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The disjunctively constrained knapsack problem consists in packing a subset of pairwisely compatible items in a capacity-constrained knapsack such that the total profit of the selected items is maximized while satisfying the knapsack capacity.

DCKP has numerous applications and is however computationally challenging (NP-hard). In this work, we present a threshold search based memetic algorithm for solving the DCKP that combines the memetic framework with threshold search to find high quality solutions. Extensive computational assessments on two sets of 6340 benchmark instances in the literature demonstrate that the proposed algorithm is highly competitive compared to the state-of-the-art methods. In particular, we report 24 and 354 improved best-known results (new lower bounds) for Set I (100 instances) and for Set II (6240 instances), respectively. We additionally apply the approach to solve a real-life daily photograph scheduling problem of an earth observation satellite. We analyze the key algorithmic components and shed lights on their roles for the performance of the algorithm.

Introduction

As a generalization of the conventional 0-1 knapsack problem (KP) [START_REF] Kellerer | Knapsack problems[END_REF], the disjunctively constrained knapsack problem (DCKP) is defined as follows. Let V = {1, . . . , n} be a set of n items, where each item i ∈ {1, . . . , n} has a profit p i > 0 and a weight w i > 0. Let G = (V, E) be a conflict graph, where V is the set of n items and an edge {i, j} ∈ E defines the incompatibility of items i and j. Let C > 0 be the capacity of a given knapsack. Then the DCKP involves finding a subset S of pairwisely compatible items of V to maximize the total profit of S while ensuring that the total weight of S does not surpass the knapsack capacity C. Let x i be a binary variable such that x i = 1 if item i is selected, x i = 0 otherwise. Formally, the DCKP can be stated as follows.

(DCKP )

Maximize

f (S) = n i=1 p i x i (1) 
subject to W (S) = n i=1

w i x i ≤ C, S ⊆ V, (2) 
x i + x j ≤ 1, ∀(i, j) ∈ E, (3) 
x i ∈ {0, 1}, i = 1, . . . , n. (4) 
Objective function (1) commits to maximize the total profit of the selected item set S. Constraint [START_REF] Bensana | Exact and approximate methods for the daily management of an earth observation satellite[END_REF] ensures that the knapsack capacity constraint is satisfied. Constraints (3), called disjunctive constraints, guarantee that two incompatible items are never selected simultaneously. Constraints (4) force that each item is selected at most once.

It is easy to observe that the DCKP reduces to the NP-hard KP when G is an empty graph. The DCKP is equivalent to the NP-hard maximum weighted independent set problem [START_REF] Johnson | Computers and intractability: A guide to the theory of NP-completeness[END_REF] when the knapsack capacity is unbounded. Moreover, the DCKP is closely related to other combinatorial optimization problems, such as multiple-choice knapsack [START_REF] Chen | A "reduce and solve" approach for the multiple-choice multidimensional knapsack problem[END_REF][START_REF] Kellerer | Knapsack problems[END_REF], quadratic knapsack [START_REF] Chen | An iterated "hyperplane exploration" approach for the quadratic knapsack problem[END_REF], and the bin packing with conflicts [START_REF] Ekici | Bin packing problem with conflicts and item fragmentation[END_REF][START_REF] Jansen | An approximation scheme for bin packing with conflicts[END_REF]. In addition to its theoretical significance, the DCKP is a useful model for practical applications, where the resources with conflicts cannot be used simultaneously while a given budget envelope must be respected.

Given the importance of the DCKP, a number of solution methods have been developed including exact, approximation and heuristic algorithms. As the literature review shown in Section 2, considerable progresses have been continually made since the introduction of the problem. Meanwhile, given the NP-hard nature of the problem, more powerful algorithms are still needed to push the limits of existing methods.

In this work, we investigate for the first time the population-based memetic framework [START_REF] Moscato | Memetic algorithms: A short introduction[END_REF] for solving the DCKP and design an effective algorithm mixing threshold based local optimization and crossover based solution recombination. The threshold search procedure ensures the main role of search intensification by finding high quality local optimal solutions. The specialized backbone crossover generates promising offspring solutions for search diversification. The algorithm uses also a distance-and-quality strategy for population management. The algorithm has the advantage of avoiding the difficult task of parameter tuning.

From a perspective of performance assessment, we apply the proposed algorithm to solve the two sets of DCKP benchmark instances in the literature. The results show that for the 100 instances of Set I (optimality still unknown) which were commonly tested by heuristic algorithms, our algorithm discovers 24 new best-known results (new lower bounds) and matches almost all other best-known results. For the 6240 instances of Set II which were tested by exact algorithms, our algorithm finds 354 improved best lower bounds on the difficult instances whose optimal values are unknown and attains the known optimal results on most of the remaining instances. To demonstrate its practical usefulness, we additionally apply the approach to solve a real-life daily photograph scheduling problem of an earth observation satellite (SPOT5).

The rest of the paper is organized as follows. Section 2 provides a literature review on the DCKP. Section 3 presents the proposed algorithm. Section 4

shows computational results of our algorithm and provides comparisons with the state-of-the-art algorithms. Section 5 shows how we use the proposed approach to solve the daily photograph scheduling application. Section 6 analyzes essential components of the algorithm. Finally, Section 7

summarizes the work and provides perspectives for future research.

Related work

The DCKP has attracted considerable attentions in the past two decades.

In this section, we review related literature for solving the DCKP. Existing solution methods can be roughly classified into two categories as follows.

(1) Exact and approximation algorithms: These algorithms are able to guarantee the quality of the solutions they find. In 2002, Yamada et al.

