Zequn Wei
email: zequn.wei@gmail.com

Jin-Kao Hao
email: jin-kao.hao@univ-angers.fr

Multistart solution-based tabu search for the Set-Union Knapsack Problem

Keywords: Knapsack problems, Solution-based tabu search, Heuristics and metaheuristics, Combinatorial optimization

The NP-hard Set-Union Knapsack Problem is a general model able to formulate a number of practical problems. As a variant of the popular knapsack problem, SUKP is to find a subset of candidate items (an item is composed of several distinct weighted elements) such that a profit function is maximized while a knapsack capacity constraint is satisfied. We investigate for the first time a multistart solution-based tabu search algorithm for solving the problem. The proposed algorithm combines a solution-based tabu search procedure with a multistart strategy to ensure an effective examination of candidate solutions. We report computational results on 60 benchmark instances from the literature, including new best results (improved lower bounds) for 7 large instances. We show additional experiments to shed lights on the roles of the key composing ingredients of the algorithm. The code of the algorithm will be publicly available.

Introduction

Given a set of elements U = {1, . . . , n}, a set of items V = {1, . . . , m}, each element has a weight w j > 0 and each item has a profit p i > 0. The items and elements are associated by a relation matrix R ij [m × n] such that each item i corresponds to a subset of elements U i ⊆ U . Let C be the capacity of a given knapsack. Then the Set-Union Knapsack Problem (SUKP) is to select a subset of items S from V such that the total profit of S is maximized, while the total weight of the covered elements does not exceed the knapsack capacity C. In SUKP, the weight of an element is countered only one time even if the element appears in multiple selected items.

Formally, SUKP can be stated as follows.

(SU KP) Maximize f (S) = i∈S p i (1)
subject to W (S) =

j∈∪ i∈S U i w j ≤ C, S ⊆ V (2)
SUKP is known to be a useful model able to formulate a number of significant practical applications. For instance, consider the following project investing scenario where a company plans to invest in the purchase of machines for the production of new products. Each candidate product has a profit, while the composing parts of the product needs new machines to be acquired. The goal is to determine the set of products to be produced such that the profit will be maximized while ensuring that the cost of the purchased machines does not exceed a given budget. This problem can be conveniently formulated by the SUKP model where an item corresponds to a product with its profit and an element is a machine with its purchasing cost (element weight). Then, solving the project investing problem is equivalent to find the optimal solution to the resulting SUKP problem. Generally, SUKP appears in the context of flexible manufacturing [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF], financial decision making [START_REF] Kellerer | Knapsack problems[END_REF], applied cryptography [START_REF] Schneier | Applied cryptography -protocols, algorithms, and source code in C[END_REF], database design [START_REF] Navathe | Vertical partitioning algorithms for database design[END_REF], data allocation in cyber systems [START_REF] Tu | System resilience enhancement through modularization for large scale cyber systems[END_REF] and key-pose caching systems [START_REF] Lister | A key-pose caching system for rendering an animated crowd in real-time[END_REF]. However, SUKP is computationally difficult given that it belongs to the class of NP-hard problems [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF].

Due to its relevance, SUKP has been investigated since the eighties and has received increasing attention in recent years. The existing approaches for solving SUKP can be classified into three families.

• Exact and approximation algorithms: These algorithms are theoretically able to find the optimal solutions or solutions of guaranteed quality. For instance, theoretical algorithms based on dynamic programming and greedy approximation were described in [START_REF] Arulselvan | A note on the set union knapsack problem[END_REF][START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF][START_REF] Taylor | Approximations of the densest k-subhypergraph and set union knapsack problems[END_REF], which have an exponential complexity in the general case. Linear integer programming was investigated in [START_REF] Wei | Iterated two-phase local search for the set-union knapsack problem[END_REF], indicating that only small instances (with 85 to 100 items and elements) can be solved optimally by the CPLEX solver. • Population-based hybrid algorithms: These algorithms are based on various bio-inspired metaheuristics operating with a population of solutions and associated search operators. In 2018, He et al. devised the first binary artificial bee colony algorithm for solving SUKP and provided a set of 30 benchmark instances (with 85 to 500 items and elements) [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF]. Since then, several other population algorithms were proposed, such as the binary swarm intelligence algorithm [START_REF] Özsoydan | A swarm intelligence-based algorithm for the set-union knapsack problem[END_REF] (2019), weighted superposition attraction algorithm [START_REF] Baykasoglu | Weighted superposition attraction algorithm for binary optimization problems[END_REF] (2018), swarm intelligence algorithm [START_REF] Özsoydan | Artificial search agents with cognitive intelligence for binary optimization problems[END_REF] (2019), group theory-based optimization algorithm [START_REF] He | Group theory-based optimization algorithm for solving knapsack problems[END_REF] (2018), moth search algorithms [START_REF] Feng | The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm[END_REF][START_REF] Feng | Enhanced moth search algorithm for the set-union knapsack problems[END_REF] (2019), hybrid Jaya algorithm [START_REF] Wu | Solving the set-union knapsack problem by a novel hybrid jaya algorithm[END_REF] (2020), estimation of distribution algorithm based on Lévy flight [START_REF] Liu | Estimation of distribution algorithm based on lévy flight for solving the set-union knapsack problem[END_REF] (2020) and binary grey wolf optimization algorithm [START_REF] Gölcük | Evolutionary and adaptive inheritance enhanced grey wolf optimization algorithm for binary domains[END_REF] (2020). In terms of computational performances, these approaches achieved interesting results. However, these algorithms are rather complex in design and most of them solve the binary SUKP problem indirectly by searching a continuous space. • Local search algorithms: These algorithms are based on stochastic local search [START_REF] Hoos | Stochastic Local Search: Foundations & Applications[END_REF]. Contrary to the above population algorithms, local search algorithms solve the binary SUKP problem directly by examining candidate solutions in a discrete search space. In 2019, Wei and Hao [START_REF] Wei | Iterated two-phase local search for the set-union knapsack problem[END_REF] presented an iterated two-phase local search algorithm for SUKP, which includes a local optima exploration phase (using variable neighborhood descent and tabu search) and a local optima escaping phase to promote both intensification and diversification. This algorithm reported remarkable results on the 30 instances of [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF]. Also in 2019, Lin et al. [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF] introduced a local search (tabu search) procedure into the binary particle swarm optimization framework and achieved high-quality results on the 30 instances. In 2020, Wei and Hao [START_REF] Wei | Kernel based tabu search for the set-union knapsack problem[END_REF] presented an effective kernel based tabu search algorithm and introduced a new set of 30 large instances for SUKP (with 585 to 1000 items and elements).

The tabu search algorithms of [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF][START_REF] Wei | Iterated two-phase local search for the set-union knapsack problem[END_REF][START_REF] Wei | Kernel based tabu search for the set-union knapsack problem[END_REF] adopted the attributed-based tabu search method to avoid revisiting previous encountered solutions.

During the search, the items involved in the move operations are recorded in a so-called tabu list and are excluded from consideration during a period called the tabu tenure. Computational results indicated that the local search approaches represent the current state-of-the-art in the literature in terms of solution quality and computational efficiency.

