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The capacitated clustering problem (CCP) is a general model relevant for a variety of important applications in areas such as parallel computing and very large scale integration design. However, the problem is known to be NP-hard, and thus computationally challenging. In this work, we present an original and highly eective variable neighborhood search algorithm for the problem, which is characterized by its neighborhood decomposition technique and a probability-based diversication strategy. The proposed algorithm is assessed via extensive experiments on 110 benchmark instances commonly used in the literature. Computational results show that the algorithm signicantly outperforms the existing state-of-the-art algorithms in the literature. This work advances the state-of-the-art of solving the capacitated clustering problem and can be useful for the related practical applications. The key feature of the algorithm, i.e., combining the neighborhood decomposition-driven local search with the perturbation, is of general interest and can help to design eective heuristic algorithms for other important clustering problems.

Introduction

Clustering problems represent a class of relevant models with a variety of practical applications. The goal of a clustering problem is to group a given set of items into a number of xed or variable K (K ≥ 2) clusters to optimize an objective function under some possible imperative constraints. Examples of clustering problems include semi-supervised graph clustering [START_REF] González-Almagro | DILS: Constrained clustering through dual iterative local search[END_REF], constrained graph clustering in biological networks [START_REF] Tran | Local search for constrained graph clustering in biological networks[END_REF], graph partitioning [START_REF] Benlic | A multilevel memetic approach for improving graph k-partitions[END_REF][START_REF] Hendrickson | Graph partitioning models for parallel computing[END_REF][START_REF] Lu | Stagnation-aware breakout tabu search for the minimum conductance graph partitioning problem[END_REF][START_REF] Zhou | A three-phased local search approach for the clique partitioning problem[END_REF], and various p-center and p-median problems [START_REF] Chang | Parallel iterative solution-based tabu search for the obnoxious p-median problem[END_REF][START_REF] Church | Solving the p-median problem on regular and lattice networks[END_REF][START_REF] Contardo | A scalable exact algorithm for the vertex p-center problem[END_REF][START_REF] Gnägi | A matheuristic for large-scale capacitated clustering[END_REF][START_REF] Mulvey | Solving capacitated clustering problems[END_REF][START_REF] Puerto | Clustering and portfolio selection problems: A unied framework[END_REF]. In general, clustering problems are NP-hard and thus computationally challenging.

The capacitated clustering problem (CCP) studied in this work is a typical clustering problem with a number of applications. Representative applications that can be conveniently formulated by CCP concern facility locations [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF], parallel computing [START_REF] Hendrickson | Graph partitioning models for parallel computing[END_REF], very large scale integration design [START_REF] Weitz | An empirical comparison of heuristic and graph theoretic methods for creating maximally diverse groups, VLSI design, and exam scheduling[END_REF], and creation of peer review groups [START_REF] Chen | A hybrid grouping genetic algorithm for reviewier group construction problem[END_REF].

CCP generalizes three NP-hard problems: the graph partitioning problem (CPP) [START_REF] Benlic | A multilevel memetic approach for improving graph k-partitions[END_REF][START_REF] Ferreira | The node capacitated graph partitioning problem: A computational study[END_REF][START_REF] Galinier | An ecient memetic algorithm for the graph partitioning problem[END_REF][START_REF] Meyerhenke | Parallel graph partitioning for complex networks[END_REF], the handover minimization problem [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF][START_REF] Morán-Mirabal | Randomized heuristics for handover minimization in mobility networks[END_REF], and the maximally diverse grouping problem (MDGP) [START_REF] Brimberg | Solving the maximally diverse grouping problem by skewed general variable neighborhood search[END_REF][START_REF] Gallego | Tabu search with strategic oscillation for the maximally diverse grouping problem[END_REF][START_REF] Lai | Iterated maxima search for the maximally diverse grouping problem[END_REF][START_REF] Palubeckis | Maximally diverse grouping: an iterated tabu search approach[END_REF]. Consequently, solving CCP is a computationally dicult task and represents a formidable challenge from the perspective of designing eective search algorithms.

The CCP problem can be described as follows. Given a weighted complete graph G = (V, E, c, w) and a positive integer K, where V = {v 1 , v 2 , . . . , v N } is the set of N vertices, E represents the set of N (N -1)/2 edges, c = {c ij ≥ 0 : {v i , v j } ∈ E} is the set of edge weights, and w = {w i ≥ 0 : v i ∈ V } is the set of vertex weights, the capacitated clustering problem (CCP) [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF] involves partitioning the vertex set V into K disjoint clusters C 1 , C 2 , . . . , C K such that the sum of vertex weights (i.e., v∈Cg w(v)) of each cluster C g (g = 1, 2, . . . , K) lies in a given interval [L, U ], while maximizing the sum of the edge weights in the same clusters, where L and U are called the lower and upper bounds of the capacity of each cluster, respectively. An illustrative example for CCP is given in Fig. 1.

Formally, CCP can be stated as follows [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF][START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF]: X ig ∈ {0, 1}, i = 1, 2, . . . , N ; g = 1, 2, . . . , K

(CCP ) Maximize f = K g=1 N -1 i=1 N j=i+1 c ij X ig X jg (1) Subject to K g=1 X ig = 1, i = 1, 2, . . . , N (2) 
L ≤ N i=1 w i X ig ≤ U, g = 1, 2, . . . , K (3) 
where X ig is a binary variable that takes the value of 1 if the vertex v i is located in cluster C g and 0 otherwise. Thus, the objective function f , which is to be maximized, adds up the edge weights c ij for edges whose endpoints i and j belong to the same cluster C g (X ig = X jg = 1). The set of constraints [START_REF] Bentley | Fast algorithms for geometric traveling salesman problems[END_REF] guarantees that each vertex belongs to exactly one cluster, and the set of constraints (3) forces the sum of vertex weights of each cluster lies in [L, U ].

Due to the importance of CCP, various search methods have been proposed in the literature. As the review in Section 2 shows, most existing studies focus on heuristic algorithms which aim to nd satisfactory solutions as fast as possible, without optimality guarantee of the attained solutions. In particular, the most eective algorithms are based on neighborhood search (also called stochastic local search [START_REF] Hoos | Stochastic local search: foundations and applications[END_REF]) whose performance critically depends on the adopted neighborhoods as well as the way the neighborhoods are examined. Indeed, given that these algorithms need to evaluate a set of candidate solutions at each iteration, the search becomes very time-consuming for solving large problems. Thus, research on the design of new algorithms as well as ecient neighborhood examination methods becomes highly relevant.

In this work, we aim to advance the state-of-the-art of CCP in terms of practical solving of large problem instances. Inspired by a related work on the maximally diverse grouping problem [START_REF] Lai | Neighborhood decomposition based variable neighborhood search and tabu search for maximally diverse grouping[END_REF], some early studies about the neigh-borhood decomposition strategies [START_REF] Fiechter | A parallel tabu search algorithm for large traveling salesman problems[END_REF][START_REF] Laguna | Tahu search methods for a single machine scheduling problem[END_REF][START_REF] Semet | Solving real-life vehicle routing problems eciently using tabu search[END_REF] and the technique of don't look bits [START_REF] Bentley | Fast algorithms for geometric traveling salesman problems[END_REF][START_REF] Stützle | Iterated local search for the quadratic assignment problem[END_REF], we propose a new heuristic algorithm called the neighborhood decomposition-driven variable neighborhood search algorithm for CCP. Extensive experimental results show that the proposed algorithm outperforms signicantly the state-of-the-art CCP algorithms on the 110 benchmark instances widely used in the literature.

