kcoloring problem[END_REF]. Let BKV (the best-known value) represents χ(G) (if known) or the best-known upper bound in the literature.

(1) The first category, easy graphs, contains 19 instances that can be colored with BKV colors by a basic coloring algorithm like DSATUR [START_REF] Brélaz | New methods to color the vertices of a graph[END_REF] (thus by numerous algorithms). This category of graphs includes some graphs of DSJC*, DSJR*, flat*, le450*, R* and two school* graphs. For these graphs, modern coloring algorithms can consistently reach the best-known or the optimal results.

(

) 2
The second category contains 20 difficult instances. These graphs are much more difficult for which a legal k-coloring with k =BKV or a slightly larger value than BKV is difficult to detect. This category of graphs includes the remaining graphs of DSJC*, DSJR*, flat*, le450*, R* graph and latin* graphs. For several graphs of this category, only few algorithms can reach the best-known results.

(3) The third category contains 8 large difficult instances whose best-known results can only be achieved by a few advanced coloring algorithms. Graphs having wap* in their name fall into this category. Following the common practice to report comparative results in the coloring literature, the performance assessment focuses on the best solution found by an algorithm corresponding to the smallest number k of colors needed to reach a legal k-coloring for a graph. It is worth noting that for the 28 difficult graphs, no single algorithm can reach all the best-known results.

As one can observe from the results presented in Section 3.3 (e.g., Tables 3 and5), even the best performing algorithms miss at least two best-known results. In fact, these instances have been studied for a long time (over 30 years) and the current best-known k values (BKV) have been attained jointly by a small number of complex hybrid algorithms under specific and relaxed conditions (e.g., large run time from several days to one month). Moreover, for some of these benchmark graphs, even finding a legal k-coloring for a k value slightly above the chromatic number or the current best-known result remains difficult. Thus, an algorithm able to attain (or draw near to) most BKV values can be considered to be interesting. Given these observations, one understands that it is not suitable to apply statistical tests when discussing computational results.

Experiment settings

The proposed algorithm was written in C++ and compiled by GNU g++

Parameters

The main parameters of the SDMA algorithm are related to the weight tabu coloring algorithm. Since the weight tabu coloring algorithm is built up on the TabuCol implementation of [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF], we adopted the parameter setting in [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF] as SDMA's default setting. Specially, the depth of the weight tabu coloring algorithm (β) was set to 10 6 . The tabu tenure (tt w) was defined by rand(10) + f in the weight tabu coloring algorithm and by rand(10000) + f in the perturbation phase. In addition, we fixed the level limit (L) to 5 according to the experiment reported in Section 4.1. The unimproved consecutive rounds for best solution is set 10. For each instance, the initial value of k was set to a value lightly larger (typically, 1 to 5 more colors) than the best-known value in the literature. Table 1 gives the descriptions of the parameters and their settings adopted in our SDMA algorithm..

Reference algorithms

To evaluate the performance of the proposed algorithm, 13 state-of-the-art heuristic algorithms in the literature are used as the main reference algorithms.

(1) Iterated local search algorithm (IGrAl) [START_REF] Caramia | Coloring graphs by iterated local search traversing feasible and infeasible solutions[END_REF] (a 2.8 GHz Pentium 4 processor and a cut off time of 1 hour);

(2) Variable space search algorithm (VSS) [START_REF] Hertz | Variable space search for graph coloring[END_REF] (a 2.0 GHz Pentium 4 processor and a cut off time of 10 hours);

(3) Local search algorithm using partial solutions (Partial) [START_REF] Bl Öchliger | A graph coloring heuristic using partial solutions and a reactive tabu scheme[END_REF] (a 2.0 GHz Pentium 4 and a time limit of 10 hours together with a limit of 2 * 10 9 iterations without improvement);

(4) Hybrid evolutionary algorithm (HEA) [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF] (the processor used is not available for this oldest algorithm and the results were obtained with different parameter settings);

(5) TabuCol search refinement (TabuCol) [START_REF] Galinier | Hybrid evolutionary algorithms for graph coloring[END_REF];