The tabu search technology [START_REF] Glover | Tabu search[END_REF] has been successfully applied to solve many difficult optimization problems. Although most studies rely on the popular and well-known attributed-based tabu search (ABTS) as exemplified by the studies of [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF][START_REF] Wei | Kernel based tabu search for the set-union knapsack problem[END_REF][START_REF] Lu | A tabu search based clustering algorithm and its parallel implementation on spark[END_REF][START_REF] Polak | Tabu search in revealing the internal state of rc4+ cipher[END_REF][START_REF] Zhou | Memetic search for composing medical crews with equity and efficiency[END_REF], recent studies indicated that the solution-based tabu search (SBTS) [START_REF] Carlton | A note on hashing functions and tabu search algorithms[END_REF][START_REF] Woodruff | Hashing vectors for tabu search[END_REF] is a highly competitive approach for solving several notoriously difficult binary optimization problems such as 0/1 multidimensional knapsack [START_REF] Lai | A two-phase tabu-evolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF], multidemand multidimensional knapsack [START_REF] Lai | Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[END_REF], minimum differential dispersion [START_REF] Wang | Effective metaheuristic algorithms for the minimum differential dispersion problem[END_REF], and maximum min-sum dispersion [START_REF] Lai | Solution-based tabu search for the maximum min-sum dispersion problem[END_REF] and obnoxious p-median [START_REF] Chang | Parallel iterative solution-based tabu search for the obnoxious p-median problem[END_REF]. Compared to the ABTS method, SBTS has the advantage of avoiding the use of tabu tenure and simplifying the determination of tabu status. Moreover, the intensification ability of SBTS tends to be stronger than that of ABTS. In addition, the study reported in [START_REF] Lai | Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[END_REF] on SBTS and our study (see Section 4.3) reveal that SBTS is more suitable than ABTS for solving a number of binary optimization problems. However, SBTS requires more resources (to record all the encountered solutions) than ABTS. More information on the SBTS approach can be found in recent studies such as [START_REF] Lai | Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[END_REF][START_REF] Wang | Effective metaheuristic algorithms for the minimum differential dispersion problem[END_REF][START_REF] Lai | Solution-based tabu search for the maximum min-sum dispersion problem[END_REF][START_REF] Chang | Parallel iterative solution-based tabu search for the obnoxious p-median problem[END_REF], while some interesting studies using ABTS are provided in [START_REF] Polak | Tabu search in revealing the internal state of rc4+ cipher[END_REF][START_REF] Lu | A tabu search based clustering algorithm and its parallel implementation on spark[END_REF][START_REF] Ruiz | Improved tabu search and simulated annealing methods for nonlinear data assimilation[END_REF][START_REF] Shahmanzari | A multi-start granular skewed variable neighborhood tabu search for the roaming salesman problem[END_REF][START_REF] Zhou | Memetic search for composing medical crews with equity and efficiency[END_REF]. The main contributions of this work are summarized as follows.

To the best of our knowledge, no study has been reported in the literature investigating the interest of the SBTS approach for solving SUKP. In this work, we fill the gap by introducing the first multistart solution-based tabu search algorithm (MSBTS) for SUKP and provide additional indications of the benefits of the SBTS approach for binary optimization.

First, the proposed MSBTS algorithm integrates a dedicated solution-based tabu search approach and a multistart mechanism to ensure an effective and efficient examination of candidate solutions. During the search, each visited solution is recorded in a tabu list implemented with the help of a hash function based method such that the tabu status of a candidate solution can be easily determined in constant time. The multistart mechanism is employed to escape local optima traps. The algorithm is simple in design and frees the user from the delicate task of calibrating parameters. Second, we report new best-known results (improved lower bounds) for 7 large instances, which are useful for future research on SUKP. Third, we will make the code of our algorithm publicly available, which can be used by researchers and practitioners to solve various problems that can be formulated by the SUKP model.

The rest of the paper is structured as follows. In Section 2, we describe the general solution approach of the proposed algorithm and its main components. Section 3 is devoted to the performance assessment and comparisons with state-of-the-art algorithms. We analyze in Section 4 the influences of important components of the algorithm, followed by conclusions in the last section.

j∈U i w j ≤ C, U i = {i : y i = 1}, 1 ≤ i ≤ m, 1 ≤ j ≤ n} (3)
Thus, a candidate solution S in Ω F can be expressed by a m-dimensional binary vector S = (y 1 , . . . , y m), where y i takes 1 if item i is selected, and 0 otherwise. Let A = {q : y q = 1 in S} and Ā = {p : y p = 0 in S}, a candidate solution can be equivalently represented by S =< A, Ā >.

Additionally, the quality of a candidate solution S is determined by the objective function value f (S) (Equation 1) of SUKP. Since SUKP is a maximization problem, a larger f value indicates a better solution.

Main framework

The MSBTS algorithm follows the flow chart shown in Fig. 1 and is described in Algorithm 1.

Greedy randomized initialization

The quality of initial solutions may impact the performance of the algorithm. In this work, we adopt a greedy randomized initialization procedure to generate initial solutions of good quality.

Let W (S) be the total weight of the current solution S and W k be the additional weight of a non-selected item k, where W k is defined by

W k = j∈U k ∧j / ∈∪ i∈S U i w j .
Then the feasible non-selected items can be expressed by R(x) = {k ∈ Ā : W k + W (S) ≤ C}, where Ā is the set of non-selected items. Following [START_REF] Chen | An iterated "hyperplane exploration" approach for the quadratic knapsack problem[END_REF], we employ a restricted candidate list (denoted by RCL) to record rcl feasible non-selected items belonging to R(x), where rcl is the maximum size of RCL. A too large rcl value will make many items to be recorded in RCL and thus result in an initial solution of poor quality, while a too small rcl value will limit the possible choices and lead to insufficient diversity of the initialization procedure. In our case, we set empirically rcl = max{m, n}, where m and n are the number of items and elements respectively. Considering the fact that the number of items in R(x) may be less than rcl, we finally set the size of RCL by |RCL| = min{rcl, |R(x)|}. Now, we build the restricted candidate list as follows. For each item k of R(x), we calculate its dynamic profit ratio r * k = p k /W k . Then we identify the top |RCL| items with the largest r * values to form RCL. As the result, RCL contains the feasible non-selected items whose dynamic profit ratio is larger than the other non-selected items. Finally, each item k in RCL is selected with probability P k , which is given by