The remaining parts of paper are organized as follows. In Section 2, we review representative recent studies on CCP. In Section 3, we describe the proposed algorithm. In Section 4, experimental results and comparisons are reported to assess the algorithm. Section 5 shows an analysis of key algorithmic components. Last section summarizes the main ndings of this work and provides research perspectives.

Literature review

Since the introduction of CCP, a large number of studies have been devoted to the problem. Useful information about the studies on CCP prior to 2011 can be found, for instance, in [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF][START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF]. In this section, we focus on the most recent developments on solving methods for CCP.

Among the existing algorithms, only one provides exact solutions [START_REF] Lewis | Exact solutions to the capacitated clustering problem: A comparison of two models[END_REF], based on linear and quadratic models solved by commercial optimizers (CPLEX and Gurobi). However, the test instances studied are quite small (N ≤ 50), compared to the instances tested in this study (240 ≤ N ≤ 2000). To handle large instances, heuristic algorithms are typically used, which can be roughly divided into four categories.

The rst category is based on the greedy randomized adaptive search procedure (GRASP) metaheuristic [START_REF] Resende | Greedy randomized adaptive search procedures[END_REF], which iterates a stochastic greedy construction procedure and a subsequent neighborhood search procedure. In [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF],

Deng and Bard proposed the rst reactive GRASP procedure for CCP. In [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF][START_REF] Martínez-Gavara | Randomized heuristics for the capacitated clustering problem[END_REF], Martínez-Gavara et al. introduced a simplied version of Deng and Bard's GRASP method and several variants, where a special restricted candidate list strategy was used by the greedy construction procedure and dierent neighborhoods (e.g., the insertion neighborhood, the swap neighborhood, or a new 2-1 exchange neighborhood) were employed in the neighborhood search procedure.

The second category is based on the tabu search (TS) metaheuristic [START_REF] Glover | Tabu search[END_REF].

In [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF], Martínez-Gavara et al. proposed a TS algorithm based on the 2-1 exchange neighborhood, and a hybrid local search algorithm integrating a simplied GRASP procedure and the TS algorithm (GRASP+TS). They also presented an adapted version of the TS algorithm with strategic oscillation initially designed for the related MDGP, where the insertion and swap neighborhoods are adopted as the basic neighborhood structures. In [START_REF] Zhou | Heuristic search to the capacitated clustering problem[END_REF], Zhou et al.

introduced a penalty-based TS algorithm (FITS) that explores both feasible and infeasible regions.

The third category relies on the variable neighborhood search (VNS) metaheuristic [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF][START_REF] Mladenovi¢ | Variable neighborhood search[END_REF]. In [START_REF] Lai | Iterated variable neighborhood search for the capacitated clustering problem[END_REF], based on the insertion neighborhood, the swap neighborhood, and the 2-1 exchange neighborhood, Lai and Hao introduced an iterated variable neighborhood search (IVNS) algorithm by integrating organically an extended variable neighborhood descent method and a randomized shake procedure. In [START_REF] Brimberg | Solving the capacitated clustering problem with variable neighborhood search[END_REF], Brimberg et al. proposed a general variable neighborhood search (GVNS) algorithm and a skewed general variable neighborhood search (SGVNS) algorithm based on the same three neighborhoods.

The fourth category relies on the hybrid population-based evolutionary framework which combines a local search procedure and a crossover operator. In [START_REF] Deng | A reactive GRASP with path relinking for capacitated clustering[END_REF],

Deng and Bard mixed a GRASP procedure, a path relinking procedure and a variable neighborhood descent method. In [START_REF] Zhou | Heuristic search to the capacitated clustering problem[END_REF], in addition to the FITS al- According to the computational results reported in the above studies, we identify ve state-of-the-art algorithms: GRASP+TS [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF], FITS [START_REF] Zhou | Heuristic search to the capacitated clustering problem[END_REF], IVNS [START_REF] Lai | Iterated variable neighborhood search for the capacitated clustering problem[END_REF],

GVNS [START_REF] Brimberg | Solving the capacitated clustering problem with variable neighborhood search[END_REF], and SGVNS [START_REF] Brimberg | Solving the capacitated clustering problem with variable neighborhood search[END_REF]. These algorithms will be used as our reference algorithms for the computational studies of Section 4.

Our literature review indicates that the best performing CCP algorithms are all neighborhood search algorithms which explore iteratively one or more neighborhoods (e.g., insertion neighborhood, swap neighborhood, and 2-1 exchange neighborhood). Specically, for a given neighborhood, such an algorithm needs, at each iteration, to examine all or some neighbor solutions to identify the solution of interest (e.g., the best solution among all neighbor solutions or an improving solution better than the current solution). The search becomes very time-consuming when the neighborhood contains many neighbor solutions (this is typically the case of the swap neighborhood and the 2-1 exchange neighborhood). Thus, the issue of a fast examination of the considered neighborhoods becomes critical and directly impacts the performance of the search algorithm.

In this work, to speed up neighborhood examination, we design a neighborhood decomposition strategy for the CCP. This strategy divides a given neighborhood into a number of disjoint subsets (called neighborhood blocks) of neighbor solutions and identies each promising neighborhood block with a 0-1 state variable. This decomposition accelerates neighborhood examination by checking only the promising neighborhood blocks. This is in sharp contrast to existing algorithms in the literature that do not make a distinction between promising neighbor solutions and non-promising neighbor solutions and thus waste computation time by repetitively re-examining non-promising neighbor solutions.

Neighborhood decomposition-driven variable neighborhood search

The proposed neighborhood decomposition-driven variable neighborhood search (NDVNS) algorithm is based on the general variable neighborhood search metaheuristic [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF][START_REF] Mladenovi¢ | Variable neighborhood search[END_REF]. The primary innovative ingredients of the algorithm include its neighborhood decomposition strategy designed for CCP to accelerate the search process and a probabilistic perturbation strategy to control the tradeo between search intensication and diversication.

The current neighborhood decomposition strategy dynamically partitions a neighborhood into a number of disjoint neighborhood blocks, and enables the search algorithm to only examine the promising neighborhood blocks which are identied by a 0-1 state value. By ignoring the other blocks, the algorithm signicantly increases its computational eciency. The current neighborhood decomposition strategy is related to early candidate list based neighborhood decomposition strategies and the don't look bits technique. The candidate list approach was used to decompose a given neighborhood into coordinated subsets so that the search algorithm only focuses on some subsets with desirable features [START_REF] Fiechter | A parallel tabu search algorithm for large traveling salesman problems[END_REF][START_REF] Laguna | Tahu search methods for a single machine scheduling problem[END_REF][START_REF] Semet | Solving real-life vehicle routing problems eciently using tabu search[END_REF]. The don't look bits technique was initially developed to speed up local search procedures for the traveling salesman problem [START_REF] Bentley | Fast algorithms for geometric traveling salesman problems[END_REF] and subsequently adapted to the quadratic assignment problem (QAP) [START_REF] Stützle | Iterated local search for the quadratic assignment problem[END_REF]. In particular, taking QAP as an example, to avoid scanning a full neighborhood, the don't look bits technique employs a dynamically updated 0-1 vector to distinguish the promising items from the unpromising items. Then the search examines only the promising items, which signicantly speeds up the algorithm.