[42] introduced the DCKP and proposed the first implicit enumeration algorithm, where the disjunctive constraints are relaxed. In 2007, Hifi

and Michrafy [START_REF] Hifi | Reduction strategies and exact algorithms for the disjunctively constrained knapsack problem[END_REF] introduced three versions of an exact algorithm based on a local reduction strategy. In 2009, Pferschy and Schauer [START_REF] Pferschy | The knapsack problem with conflict graphs[END_REF] proposed a pseudo-polynomial time and space algorithm for solving three special cases of the DCKP and proved the DCKP is strongly NP-hard on perfect graphs. In 2016, Salem et al. [START_REF] Salem | Optimization algorithms for the disjunctively constrained knapsack problem[END_REF] developed a branch-and-cut algorithm that combines a greedy clique generation procedure with a separation procedure. In 2017, Bettinelli et al. [START_REF] Bettinelli | A branch-and-bound algorithm for the knapsack problem with conflict graph[END_REF] presented a branch-and-bound algorithm by combining a upper bounding procedure that considers both the capacity constraint and the disjunctive constraints with a branching procedure that employs a dynamic programming to presolve the 0-1 KP. They generated 4800 DCKP instances with conflict graph densities between 0.1 and 0.9 (see Section 4.1). Also in 2017, Pferschy and Schauer [START_REF] Pferschy | Approximation of knapsack problems with conflict and forcing graphs[END_REF] (2) Heuristic algorithms: These algorithms aim to find good near-optimal solutions with a given time. In 2002, Yamada et al. [START_REF] Yamada | Heuristic and exact algorithms for the disjunctively constrained knapsack problem[END_REF] proposed a greedy algorithm to generate an initial solution and a 2-opt neighborhood search algorithm to improve the obtained solution. In 2006, Hifi and Michrafy [START_REF] Hifi | A reactive local search-based algorithm for the disjunctively constrained knapsack problem[END_REF] reported a local search algorithm, which combines a complementary constructive procedure to improve the initial solution and a degrading procedure to diversify the search. They generated a set of 50 DCKP instances with 500 and 1000 items (see Section 4.1), which was widely tested in later studies. In 2012, Hifi and

Otmani [START_REF] Hifi | An algorithm for the disjunctively constrained knapsack problem[END_REF] studied two scatter search algorithms. In 2014, Hifi [START_REF] Hifi | An iterative rounding search-based algorithm for the disjunctively constrained knapsack problem[END_REF] devised an iterative rounding search-based algorithm that uses a rounding strategy to perform a linear relaxation of the fractional variables. In 2017, Salem et al. [START_REF] Salem | Probabilistic tabu search with multiple neighborhoods for the disjunctively constrained knapsack problem[END_REF] designed a probabilistic tabu search algorithm (PTS) that explores multiple neighborhoods in a probabilistic way. In the same year, Quan and Wu investigated two parallel algorithms: the parallel neighborhood search algorithm (PNS) [START_REF] Quan | Design and evaluation of a parallel neighbor algorithm for the disjunctively constrained knapsack problem[END_REF] and the cooperative parallel adaptive neighborhood search algorithm (CPANS) [START_REF] Quan | Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem[END_REF]. They also designed a new set of 50 DCKP large instances with 1500 and 2000 items (see Section 4.1).

Existing studies have significantly contributed to better solving the DCKP.

According to the computational results reported in the literature, the parallel neighborhood search algorithm [START_REF] Quan | Design and evaluation of a parallel neighbor algorithm for the disjunctively constrained knapsack problem[END_REF], the cooperative parallel adaptive neighborhood search algorithm [START_REF] Quan | Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem[END_REF], and the probabilistic tabu search algorithm [START_REF] Salem | Probabilistic tabu search with multiple neighborhoods for the disjunctively constrained knapsack problem[END_REF] can be regarded as the state-of-the-art methods for the instances of Set I. For the instances of Set II, the branch-and-bound algorithms presented in [START_REF] Bettinelli | A branch-and-bound algorithm for the knapsack problem with conflict graph[END_REF][START_REF] Coniglio | A new combinatorial branch-andbound algorithm for the knapsack problem with conflicts[END_REF] and the integer linear programming formulations solved by the CPLEX solver [START_REF] Coniglio | A new combinatorial branch-andbound algorithm for the knapsack problem with conflicts[END_REF] showed the best performance.

In this work, we aim to advance the state-of-the-art of solving the problem by proposing the first threshold search based memetic approach, which proves to be effective on the two sets of DCKP instances tested in the literature.

3 Threshold search based memetic algorithm for the DCKP Our threshold search based memetic algorithm (TSBMA) for the DCKP is a population-based algorithm combining evolutionary search and local optimization. In this section, we first present the general procedure of the algorithm and then describe its components.

General procedure

The TSBMA algorithm relies on the general memetic algorithm framework [START_REF] Moscato | Memetic algorithms: A short introduction[END_REF] and follows the design principles recommended in [START_REF] Hao | Memetic algorithms in discrete optimization[END_REF]. The flowchart of TSBMA and its pseudo-code are shown in Figure 1 The algorithm starts from a set of feasible solutions of good quality that are generated by the population initialization procedure (line 4, Alg. 1, and Section 3.3). The best solution is identified and recorded as the overall best solution S * (line 5, Alg. 1). Then the algorithm enters the main "while" loop (lines 6-15, Alg. 1) to perform a number of generations. At each generation, two solutions are randomly picked and used by the crossover operator to create an offspring solution (line 7-8, Alg. 1, and Section 3.5). Afterwards, the threshold search procedure is triggered to perform local optimization with three neighborhoods N 1 , N 2 and N 3 (line 9, Alg. 1, and Section 3.4). After conditionally updating the overall best solution S * (lines 11-13, Alg. 1), the diversity-based pool updating procedure is applied to decide whether the best solution S b found during the threshold search should be inserted into the population (line 14, Alg. 1, and Section 3.6). Finally, when the given time limit t max is reached, the algorithm returns the overall best solution S * found during the search and terminates.

Algorithm 1 Main framework of threshold search based memetic algorithm for the DCKP 

Solution representation, search space, and evaluation function

The DCKP is a subset selection problem. Thus, a candidate solution for a set V = {1, . . . , n} of n items can be conveniently represented by a binary vector S = (x 1 , . . . , x n ), such that x i = 1 if item i is selected, and x i = 0 otherwise. Equivalently, S can also be represented by S =< A, Ā > such that A = {q : x q = 1 in S} and Ā = {p : x p = 0 in S}.