(6) The basic multilevel algorithm (MLTS) [START_REF] Walshaw | A multilevel approach to the graph colouring problem[END_REF] (a DEC Alpha machine with a 466 MHz CPU and 1 Gbyte of memory with 2048 iteration);

(7) Adaptive memory algorithm (AMA) [START_REF] Galinier | An adaptive memory algorithm for the kcoloring problem[END_REF] (the processor applied is not available and the results were obtained with different parameter settings);

(8) Two-phase evolutionary algorithm (MMT) [START_REF] Malaguti | A metaheuristic approach for the vertex coloring problem[END_REF] (a 2.4 GHz Pentium processor and a cut off time of 6000 or 40000 seconds);

(9) Evolutionary algorithm with diversity guarantee (Evo-Div) [START_REF] Porumbel | An evolutionary approach with diversity guarantee and well-informed grouping recombination for graph coloring[END_REF] (a 2.8 GHz Xeon processor and a cut off time of 12 hours);

(10) Distributed quantum annealing algorithm (QACOL) [START_REF] Titiloye | Quantum annealing of the graph coloring problem[END_REF][START_REF] Titiloye | Parameter tuning patterns for random graph coloring with quantum annealing[END_REF] (a 3.0 GHz Intel processor with 12 cores and a cut off time of 5 hours);

(11) Memetic algorithm (MACOL, renamed simply MA) [START_REF] Hao | A memetic algorithm for graph coloring[END_REF] (a 3.4 GHz processor and a cutoff time of 5 hours);

(12) The newest parallel memetic algorithm (HEAD) [START_REF] Moalic | Variations on memetic algorithms for graph coloring problems[END_REF] (a 3.1 GHz Intel Xeon processor with 4 cores used to run in parallel the search processes with a cut off time of at least 3 hours);

(13) Probability learning based local search (PLSCOL) [START_REF] Zhou | Improving probability learning based local search for graph coloring[END_REF] (A 2.8 GHz Intel Xeon E5-2760 processor and 2 GB RAM with a cutoff of 5 hours).

We only compare the results of the second category graphs with 12 algo-rithms for an overall discussion since most of the reference algorithms did not report their results on the third category graphs. Then, we compare our results of the second category and third category graphs with three typical algorithms: TabuCol (the popular tabu search coloring algorithm), PLSCOL (the latest learning-based local search algorithm) and MLTS (the basic multilevel coloring algorithm).

For our comparative studies, we follow the common practice in the literature on graph coloring and cite the best results reported by the reference algorithms. Indeed, as indicated in Section 3.1, these results were obtained on very different computing platforms and under various relaxed conditions (e.g., specific parameter settings, large run time from several days to one month for the most difficult instances). As such, the cited results can be considered as the very best results that can be achieved by the reference algorithms.

Stopping condition

Given the high difficulty of the above challenging benchmarks, the majority of the reference algorithms allowed long run time limits of at least 5 hours.

We thus adopt the same cut off limit for our experiments. It is worth noticing that in the literature, the main assessment criterion is the quality, i.e., the smallest number of colors used to find a legal coloring. Indeed, it is impossible to compare computation times in a controllable manner, given that the reference algorithms were implemented with different programming languages, and executed under various computing platforms and different stopping conditions (maximum allowed generations, maximum allowed objective evaluations, maximum allowed iterations or maximum allowed time limit). Thus, the timing information, when it is shown, was only provided for indicative purposes. Given its stochastic nature, SDMA was run 10 times to solve each problem instance.

Comparison with state-of-the-art algorithms

In this section, we compare the results of the 19 instances in the first category, the 28 difficult instances in the second and the third categories. Table 2 indicates that PLSCOL and SDMA can easily find the best-known results with a 100% success rate, while TabuCol is less stable on 2 instances (R125.1c and R125.5), and fails to attain one best-known result (R250.1c). Besides, MLTS fails to attain 8 best-known results. We notice that SDMA is computationally efficient by attaining the best-known solutions in less than 20s.