On the other hand, unlike these early approaches, the current decomposition strategy does not employ any candidate list and uses a simple 0-1 state matrix to perfectly identify the visited subsets that do not contain an improving solution.

Basically, for a given problem instance, i.e., a double-weighted complete graph G = (V, E, c, w), a positive integer K, and the lower bound L and upper bound U of clusters on the capacity, the proposed algorithm explores the search space Ω composed of all feasible K-partitions of the vertex set V satisfying the capacity constraints of clusters, i.e., Ω = {{C 1 , C 2 , . . . , C K } :

V = ∪ i=K i=1 C i , C i ∩C j = ∅ ∀i = j, L ≤ |C g | ≤ U, ∀g}, where |C g | = v∈Cg w(v).
The main framework and components of the NDVNS algorithm are described in the following subsections.

Main framework of the NDVNS Algorithm

Algorithm 1: Neighborhood decomposition-driven variable neighborhood search (NDVNS) for capacitated clustering Input: A double-weighted complete graph G = (V, E, c, w), an integer K, time limit t max , and parameters α,

Q, k min , k max Output: The best feasible K-partition of G found (s * ) 1 s ← InitialSolution(G, K) 2 s ← NDVND 3 (s) /* Local search, Algorithm 2 */ 3 s * ← s 4 k ← k min 5 while time() < t max do 6 s ← Shake(s, k) /* Perturb the solution s, Section 3.3 */ 7 s ← NDVND 2 (s ) /* Local search, Algorithm 2 */ 8 if ( f (s ) f (s) + α • d(s , s) > 1) ∧ ( f (s ) f (s * ) + α • d(s , s * ) > 1) then 9 s ← s if f (s ) > f (s * ) then s * ← s k ← k min else r ← rand(0, 1) if r < Q then /* Q is a parameter */ k ← k min else k ← k + 1 end end else k ← k + 1 end if k ≥ k max then k ← k min end end return s *
The NDVNS algorithm (see the owchart in Fig. 2) combines an initialization procedure aiming at generating a feasible solution, two local search procedures (i.e., NDVND 2 and NDVND 3 ) and a shake procedure aiming at diversifying the search process.

Algorithm 1 shows the main framework of the NDVNS algorithm, where s and The algorithm starts from an initial solution generated by the two-stage initialization procedure of [START_REF] Lai | Iterated variable neighborhood search for the capacitated clustering problem[END_REF] (line 1 of Algorithm 1), and then performs a local search procedure (i.e., NDVND 3 ) to locally improve the initial solution (line 2). After that, the perturbation strength k of the shake procedure Shake(•, •) is initially set to the minimum value k min and the search process enters a while loop in which several operations are iteratively performed to improve the current solution until the time limit (t max ) is reached (lines 5-28).

At each while loop, the current solution s is rst perturbed by the Shake(•, •) procedure and is then improved by a fast local search procedure (i.e., NDVND 2 ) (lines 6 and 7). Then, the resulting solution s is conditionally accepted according to its quality and distances to s and s * (lines 89), similar to the SGVNS algorithm of [START_REF] Brimberg | Solving the capacitated clustering problem with variable neighborhood search[END_REF]. Moreover, the value of k is set to k min and the recorded best solution is updated if an improved solution is found, i.e., s * ← s and k ← k min , and the value of k is increased as k ← k + 1, otherwise. In addition, the algorithm employs a probability Q (a parameter) to control the perturbation strength k to maintain a suitable tradeo of search intensication and diversication (lines [START_REF] Gnägi | A matheuristic for large-scale capacitated clustering[END_REF][START_REF] González-Almagro | DILS: Constrained clustering through dual iterative local search[END_REF][START_REF] Guseld | Partition-distance: A problem and class of perfect graphs arising in clustering[END_REF][START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF][START_REF] Hendrickson | Graph partitioning models for parallel computing[END_REF][START_REF] Hoos | Stochastic local search: foundations and applications[END_REF]. That is, the value of k switches to k min with probability Q if the recorded best solution s * has not been improved during the current iteration. Finally, the value of k is reset to k min as long as k reaches the allowed maximum value k max (lines 2527). We describe below the components of the algorithm.

Local Optimization Methods of the NDVNS Algorithm

This subsection presents the neighborhood decomposition-driven variable neighborhood descent (NDVND) methods and the local optimization procedure.

General procedure of variable neighborhood descent method

Variable neighborhood descent (VND) is a local search approach that explores local optimal solutions with several ordered neighborhoods N θ (θ = 1, 2, . . . , θ max ). Specically, the VND method starts with the rst neighborhood N θ (θ = 1), and then switches to the next neighborhood N θ+1 when a local optimum with respect to the current neighborhood N θ is attained. Moreover, VND switches immediately to the rst neighborhood N 1 from the current neighborhood N θ (θ = 2, 3, . . . , θ max ) as soon as an improving solution is found. Finally, VND stops when the search process reaches the last neighborhood N θmax and no improving solution can be found in N θmax .

Neighborhoods and neighborhood decomposition

Like previous studies [START_REF] Brimberg | Solving the capacitated clustering problem with variable neighborhood search[END_REF][START_REF] Lai | Iterated variable neighborhood search for the capacitated clustering problem[END_REF][START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF], our NDVNS algorithm employs three complementary neighborhoods, i.e., the insertion neighborhood N 1 , the swap neighborhood N 2 , and the 2-1 exchange neighborhood N 3 .

The insertion neighborhood N 1 is generated by the OneM ove operator. Given a solution s = {C 1 , C 2 , . . . , C K }, the OneM ove operator (denoted by < v, C i , C j >) transfers a node v from its current cluster C i to another cluster C j (1 ≤ j = i ≤ K), such that the resulting solution denoted by s ⊕ < v, C i , C j > is still feasible. As such, the neighborhood N 1 (s) is composed of all possible feasible solutions which can be obtained by applying the OneM ove operator to s, i.e.,

N 1 (s) = {s⊕ < v, C i , C j > : v ∈ C i , |C i | -w(v) ≥ L, |C j | + w(v) ≤ U, i = j} (5)
Clearly, the size of N 1 (s) is bounded by O(N × K).

Meanwhile, according to the formulation of CCP (see the illustrative example in Fig. 1) and the denition of N 1 (s), it is easy to observe that the neighborhood N 1 (s) can be partitioned into K × (K -1) disjoint neighborhood blocks

B 1 [i][j](s) (1 ≤ i, j ≤ K, i = j), i.e., N 1 (s) = ∪ 1≤i =j≤K B 1 [i][j](s), where the neighborhood block B 1 [i][j](s) is dened as: B 1 [i][j](s) = {s⊕ < v, C i , C j > : v ∈ C i , |C i | -w(v) ≥ L, |C j | + w(v) ≤ U } (6) 
Moreover, these neighborhood blocks can be characterized by a K × K binary asymmetric state matrix M 1 (see example in Fig. 3 

[i][j](s) (i = j) with M 1 [i][j] = 1
and speed up the search without missing improving solutions (i.e., guaranteeing the correctness of the neighborhood search process).