P k = r * k / |RCL| l=1 r * l .
As shown in Algorithm 2, starting from an empty solution S, the initialization procedure randomly and adaptively adds feasible items k into S Algorithm 2 Greedy Randomized Initialization S ← Add one item(P, S) 11: end while 12: return S at each iteration of the 'while' loop (lines [START_REF] Tu | System resilience enhancement through modularization for large scale cyber systems[END_REF][START_REF] Lister | A key-pose caching system for rendering an animated crowd in real-time[END_REF][START_REF] Arulselvan | A note on the set union knapsack problem[END_REF][START_REF] Taylor | Approximations of the densest k-subhypergraph and set union knapsack problems[END_REF][START_REF] Wei | Iterated two-phase local search for the set-union knapsack problem[END_REF][START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF][START_REF] Özsoydan | A swarm intelligence-based algorithm for the set-union knapsack problem[END_REF]. Specifically, the initial solution is generated by four steps. First, we calculate the additional weight W k of each non-selected item k (line 6), and add all items k with W k = 0 into the current solution S, which means adding this item will not increase the total weight of S (lines 7). Second, we calculate the dynamic profit ratio r * k of each item k in R(x) with W k = 0 (line 8). Third, we calculate the selection probability P k of each item k (line 9). Fourth, we randomly add one item from RCL into S according to P k (line 10). These four steps are repeated until the knapsack capacity is reached. As shown in Fig. 2, we present a numerical example to illustrate the main steps of the greedy randomized initialization procedure. Given a set of six items (I i , i = 1, . . . , 6) with a profit of 1 to 6 respectively and a set of 6 elements (E j , j = 1, . . . , 6) with a weight of 1 to 6 respectively. Let the capacity of knapsack be equal to 16. At the step shown in the left figure, two items I 1 and I 2 are already added into the knapsack. We calculate additional weight W i of each non-selected item i and find that W 3 = 0 (the elements E 1 and E 5 corresponding to item I 3 are already selected). Then we add the item I 3 into the knapsack and obtain the new solution shown in the right figure. Next, we calculate the dynamic profit ratio of the non-selected items and identify items I 4 and I 5 as belonging to RCL (in this case, |RCL| = 2). Finally, we add one of the two items into the knapsack according to the probability P k .

Solution-based tabu search

Tabu search (TS) is a general and powerful metaheuristic for combinatorial optimization [START_REF] Glover | Tabu search[END_REF]. Typically, TS examines candidate solutions by iteratively transitioning from the current solution to a nearby (neighbor) solution by following a neighborhood. Each solution transition is performed by selecting the best admissible candidate among the neighboring solutions within the neighborhood. The key distinguishing feature of TS compared to other local optimization approaches is its tabu list strategy, which prevents the search from revisiting previously encountered solutions. With the so-called solutionbased tabu search [START_REF] Carlton | A note on hashing functions and tabu search algorithms[END_REF][START_REF] Woodruff | Hashing vectors for tabu search[END_REF], the tabu list is implemented with hash vectors and associated hash functions. Contrary to the popular attribute-based tabu search approach which typically needs some parameters for tabu list management, solution-based tabu search has the advantage of eliminating such parameters.

In the context of solving SUKP, the best-performing algorithms are all based on the conventional attribute-based TS approach [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF][START_REF] Wei | Iterated two-phase local search for the set-union knapsack problem[END_REF][START_REF] Wei | Kernel based tabu search for the set-union knapsack problem[END_REF]. This work adopts for the first time the solution-based tabu search approach for solving SUKP, which leads to an effective algorithm while avoiding the difficulty of tuning parameters.

Algorithm 3 shows the general scheme of our solution-based tabu search (SBTS) procedure. After initializing the best solution found so far (line 3) and the associated hash vectors (i.e., tabu list, line 4), the SBTS procedure iteratively improves the current solution S (lines 6-20) until 1) no admissible neighboring solution (i.e., feasible and non-tabu neighboring solution) exists, or 2) the allowed cut-off time t max is reached. Given the optimization function f , the neighborhood structure N (Section 2.4.1) and the tabu list management strategy (Section 2.4.2), the current solution S is replaced by a best admissible neighboring solution at each iteration of the SBTS procedure. And then the tabu list is updated with the newly obtained solution S. The best solution found during this procedure is recorded in S b (lines 14-16) and returned as the output of SBTS. Note that the best admissible neighboring solution S is not necessarily better than S b , but it will still be selected to replace the current solution S. In this way, the search can keep moving forward to discover better solutions without being trapped in local optima.

The SBTS procedure terminates under one of the two following conditions: [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF] the overall cut-off time is reached; (2) no admissible neighboring solution can be found in the neighborhood, i.e., N (S) = ∅ where N (S) ⊆ N (S) is the set of the admissible neighboring solutions not forbidden by the tabu list. Upon the termination of the SBTS procedure, two cases are considered: the overall cut-off time is reached and then the whole algorithm terminates. Otherwise, the algorithm re-starts its search by using the greedy randomized initialization procedure to creating a new starting solution, which is used to seed the next round of the SBTS procedure.

Next, we present the main ingredients of SBTS, including the move operator, the neighborhood structure and the tabu list strategy.

H 1 [h 1 (S)] ← 1 18: H 2 [h 2 (S)] ← 1 19: H 3 [h 3 (S)] ← 1 20: end while 21: return S b

Move operator and neighborhood structure

Our SBTS procedure relies on two popular move operators, i.e., the f lip operator and the swap operator to explore candidate solutions. Specifically, given a solution S = (y 1 , . . . , y m) as described in Section 2.1, the f lip(i) operator changes the value of a variable y i to its opposite value 1 -y i . Similarly, given a solution S =< A, Ā >, the swap(q, p) operator exchanges one item in A against one item in Ā, where q and p represent items in sets A and Ā respectively. Meanwhile, a neighborhood filtering strategy [START_REF] Wei | Iterated two-phase local search for the set-union knapsack problem[END_REF][START_REF] Wei | Kernel based tabu search for the set-union knapsack problem[END_REF] is applied in both move operators to reduce the neighborhood size. So the neighborhoods N f (S) and N s (S) induced by f lip(i) and swap(q, p) are defined as follows, respectively.

N f (S) = {S : S = S ⊕ f lip(i) : 1 ≤ i ≤ m, f (S) > f (S b)} (4) N s (S) = {S : S = S ⊕ swap(q, p) : q ∈ A, p ∈ Ā, f (S) > f (S b)} (5)
In this work, we employ a union neighborhood that covers both neighborhoods N f (S) and N s (S), i.e., N (S) = N f (S) ∪ N s (S). Moreover, we also apply a streamlining gain updating strategy to quickly evaluate the weight of each neighboring solution (see [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF][START_REF] Wei | Kernel based tabu search for the set-union knapsack problem[END_REF] for more details).

Tabu list management strategy using hash functions

During the SBTS procedure, the current solution S is iteratively replaced by the best admissible neighboring solution S , which is identified according to the objective function value and the tabu list strategy described in this section. Unlike the traditional attribute-based tabu search, where the tabu list records the performed moves, our solution-based tabu search uses hash vectors and hash functions to implement the tabu list.

Following previous studies [START_REF] Lai | A two-phase tabu-evolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Lai | Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[END_REF][START_REF] Wang | Effective metaheuristic algorithms for the minimum differential dispersion problem[END_REF][START_REF] Lai | Solution-based tabu search for the maximum min-sum dispersion problem[END_REF], our tabu list management strategy relies multiple hash vectors and hash functions, which helps significantly reduce the probability of wrong identification of the tabu status. Specifically, we adopt three hash vectors H v (v = 1, 2, 3) of length L, where each position takes a binary value which contributes to the definition of the tabu status of candidate solutions. The hash vectors are initialized to 0, indicating that no candidate solution is classified as tabu. Once a candidate solution is selected to replace the current solution S, the corresponding positions in the three hash vectors will be set to 1 (i.e.,

H v [h v (S)] ← 1, v = 1, 2, 3).
Given a candidate solution S = (y 1 , . . . , y m) where y i = 1 if item i is selected, and y i = 0 otherwise, the hash values h v (S) (v = 1, 2, 3) are calculated by

h v (S) = (m i=1 W v i × y i) mod L (6
)
where L is the length of the hash vectors and is set to 10 8 . And W v i is a precomputed weight that satisfies the following relation:

W v i = i γv (v = 1, 2, 3 and i = 1, . . . , m)
, where γ v is a parameter that takes different values for the three hash functions (γ v = 1.2, 1.6, 2.0). To reduce the possible collisions that occur with hash functions, we randomly shuffle the order in the pre-computed weight vector W v in order to ensure an extended distribution of hash values of the solutions. Fig. 3 shows an illustrative example of this shuffling operation with five items and γ v being set to 1.2, 1.6, 2.0, respectively. The left figure indicates the pre-computed weights W v i (v = 1, 2, 3, and i = 1, . . . , 5). Then the order of each of the three weight vectors W v is randomly shuffled to obtain a new weight vector shown in the right figure. Our preliminary experiment indicates that this random shuffling operation helps to reduce the error rates of the hash functions. We present the rationale for the setting of γ v and an analysis of the hash functions in Section 4.1. The hash-based tabu list management strategy works as follows. Given a candidate solution S = (y 1 , . . . , y m), we first calculate the three hash values h v (S) that are the indexes of the hash vectors. Then, the tabu status of solution S is determined according to the values of the hash vectors H v [h v (S)]. Specifically, S is determined as a forbidden solution (i.e., already visited) when

H 1 [h 1 (S)] ∧ H 2 [h 2 (S)] ∧ H 3 [h 3 (S)] = 1.
Otherwise, S is classified as an unforbidden solution that has not been visited by this round of SBTS and is eligible for solution transition. In this way, we can quickly determine the tabu status of a neighboring solution in O(1), and this is the main advantage of the hash-based tabu list management strategy. For the illustrative example shown in Fig. 4, solution S is classified as tabu and thus is excluded for solution transition.

Computational complexity and discussion

From an empty subset S, the greedy randomized initialization procedure (Section 2.3 and Algorithm 2) creates a solution in five steps. The first step calculates additional weights in O(m 2 × n), where m is the number of items and n is the number of elements. The second step of adding all items i with W i = 0 into S takes time O(1). The third step of calculating the dynamic profit ratio is bounded by O(m × log(m)). The fourth step of calculating probability can be realized in O(|RCL|) and the fifth step of adding one item can be achieved in O [START_REF] Goldschmidt | Note: On the set-union knapsack problem[END_REF]. Then the time complexity of the initialization procedure is O(m 2 × n × K 1), where K 1 is the maximum iterations of the initialization procedure. For the main solution-based tabu search procedure (Section 2.4 and Algorithm 3), we can evaluate its complexity as follows. Let S =< A, Ā > be a given input solution, the complexity of one iteration of the SBTS procedure is O((m

+ | Ā| × |A|) × n). Let K 2 be the maximum iterations of SBTS. Then the time complexity of SBTS is O((m + | Ā| × |A|) × n × K 2).
Now we discuss the relations between our algorithm and the existing tabu search algorithms for SUKP [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF][START_REF] Wei | Iterated two-phase local search for the set-union knapsack problem[END_REF][START_REF] Wei | Kernel based tabu search for the set-union knapsack problem[END_REF]. First, MSBTS is the first solution-based tabu search algorithm for SUKP, while the existing TS algorithms are based on the conventional attribute-based TS approach. Second, MSBTS employs a new tabu list management strategy that avoids tuning the tabu tenure. Third, unlike the previous TS algorithms that uses a perturbation procedure, MSBTS does not need such specific diversification strategies. Yet, it achieves remarkable results, as it is shown in Section 3.

Finally, it is worth mentioning that the solution-based tabu search approach has led to highly effective algorithms for several NP-hard binary problems such as 0-1 multidimensional knapsack [START_REF] Lai | A two-phase tabu-evolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF], multidemand multidimensional knapsack [START_REF] Lai | Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[END_REF], minimum differential dispersion [START_REF] Wang | Effective metaheuristic algorithms for the minimum differential dispersion problem[END_REF] and maximum min-sum dispersion [START_REF] Lai | Solution-based tabu search for the maximum min-sum dispersion problem[END_REF] and obnoxious p-median [START_REF] Chang | Parallel iterative solution-based tabu search for the obnoxious p-median problem[END_REF]. Our study of using solutionbased tabu search for SUKP further confirms the usefulness of this approach for binary optimization.

Computational results and comparisons

This section is devoted to a computational assessment of the proposed MSBTS algorithm, in comparison with three best-performing SUKP algorithms in the literature based on two sets of 60 benchmark instances available at http: //www.info.univ-angers.fr/pub/hao/SUKP_MSBTS.html.

Benchmark instances

The SUKP benchmark instances adopted in our experiments were commonly tested in the literature, which can be divided into Set I and Set II. The Set I instances were proposed in [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF] with 85 to 500 items and elements, while the Set II instances were introduced in [START_REF] Wei | Kernel based tabu search for the set-union knapsack problem[END_REF] with 585 to 1000 items and elements. These 60 instances share the same characteristics. An instance is defined by m items, n elements and an associated binary relation matrix

R ij [m × n],
where R ij = 1 means that item i contains element j. Each instance is further characterized by two parameters: the density α of R ij = 1 in the relation matrix R (i.e., α = (m i=1 n j=1 R ij)/(mn)) and the ratio β of knapsack capacity C to the total weight of the elements (i.e., β = C/ n j=1 w j). As indicated in [START_REF] He | A novel binary artificial bee colony algorithm for the set-union knapsack problem[END_REF][START_REF] Wei | Kernel based tabu search for the set-union knapsack problem[END_REF], for the 60 instances tested in this study, α is equal to 0.10 or 0.15, while β is equal to 0.75 or 0.85.

Experimental settings

The proposed MSBTS algorithm was implemented in C++ and compiled using the g++ compiler with the -O3 option. All the experiments were carried out on an Intel Xeon E5-2670 processor (2.5 GHz CPU and 2 GB RAM) running under the Linux operating system. The MSBTS algorithm used the same stopping conditions for the reference algorithms (see below), i.e., 500 seconds for the Set I instances and 1000 seconds for the Set II instances. Each instance was solved 100 times independently with different random seeds. Note that contrary to the existing algorithms, our algorithm eliminates the need for tuning parameters.

Among the existing algorithms for SUKP in the literature, we identify four best performing algorithms according to the reported computational results: hybrid jaya algorithm [START_REF] Wu | Solving the set-union knapsack problem by a novel hybrid jaya algorithm[END_REF] (DHJaya, 2019), hybrid binary particle swarm optimization with tabu search algorithm [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF] (HBPSO/TS, 2019), iterated two-phase local search algorithm [START_REF] Wei | Iterated two-phase local search for the set-union knapsack problem[END_REF] (I2PLS, 2019) and the kernel based tabu search algorithm [START_REF] Wei | Kernel based tabu search for the set-union knapsack problem[END_REF] (KBTS, 2020). We thus use them as the reference algorithms for our comparative study. Since the results of these algorithms were obtained in [START_REF] Wei | Kernel based tabu search for the set-union knapsack problem[END_REF] on the same computing platform and under the same stopping condition as in this work, we directly adopt these results in our study.