Let G = (V, E) be the given conflict graph and C be the knapsack capacity.

Our TSBMA algorithm explores the following feasible search space Ω F satisfying both the disjunctive constraints and the knapsack constraint.

Ω F = {x ∈ {0, 1} n : n i=1 w i x i ≤ C; x i + x j ≤ 1, ∀{i, j} ∈ E, 1 ≤ i, j ≤ n, i = j} (5)
The quality of a solution S in Ω F is determined by the objective value f (S) of the DCKP (Equation 1).

Population initialization

As shown in Algorithm 2, the TSBMA algorithm builds each of the |P | initial solutions of the population P in two steps. First, it randomly adds one by one non-selected items into an individual solution S i (i = 1, . . . , |P |) until the capacity of the knapsack is reached, while keeping the disjunctive constraints satisfied (line 5, Alg. 2). Second, to obtain an initial population of reasonable quality, TSBMA improves the solution S i by a short run of the threshold search procedure presented in Section 3. i ← i + 1 9: end while 10: return P It is worth mentioning that the population size |P | is determined according to the number of candidate items n of the given instance, i.e., |P | = n/100 + 5. This strategy is based on two considerations. First, since the TSBMA algorithm is powerful enough to solve the instances of small size, a smaller population size can help to reduce the initialization time.

Second, the instances of large size are more challenging, a larger population size helps to diversify the search.

Local optimization using threshold search

The local optimization procedure of the TSBMA algorithm relies on the threshold accepting method [START_REF] Dueck | Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing[END_REF]. To explore a given neighborhood, the method accepts both improving and deteriorating neighbor solutions so long as the solution satisfies a quality threshold. One notices that this method has been successfully applied to solve several knapsack problems (e.g., quadratic multiple knapsack problem [START_REF] Chen | Iterated responsive threshold search for the quadratic multiple knapsack problem[END_REF], multi-constraint knapsack problem [START_REF] Dueck | Threshold accepting algorithms for 0-1 knapsack problems[END_REF] and multiple-choice knapsack problem [START_REF] Zhou | Algorithm for stochastic multiple-choice knapsack problem and application to keywords bidding[END_REF]) and other combinatorial optimization problems (e.g., [START_REF] Castelino | Tabu thresholding for the frequency assignment problem[END_REF][START_REF] Tarantilis | A threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem[END_REF]). In this work, we adopt for the first time this method for solving the DCKP and devise a multiple neighborhood threshold search procedure reinforced by an operation-prohibiting mechanism.

Main scheme of the threshold search procedure

As shown in Algorithm 3, the threshold search procedure (TSP) starts its process from an input solution and three empty hash vectors (used for the operation-prohibiting mechanism, lines 3-5, Alg. 3). It then performs a number of iterations to explore three neighborhoods (Section 3.4.2) to improve the current solution S. Specifically, for each "while" iteration (lines 9-25, Alg. 3), the TSP procedure explores the neighborhoods N 1 , N 2 and N 3 in a deterministic way as explained in the next section. Any sampled non-prohibited neighbor solution S (i.e.,

H 1 [h 1 (S )] ∧ H 2 [h 2 (S )] ∧ H 3 [h 3 (S )]
= 0, see Section 3.4.3) is accepted immediately if the quality threshold T is satisfied (i.e., f (S ) ≥ T ). Then the hash vectors are updated for solution prohibition and the best solution found during the TSP procedure is recorded in S b (lines 18-20, Alg. 3). The main search ("while" loop) terminates when 1) no admissible neighbor solution (i.e., non-prohibited and satisfying the quality threshold) exists in the neighborhoods N 1 , N 2 and N 3 , or 2) the best solution S b cannot be further improved during IterM ax consecutive iterations. Specifically, the quality threshold T is determined adaptively by f (S b ) -n/10 (n is the number of items of each instance) while IterM ax is set to (n/500 + 5) × 10000.

Neighborhoods and their exploration

The TSP procedure examines candidate solutions by exploring three neighborhoods induced by the popular move operators: add, swap and drop.

Let S be the current solution and mv is one of these operators. We use S = S ⊕ mv to denote a feasible neighbor solution obtained by applying mv to S and N x (x = 1, 2, 3) to represent the resulting neighborhoods. To avoid the examination of unpromising neighbor solutions, TSP employs the following dynamic neighborhood filtering strategy inspired by [START_REF] Lai | Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem[END_REF][START_REF] Wei | Iterated two-phase local search for the set-union knapsack problem[END_REF]. Let S be a neighbor solution in the neighborhood currently under examination, and S c be the best neighbor solution encountered during the current neighborhood examination. Then S is excluded for consideration if it is no better than S c (i.e., f (S ) ≤ f (S c )). By eliminating the unpromising neighbor solutions, TSP increases the efficiency of its neighborhood search. Specifically, the associated neighborhoods induced by add, swap and drop are defined as follows.

• add(p): This move operator expands the selected item set A by one non-Algorithm 3 Threshold search procedure for Each non-prohibited S of N 1 (S) or N 2 (S) or N 3 (S) do 12:

for i ← 0 to L -1 do 4: H 1 [i] ← 0; H 2 [i] ← 0; H 3 [i] ← 0; /*
if f (S ) ≥ T then 13:

S ← S 14:

/* Update the hash vectors with S, Section 3. iter ← iter + 1 23:

4.3 */ H 1 [h 1 (S)] ← 1; H 2 [h 2 (S)] ← 1; H 3 [h 3 (S)] ←
end if 24: end while 25: return S b selected item p from the set Ā such that the resulting neighbor solution is feasible. This operator induces the neighborhood N 1 .

N 1 (S) = {S : S = S ⊕ add(p), p ∈ Ā} (6) 
• swap(q, p): This move operator exchanges a pair of items (q, p), where item q belongs to the selected item set A and p belongs to the nonselected item set Ā such that the resulting neighbor solution is feasible. This operator induces the neighborhood N 2 .

N 2 (S) = {S : S = S ⊕ swap(q, p), q ∈ A, p ∈ Ā, f (S ) > f (S c )} (7)
• drop(q): This operator displaces one selected item q from the set A to the non-selected item set Ā and induces the neighborhood N 3 .