Since it is not necessary to examine the neighborhood blocks

B 1 [i][j](s) with M 1 [i][j] = 0 (i = j), the complexity of examining neighborhood N 1 (s) can be reduced from O(K ×(K -1)×P ) to O(m×P ), where m is the number of blocks B 1 [i][j](s) with M 1 [i][j] = 1 (i = j) and P = M ax M 1 [i][j]=1,i =j {|B 1 [i][j](s)|}.
As such, the complexity reduction (i.e., search speed-up) becomes signicant when m becomes much less than the total number of neighborhood blocks (i.e., m << K × (K -1)). We observe that this remains true especially when the number K of clusters is large. The same justication holds for the two other neighborhoods N 2 and N 3 .

The swap neighborhood N 2 is induced by the Swap(•, •) operator. Given two vertices v and u located in dierent clusters of the current solution s = {C 1 , C 2 , . . . , C K }, Swap(v, u) generates a neighbor solution of s by swapping the clusters of v and u if the resulting solution is feasible. Thus, the swap neighborhood N 2 (s) is given by:

N 2 (s) = {s ⊕ Swap(v, u) : v ∈ C i , u ∈ C j , L ≤ |C i | + w(u) -w(v), |C j | + w(v) -w(u) ≤ U, i = j} (7)
whose size is bounded by O(N 2 ).

The neighborhood N 2 (s) can be partitioned into K × (K -1)/2 disjoint blocks B 2 [i][j](s) (1 ≤ i < j ≤ K) since B 2 [i][j](s) (i = j) is the same as B 2 [j][i](s), i.e., N 2 (s) = ∪ 1≤i<j≤K B 2 [i][j](s), where each B 2 [i][j](s) is dened as: B 2 [i][j](s) = {s ⊕ Swap(v, u) : v ∈ C i , u ∈ C j , L ≤ |C i | + w(u) -w(v), |C j | + w(v) -w(u) ≤ U } (8) 
Thus, we can characterize the neighborhood N 2 (s) with a K × K binary symmetric state matrix M 2 (see example in Fig. 3 

N 3 (s) = {s ⊕ Exchange(v, u, z) : v, u ∈ C i , z ∈ C j , L ≤ |C i | -w(u)- w(v) + w(z), |C j | + w(v) + w(u) -w(z) ≤ U, i = j} (9) 
The size of N 3 (s) is bounded by O(N 3 ).

Similar to the neighborhood N 1 (s), the neighborhood N 3 (s) can be parti-

tioned into K × (K -1) disjoint blocks B 3 [i][j](s) (i = j), i.e., N 3 (s) = ∪ 1≤i =j≤K B 3 [i][j](s), where each B 3 [i][j](s) is dened as: B 3 [i][j](s) = {s ⊕ Exchange(v, u, z) : v, u ∈ C i , z ∈ C j , L ≤ |C i | -w(u) -w(v) + w(z), |C j | + w(v) + w(u) -w(z) ≤ U } (10) 
The neighborhood N 3 is also associated with a K × K binary asymmetric state matrix M 3 (see Fig. 3 (c)), the entry M 3 [i][j] corresponds to the block B 3 [i][j](s) and its value has the same meaning as in

M 1 [i][j] and M 2 [i][j].
The above neighborhood decomposition technique is based on the following key observation. For many clustering or grouping problems including CCP, the objective function is given by the sum of subunit objectives dened on K individual clusters. This particular feature makes most neighborhood blocks mutually independent in terms of the move value ∆ f (s) = f (s ⊕ M ove) -f (s) (i.e., the change of objective function value between the current solution s and a neighbor solution s ⊕ M ove generated by transforming s with the M ove operator). As a result, when a given neighborhood block is exploited, the move values of neighborhood moves will not be aected for most other neighborhood blocks. Our neighborhood decomposition technique enables the search algorithm to explicitly take advantage of this feature. By concentrating on the

promising blocks B θ [i][j] (i = j, θ = 1, 2, 3) which are identied by M θ [i][j] = 1
(i.e., the unexamined blocks or the blocks aected in the previous iterations), the algorithm will increase considerably its computational eciency and search eectiveness, as conrmed by the computational results reported in Section 4.

Neighborhood decomposition has recently contributed to eectively solve the maximally diverse grouping problem [START_REF] Lai | Neighborhood decomposition based variable neighborhood search and tabu search for maximally diverse grouping[END_REF].

Neighborhood decomposition-driven VND

Based on the above standard VND framework and the neighborhoods N 1 , N 2 , and N 3 as well as their decompositions presented in Section 3.2.2, we introduce the neighborhood decomposition-driven VND algorithm (i.e., NDVND θmax where θ max represents the number of neighborhoods used) as follows. First, NDVND θmax (see Algorithm 2) initializes all state matrices M θ (θ = 1, 2, . . . , θ max ) (lines 3 and 4), and then explores dynamically the given neighborhoods (lines 514). For each neighborhood N θ (θ = 1, 2, . . . , θ max ), the search is performed with the LN S θ procedure described in Algorithms 3 and 4, where the neighborhood blocks 

B θ [i][j](s) with M θ [i][j] =
θ max = 3) explores neighborhoods N 1 , N 2 , N 3 .
Since NDVND 3 explores one more neighborhood, it is much more time-consuming than NDVND 2 . Thus, NDVND 3 is performed only once at the the beginning of the present NDVNS algorithm, while NDVND 2 is used as the main search procedure.

In addition, NDVND 2 and NDVND 3 uses the incremental technique of [22] to evaluate eciently the quality of a neighbor solution in N θ (s) (θ ∈ {1, 2, 3}).

For this, a N × K matrix γ is maintained during the search process, where 

γ[i][g] = Σ u∈Cg c iu (1 ≤ i ≤ N ,1 ≤ g ≤ K).
M 1 , . . . , M θmax /* M θ [i][j] ← 1,M θ [i][i] ← 0, 1 ≤ θ ≤ θ max */ θ ← 1 /* θ denotes the index of current neighborhood */ while θ ≤ θ max do (Improve, s, M 1 , . . . , M θmax ) ← LSN θ (s, M 1 , . . . , M θmax ) /* Algorithms 3 or 4 */ if (θ > 1) ∧ (Improve = true) then θ ← 1 else θ ← θ + 1 end end return s

Update of state matrices and the related principle

In the NDVNS algorithm, all three neighborhoods N 1 , N 2 and N 3 are examined block by block, as shown in Algorithms 3 and 4, and the associated state matrices M 1 , M 2 and M 3 are accordingly updated as the search progresses.