Comparative results on easy instances

Comparative results on difficult instances

1 Table 3 Comparison between SDMA and state-of-the-art algorithms (the 2nd and 3rd categories of instances). We first show in Table 3 a comparison of SDMA with the three basic refer-2 ence algorithms (TabuCol, PLSCOL and MLTS) in terms of quality on all the 3 28 instances of the second and the third categories. In this table, we show 4 the same information as in Table 2, while entries with "-" mean that the 5 corresponding results are not available.

6

From Table 3, we can see that SDMA competes very favorably with the of our solution-driven multilevel approach.

13

SDMA performs remarkably well on the family of large structured wap* 14 graphs by reaching all the best-known results. Importantly, SDMA finds a 15 41-coloring for wap01a.col, which improves the current best upper bound of 42 reported in [START_REF] Hao | Improving the extraction and expansion method for large graph coloring[END_REF]. Given that the chromatic number of wap01a.col is lower-bounded by 41 [START_REF] Held | Safe lower bounds for graph coloring[END_REF] (in fact wap01a.col has a clique of size 41), our 41-coloring3 closes definitively this graph and proves the chromatic number of 41. To shed light on SDMA's good performance on these graphs that come from the wavelength assignment problem, we show their structural characteristics in Table 4. The first column indicates the name of each graph.

The following 4 columns report the number of vertices and edges, density, and maximum/minimum degree. We observe that unlike other DIMACS instances, the wap* graphs are both large and sparse with 905 to 5231 vertices, an edge density between 0.02 and 0.11 and a large degree variation (from 9 to 351). As shown in the convergence analysis of Section 4.3, the search trajectory of SDMA for solving the wap* graphs is eased due to the structural features of this type of graphs. To further assess the performance of the proposed algorithm, we now present in Table 5 a comparison of SDMA with 10 other reference algorithms that are based on various approaches and represent the state-of-the-art on graph coloring. These algorithms altogether cover the current best-known results ever reported in the literature (shown in the column BKV) that have been obtained under various conditions. Notice that no single algorithm can reach all the best-known results even under largely relaxed conditions (e.g., a running time more than several days). Since the results for the 8 instances of the third category are not available for these reference algorithms, Table 5 only concerns the 20 hard instances of the second category and shows the best results of each algorithm in terms of the smallest number of colors k used to find a legal k-coloring. Once again, the rows #Better SDMA, #Equal SDMA and #Worse SDMA indicate the number of instances for which an algorithm has a better, equal or worse result compared to SDMA.

Table 5 shows that SDMA remains globally competitive as compared with The second group only includes the highly sophisticated MMT algorithm (column 9), which reports its results on all 20 instances of the second category. Table 5 shows that SDMA is worse than MMT for 4 instances, better for 4 instances and matches the remaining results, which indicates that SDMA performs similarly to MMT.

The third group contains the 5 remaining algorithms (VSS, Evo-Div, MA, QACOL and HEAD). SDMA is less competitive when it is compared with these algorithms though it shares the same results for many instances. Specifically, SDMA has fewer winning cases than losing cases worse: 2 vs 4 for 15 instances for VSS, 2 vs 4 for 16 instances for Evo-Div, MACOL 0 vs 4 for the 20 instances for MA, 1 vs 6 for 19 instances for QACOL and 1 vs 5 for 15 instances for HEAD.

To sum up, the results of Tables 3 and5 indicate that the proposed algorithm remains competitive with respect to 8 of the 13 leading reference coloring algorithms, and is less competitive than 5 of them. Moreover, SDMA tends to be more suitable for coloring large structured (sparse) graphs such as the wap* instances while other leading algorithms are more appropriate for coloring random or quasi-random instances. As such, SDMA can be considered to be a complementary alternative that enriches the toolkit for graph coloring.

Analysis

This section performs additional experiments to deepen the understanding of some important features of the proposed SDMA approach: the number of level for multilevel and the coarsening strategy. The experiments are based on 15 graphs with different characteristics. Each algorithm was run 10 times respectively on each instance with a time limit of 9000s (2.5 hour) per run unless otherwise stated.