N 3 (S) = {S : S = S ⊕ drop(q), q ∈ A, f (S ) > f (S c )} (8) 
One notices that the add operator always leads to a better current solution with an additional eligible item, and thus the neighborhood filtering is not needed for N 1 . The drop operator always deteriorates the quality of the current solution, and the feasibility of a neighbor solution is always ensured. The swap operator may either increase or decrease the objective value and the feasibility of a neighbor solution needs to be verified. For N 2 and N 3 , neighborhood filtering excludes uninteresting solutions that can in no way be accepted during the TSP process.

The TSP procedure examines the neighborhoods N 1 , N 

Operation-prohibiting mechanism

During the TSP procedure, it is important to prevent the search from revisiting a previously encountered solution. For this purpose, TSP utilizes an operationprohibiting (OP) mechanism that is based on the tabu list strategy [START_REF] Glover | Tabu search[END_REF]. To implement the operation-prohibiting (OP) mechanism, we adopt the solutionbased tabu search technique [START_REF] Woodruff | Hashing vectors for tabu search[END_REF]. Specifically, we employ three hash vectors

H v (v = 1, 2, 3) of length L (|L| = 10 8
) to record previously visited solutions.

Given a solution S = (x 1 , . . . , x n ) (x i ∈ {0, 1}), we pre-compute the weights 6 , and W 3 i = i 2.0 . Then the hash values of solution S are given by the following hash functions h v

W v i (v = 1, 2, 3) for each item i by W 1 i = i 1.2 , W 2 i = i 1.
(v = 1, 2, 3). h 1 (S) = ( n i=1 W 1 i × x i ) mod |L| (9) h 2 (S) = ( n i=1 W 2 i × x i ) mod |L| (10) h 3 (S) = ( n i=1 W 3 i × x i ) mod |L| (11) 
The hash values of a neighbor solution S from the add(p), swap(q, p) or drop(q) operator (see Section 3.4.2) can be efficiently computed as follows.

h v (S ) =        h v (S) + W v p , for add(p) h v (S) -W v q + W p , for swap(q, p) h v (S) -W v q , for drop(q) ( 12 
)
where v is equal to 1, 2, 3, W v q and W v p are the pre-computed weights of items p and q involved in the move operations.

Starting with the hash vectors set to 0, the corresponding positions in the three hash vectors For each candidate neighbor solution S , its hash values

H v (v = 1, 2,
h v (S ) (v = 1, 2, 3)
are calculated with Equation ( 12) in O(1). Then, this neighbor solution S is

previously visited if H 1 [h 1 (S )] ∧ H 2 [h 2 (S )] ∧ H 3 [h 3 (S )] = 1
and is prohibited from consideration by the TSP procedure.

Fig. 2. An example of the operation-prohibiting mechanism [START_REF] Wei | Multistart solution-based tabu search for the set-union knapsack problem[END_REF].

Fig. 2 from [START_REF] Wei | Multistart solution-based tabu search for the set-union knapsack problem[END_REF] illustrates the hash based operation-prohibiting mechanism.

In this example, applying the three hash functions to the given solution S leads to hash values h 1 (S) = 3, h 2 (S) = 1 and h 3 (S) = 5. Checking the three hash vectors with these hash values indicates that S is a prohibited solution since

H 1 [3] ∧ H 2 [1] ∧ H 3 [5] = 1.
Note that a hashing-memory list was adopted in [START_REF] Hifi | A reactive local search-based algorithm for the disjunctively constrained knapsack problem[END_REF] to distinguish solutions with the same objective value. This method is clearly different from our operation-prohibiting mechanism because we use the hash vectors to record all the solutions encountered during the TSP procedure, rather than just the solutions with the same objective value. Moreover, unlike [START_REF] Hifi | A reactive local search-based algorithm for the disjunctively constrained knapsack problem[END_REF] that requires another move-memory list to prevent the search from revisiting previously encountered solutions, our approach does not need such an additional structure.

Crossover operator

The crossover operator generally creates new solutions by recombining two existing solutions. For the DCKP, we adopt the idea of the double backbonebased crossover (DBC) operator [START_REF] Zhou | Memetic search for identifying critical nodes in sparse graphs[END_REF] and adapt it to the problem.

Given two solutions S i and S j , we use them to divide the set of n items into three subsets: the common items set X 1 = S i ∩ S j , the unique items set X 2 = (S i ∪ S j ) \ (S i ∩ S j ) and the unrelated set X 3 = V \ (S i ∪ S j ). The basic idea of the DBC operator is to generate an offspring solution S o by selecting all items in set X 1 (the first backbone) and some items in set X 2 (the second backbone), while excluding items in set X 3 .

As shown in Algorithm 4, from two randomly selected parent solutions S i and S j , the DBC operator generates S o in three steps. First, we initialize S o by setting all the variables x o a (a = 1, . . . , n) to 0 (line 3, Alg. 4). Second, we identify the common items set X 1 and the unique items set X 2 (line 4-10, Alg.

4). Third, we add all items belonging to X 1 into S o and randomly add items from X 2 into S o until the knapsack constraint is reached (line 11-17, Alg. 4).

Note that the knapsack and disjunctive constraints are always satisfied during the crossover process.

Since the DCKP is a constrained problem, the DBC operator adopted for TSBMA has several special features to handle the constraints, which is different from the DBC operator introduced in [START_REF] Zhou | Memetic search for identifying critical nodes in sparse graphs[END_REF]. First, we iteratively add an item into S o by selecting one item from the unique items set X 2 randomly until the knapsack constraint is reached, while each item in X 2 is considered with a probability p 0 (0 < p 0 < 1) in [START_REF] Zhou | Memetic search for identifying critical nodes in sparse graphs[END_REF]. Second, unlike [START_REF] Zhou | Memetic search for identifying critical nodes in sparse graphs[END_REF], where a repair operation is used to achieve a feasible offspring solution, our DBC operator ensures the satisfaction of the problem constraints during the offspring generation process.