The updating rule of these state matrices can be described as follows. For a neighborhood N θ (s According to the objective of CCP, the move value ∆ f changes only for the moves of a few of neighborhood blocks. Furthermore, given that the blocks

) (θ = 1, 2, 3), the entry M θ [i][j] (i = j) is rst set to 0 once the neighborhood block B θ [i][j](s) has been checked. Then, the entries M θ [i][t], M θ [t][i], M θ [j][t], and M θ [t][j] (1 ≤ t ≤ K, t = i, j) all are set to 1 if an improving solution is found in the block B θ [i][j](s),
1 Function LSN 1 (< s, M 1 , . . . , M θmax >) Input: s, M 1 , . . . , M θmax Output: < Improve, s, M 1 , . . . , M θmax > 2 Improve ← true 3 while Improve = true do 4 Improve ← false 5 for i ← 1 to K do 6 for j ← 1 to K do if M 1 [i][j] = 1 then M 1 [i][j] ← 0 for each s ∈ B 1 [i][j](s) do if f (s ) > f (s) then
B θ [i][j](s) with M θ [i][j] = 0 (θ = 1, 2, 3, i = j) have been checked previously
without nding any improving solution, ignoring the candidate solutions included in these neighborhood blocks will save a signicant amount of computational eort. Thus, the above updating rule speeds up the search process without compromising solution quality. Moreover, it is worth noting that according to this updating rule, a larger number (K ) of clusters means usually a smaller proportion of blocks whose states need to be updated, implying a more signicant search speedup in this case. In other words, the advantage of the neighborhood decomposition technique becomes even more evident when the number K of clusters is large. This is indeed conrmed by our computational results of Section 4.

Algorithm 4: Local optimization with the neighborhood N θ (θ = 2 or 3) 

1 Function LSN θ (< s, M 1 , . . . , M θmax >) Input: s, M 1 , . . . , M θmax Output: < Improve, s, M 1 , . . . , M θmax > 2 Improve ← false 3 for i ← 1 to K do 4 for j ← 0 to K do 5 if M θ [i][j] = 1 then M θ [i][j] ← 0 /* Also, M θ [j][i] ← 0 if θ = 2 */ for each s ∈ B θ [i][j](s) do if f (s ) > f (s) then s ← s Improve ← true end end if Improve = true then Update M 1 , . . . , M θmax /*

Shake Procedure

To enhance its diversication ability, our NDVNS algorithm employs a Shake procedure to perturb the solutions returned by the local search procedure NDVND 2 . The Shake procedure is composed of k consecutive swap operations, where k is the perturbation strength, which is probabilistically adjusted during the search process as described in Algorithm 1. For each swap operation, two vertices v and u located in dierent clusters are rst selected randomly, and then their positions are swapped to generate a feasible solution.

Discussions

Compared to the existing CCP algorithms in the literature, the primary innovation of our approach is the neighborhood decomposition-driven VND methods and the probabilistic strategy to determine the perturbation strength.

First, NDVNS is the rst heuristic algorithm that applies the neighborhood decomposition technique to solve CCP, which proves to be quite successful.

Among the three adopted neighborhoods, this study is the rst to introduce an eective decomposition of the 2-1 exchange neighborhood, which is generalizable to local search algorithms for other problems.

Second, NDVNS reinforces the VNS method by employing a probabilistic strategy to tune the perturbation strength. This strategy is of general nature and can be usefully combined with other VNS procedures to control search intensication and diversication.

Finally, compared to the work on MDGP in [START_REF] Lai | Neighborhood decomposition based variable neighborhood search and tabu search for maximally diverse grouping[END_REF], the current work shares the idea of neighborhood decomposition as well as the general variable neighborhood search framework. Meanwhile, given that CCP and MDGP are two dierent problems, NDVNS is dierent from the algorithm presented in [START_REF] Lai | Neighborhood decomposition based variable neighborhood search and tabu search for maximally diverse grouping[END_REF].

In particular, NDVNS features the new 2-1 exchange neighborhood (with its decomposition) and the probabilistic perturbation strategy. As it is shown in Section 4, the NDVNS algorithm integrating these features, along with the problem-specic design of other search components, generally outperforms the state-of-the-art CCP algorithms available in the literature.

Experimental Results and Comparisons

This section is dedicated to an performance assessment of our NDVNS algorithm, based on computational experiments on benchmark instances commonly used in the literature.

Benchmark Instances

The test suite is composed of 110 commonly-used benchmark instances (available at http:www.mi.sanu.ac.rs/~nenad/ccp or from [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF]), belonging to ve groups:

• RanReal240: This set contains 20 small instances with N = 240, K = 12, L = 75, and U = 125, where the vertex weights are an integer randomly generated in the intervals [START_REF] Benlic | A multilevel memetic approach for improving graph k-partitions[END_REF][START_REF] Fiechter | A parallel tabu search algorithm for large traveling salesman problems[END_REF] 1 indicates the parameter setting, which was obtained empirically. Our experiment shows that among these parameters, Q is the most critical. We present a detailed analysis of this parameter in Section 5. It worth mentioning that this parameter setting (default setting) was used consistently in our experiments to solve all 110 instances, though ne-tuning some parameters on an instance-by-instance basis would lead to improved results.

Experimental Protocol

To evaluate the NDVNS algorithm, we used ve state-of-the-art CCP algorithms as the reference methods, including GRASP+TS [START_REF] Martínez-Gavara | Tabu search and GRASP for the capacitated clustering problem[END_REF], FITS [START_REF] Zhou | Heuristic search to the capacitated clustering problem[END_REF], IVNS [START_REF] Lai | Iterated variable neighborhood search for the capacitated clustering problem[END_REF], GVNS [START_REF] Brimberg | Solving the capacitated clustering problem with variable neighborhood search[END_REF], and SGVNS [START_REF] Brimberg | Solving the capacitated clustering problem with variable neighborhood search[END_REF]. The source codes of GRAPS+TS and IVNS are available at http://www.info.univ-angers.fr/pub/hao/CCP.html, while the source codes of GVNS and SGVNS are provided by their authors at http:www.mi.sanu.ac.rs/~nenad/ccp. The source code of the NDVNS algorithm will be available at http://www.info.univ-angers.fr/pub/hao/ NDVNS.html. All compared algorithms (written in C++) were compiled by the same g++ compiler with the -O3 option.

All the computational experiments are based on the same computing platform with an Intel E5-2670 processor, running Linux. Due to the stochastic feature of the algorithms, each algorithm was run 20 times with dierent random seeds for each instance, and the stopping condition for one run is a maximum time limit t max set to be N seconds, where N is the number of vertices in the benchmark instance. To run the reference algorithms, we used the parameter settings that were calibrated by their authors and provided in the corresponding papers.

Computational Results on the Small and Medium Instances

The computational results of the compared algorithms on the 40 small or medium-sized instances with N = 240 or 480 (i.e., the sets Ran240 and Ran480) are summarized in Table 2. Column 1 of Table 2 Table 2 shows that for the instances with N ≤ 480, the NDVNS algorithm outperforms the reference algorithms in terms of the best objective value f best .