Influences of the number of the coarsening levels

The proposed SDMA algorithm uses the parameter L to control the number of coarsened graphs, which was set to 5 by default. We now present a study to assess the influence of the number of the levels on the algorithm. For this purpose, we test two alternative values L = 3, 7. For each run, we collect the following statistics. For each multilevel optimization iteration (lines 4-15, Algorithm 1), we record the best objective value and 2 × L current objective values corresponding to the objectives of L coarsening iterations (lines 6-10, Algorithm 1) and L uncoarsening iterations (lines 11-15, Algorithm 1), where L is the level limit (see Algorithm 1 and Table 1). Figure 4 shows the running behaviors of SDMA where the X-axis indicates the numbers of multilevel optimization iterations for each graph and the Y-axis shows the average best objective values and average current objective values along the multilevel iterations.

From Figure 4, we observe the following general trends. The algorithm improves its solution quality significantly and quickly in the beginning of the search. Then the improvement slows down and the algorithm progressively converges to its best solution. For the three random (dense) graphs (DSJC1000.5.col, flat1000 76 0.col, R1000.5.col), the quality of the current solution fluctuates greatly during the multilevel iterations, allowing the algorithm to escape many local optimal solutions to reach solutions of increasing quality. For the sparse wap01a.col graph from real wavelength assignment, due to its specific structures, the improvement of both the average best objective value and the average objective value is more regular and the search fluctuates much less. This provides an interesting indicator for the high performance of the SDMA algorithm on this graph (and the other graphs of this family). Note that due to its large size and structure, the number of multilevel iterations performed by the algorithm within 3600 seconds on this graph is much smaller than on the other graphs.

These convergence profiles are typical and representative for the tested graphs, even if the exact curves and convergence points vary according to the studied instances, as the four curves show.

Conclusions and perspectives

We investigated the first solution-driven multilevel approach for solving the well-known graph coloring problem. Contrary to the conventional multilevel approach where the coarsening phase is performed based on structural information of the given graph, we adopted an innovative coarsening strategy that merges vertices based on the solution provided by the refinement procedure. Another new feature of the proposed algorithm is to apply the refinement procedure to improve each coarsened or uncoarsened graph. This ensures that the solution is continually ameliorated all along both the coarsening phase and the uncoarsening phase. Finally, for solution refinement, we devised an effective weight tabu coloring algorithm that generalizes the popular TabuCol procedure to the case of weight graphs.

We presented extensive computational assessments on 47 well-known benchmark graphs and extensive comparative studies with 13 reference algorithms in the literature. The computational results showed that the proposed SDMA algorithm is particularly effective for solving structured (sparse) graphs while other leading algorithms are more suitable for (large) random instances. As such, SDMA provides a promising alternative that enriches the toolkit for graph coloring and could contribute to a portfolio approach with an ensemble of solvers and an intelligent decision-maker on the basis of instance structures.

Finally, given that the underlying optimization procedure (i.e., weight tabu coloring procedure) is rather simple as compared with the leading state-ofthe-art algorithms, this work suggests that the proposed approach could be further improved by adopting more powerful refinement procedures. Although the multilevel approach has been applied to many problems, this is the first work demonstrating the potential of using solutions to guide the coarsening process. As such, one promising direction for future work is to investigate this solution-driven multilevel approach to other applications including those that have been solved with the conventional multilevel approach.

Fig. 3 .

 3 Fig. 3. Illustrative example for the uncoarsening phase.(3) Increase the weights of the edges between conflicting vertices. If the vertices v m-1 and u m-1 are conflicting vertices, we add a big number (|E| in this work) to the weight of the underlying edge.

4. 1 .

 1 2 with the -O3 flag. The experiments were conducted on a computer with an Intel Xeon E5-2670 processor (2.5 GHz and 2 GB RAM) running Ubuntu 12.04.

7

 three basic reference algorithms. Indeed, SDMA reports 11 strictly better 8 results (indicated in boldface) including 4 better results as compared with 9 the recent PLSCOL algorithm. In particular, SDMA performs far better than 10 the previous multilevel algorithm MLTS, which reports the worst results 11 among the compared algorithms. This provides strong evidences in favor12

 number of colors k, level limit L.