Population updating

Once a new offspring solution is obtained by the DBC operator in the last section, it is further improved by the threshold search procedure presented in Section 3.4. Then we adopt a diversity-based population updating strategy [START_REF] Lai | A two-phase tabu-evolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF] to decide whether the improved offspring solution should replace an existing solution in the population. This strategy is beneficial to balance the quality of the offspring solution and its distance from the population.

To accomplish this task, we temporarily insert the improved offspring solution into the population and compute the distance (Hamming distance) between Algorithm 4 The double backbone-based crossover operator any two solutions in the population. Then we obtain the goodness score of each solution in the same way as proposed in [START_REF] Lai | A two-phase tabu-evolutionary algorithm for the 0-1 multidimensional knapsack problem[END_REF]. Finally, the worst solution in the population is identified according to the goodness score and deleted from the population. 

Discussions

The proposed algorithm is based on the general memetic search and threshold search methods, and integrates a number of carefully designed problem-specific features. In what follows, we highlight the novelties and contributions of the presented work.

First, compared to the existing DCKP algorithms reviewed in Section 2, the primary novelty of our approach concerns the design of the threshold search procedure detailed in Section 3.4. This is the first local optimization procedure that adapts the general threshold accepting method to the DCKP.

In particular, it employs an original neighborhood exploration strategy that relies on 1) a neighborhood filtering to eliminate non-promising neighboring solutions, 2) a hash function based prohibiting technique to avoid revisiting already encountered solutions, and 3) a token-ring policy to examine the three neighborhoods.

Second, the proposed algorithm reinforces its search capacity by adopting a specifically designed crossover operator (see Section 3.5), which is able to cope with the disjunctive constraints of the DCKP. It additionally adopts a distance-and-quality based population management method to maintain a healthy population.

Third, as the extensive computational results on two sets of 6340 benchmark instances indicate shown in Section 4, the algorithm integrating the above features reaches a high performance that no existing algorithm can compete.

In particular, it reports a number of new lower bounds that are valuable for future research on the DCKP. Fourth, we demonstrate the practical usefulness of our approach for solving real-life problems. For this, we present in Section 5 a real application, i.e., the daily photograph scheduling problem (DPSP) of an earth observation satellite (SPOT5). This application can be formulated as a logically-constrained knapsack problem whose key model corresponds to the DCKP and can thus be solved with our approach. The computational results on the set of 21 DPSP benchmark instances indicate that our approach can find optimal solutions or solutions close to the best-known results obtained by specific algorithms specially designed for this application.

Finally, although a number of DCKP algorithms exist in the literature, none of these algorithms has published the underlying source code, making it difficult to apply them in practice. We decided to make our source code publicly available, which can help advance the research on the DCKP and better solve related problems as well.

Computational results and comparisons

In this section, we assess the proposed TSBMA algorithm by performing extensive experiments and making comparisons with state-of-the-art DCKP algorithms. We report computational results on two sets of 6340 benchmark instances.

Benchmark instances

The benchmark instances of the DCKP tested in our experiments were widely used in the literature, which can be divided into two sets1 (see Tables 1 and2 for the main characteristics of these instances).

Set I (100 instances): These instances are grouped into 20 classes (each with 5 instances) and named by xIy (x = {1, . . . , 20} and y = {1, . . . , 5}).

The first 50 instances (1Iy to 10Iy) were introduced in 2006 [START_REF] Hifi | A reactive local search-based algorithm for the disjunctively constrained knapsack problem[END_REF] and have the following features: number of items n = 500 or 1000, capacity C = 1800 or 2000, and density η going from 0.05 to 0.40. Note that the density is given by 2m/n(n -1), where m is the number of disjunctive constraints (i.e., the number of edges of the conflict graph). These instances have an item weight w i uniformly distributed in [1, 100] and a profit p i = w i + 10. For the instance classes 11Iy to 20Iy introduced in 2017 [START_REF] Quan | Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem[END_REF], the number of items n is set to 1500 or 2000, the capacity C is set to 4000, and the density η ranges from 0.04 to 0.20. These instances have an item weight w i uniformly distributed in [START_REF] Bensana | Earth observation satellite management[END_REF]400] and a profit p i equaling w i + 10.

Set II (6240 instances): This set of instances was introduced in 2017 [START_REF] Bettinelli | A branch-and-bound algorithm for the knapsack problem with conflict graph[END_REF] and expanded in 2020 [START_REF] Coniglio | A new combinatorial branch-andbound algorithm for the knapsack problem with conflicts[END_REF]. For the four correlated instance classes C1 to C15 (denoted by CC) and four random classes R1 to R15 (denoted by CR), the number of items n is from 60 to 1000, the capacity C is from 150 to 15000, and the density η is from 0.10 to 0.90. Each of these eight classes contains 720 instances. For the correlated instance class SC and the random instance class SR of the sparse graphs, the number of items n is from 500 to 1000, the capacity C is from 1000 to 2000, and the density η is from 0.001 to 0.05. Each of these two classes contains 240 DCKP instances. More details about this set of instances can be found in [START_REF] Coniglio | A new combinatorial branch-andbound algorithm for the knapsack problem with conflicts[END_REF]. Stopping condition. For the 100 DCKP instances of Set I, the TSBMA algorithm adopted the same cut-off time as the reference algorithms (PNS, CPANS and PTS), i.e., 1000 seconds. Note that for the instances 11Iy to 20Iy, PNS used a much longer limit of 2000 seconds. Given its stochastic nature, TSBMA was performed 20 times independently with different random seeds to solve each instance. For the 6240 instances of Set II, the cut-off time was set to 600 seconds as in the CFS algorithm and the number of repeated runs was set to 10.