Computational results

The computational results of our MSBTS algorithm and the reference algorithms on the SUKP instances of Set I and Set II are reported in Table 1 and 2, respectively1 . The first column of these two tables gives the name of each instance, where the asterisk (*) denotes that the optimal value proved by CPLEX [START_REF] Wei | Iterated two-phase local search for the set-union knapsack problem[END_REF]. The remaining columns report the following information: the best objective value (f best), the average objective value (f avg), the standard deviations over 100 runs (std) and the average run times t avg (to obtain the f best value) of each involved algorithm. The row #Avg shows the average value of each column. Furthermore, the bold entries highlight the dominating values among the compared results, while the italic entries indicate the equal best values.

Comparing the results of Table 1 leads to the following comments. First, in terms of the best performance indicator, MSBTS can attain all the best-known f best results on all the 30 instances of Set I, thus dominating DHJaya and matching the performance of the best algorithms I2PLS and KBTS. Second, in terms of the average performance indicator, our MSBTS algorithm dominates DHJaya and competes favorably with HBPSO/TS and I2PLS, while performing marginally worse than KBTS even if MSBTS has better f avg results on five large instances with 485 to 500 items and elements. It is difficult to further compare the competing algorithms on Set I, since the p-values in Table 3 from the non-parametric Wilcoxon signed-rank test don't show a statistical difference at 0.05 significance level between MSBTS and the reference algorithms except DHJaya. So we focus on Set II for a more detailed comparison.

Table 2 on the 30 instances of Set II discloses that our MSBTS algorithm outperforms the reference algorithms on large size instances. Specifically, MSBTS matches the best-known f best values for the remaining 23 instances, and remarkably, finds 7 new best-known results (improved lower bounds). Most of these 7 instances have 985 to 1000 items, which demonstrates the advantage of our algorithm on the most difficult instances. When considering the average performance, MSBTS remains highly competitive compared to the reference algorithms. On the other hand, MSBTS has a zero std value on 20 instances while the reference algorithms achieve less zero std values (0 for DHJaya, 1 for HBPSO/TS, 2 for I2PLS and 6 for KBTS), which shows the robustness of our algorithm. Moreover, the smallest #Avg value of the corresponding t avg entries obtained by MSBTS demonstrates that our algorithm is more computational efficient than the reference algorithms on this set of SUKP instances. We show a detailed time-efficiency comparison of our MSBTS algorithm with the reference algorithms in Section 3.4.

In order to better highlight the advantage of the proposed MSBTS algorithm, we summarize the comparative results between MSBTS and each reference algorithm in Table 3. The first two columns of the table give the pairs of two compared algorithms and the corresponding instance sets, respectively. Columns #Wins, #Ties and #Losses show the number of instances for which MSBTS obtains a better, equal and worse result according to the f best and f avg indicators. The last column indicates the p-values from the Wilcoxon signed-rank test, where 'NA' implies that two underlying groups of results are exactly the same. From Table 3, we can observe that MSBTS achieves better or equal results in terms of f best on all the tested instances, while being better in terms of f avg on most instances. Note that KBTS reports more f avg values better than MSBTS for Set I (13 vs 6). However, the Wilcoxon signedrank test in Table 3 (p-value = 9.10e-2 > 0.05) indicates that there is no statistically significant difference. Furthermore, as shown in the last column, the p-values (< 0.05) obtained between MSBTS and each compared algorithm on the instances of Set II confirm the statistically significant difference of the compared results.

Time-to-target analysis

We now present a time-to-target analysis (TTT) to evaluate the computational efficiency of the proposed MSBTS algorithm compared to the reference algorithms. For this, we compare the time required for each algorithm to obtain a solution at least as good as a given target value and measure the empirical probability distributions. More details about TTT can be found in [START_REF] Aiex | TTT plots: a perl program to create time-to-target plots[END_REF][START_REF] Ribeiro | Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms[END_REF]. Specifically, we run each compared algorithm 100 times to solve each instance of Set II with the setting shown in Section 3.2 and recorded the time to achieve an objective value at least as good as the given target value (the algorithm stops immediately when it reaches the target value). Then we sorted the times in increasing order and calculated the probability ρ i = (i -0.5)/100 with each time T i , where T i corresponds to the ith smallest time.

Table 4 shows the experimental results of DHJaya, HBPSO/TS, I2PLS, KBTS and MSBTS on the instances of Set II. The first two columns give the name of each instance and the corresponding target value, respectively. The remaining columns report the best time (T best) in seconds to achieve the target value and the average time (T avg) in seconds to reach the target value over 100 runs. The row (#Avg) indicates the average value of each column. And the row #Best shows the number of instances for which an algorithm obtains the smallest T best value among the compared algorithms. Moreover, to check whether there exists a significant difference between the proposed MSBTS algorithm and the compared algorithms in terms of T best and T avg , we report the p-values from Table 1. Computational results of the MSBTS algorithm and the reference algorithms on the 30 benchmark instances of Set I.

Instance/Algorithm

DHJaya [START_REF] Wu | Solving the set-union knapsack problem by a novel hybrid jaya algorithm[END_REF] HBPSO/TS [START_REF] Lin | A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem[END_REF] I2PLS [START_REF] Wei | Iterated two-phase local search for the set-union knapsack problem[END_REF] KBTS [the Wilcoxon signed-rank test in the last row.

From Table 4, we observe that the proposed MSBTS algorithm is very competitive compared to the reference algorithms in terms of T best and T avg .

In particular, MSBTS attains the smallest T best values for 22 instances (out of 30) against 0 for DHJaya, HBPSO/TS, I2PLS and 8 for KBTS. Also, MSBTS has a better average performance according to the #Avg values in the last row. The p-values (< 0.05) from the Wilcoxon signed-rank test clearly indicate that differences between MSBTS and the compared algorithms are statistically significant.

To further illustrate the computational efficiency of MSBTS compared to the reference algorithms, we plot the points (T i , ρ i) based on two SUKP instances of Set II and show the time-to-target plots in Fig. 5. The X-axis in each subfigure indicates the time to achieve the target value, and the Y-axis is the cumulative probability of reaching the given target value. We observe that probability of each algorithm increases with the run-time. However, MSBTS (also KBTS) attains a high probability (over 90%) in a very short computation time (less than 20 seconds) on both instances, while the other algorithms perform poorly. Regarding MSBTS and KBTS, in order to attain a probability of 99.5% of reaching the target value, MSBTS requires about 12 seconds on both instances, while KBTS consumes around 42 seconds and 26 seconds. Note that DHJaya failed to obtain the probability of 99.5% within the time limit of 1000s on both instances. This experiment demonstrates the computational efficiency of the proposed MSBTS algorithm. #p-value -1.86e-09 1.86e-09 1.86e-09 1.86e-09 1.86e-09 1.86e-09 2.48e-2 9.31e-09 --

!"# !"$!"% !"& !"' !"(!") !"* !"+ # ! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!! !"#$%$&'&()
*&+, (# (%"-,(.%'/, #0 123! &45(%46, 789:8;;:;<=;:;<79

!"#$" %#$" &'()" *#("+,$" -*./0/ ! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! #!! $!! %!! &!! '!! (!!)!! *!! +!! #!!! !"#$%$&'&(

Analysis

In this section, we perform additional experiments to investigate the influences of the main ingredients of the MSBTS algorithm. Specifically, we study the effect of the parameter γ v of the hash functions (Section 4.1), the error rates of hash functions (Section 4.2) and the benefit of the solution-based tabu search strategy (Section 4.3).