Specically, for the 40 instances tested, the reference algorithms respectively obtained the best value (in bold) in terms of f best for 0, 10, 0, 2, and 9 instances, against 26 instances for the NDVNS algorithm. Moreover, the small pvalues (< 0.05) conrm the statistical signicance of these dierences in terms of f best . On the other hand, the NDVNS algorithm outperforms signicantly GRASP+TS, FITS, GVNS, and IVNS in terms of f avg , but performs worse than SGVNS. Specically, the reference algorithms obtained respectively the best value (in bold) in terms of f avg for 0, 5, 0, 0, and 24 instances, against 11 instances for the NDVNS algorithm. We conclude that for the instances with N ≤ 480, NDVNS is the best algorithm for attaining the best objective values (f best ) while SGVNS is the leading algorithm in terms of average results (f avg ).

Computational Results on the Large-Scale Instances

The computational results of the compared algorithms on the 70 large-scale instances (RanReal960, MDG-a, and MDG-a-40) are summarized in Tables 345respectively with the same information as in Table 2.

Table 3 indicates that for the RanReal960 instances, the NDVNS algorithm outperforms all reference algorithms. In terms of f best , NDVNS obtained the best value for 29 out of 30 instances, against 0, 1, 0, 0 and 0 instances for the reference algorithms. In terms of f avg , NDVNS reported the best value for 27 out of 30 instances, while the reference algorithms obtained the best value only for 0, 2, 0, 0 and 1 instances respectively. Moreover, the small pvalues further conrm the statistical signicance of the dierences between the NDVNS algorithm and the reference algorithms.

Moreover, Tables 4 and5 show an even stronger dominance of NDVNS over the reference algorithms for the largest MDG-a and MDG-a-40 instances with N = 2000, by reporting the best f best and f avg values for all the instances.

Given that the computational experiments and comparisons are based on the same computing platform and the same stopping condition, these results clearly indicate that the NDVNS algorithm is the best algorithm for solving large instances with at least N = 960 vertices and K = 30 clusters. Interestingly, the improvement of NDVNS over the existing CCP algorithms increases with the instance size. This implies that NDVNS could be a useful tool that can be applied to solve large scale practical problems with a high number of candidate elements to be grouped into many clusters.

Discussions and Analyses

This section investigates the impacts of key components of the NDVNS algorithm, and the spatial distribution of high-quality local optimum solutions.

Parameter Sensitivity Analysis

The NDVNS algorithm relies on two important parameters Q and α, which are studied in this subsection. to the setting of parameter Q and the impact of the setting of parameter Q depends on the instances to be solved. Specically, for large instances with N = 2000, small Q values (≤ 0.2) led to better results. Moreover, for smaller instances with N ≤ 960, the eectiveness of Q varied largely according to the instances. For example, for RanReal480_1, Q = 0.2 produced the best result in terms of f avg , while for another instance named RanReal480_2, Q = 0.5 is the best setting. Finally, one observes from Table 6 that Q = 0.2 led to the best result in terms of Avg., and thus this setting was used as the default value of Q in the present work.

Sensitivity Analysis of the Parameter α

To enhance its diversication ability, the NDVNS algorithm employs the parameter α to determine whether a newly generated solution should be accepted as the current solution (line 8 of Algorithm 1), where a larger value of α means that the algorithm emphasizes more on the distance of the ospring solution from the current solution and the best solution found so far.

To show the impact of this parameter, we carried out an additional experiment based on 10 representative instances. We ran the algorithm with α in the range of {0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.04} to solve each instance 20 times. The computational results are summarized in Table 7. The rst column and the rst row give respectively the names of instances and the settings of parameter α. The average objective values (f avg ) over 20 runs are reported in columns 29 respectively for each α value. The last row #Best shows the number of instances for which the corresponding α value led to the best result in terms of f avg among all the tested α values.

Table 7 shows that the performance of the algorithm depends on the setting of α. A too small or too large value of α deteriorates the performance. Specically, for α = 0.002 that is the smallest value tested, the algorithm performed the worst. Moreover, for α = 0.04 that is the largest value tested, the algorithm failed to obtain the best result in terms of f avg for any instance. On the other hand, one observes that the setting of α = 0.01 led to the best result for 4 out of 10 instances, which implies the best performance of the algorithm. Hence, the default value of α was set to 0.01 in this study.

Eectiveness of the Neighborhood Decomposition Strategy

The neighborhood decomposition technique described in Section 3.2.2 is the most essential component of the NDVNS algorithm. In order to analyze its eectiveness, we carried out an additional experiment to compare the NDVNS algorithm and a NDVNS variant denoted by NDVNS-D, which was created Table 8 shows that NDVNS dominates the NDVNS-D variant in terms of f best , f avg , and f worst . Specically, for each tested instance, NDVNS obtained a better result than NDVNS-D in terms of f best , f avg , and f worst . Moreover, the standard deviations (σ) are smaller with NDVNS than with NDVNS-D on most instances. The statistical dierences of the compared algorithms are conrmed by small p-values (< 0.05). This experiment demonstrates the eectiveness of the neighborhood decomposition strategy of the NDVNS algorithm.

Spatial distribution of high-quality solutions
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Following [START_REF] Lai | Iterated maxima search for the maximally diverse grouping problem[END_REF][START_REF] Porumbel | A search space cartography for guiding graph coloring heuristics[END_REF], we visualize the spatial distribution of the collected highquality solutions in Euclidean space R 3 by using a multidimensional scaling (MDS) procedure as follows. First, we generate a distance matrix D l×l between solutions in the original search space Ω, where l is the number of the collected solutions and the partition distances d ij ∈ D l×l between solutions are calculated. Then, from the distance matrix D l×l , the l coordinate points are generated in Euclidean space R 3 by using the classic cmdscale method whose goal is to minimize the distance distortion caused between the original space and Euclidean space. Finally, the scatter graph of these l coordinate points is plotted in R 3 .

Fig. 4 shows the scatter graphs for six selected instances. One clearly observes that high-quality local optimum solutions attained by the proposed algorithm are grouped in clusters in the search space. This nding implies that when the search process reaches a high-quality solution, it is very useful to make a sufcient exploitation around this solution by performing limited perturbations and subsequent local searches. On the other hand, when a search region has been suciently exploited and the search process is trapped into a deep local optimum, it is necessary to jump out of the trap by performing some large perturbation operations. In the NDVNS algorithm, this is jointly achieved by the intensication-oriented NDVND 2 procedure and the probabilistic pertur- bation of the shake procedure.

Conclusion and Future work

The neighborhood decomposition-driven variable neighborhood search algorithm proposed in this work for solving the capacitated clustering problem integrates the ideas of neighborhood decomposition and probability-based perturbation. By isolating promising candidate solutions to be considered at each search iteration, neighborhood decomposition constitutes a powerful technique to speed up neighborhood examination and enable more focused searches.

We have performed extensive experiments on 110 instances commonly used in the literature to show the competitiveness of the proposed algorithm. The computational results demonstrate that the algorithm performs extremely well on the test suite compared to the state-of-the-art methods in the literature.

The advantage of the algorithm is even more evident in terms of computational eciency and search eectiveness when large-scale problem instances are considered. This work thus advances the state-of-the-art of solving the challenging capacitated clustering problem. Moreover, given that the considered problem is a general model to formulate a variety of practical applications, the publicly available code of the algorithm can help to solve these practical problems.

The ideas of neighborhood decomposition-driven local search and probabilitybased perturbation are of general nature. Thus, it would be interesting to check the usefulness of these ideas on other clustering or grouping problems such as those mentioned in the introduction.