Computational results and comparisons

In this section, we first present summarized comparisons of the proposed TSBMA algorithm against each reference algorithm on the 100 instances of From Table 4, one observes that the TSBMA algorithm competes very favorably with all the reference algorithms by reporting improved or equal results on all the instances. Compared to the probabilistic tabu search algorithm (PTS) [START_REF] Salem | Probabilistic tabu search with multiple neighborhoods for the disjunctively constrained knapsack problem[END_REF] which reported results only on the first 50 instances of classes 1Iy to 10Iy, TSBMA finds 8 (45) better f best (f avg ) values, while matching the remaining results. Compared to the two parallel algorithms (PNS) [START_REF] Quan | Design and evaluation of a parallel neighbor algorithm for the disjunctively constrained knapsack problem[END_REF] and (CPANS) [START_REF] Quan | Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem[END_REF] that reported only the f best values, TSBMA obtained 35 and 29 better f best results, respectively. The small p-values (< 0.05) from the Wilcoxon tests between TSBMA and its competitors indicate that the performance differences are statistically significant. Finally, it is remarkable that our TSBMA algorithm discovered 24 new lower bounds on the instances 11Iy to 20Iy (see the detailed results shown in the Appendix).

To complete the assessment, we provide the performance profiles [START_REF] Dolan | Benchmarking optimization software with performance profiles[END_REF] of the four compared algorithms on the 100 instances of Set I. Basically, the performance profile of an algorithm shows the cumulative distribution for a given performance metric, which reveals the overall performance of the algorithm on a set of instances. In our case, the plots concern the best objective values (f best ) of the compared algorithms since the average results of some reference algorithms are not available in the literature. Given a set of algorithms (solvers) S and an instance set P, the performance ratio is given by r p,s = fp,s min{fp,s:s∈S} , where f p,s is the f best value of instance p of P obtained by algorithm s of S. The performance profiles are shown in Figure 3, where the performance ratio and the percentage of instances solved by each compared algorithm are displayed on the X-axis and Y -axis, respectively. When the value of X-axis is 1, the corresponding value of Y -axis indicates the fraction of instances for which algorithm s can reach the best f best value of the set S of the compared algorithms.

From Figure 3, we observe that our TSBMA algorithm has a very good performance on the 100 benchmark instances of Set I compared to the reference algorithms. For the 50 instances 1Iy to 10Iy, TSBMA and CPANS are able to reach 100% best f best values on these 50 instances, while PTS and PNS fail on around 15% of the instances. When considering the 50 instances 11Iy to 20Iy, the plot of TSBMA strictly runs above the plots of PNS and CPANS, revealing that our algorithm dominates the reference algorithms on these 50 instances. These outcomes again confirm the high performance of our TSBMA algorithm. 
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Comparative results on the 6240 benchmark instances of Set II

Table 5 summarizes the comparative results of our TSBMA algorithm on the 6240 instances of Set II, together with the three reference algorithms mentioned in 4.2. Note that three ILP formulations were studied in [START_REF] Coniglio | A new combinatorial branch-andbound algorithm for the knapsack problem with conflicts[END_REF], we extracted the best results of these formulations in Table 5, Notice that the performance of CPLEX with ILP 1 is better than TSBMA as well as the two reference algorithms BCM and CFS on the two classes of very sparse instances (SC and SR). As analyzed in [START_REF] Coniglio | A new combinatorial branch-andbound algorithm for the knapsack problem with conflicts[END_REF], one of the main reasons is that the LP relaxation of ILP 1 provides a very strong upper bound, which makes the ILP 1 formulation very suitable for solving very sparse instances.

The disjunctive constraints become very weak when the conflict graph is very sparse. For these two classes of instances, the pure branch-and-bound CFS algorithm is more effective on extremely sparse instances with densities up to 0.005. On the contrary, our TSBMA algorithm is more suitable for solving sparse instances with densities between 0.01 and 0.05. In fact, the new lower bounds found by TSBMA all concern instances with a density of 0.05.

Finally, the TSBMA algorithm remains competitive on the 240 correlated sparse instances SC, even if the density is the smallest (0.001), which means that only the random sparse instance class SR is challenging for TSBMA.

In summary, our TSBMA algorithm is computational efficient on a majority of the 6240 benchmark instances of Set II and is able to discover new lower bounds on 354 difficult DCKP instances, whose optimal solutions are still unknown. 

A real-world application

To demonstrate the practical usefulness of the DCKP model and the proposed TSBMA algorithm, this section shows how our approach can be applied to solve a real-world daily photograph scheduling problem (DPSP) of the earth observation satellite SPOT5.

SPOT5 daily photograph scheduling and its knapsack formulation

SPOT5 is the fifth earth optical observation satellite developed by the CNES (French National Space Agency), which was launched in May 2002.

Informally, the SPOT5 daily photograph scheduling problem is to select a subset of photographs among the candidate photographs that will be taken by SOPT5, such that the total profit of the selected photographs is maximized while a knapsack-type constraint (i.e., a capacitated recording subject to l i=1 w i x i ≤ M ax Capacity (C1)

x i + x j ≤ 1, ∀i, j ∈ {1, . . . , l}, i = j (C2)

x i + x j + x k ≤ 2, ∀i, j, k ∈ {1, . . . , l}, i = j = k (C3 1) x i + x j + x k ≤ 1, ∀i, j, k ∈ {1, . . . , l}, i = j = k (C3 2) x i ∈ {0, 1}, i = 1, . . . , l (14) 

Solving DPSP as the DCKP model

It is easy to observe that the "logic-constrained" 0/1 knapsack model for the DPSP without the ternary constraints C3 1 and C3 2 is strictly equivalent to the DCKP. Moreover, one notes that each C3 2 ternary constraint x i +x j +x k ≤ 1 can be converted to three binary constraints, i.e., x i + x j ≤ 1, x i + x k ≤ 1, Suppose that the C3 1 constraint x i + x j + x k ≤ 2 is violated. This implies necessarily x i + x j + x k = 3. Thus, to satisfy this violated C3 1 constraint, the first step identifies among x i , x j , x k the variable with the smallest profit value and changes its value to zero, i.e., drops the corresponding (photo, camera) pair (break ties randomly). Since this step releases knapsack capacity, the second step uses the liberated capacity to accommodate additional photographs. For this, we add photographs with the largest profit value without violating any C1-C3 constraints until no more photograph can be added or the knapsack capacity is reached.

x j + x k ≤ 1,

Computational results on the DPSP benchmark instances

We used the 21 real-life DPSP benchmark instances3 provided by the CNES (see [START_REF] Bensana | Earth observation satellite management[END_REF] for more details), which have been used to test a number of exact first relaxes the C3 1 constraints and then only employs a simple procedure to repair these constraints. These outcomes can be considered to be remarkable because we just applied the TSBMA algorithm designed for the general DCKP model to this real-life problem, unlike previous algorithms for the DPSP that are specially designed for the problem.