Sensitivity analysis of hash functions

Hash functions are the key ingredients of the MSBTS algorithm. Now, we analyze the influence of the parameter γ v (v = 1, 2, 3) involved in the hash functions (see Section 2.4.2) on the performance of the MSBTS algorithm. As indicated in [START_REF] Wang | Effective metaheuristic algorithms for the minimum differential dispersion problem[END_REF], the proper settings of γ v should satisfy two conditions:

(1) the hash values of each candidate solution should be no more than the allowed maximum integer to avoid overflow; (2) the distribution of hash values of different candidate solutions should be wide enough to reduce possible collisions. We have carried out preliminary experiments for γ v used in the hash functions. Experimental results show that a large γ v value (> 2.8) will lead to integer overflow for instances with more than 985 items or elements. On the other hand, a small γ v value (< 1.0) will lead to the same values of W v i (W v i = i γv) for adjacent items, increasing the probability of collisions. For example, assuming γ v =0.9, the W v i values of the adjacent items 501 and 502 are both 269 (W 501 = 501 0.9 = 269.06, W 502 = 502 0.9 = 269.55). Given two neighboring solutions S 1 and S 2 = S 1 ⊕ swap(500, 501) where the swap operator was defined in Section 2.4.1, they value. As we focus on the ranges (1.0, 2.8) to analyze the influence of the parameter γ v .

For this purpose, we tested 20 groups of parameters (γ 1 , γ 2 , γ 3) (see Table 5) on 10 representative SUKP instances, i.e., 785 800 0.15 0.85, 800 785 0.10 0.75, 800 785 0.15 0.85, 885 900 0.15 0.85, 900 885 0.15 0.85, 985 1000 0.10 0.75, 985 1000 0.15 0.85, 1000 985 0.10 0.75, 1000 985 0.15 0.85, 1000 1000 0.15 0.85.

These 10 instances are denoted by G 1 to G 10 in Table 5, respectively. For the experiment, we performed 30 independent runs for each setting of parameters on each instance with the cut-off time of 1000 seconds, and recorded the average objective values (f avg). In fact, we do not provide the best object values (f best) here, since most of the f best values obtained with different group of parameters (γ 1 , γ 2 , γ 3) are exactly the same.

Table 5 displays the comparative results of this experiment, where the first row shows the label of each tested instance and the first column indicates the setting of the parameters (γ 1 , γ 2 , γ 3). The f avg values of each group of γ v are shown in rows 2 to 21, respectively. In addition, the last row #std gives the standard deviation of each column and the last column #Avg presents that the average values of each row.

From Table 5, we observe that the parameter γ v is not sensitive for our algorithm. First, the results obtained from different groups of parameters are very similar in terms of #Avg values. Specially, there are 12 out of 20 groups of parameters that obtained the same f avg value on instance G 4 . Second, the small #std values of each column indicate that the standard deviations of the results shown in the columns are relatively low. The p-value of 0.633 (> 0.05) from the Friedman statistical test again confirms that there are no significant differences among the tested results. This analysis indicated that any γ v value in the interval (1.0, 2.8) is suitable for the proposed algorithm.

Table 5 Influence of the hash functions on the average performance of MSBTS algorithm.

(γ 1 , γ 2 , γ 3)/ G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8 G 9 G 10 #Avg Instance (1.

Error rates of hash functions

An error occurs when an unvisited solution is wrongly forbidden by the hash functions and the associated hash vectors. To calculate the error rates of hash functions, we ran our SBTS procedure for 10 4 iterations on two SUKP instances: 1000 1000 0.10 0.75, 1000 1000 0.15 0.85. During the search, each encountered solution is recorded in a pool P OP . We use a counter c 1 to count the number of solutions forbidden (classified as tabu) by the hash functions. Another counter c 2 (error counter) will be incremented by 1 if the solution is not included in P OP . Then the error rate is obtained by c 2 /c 1 . We perform additional experiments to investigate two factors that affect the error rates of the hash functions: 1) the length L of the hash functions, and 2) the number of the hash vectors.

The role of the length L is to ensure that the hash vectors are long enough to be able to record the sampled solutions. A proper setting of L should not only avoid memory overflow, but also keep the error rates at a low level. The results of preliminary experiments indicate that a large L value (> 10 8) leads to memory overflow. Thus we carried out an experiment to check the error rates of the hash vectors with L ranging from 10 5 to 10 8 . The error rate plots are shown in Fig. 6, where the iterations of the SBTS procedure and the corresponding error rates are displayed on the X-axis and the Y -axis, respectively.

! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! $!!! &!!! (!!! *!!! #!!!! !""#" "$%&' (%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241232456+ !" # " $ % & ' !" # " $ % & (!" # " $ % &) !" # " $ % & * ! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! $!!! &!!! (!!! *!!! #!!!! !""#" "$%&' (%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241532465+ !" # " $ % & ' !" # " $ % & (!" # " $ % &)
!" # " $ % & * Fig. 6. Impact of the length L of hash vectors on the error rate of the solution-based tabu search procedure.

Fig. 6 shows that our algorithm can keep the error rate at a low level (< 0.07) with L ranging from 10 6 to 10 8 . In particular, when the values of L are 10 7 and 10 8 , the corresponding curves almost overlap and stay under 0.02. The error rates increase dramatically (more than 0.5) as the number of iterations increases for L ≤ 10 5 . Considering that the time complexity of evaluating a neighboring solution is O(1), a large L value will not significantly affect the computation time. Thus any L value in the interval [10 6 , 10 8] is suitable for the proposed algorithm (L = 10 8 in the MSBTS algorithm).

! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! $!!! &!!! (!!! *!!! #!!!! !""#" "$%&' (%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241232456+ !" # $ % & ' % $ () * + , -# * ' !%.//$%&'%$()*+,-#*' ! !"# !"$!"% !"& !"' !"(!") !"* !"+ # ! $!!! &!!! (!!! *!!! #!!!!
!""#" "$%&' (%&"$%)#*' #*+,-./+)*'%$*0&+1222312223241532465+

!" # $ % & ' % $ () * + , -# * ' !%.//$%&'%$()*+,-#*' Fig. 7. Impact of the number of hash vectors on the error rate of the solution-based tabu search procedure.

The role of the hash vectors is to record the solutions encountered during the search, and the number of the hash vectors can significantly affect the error rates. We performed another experiment to analyze the error rates when using two or three hash vectors. As the error rate plots in Fig. 7 show, the SBTS procedure has an error rate of nearly 0.9 with two hash vectors over 10 4 iterations. The error rate with one hash vector will be naturally higher than that with two hash vectors for the same number of iterations. On the contrary, the error rate remains very low (< 0.02) with three hash vectors over 10 4 iterations. So three hash vectors can effectively identify the previously encountered solutions, which justifies the use of three hash vectors in MSBTS.

Analysis of solution-based tabu search

The solution-based tabu search strategy is the most innovative component of the MSBTS algorithm. To understand its influence on the algorithm, we created a MSBTS variant; named MABTS where the solution-based tabu search procedure is replaced by an attributed-based tabu search procedure. For this experiment, we employed the attributed-based tabu search method introduced in [START_REF] Wei | Kernel based tabu search for the set-union knapsack problem[END_REF], which is one of the best SUKP algorithm. Thus, except the tabu search procedure, MABTS shares the other components of MSBTS.