	2: Output: the best k-coloring S found	
	3: S 0 ← Initialization(G 0)	
	4: while Stopping condition is not meet do	
	5:	m = 0	/*The lowest level*/
		/*Coarsening phase*/	
	6:	while m < L do	
	7:	(G m+1 , w m+1) ← Coarsen(G m , w m , S m)	/*Section 2.2*/
	8:	S m+1 ← Weight tabu coloring(G m+1 , w m+1 , S m)	/*Section 2.3*/
	9:	m = m + 1	
	10:	end while	
		/*Uncoarsening phase*/	
	11:	while m > 0 do	
	12:	(G m-1 , w m-1) ← Uncoarsen(G m , w m , S m)	/*Section 2.4*/
	13:	S m-1 ← Weight tabu coloring(G m , w m , S m)	/*Section 2.3*/
	14:	m = m -1	
	15:	end while	
		/*Perturbation phase*/	
	16:	if search stagnation is observed then	
	17:	S 0 ← Perturbation(S 0)	/*Section 2.5*/
	18:	end if	
	19: end while	
	20: return The best k-coloring found S	

1 :

 1 Input: Current graph G m at level m, solution S m for G m , edge weights w m . 2: Output: Coarsened graph G m+1 , edge weights w m .

		/*Step 1: Initialize the to-be-coarsened graph G m+1 */
	3: G m+1 ← G m
	4: S m+1 ← S m
	5: w m+1 ← w m
		/*Step 2: Increase the weight of edges of conflicting vertices v m and u m */
	6: for each pair S(v m+1) = S(u m+1) and w(v m+1 , u m+1) = 0 do
	7:	w(v m+1 , u m+1) = w(v m+1 , u m+1) + |E|
	8: end for
		/*Step 3: Collapse the non-conflicting vertices v m+1 and u m+1 */
	9: for each pair of non-conflicting vertices S(v m+1) = S(u m+1) and v m+1 and u m+1
		do
	10:	Calculate the score[v m+1][u m+1]
	11: end for
	12: if the rank o f score[v m+1][u m+1] is in the top p then
	13:	v m+1 ← v m+1 ∪ u m+1
	14:	Update the weights of the edges in G m+1
	15: end if

 Among these graphs, DSJC* are standard (n, p) random graphs. DSJR* and R* are geometric graphs, with DSJR* being complements of geometric graphs. le450* are random graphs generated with a special procedure ensuring known chromatic numbers. flat* are quasi-random graphs generated by partitioning the vertex set into k random classes of almost equal size and then by adding random edges only between vertices of different classes. latin square and school* are structured graphs from the Latin square problem and school class scheduling problems. wap* are large structured sparse graphs from the wavelength assignment problem in real-life optical networks[START_REF] Koster | Wavelength assignment in multifiber wdm networks[END_REF]. These graphs are highly diverse with very different characteristics (size, topology, edge density...).

Table 1

 1

	Settings of important parameters		
	Parameters	Description	Section	Value
	β	search depth of weight tabu coloring	2.3	10 6
	tt w	tabu tenue of weight tabu coloring	2.3	rand(10) + f
	tt	tabu tenue of perturbation	2.5	rand(1000) + f
	L	level limit of coarsening phase	2.1	5
	λ	unimproved consecutive rounds for best solution	2.1	10

Table 2

 2 reports the results of our SDMA algorithm on the set of 19 DI-MACS/COLOR easy instances. As our basic reference algorithms, we adopt TabuCol (the popular tabu search coloring algorithm, which is also the un-derlying refinement algorithm for SDMA), PLSCOL (the latest learningbased local search algorithm) and MLTS (the basic multilevel coloring algorithm). We focus on the criterion of solution quality in terms of the smallest number of colors used to find a legal coloring.The first column of Table2indicates the name of each instance and the second column indicates the best results (BKV) obtained in the literature. The following 9 columns report respectively the best results of TabuCol, PLSCOL and MLTS (i.e., the smallest number of colors used) over 10 independent runs (k), the success rate (SR) (when available) to achieve the best result over 10 runs and the needed computation time. The last 4 columns show the results of SDMA for each instance: the best result over 10 runs (k), the success rate (SR), the average computation time in seconds (t(s) Avg) of the successful runs to obtain the best result and the minimal computation time (t(s) Min). Additionally, the rows #Better SDMA, #Equal SDMA and #Worse SDMA indicate respectively the number of instances for which an algorithm performs better, equally well or worse as compared with SDMA. Finally, an entry with * indicates the known chromatic number.