Fig. 1 .

 1 Fig. 1. An illustrative example for CCP. Given a weighted complete graph G = (V, E, c, w) with |V | = 14, w i = 1.0 for all vertices v i in V , the number of clusters K = 4, and lower and upper bounds [L, U ] = [3, 4], the corresponding CCP consists of partitioning the set V of vertices into 4 clusters C 1 , C 2 , C 3 and C 4 , such that L ≤ v∈Cg w(v) ≤ U for ∀g ∈ {1, 2, 3, 4}, while the sum of the edge (indicated in red) weights in the same clusters is maximized.

  gorithm, Zhou et al. proposed a memetic algorithm by combining the FITS algorithm serving as a local search procedure and a clustering-based crossover operator.

Fig. 2 .

 2 Fig. 2. The main owchart of the proposed NDVNS algorithm. s * denote respectively the current solution and the best solution found so far, d(•, •) is a distance function dened by the partition distance metric [3,17,35], and k is the current perturbation strength of the perturbation strategy (see Section 3.3).

3 M 3 Fig. 3 .

 333 Fig. 3. Three illustrative examples for the state matrices of the neighborhoods N 1 , N 2 and N 3 , where M 1 and M 3 are asymmetric, M 2 are symmetric, and the value of K is 8. The diagonal elements of matrices are indicated in red, and the elements taking the value of 1 are indicated in blue. M θ [i][j] (θ = 1, 2, 3) corresponds to the neighborhood block B θ [i][j] and M θ [i][j] = 0 if B θ [i][j] has been previously checked by the algorithm and does not contain any improving solution, and M θ [i][j] = 1 otherwise.

1

 1 are orderly examined and the state matrices M θ (θ = 1, 2, . . . , θ max ) are accordingly updated.The proposed NDVNS algorithm employs two neighborhood decompositiondriven VND procedures for local optimization. The rst one (NDVND 2 with θ max = 2) uses neighborhoods N 1 and N 2 , while the second one (NDVND 3 with

  and keep unchanged otherwise, as illustrated in Algorithms 3 and 4. Clearly, the time complexity Algorithm 3: Local optimization with the neighborhood N 1

  Improve = true then Update M 1 , . . . , M θmax /* Section 3.2.Improve, s, M 1 , . . . , M θmax > of updating the state matrices M 1 , M 2 and M 3 is bounded by O(K).

  and the edge weights are a real number randomly generated in [0, 100]. • RanReal480: This set contains 20 medium-sized instances with N = 480, K = 20, L = 100, and U = 150, where the vertex weights and the edge weights are generated as in the set RanReal240.

•

  RanReal960: This set contains 30 large instances with N = 960, including 10 instances with K = 30, L = 120 and U = 180, 10 instances with K = 40, L = 90 and U = 135, and 10 instances with K = 60, L = 60 and U = 90, where the vertex weights are an integer randomly generated in [1, 10] and the edge weights are a real number randomly generated in [0, 100]. • MDG-a: This set contains 20 large instances with N = 2000, K = 50, L = 150 and U = 250, the vertex weights are an integer generated randomly in [1, 10], and the edge weights are an integer generated randomly in [0, 10]. • MDG-a-40: This set contains 20 large instances with N = 2000, K = 40, L = 200 and U = 300, with the same vertex weights and edge weights as the MDG-a instances.

5. 1 . 1

 11 Sensitivity Analysis of the Parameter QAs explained in Section 3.1, a particular feature of the NDVNS algorithm concerns the use of the probability Q to control the perturbation strength k of the shake procedure where a smaller Q means a stronger diversication ability of the algorithm and vice-versa. To analyze the impact of Q on the performance of the algorithm and nd a proper Q value, we carried out an experiment based on 40 representative instances. In this experiment, we varied the value of Q in the range {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and ran the corresponding NDVNS algorithm 20 times for each possible value of Q and each instance according to the experimental protocol of Section 4.2. The computational results are summarized in Table6. The rst column and rst row of the table give respectively the names of instances and the values of Q, and columns 211 respectively report the average objective value (f avg ) over 20 independent runs of the NDVNS algorithm for each instance and each Q value. In addition, the row Avg. shows the average result for each column, and the row #best shows the number of instances for which the associated Q value generated the best result in terms of f avg among the tested Q values.

  columns 45 indicate the average objective value (f avg ), columns 67 give the worst objective value (f worst ), and the last two columns show the standard deviation (σ) of the objective values obtained. The rows #better, #equal, and #worse indicate the number of instances for which the corresponding algorithm obtained a better, equal, and worse result compared to the other algorithm. In addition, the p-values from the non-parametric Friedman tests are provided for each performance indicator in the last row of the table.

  With an appropriate update of the state matrix M 1 as we detail in Section 3.2.4, we can focus on the blocks B 1

	(a)), where entry
	M 1 [i][j] (i = j) takes 0 if the corresponding block B 1 [i][j](s) has been pre-
	viously checked by the algorithm and does not contain any improving solu-
	tion, and takes 1 otherwise. The diagonal entries of M 1 always take 0. Thus,
	the state matrix distinguishes the promising neighborhood blocks (marked
	with M 1 [i][j] = 1) from non-promising neighborhood blocks (marked with
	M 1 [i][j] = 0).

  Given three vertices v, u, and z in the current solution s = {C 1 , C 2 , . . . , C K }, where v and u are located in the same cluster C i and z is located in another cluster C j , the Exchange(•, •, •) operator transfers the vertices v and u from C i to C j and simultaneously transfers vertex z from C j to C i , such that the resulting solution is still feasible. As such, the neighborhood N 3 (s) can be

	(b)), where the entry M 2 [i][j]
	(i < j) corresponds to the neighborhood block B 2 [i][j](s) and takes 0 if
	B 2 [i][j](s) has been previously examined and does not contain any improv-
	ing solution, and takes 1 otherwise.
	The neighborhood N 3 is induced by the 2-1 exchange operator Exchange(•, •, •).
	written as:

  With the help of this matrix, the quality of a neighbor solution can be rapidly assessed in O(1), and the matrix γ can be updated in O(N ) after each solution transition.Algorithm 2: Neighborhood Decomposition-driven Variable Neighborhood Descent Method (NDVND θmax ) with the θ max neighborhoods Function NDVND θmax (s 0 )

Input: Solution s 0 Output: The local optimum solution s s ← s 0 Initialize the state matrices

Table 1

 1 

	Settings of parameters		
	Parameters Section	Description	Values
	k min	3.1	minimum strength of the shake procedure	1
	kmax	3.1	maximum strength of the shake procedure	N/K
	Q	3.1	a parameter used in the diversication mechanism 0.2
	α	3.1	a parameter used in the acceptance criterion	0.01
	Table			

  gives the name of each instance. Columns 2-7 and 8-13 report respectively the best and average objective values (f best and f avg ) over 20 runs of each reference algorithm and the NDVNS algorithm, which are considered as two important performance indicators of algorithms. The row Avg. shows the average values for each column, and the row #best indicates the number of instances for which the associated algorithm obtains the best value in term of f avg or f best among all the compared algorithms. To check whether there exists a signicant difference between the NDVNS algorithm and each reference algorithm in terms of f avg and f best , we report the p-values from the non-parametric Friedman tests in the last row, where a p-value smaller than 0.05 indicates a signicant dierence between the compared results. In addition, for each instance, the best value in terms of f best and f avg among the compared results are indicated in bold.