Considering that our algorithm mainly shows its superiority on the large instances, we carried out this experiment based on Set II, where each instance was independently solved by each algorithm 30 times, each run being limited to 1000 seconds.

The experimental results are reported in Table 6. The first column shows the names of the instances. The results of the two compared algorithms are respectively presented in columns 2 to 7, including the best objective value (f best), the average objective value (f avg), the standard deviation over 30 runs (std). To facilitate the comparison, we also provide the similar #Avg, #Best and p-values as described in Section 3.4.

Table 6 shows that MSBTS significantly outperforms MABTS, achieving better f best values (marked in bold) for 17 out of the 30 instances and equal results for the remaining 13 instances. When comparing the f avg values, MSBTS again dominates MABTS for all the instances. Moreover, the std values of MSBTS are very small, indicating that MSBTS is highly robust. Furthermore, the small p-values (< 0.05) show that there is a significant difference between MSBTS and MABTS. This experiment confirms that the solution-based tabu search strategy constitutes one key ingredient of our algorithm.

Conclusions

The Set-Union Knapsack Problem attracts more and more attention in recent years due to its theoretical and practical interest. Inspired by the fact that the solution-based tabu search has been successfully applied to solve several difficult binary optimization problems, we devised the first multistart solution-based tabu search algorithm for solving SUKP. The proposed MSBTS algorithm uses its solution-based tabu search procedure to find high-quality local optima and the multistart mechanism to overcome deep local optima traps. MSBTS has several desirable features such as simple design and implementation as well as absence of parameters.

We performed extensive experimental assessments of the proposed algorithm on two sets of 60 benchmark instances. The comparisons with the state-of-the-art algorithms demonstrated the high competitiveness of our algorithm in terms of solution quality, computational efficiency and robustness. In particular, we demonstrated the interest of the MSBTS algorithm to deal with large instances and reported new lower bounds for 7 large and difficult instances (with 585 to 1000 items and elements).

This work thus provides a useful tool for solving the general Set-Union Knapsack Problem. Moreover, since a number of real-world applications can be conveniently formulated by SUKP, the proposed algorithm can be hopefully applied to these practical problems. The availability of the code of the MSBTS algorithm will facilitate such applications.

Finally, this work provides another supporting evidence for using the solutionbased tabu search strategy to solve binary problems. As such it would be interesting to verify the effectiveness of this approach on additional problems including those related to knapsack.

Fig. 1 .

 1 Fig. 1. Flow chart of the proposed MSBTS algorithm.

Fig. 2 .

 2 Fig. 2. An illustrative example of the main steps of the greedy randomized initialization procedure.

Fig. 3 .

 3 Fig. 3. An illustrative example of the random shuffling operation.

Fig. 4 .

 4 Fig. 4. An example of a solution forbidden by the hash functions and the associated hash vectors.

Fig. 5 .

 5 Fig. 5. Cumulative probability distributions for the time to reach a target value.

 Algorithm 1 Multistart solution-based tabu search for the SUKP 1: Input: Instance I, cut-off time t max , neighborhoods N , hash vectors H 1 , H 2 , H 3 , length of hash vectors L, hash functions h 1 , h 2 , h 3 . 2: Output: The best solution found S * .

	3: S * ← ∅	/* Initialize the overall best solution S * (i.e., f (S *) = 0)*/
	4: while T ime ≤ t max do
	5:	S ← Greedy Randomized Initialization(I)
	6:	/* Record the best solution S b found during tabu search */
		S b ← Solution Based T abu search(S)
	7:	if f (S b) > f (S *) then
	8:	S * ← S b	/* Update the overall best solution S * found so far */
	9:	end if	
	10: end while	
	11: return S *	

 Algorithm 3 Solution-based tabu search 1: Input: Input solution S, neighborhood N , hash vectors H 1 , H 2 , H 3 , hash functions h 1 , h 2 , h 3 , cut-off time t max , length of hash vectors L. 2: Output: Best solution S b found during tabu search. 3: S b ← S /* Record the best solution S b found during tabu search */ 4: (H 1 , H 2 , H 3) ← Initialize Hash V ectors(H 1 , H 2 , H 3 , L) /* (i.e., tabu list) */

5: F ind ← T rue /* Track the admissible neighboring solution */ 6: while F ind ∧ T ime ≤ t max do 7: Find admissible neighboring solutions N (S) in N (S) 8: if N (S) = ∅ then 9: /* Attain the best admissible neighboring solution S */ S ← argmax{f (S) : S ∈ N (S)} 10: F ind ← T rue 11: else 12: F ind ← F alse 13: end if 14: if f (S) > f (S b) then 15: f (S b) ← f (S) /* Update the best solution S b found during tabu search */ 16: end if /* Update the hash vectors with S */ 17:

Table 2 .

 2 Computational results of the MSBTS algorithm and the reference algorithms on the 30 benchmark instances of Set II. .40 62.54 482.096 9280.33 9105.91 85.91 499.248 9310.10 9202.09 57.96 473.031 9352.30 9303.10 23.95 379.479 9362.93 9351.59 7.22 280.940

	MSBTS
	22]

Table 3

 3 Summarized comparisons of the MSBTS algorithm against each reference algorithm over the two sets of benchmark instances.

	Algorithm pair	Instance setIndicator#Wins#Ties#Lossesp-value
	MSBTS vs. DHJaya [17]	Set I (30) f best	16	14	0	4.82e-4
		favg	23	6	1	1.37e-4
		Set II (30) f best	30	0	0	1.82e-06
		favg	30	0	0	1.86e-09
	MSBTS vs. HBPSO/TS [21] Set I (30) f best	2	28	0	1.80e-1
		favg	11	12	7	1.33e-1
		Set II (30) f best	20	10	0	5.96e-5
		favg	29	1	0	2.56e-6
	MSBTS vs. I2PLS [9]	Set I (30) f best	0	30	0	NA
		favg	19	5	6	2.64e-2
		Set II (30) f best	15	15	0	8.83e-5
		favg	29	1	0	2.56e-6
	MSBTS vs. KBTS [22]	Set I (30) f best	0	30	0	NA
		favg	6	11	13	9.10e-2
		Set II (30) f best	7	23	0	1.80e-2
		favg	24	5	1	1.57e-5

Table 4

 4 Time-to-target analysis on the SUKP instances of Set II. Tavg(s) T best (s) Tavg(s) T best (s) Tavg(s) T best (s) Tavg(s) T best (s) Tavg(s)