To sum up, this real-world application shows the practical significance of the DCKP model and the proposed TSBMA algorithm.

Analysis and discussions

In this section, we analyze two essential components of the TSBMA algorithm: the importance of the threshold search and the contribution of the operation-prohibiting mechanism. The studies in this section are based on the 50 benchmark instances 11Iy to 20Iy of Set I. From Figure 4, we can clearly observe that TSBMA dominates MA1 and MA2 according to the cumulative probability obtained by the f best and f avg values. The plots of TSBMA strictly run above the plots of MA1 and MA2, indicating TSBMA performs always better than the two variants. This experiment implies that the adopted threshold search procedure of TSBMA is relevant for its performance. We ran TSBMA -to solve the 50 11Iy to 20Iy instances according to experimental settings given in Section 4.2 and reported the results in Table 7. The first column gives the name of each instance and the remaining columns show the best objective values (f best ), the average objective values (f avg ) and the standard deviations (std). Row #Avg presents the average value of each column and row #Best indicates the number of instances for which an algorithm obtains the best values between the two sets of results.
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The last row shows the p-values from the Wilcoxon signed-rank test. The best results of the compared algorithms are highlighted in bold.

From Table 7, we observe that TSBMA -performs worse than TSMBA. 

  applied the approximation methods of modular decompositions and clique separators to the DCKP, and showed complexity results on special graph classes. In 2019, Gurski and Rehs [17] designed a dynamic programming algorithm and achieved pseudo-polynomial solutions for the DCKP. In 2020, Coniglio et al. [8] presented another branch-and-bound algorithm based on an n-ary branching scheme and solved the integer linear programming formulations of the DCKP by the CPLEX solver. They introduced 1440 new and challenging DCKP instances (see Section 4.1).

Fig. 1 .

 1 Fig. 1. Flowchart of the proposed TSBMA algorithm.

Algorithm 2

 2 4 (line 5, Alg. 2) by setting the maximum consecutive iterations IterM ax = 2n, where n is the number of items in the instance. The population initialization procedure terminates when |P | initial solutions are generated and added into the population P . Population initialization procedure

  Initialization of hash vectors */ 5: end for 6: S b ← S o /* S b record the best solution found */ 7: S ← S o /* S record the current solution */ 8: iter ← 0 9: while iter ≤ IterM ax do 10: /* Examine the neighborhoods N 1 (S), N 2 (S), N 3 (S) in a token-ring way; Section 3.4.2 */ 11:

  3) are updated by 1 whenever a new neighbor solution S is accepted to replace the current solution S (lines 12-16, Alg. 3).

3. 7

 7 Time complexity of TSBMA As shown in Section 3.3, the population initialization procedure includes two steps. Given a DCKP instance with n items, the first step of random selection takes time O(n). Given an input solution S =< A, Ā > (see Section 3.2), the complexity of one iteration of the TSP procedure is O((n + |A| × | Ā|)). Then the second step of the initialization procedure can be realized in O([(n + |A| × | Ā|)] × IterM ax), where IterM ax is set to 2n in the initialization procedure. The complexity of the population initialization procedure is O(n 3 ). Now we consider the four procedures in the main loop of the TSBMA algorithm: parent selection, crossover operator, the TSP procedure and population updating. The parent selection procedure is realized in O(1). The crossover operator takes time O(n). The complexity of the TSP procedure is O([(n + |A| × | Ā|)] × IterM ax), where IterM ax is determined in Section 3.4.1. The population updating procedure can be achieved in O(n|P |), where |P | is the population size. Then, the complexity of one iteration of the main loop of the TSBMA algorithm is O(n 2 × IterM ax).

C++ 2

 2 and compiled using the g++ compiler with the -O3 option. All experiments were carried out on an Intel Xeon E5-2670 processor (2.5 GHz CPU and 2 GB RAM) under the Linux operating system. The results of the main reference algorithms have been obtained on computing platforms with the following features: an Intel Xeon processor with 2×3.06 GHz for CPANS and PNS, an Intel Pentium i5-6500 processor with 3.2 GHz and 4 GB RAM for PTS, and an Intel Xeon E5-2695 processor with 3.00GHz for CFS. Note that the parallel algorithms PNS and CPANS used 10 to 400 processors to obtain the results. Parameter setting. The TSBMA algorithm has three parameters whose values are self-tuned according to the test instance or the best objective value reached during the search.

  Set I, and then show the comparative results on the 6240 DCKP instances of Set II. The detailed computational results of our algorithm and the reference algorithms on the instances of Set I are shown in the Appendix, while our solution certificates for these 100 instances are available at the webpage indicated in footnote 2. For the 6240 instances of Set II, we report their objective values at the same website. 4.3.1 Comparative results on the 100 benchmark instances of Set I The comparative results of the TSBMA algorithm and each reference algorithm are summarized in Table 4. Column 1 indicates the pairs of compared algorithms and column 2 gives the names of instance class. Column 3 shows the quality indicators: the best objective value (f best ) and the average objective value (f avg ) (when the average results are available in the literature). To analyze the performance of our algorithm, we carried out the Wilcoxon signed-rank test to verify the statistical significance of the compared results between TSBMA and each compared algorithm in terms of the f best and f avg values (when the average results are available in the literature). Columns 4 and 5 give the additional sum of ranks for the results, where TSBMA performs better (R + ) or worse (R -) in terms of the performance indicators. The outcomes of the Wilcoxon p-values are shown in last column, where NA means that the two sets of compared results are exactly the same.

Fig. 3 .