Table 2

 2 Comparison between SDMA and state-of-the-art algorithms (the first category of instances).

				TabuCol			PLSCOL			MLTS			SDMA	
	Instance	BKV	k	SR	t(s) Avg	t(s) Min	k	SR	t(s) Avg	k	t(s) Avg	k	SR	t(s) Avg	t(s) Min
	DSJC125.1.col	5*	5	10/10	0.00	0.00	5	10/10	< 60	5	8.09	5	10/10	0.01	0.00
	DSJC125.5.col	17*	17	10/10	0.28	0.01	17	10/10	< 60	18	7.27	17	10/10	0.26	0.03
	DSJC125.9.col	44*	44	10/10	0.02	0.01	44	10/10	< 60	44	5.84	44	10/10	0.03	0.01
	DSJC250.1.col	8	8	10/10	0.04	0.02	8	10/10	< 60	9	11.05	8	10/10	0.06	0.01
	DSJC250.9.col	72*	72	10/10	1.89	0.61	72	10/10	< 60	75	5.09	72	10/10	2.91	0.28
	DSJR500.1.col	12*	12	10/10	125.63	22.15	12	10/10	< 60	12	9.37	12	10/10	0.14	0.04
	flat300 20 0.col	20*	20	10/10	0.6	0.4	20	10/10	< 60	20	13.26	20	10/10	0.09	0.05
	le450 15a.col	15*	15	10/10	0.35	0.17	15	10/10	< 60	16	14.96	15	10/10	0.36	0.12
	le450 15b.col	15*	15	10/10	0.18	0.09	15	10/10	< 60	16	14.96	15	10/10	0.22	0.09
	le450 25a.col	25*	25	10/10	0.01	0.01	25	10/10	< 60	25	11.92	25	10/10	0.04	0.04
	le450 25b.col	25*	25	10/10	0.01	0.01	25	10/10	< 60	25	8.50	25	10/10	0.04	0.04
	R125.1.col	5*	5	10/10	0.72	0.07	5	10/10	< 60	5	5.89	5	10/10	0.00	0.00
	R125.1c.col	46*	46	4/10	0.00	0.00	46	10/10	< 60	47	5.58	46	10/10	6.15	3.11
	R125.5.col	36*	36	6/10	5.12	0.03	36	10/10	< 60	38	7.10	36	10/10	1.76	0.05
	R250.1.col	8*	8	10/10	0.76	0.00	8	10/10	< 60	8	7.40	8	10/10	0.01	0.00
	R250.1c.col	64*	67	1/10	159.50	159.50	64	10/10	60	67	11.12	64	10/10	19.95	0.06
	R1000.1.col	20*	20	10/10	0.72	0.07	20	10/10	< 60	20	12.18	20	10/10	0.27	0.25
	school1.col	14*	14	10/10	0.02	0.01	14	10/10	< 60	14	11.93	14	10/10	0.04	0.03
	school1 nsh.col	14	14	10/10	0.05	0.02	14	10/10	< 60	14	12.35	14	10/10	0.04	0.03
	#Better SDMA		0/19				0/19			0/19					
	#Equal SDMA		18/19				19/19			11/19					
	#Worse SDMA		1/19				0/19			8/19					

Table 4

 4 Main structural properties of the wap* instances from wavelength assignment in optical networks.

	Instances	|V|	|E|	Density	Max degree Min degree
	wap01a.col	2368 110871	0.0395611	288	14
	wap02a.col	2464 111742	0.0368249	294	14
	wap03a.col	4730 286722	0.0256366	344	26
	wap04a.col	5231 294902	0.0215586	351	26
	wap05a.col	905	43081	0.1053170	228	9
	wap06a.col	947	43571	0.0972717	230	9
	wap07a.col	1809 103368	0.0632090	298	13
	wap08a.col	1870 104176	0.0596138	308	13