	Instance/Algorithm Target	DHJaya	HBPSO/TS	I2PLS	KBTS	MSBTS
	T best (s) 600 585 0.10 0.75 9500 100.079 523.459 3.470	9.353	3.741	11.927	0.213	0.618	0.654	1.297
	600 585 0.15 0.85	9100	65.826	566.872 67.883	382.176 6.599	59.784	3.486	12.187	1.244	9.123
	700 685 0.10 0.75	9700	270.577 561.072 11.334	133.119 11.657	66.970	1.216	7.799	0.858	5.310
	700 685 0.15 0.85	9100	106.614 427.274 123.888 526.406 9.663	178.041 1.647	42.561	1.370	23.398
	800 785 0.10 0.75	9500	160.885 650.605 18.534	132.560 25.917	241.929 1.272	15.965	1.325	7.600
	800 785 0.15 0.85	8700	151.590 516.174 68.445	323.062 15.246	102.963 5.448	55.774	2.492	7.798
	900 885 0.10 0.75	9400	313.696 560.054 37.409	271.706 13.254	295.578 1.530	28.776	3.346	8.834
	900 885 0.15 0.85	8400	221.799 400.128 499.176 652.865 13.318	459.241 2.592	60.691	2.139	9.243
	1000 985 0.10 0.75 9000	291.897 421.090 9.114	97.051	13.008	150.602 1.061	21.855	0.639	16.614
	1000 985 0.15 0.85 8300	293.618 574.331 678.089 820.440 530.745 530.745 6.685	116.893 10.870 25.255
	600 600 0.10 0.75	10500 67.558	369.584 16.691	51.810	5.938	31.448	2.589	58.678	1.041	5.271
	600 600 0.15 0.75	8800	68.179	560.449 6.067	131.515 5.670	40.425	1.170	5.538	0.697	5.450
	700 700 0.10 0.75	9500	654.112 743.459 9.297	163.108 9.090	99.874	1.769	12.083	0.721	4.817
	700 700 0.15 0.85	9100	105.922 521.651 111.166 690.543 23.306	265.033 4.807	29.800	2.098	19.571
	800 800 0.10 0.75	9800	573.460 576.004 180.088 549.453 866.553 866.553 9.431	213.756 6.618	21.098
	800 800 0.15 0.85	8800	162.727 575.454 114.424 508.682 15.821	131.655 1.385	27.487	2.459	8.224
	900 900 0.10 0.75	9500	220.422 603.266 33.222	261.629 11.589	46.073	1.275	8.965	2.809	6.297
	900 900 0.15 0.85	8600	235.578 459.369 50.142	554.410 12.601	84.906	1.033	10.397	0.912	8.208
	1000 1000 0.10 0.75 9300	327.772 784.859 76.998	560.236 30.069	412.291 2.125	149.036 18.468 43.389
	1000 1000 0.15 0.85 8000	294.562 530.699 76.860	548.614 25.684	225.339 2.132	24.634	1.218	8.561
	585 600 0.10 0.75	10000 64.865	245.444 15.053	83.161	6.935	17.042	1.614	5.787	0.746	2.510
	585 600 0.15 0.85	9000	65.337	528.534 8.954	63.449	7.319	96.275	1.033	21.288	1.005	21.108
	685 700 0.10 0.75	10000 333.101 472.050 137.383 171.016 108.642 484.414 13.512 235.948 2.818	5.230
	685 700 0.15 0.85	9000	154.648 514.173 189.391 531.964 19.709	299.990 3.127	45.425	1.370	29.075
	785 800 0.10 0.75	8900	155.496 484.831 9.029	96.090	11.278	104.360 0.756	7.486	0.765	2.847
	785 800 0.15 0.85	8500	150.938 607.258 679.254 679.254 27.872	358.703 10.115 155.450 2.401	22.656
	885 900 0.10 0.75	9100	222.106 619.250 30.648	425.582 36.186	415.666 6.096	73.726	4.159	17.378
	885 900 0.15 0.85	8000	346.018 631.780 228.520 564.195 28.099	209.716 1.941	17.235	1.746	7.186
	985 1000 0.10 0.75 8900	300.232 540.491 278.500 651.225 36.254	428.971 12.316 113.230 9.698	48.404
	985 1000 0.15 0.85 8100	281.460 437.529 109.148 276.985 47.763	287.634 1.088	12.129	0.997	10.208
	#Avg	9073	225.369 533.573 129.272 363.722 65.984	233.472 3.482	53.040	2.923	13.732
	#Best	-	0	0	0	0	0	0	8	2	22	28

Table 6

 6 Comparison between MSBTS and MABTS on the instances of Set II.

	Instance/Setting		MSBTS			MABTS	
		f best	favg	std	f best	favg	std
	600 585 0.10 0.75	9914	9914	0	9914	9801.57	72.65
	600 585 0.15 0.85	9357	9357	0	9357	9329.40	23.76
	700 685 0.10 0.75	9881	9881	0	9841	9814.37	34.83
	700 685 0.15 0.85	9163	9163	0	9135	9126.67	14.16
	800 785 0.10 0.75	9937	9937	0	9811	9679.73	61.37
	800 785 0.15 0.85	9024	8992.83	27.25 9024	8892.53	51.21
	900 885 0.10 0.75	9725	9725	0	9611	9503.63	53.57
	900 885 0.15 0.85	8620	8576.07	27.14 8499	8459.87	26.51
	1000 985 0.10 0.75	9689	9631.60	28.92 9580	9411.37	58.09
	1000 985 0.15 0.85	8455	8453.20	0.60	8448	8359.30	106.74
	600 600 0.10 0.75	10524	10524	0	10524	10519.67 3.54
	600 600 0.15 0.75	9062	9062	0	9062	9058.20	11.40
	700 700 0.10 0.75	9786	9786	0	9786	9770.20	37.93
	700 700 0.15 0.85	9229	9229	0	9177	9145.20	30.65
	800 800 0.10 0.75	9932	9932	0	9932	9734.87	64.12
	800 800 0.15 0.85	9101	9101	0	8956	8907.10	14.88
	900 900 0.10 0.75	9745	9745	0	9660	9629.20	36.02
	900 900 0.15 0.85	8990	8990	0	8916	8911.03	17.49
	1000 1000 0.10 0.75 9551	9551	0	9357	9269.87	92.10
	1000 1000 0.15 0.85 8538	8500.37	28.65 8381	8282.20	73.08
	585 600 0.10 0.75	10393	10393	0	10393	10325.43 34.75
	585 600 0.15 0.85	9256	9256	0	9256	9256	0
	685 700 0.10 0.75	10121	10121	0	10121	9944.10	59.12
	685 700 0.15 0.85	9176	9176	0	9176	9144.97	31.29
	785 800 0.10 0.75	9384	9384	0	9384	9229.37	93.68
	785 800 0.15 0.85	8746	8693.43	40.00 8663	8526.57	59.71
	885 900 0.10 0.75	9318	9318	0	9232	9158.57	40.38
	885 900 0.15 0.85	8425	8413.80	7.33	8425	8276.07	42.39
	985 1000 0.10 0.75	9234	9192.53	14.12 9193	9030.77	54.53
	985 1000 0.15 0.85	8612	8579.50	32.50 8461	8384.43	75.03
	#Avg	9362.93 9352.61	6.88	9309.17 9229.41	45.83
	#Best	30	30	-	13	0	-
	p-value	2.93e-4	2.563e-06 -	-	-	-

Our solution certificates are available at: http://www.info.univ-angers.fr/ pub/hao/SUKP_MSBTS.html. The code of MSBTS will also be made available upon the publication of the paper.

Acknowledgments

We are grateful to the reviewers for their useful comments and suggestions which helped us to significantly improve the paper. We would like to thank Dr. Congcong Wu, Dr. Geng Lin, Dr. Xiangjing Lai and their co-authors for sharing the codes of their algorithms ([17], [21], [32]). Support from the China Scholarship Council (Grant 201706290016) for the first author is also acknowledged.

Declaration of competing interest

The authors declare that they have no known competing interests that could have appeared to influence the work reported in this paper.