Table 2 .

 2 Comparisons of the proposed NDVNS algorithm with the state-of-the-art algorithms on the 40 RanReal instances with

	N = 240, 480 and K = 12, 20 are indicated in bold in terms of f (i.e., the sets RanReal240 and RanReal480), where the best results among the compared algorithms	Instance GRASP+TS FITS f best favg GVNS IVNS SGVNS NDVNS GRASP+TS FITS GVNS IVNS SGVNS NDVNS

best and f avg .

Table 3 .

 3 Comparisons of the proposed NDVNS algorithm with the state-of-the-art algorithms on the 30 RanReal instances with N = 960 and K = 30, 40, 60, where the best results among the compared algorithms are indicated in bold in terms of f

	best
	f

best and f avg .

Table 4

 4 Comparisons of the proposed algorithm with the state-of-the-art algorithms on the 20 MDG-a instances with N = 2000 and K = 50, where the best results among the compared algorithms are indicated in bold in terms of f best and f avg .

	f best

Table 5

 5 Comparisons of the proposed algorithm with the state-of-the-art algorithms on the 20 MDG-a-40 instances with N = 2000 and K = 40, where the best results among the compared algorithms are indicated in bold in terms of f best and f avg .

	f best GRASP+TS GVNS IVNS SGVNS NDVNS MDG-a_21.40 437628 Instance 458203 449022 459655 461300 MDG-a_22.40 434004 454485 447832 455658 457462 MDG-a_23.40 433885 455745 448024 456318 458604 MDG-a_24.40 432413 457319 446320 458037 460224 MDG-a_25.40 443602 467531 458432 468641 470546 MDG-a_26.40 451858 472182 466960 473489 474918 MDG-a_27.40 426581 449333 443892 450753 451999 MDG-a_28.40 433276 455484 449530 455923 458620 MDG-a_29.40 426057 451006 444445 451617 454117 MDG-a_30.40 445550 466359 459836 466361 468982 MDG-a_31.40 431695 454500 447463 455835 457570 MDG-a_32.40 441853 462193 454347 463455 464911 MDG-a_33.40 433898 451683 446617 452969 454717 MDG-a_34.40 373598 393515 383611 395198 396610 MDG-a_35.40 445028 463392 455965 464883 466869 MDG-a_36.40 452963 471675 467716 473135 474665 MDG-a_37.40 437611 456642 453007 458099 459380 MDG-a_38.40 445151 465807 455905 466562 468630 MDG-a_39.40 441583 459938 457019 460785 462909 MDG-a_40.40 455220 476752 466277 477949 479308 Avg. 436173 457187.20 450111.00458266.10460117.05 430705.79 456360.82 445963.93 457716.18 459471.26 favg GRASP+TS GVNS IVNS SGVNS NDVNS 435028.95 457507.35 445994.60 459018.80 460489.15 429590.60 453702.10 444332.10 455257.05 456962.95 429239.65 455005.25 444144.45 455876.95 457849.00 426743.05 456093.20 444043.70 457644.95 459361.60 438365.10 466648.55 455520.40 468224.85 469807.70 442170.55 471496.70 462133.90 472921.25 474434.10 423135.80 448546.30 440947.35 450218.55 451516.85 429343.70 454500.60 446270.70 455332.30 457840.85 422597.40 450200.25 439232.10 450966.00 453453.80 438784.85 465028.80 456448.10 465895.50 468292.20 428142.10 454009.15 442404.05 455311.90 456756.95 431007.95 461403.60 449071.55 462833.70 464399.70 428970.00 450944.00 442452.45 452552.90 454069.95 368232.75 392736.80 381652.00 394776.85 395850.30 440927.55 462869.85 451299.60 464526.40 466308.65 445388.75 471188.60 460190.30 472601.50 474018.35 428557.25 455860.90 449737.50 457121.15 458843.50 441406.40 464713.85 453176.75 465750.15 468039.25 437246.90 459021.00 449321.25 460127.15 462352.60 449236.45 475739.55 460905.65 477365.60 478777.80 #best 0 0 0 0 20 0 0 0 0 20 p-value 7.74E-06 7.74E-06 7.74E-06 7.74E-06 7.74E-06 7.74E-06 7.74E-06 7.74E-06

Table 6

 6 

indicates that the performance of the NDVNS algorithm is sensitive

Table 6 .

 6 Inuence of parameter Q on the average results f avg with the best result indicated in bold for each instance.

Table 7

 7 Inuence of parameter α on the average objective values (f avg ). The NDVNS algorithm was run 20 times for each instance and each α value, and the best results are indicated in bold among the tested parameter settings.

	Instance/α RanReal480_01 551972.05 553334.08 554664.70 554943.00 555519.77 555222.15 554532.40 555212.73 0.002 0.004 0.006 0.008 0.01 0.02 0.03 0.04 RanReal480_02 506587.35 507526.65 509512.47 509651.18 509766.19 509771.40 509395.45 509391.92 RanReal480_03 492032.45 493338.74 495741.40 496315.30 495276.96 495539.21 495714.79 495542.26 RanReal480_04 517084.98 518199.11 520179.98 520144.21 520456.70 519745.04 520140.74 520306.09 RanReal480_05 479475.83 481015.04 482583.06 482837.64 482337.86 482508.11 481984.18 482389.91 MDG-a_21 388733.50 390682.95 390544.65 390762.65 390630.90 390746.05 390672.10 390611.90 MDG-a_22 385473.20 387601.00 387741.65 387631.65 387583.40 387500.95 387561.90 387676.05 MDG-a_23 386416.55 388803.75 388831.65 388880.25 388969.10 388788.70 388827.70 388735.15 MDG-a_24 387404.90 389537.45 389855.90 389800.25 389804.70 389715.60 389719.45 389697.50 MDG-a_25 396814.05 399019.30 399135.10 399106.85 399150.95 398981.35 399115.50 399033.00 #Best 0 0 2 3 4 1 0 0

by disabling the neighborhood decomposition strategy of NDVNS (i.e., all the entries of state matrices M 1 , M 2 , and M 3 are always set to the value of 1 during the search process). In this experiment, we ran both algorithms 20 times for each of 40 representative instances, and the results are summarized in Table

8

. Column 1 of the table gives the names of instances, columns 2 3 report the best objective values (f best ) over 20 runs for each algorithm,

Table 8

 8 Comparison between the proposed NDVNS algorithm and its variant denoted by the NDVNS-D algorithm in which the neighborhood neighborhood strategy is disabled. Dominating values between the two compared algorithms are indicated in bold for each instance and each performance indicator.

	f best NDVNS NDVNS-D RanReal480_01 556477.17 556280.14 Instance	favg NDVNS NDVNS-D	f worst NDVNS NDVNS-D	σ NDVNS NDVNS-D

gorithm was performed 20 times for each instance and all the high-quality local optimum solutions returned by the local search method NDVND 2 were
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