Table 5

 5 Comparison between SDMA and state-of-the-art algorithms (the 2nd and 3rd categories of instances).

				Local search algorithms				Population-based algorithms		
	Instance	BKV	IGrAl	VSS	Partial	SDMA	HEA	AMA	MMT	Evo-Div	MA	QACOL	HEAD
			2008	2008	2008	Best	1999	2008	2008	2010	2010	2011	2015
	DSJC250.5.col	28	29	-	-	28	-	28	28	-	28	28	28
	DSJC500.1.col	12	12	12	12	12	12	12	12	12	12	12	12
	DSJC500.5.col	47	50	48	48	48	48	48	48	48	48	48	47
	DSJC500.9.col	126	129	126	127	126	126	126	127	126	126	126	126
	DSJC1000.1.col	20	22	20	20	20	20	20	20	20	20	20	20
	DSJC1000.5.col	82	94	86	89	87	83	84	84	83	83	83	82
	DSJC1000.9.col	222	239	224	226	223	224	224	225	223	223	222	222
	DSJR500.1c.col	85*	85	85	85	85	-	86	85	85	85	85	85
	DSJR500.5.col	122*	126	125	125	124	-	127	122	122	122	122	-
	flat300 26 0.col	26*	-	-	-	26	-	26	26	-	26	-	-
	flat300 28 0.col	28*	-	28	28	29	31	31	31	31	29	31	31
	flat1000 76 0.col	81	-	85	87	86	83	84	83	82	82	82	81
	latin square 10.col	97	100	-	-	99	-	104	101	100	99	98	-
	le450 15c.col	15*	16	15	15	15	15	15	15	-	15	15	-
	le450 15d.col	15*	16	15	15	15	15	15	15	-	15	15	-
	le450 25c.col	25*	27	25	25	25	26	26	25	25	25	25	25
	le450 25d.col	25*	27	25	25	25	26	26	25	25	25	25	25
	R250.5.col	65*	-	-	66	65	-	-	65	65	65	65	65
	R1000.1c.col	98	-	-	-	98	-	-	98	98	98	98	98
	R1000.5.col	234*	238	245	238	246	255	-	234	238	245	238	245
	#Better SDMA		1/15	4/15	2/16	-	2/13	2/17	4/20	4/16	4/20	6/19	5/15
	#Equal SDMA		2/15	9/15	8/16	-	6/13	8/17	12/20	10/16	16/20	12/19	9/15
	#Worse SDMA		12/15	2/15	6/16	-	5/13	7/17	4/20	2/16	0/20	1/19	1/15
	the reference algorithms. In order to facilitate comparisons, we divide these
	reference algorithms into three groups according to whether the results are
	better than SDMA.										
	The first group contains 2 local search algorithms (IGrAI, Partial) and 2
	hybrid algorithms (HEA, AMA), which report respectively their results for
	15, 16, 13 and 17 out of the 20 instances. Compared to these four algorithms,
	SDMA algorithm obtains respectively (12, 6, 5 and 7) better results, (2, 8, 6
	and 8) equal results, and (1, 2, 2 and 2) worse results. This indicates that
	SDMA competes very favorably with these reference algorithms.		

Table 6

 6 Influences of the number of the levels L on the algorithm.

			SDMA (L = 3)			SDMA (L = 5, defaut value)		SDMA (L = 7)			
	Instance	k	SR	t(s) Avg	t(s) Min	k	SR	t(s) Avg	t(s) Min	k	SR	t(s) Avg	t(s) Min	δ 1	δ 2
	DSJC1000.5.col	88	4/10	5169.41	1397.90	88	5/10	3775.84	655.07	88	5/10	5015.70	552.59	0	
	DSJC1000.9.col	224	1/10	4072.58	4072.58	224	2/10	4633.51	4230.82	224	2/10	5400.58	3407.85	0	
	DSJC500.5.col	49	10/10	758.20	151.13	49	10/10	1599.93	75.90	49	10/10	1127.31	7.11	0	
	DSJC500.9.col	126	6/10	3030.90	389.67	126	4/10	3538.56	2911.30	126	5/10	2218.92	679.11	0	
	DSJR500.1c.col	85	1/10	1159.28	1159.28	85	1/10	1029.30	1029.30	86	2/10	659.46	28.74	0	-1
	flat1000 76 0.col	87	5/10	4563.49	2103.53	87	5/10	4696.42	2643.76	87	4/10	3302.04	237.23	0	
	flat300 28 0.col	30	3/10	5829.91	3523.22	29	1/10	6136.43	6136.43	30	4/10	1540.71	78.37	-1	-1
	le450 25c.col	25	3/10	2820.42	85.99	25	2/10	231.31	129.59	25	1/10	2594.13	2594.13	0	
	le450 25d.col	25	2/10	5924.27	5847.12	25	4/10	3435.04	303.92	25	1/10	241.46	241.46	0	
	R1000.5.col	249	3/10	5109.91	4400.25	248	2/10	5648.30	5513.54	249	1/10	3463.03	3463.03	-1	-1
	wap01a.col	42	9/10	2142.89	197.63	42	7/10	907.225	411.52	42	7/10	1017.67	432.13	0	
	wap05a.col	50	9/10	7.66	0.37	50	10/10	5.65	0.36	50	10/10	95.97	0.44	0	
	wap06a.col	40	6/10	1826.09	447.60	40	7/10	2335.37	220.32	40	8/10	828.25	280.31	0	
	wap07a.col	41	2/10	3431.62	1146.24	41	2/10	3016.67	2503.04	41	5/10	3703.32	1228.83	0	
	wap08a.col	41	4/10	2785.52	1742.16	41	4/10	3411.05	1280.35	41	5/10	4375.18	726.57	0	

http://archive.dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/

http://www.cs.hbg.psu.edu/txn131/graphcoloring.html/

The newly found

[START_REF] Hager | A multilevel bilinear programming algorithm for the vertex separator problem[END_REF]-coloring for wap01a.col is available at http://www.info.univ-angers.fr/pub/hao/SDMA.html

Acknowledgment

We are grateful to the reviewers for their useful comments and suggestions that helped us to significantly improve the paper. Support from the Natural Science Foundation Program of Jiangsu Province [Grant No. SBK2020040023] for the first author is also acknowledged.

In this experiment, we ran the algorithm 10 times to solve each selected instance with a cutoff time of 9000 seconds. The results are presented in Table 6 with the same information as before. Columns δ 1 and δ 2 indicate the color difference between SDMA (with its default value L = 5) and the two other values (L = 3 and L = 7) (a negative value indicates that SDMA reports a better result). We note that the best results are obtained with L = 5, which justifies the default setting for this parameter.

Effectiveness of the coarsening strategy

The coarsening phase uses a historical information based probability procedure (Section 2.2) during the coarsening process. In this section, we discuss how this strategy contributes to the overall performance of our SDMA algorithm.

For this study, we create SDMA variant that is a SDMA variant where we coarsen all the vertices without the probability test (i.e., all the nonconflicting vertices with the same color are merged). We run SDMA variant under the same stopping condition as in Section 4.1 (i.e., if a legal k-coloring is found or the maximum allowed run time of 2.5 CPU hours is reached).

Each tested instance is solved 10 times.

Table 7 displays the comparative results between SDMA and SDMA variant, based on the same indicators adopted in Table 6. From this table, we observe that SDMA outperforms SDMA variant, achieving better values for 5 out of 15 instances and equal results for the remaining 9 instances. Moreover, for the 9 instances with equal results, SDMA always obtains a higher successful rate than SDMA variant. These observations confirm the usefulness of the probability strategy of the coarsening procedure based on history information for the SDMA algorithm.

Convergence analysis

This section shows a convergence analysis of the SDMA algorithm. For this purpose, we carried out an experiment to obtain the running profiles of the algorithm on 4 representative instances (DSJC1000.5.col, flat1000 76 0.col, R1000.5.col, wap01a.col) with the k values reported in the literature. To eliminate the possible influence of randomness, we ran SDMA 10 times on each instance with a cutoff time of 3600 seconds per run. Given this reduced cutoff time, we limited accordingly the search depth of weight tabu coloring β to 10 4 .

Declaration of competing interest

The authors declare that they have no known competing interests that could have appeared to influence the work reported in this paper.