 3 Fig. 3. Performance profiles of the compared algorithms on the 100 DCKP instances of Set I.

  i.e., the results on instances CC and CR (conflict graph density from 0.10 to 0.90) with ILP 2 and the results on very sparse instances SC and SR (conflict graph density from 0.0001 to 0.005) with ILP 1 . Columns 1 and 2 of Table 5 identify each instance class and the total number of instances of the class. Columns 3 to 5 indicate the number of instances solved to optimality by the three reference algorithms.Column 6 shows the number of instances for which our TSBMA algorithm reaches the optimal solution proved by exact algorithms. The number of new lower bounds (denoted by NEW LB in Table5) found by TSBMA is provided in column 7. The best results of the compared algorithms are highlighted in bold. In order to further evaluate the performance of our algorithm, we summarize the available comparative results between MSBTS and the main reference algorithm CFS in columns 8 to 10. The columns #Wins, #Ties and #Losses present the number of instances for which TSBMA achieves a better, equal and worse result on the corresponding instance class. The last three rows provide an additional summary of the results for each column.From Table5, we observe that TSBMA performs globally very well on the instances of Set II. For the 5760 CC and CR instances, TSBMA reaches most of the proved optimal solutions (5381 out of 5389) and discovers new lower bounds for 323 difficult instances whose optima are still unknown. For the 240 very sparse SC instances, TSBMA matches 195 out of 200 proved optimal solutions and finds 24 new lower bounds for the remaining instances.Although TSBMA successfully solves only 9 out of the 229 solved very sparse SR instances, it discovers 7 new lower bounds. The high performance of TSBMA is further evidenced with the comparison with the best exact algorithm CFS (last three columns).

  and thus integrated into the DCKP model. Thus, to solve the DPSP via the DCKP model, we adopt the following strategy. For each DPSP instance, we apply our TSBMA algorithm to solve the corresponding DCKP instance integrating constraints C1, C2 and C3 2 and temporarily ignore the ternary constraint C3 1. Let s be the final result returned by TSBMA. If solution s doesn't violate any C3 1 ternary constraint, s is a feasible solution to the DPSP. Otherwise, we employ a very simple two-step repairing procedure to satisfy the C3 1 constraints.

6. 1

 1 Importance of the threshold searchThe threshold search procedure of the TSBMA algorithm is the first adaptation of the threshold accepting method to the DCKP. To assess the importance of this component, we compare TSBMA with two TSBMA variants by replacing the TSP procedure with the f irst-improvement descent procedure and best-improvement descent procedure. In other words, these variants (named as MA1 and MA2) use, in each iteration, the first and the best improving solution S in the neighborhood to replace the current solution, respectively. We carried out an experiment by running the two variants to solve the 50 instances 11Iy to 20Iy with the same experimental settings of Section 4.2. The performance profiles of TSBMA and these TSBMA variants are shown in Figure4based on the best objective values (left sub-figure) and the average objective values (right sub-figure).

Fig. 4 .

 4 Fig. 4. Performance profiles of the compared algorithms on the 50 DCKP instances 11Iy to 20Iy.

TSBMA

  -obtains worse f best values for 35 out of the 50 instances and worse f avg values for 48 instances. Considering the std values, TSBMA -shows a much less stable performance than TSMBA. Moreover, the small p-values (< 0.05) from the Wilcoxon tests confirm the statistically significant difference between the results of TSMBA and TSBMA -. This experiment demonstrates the effectiveness and robustness of the operation-prohibiting mechanism employed by the TSMBA algorithm.

1 :

 1 Input: Instance I, cut-off time t max , population P , the maximum number of iterations IterM ax, neighborhoods N 1 , N 2 , N 3 .

	2: Output: The overall best solution S * found.
	3: S * ← ∅	/* Initialize S * (i.e., f (S * ) = 0)*/
	4: P OP = {S 1 , . . . , S |P | } ← P opulation Initialization(I)	/* Section 3.3 */
	5: S * ← argmax{f (S k )|k = 1, . . . , p}
	6: while T ime ≤ t max do	
	7:	Randomly pick two solutions S i and S j from the population POP
	8:	S o ← Crossover Operator(S i , S j )	/* Section 3.5 */
	9:	S b ← T hreshold Search(S o , N 1-3 , IterM ax)	/* Section 3.4 */
	10:	/* Record the best solution S b found during threshold search */
	11:	if f (S b ) > f (S * ) then
	12:	S * ← S b	/* Update the overall best solution S * found so far */
	13:	end if	
	14:	P OP ← P ool U pdating(S b , P OP )	/* Section 3.6 */
	15: end while	
	16: return S *	

1 :

 1 Input: Instance I, population size |P |, maximum number of iterations IterM ax, neighborhoods N 1 , N 2 , N 3 .

	2: Output: Initial population P .	
	3: 0 ← i	
	4: while i ≤ |P | do	
	5:	S i ← Random Initial(I)	/* S i is the initial solution */
	6:	S i ← T hreshold Search(S i , N 1-3 , IterM ax) /* Improve the solution S i */
	7:	Add the improved solution S i into the population P
	8:		

1 :

 1 Input: Input solution S o , threshold T , the maximum number of iterations IterM ax, hash vectors H 1 , H 2 , H 3 , hash functions h 1 , h 2 , h 3 , length of hash vectors L, neighborhoods N 1 , N 2 , N 3 . 2: Output: The best feasible solution S b found by threshold search procedure. 3:

  2 , and N 3 in a sequential way to explore different local optimal solutions. For N 1 , as long as there exists a non-prohibited neighbor solution, TSP selects such a neighbor solution to replace the current solution (ties are broken randomly). Once N 1 becomes empty, TSP moves to N 2 , if there exists a non-prohibited neighbor solution S satisfying f (S ) ≥ T , TSP selects S to become the current solution and immediately returns to the neighborhood N 1 . When N 2

becomes empty, TSP continues its search with N 3 and explores N 3 exactly like with N 2 . When N 3 becomes empty, TSP terminates its search and returns the best solution found S b . TSP may also terminate if its best solution remains unchanged during IterM ax consecutive iterations.

  Input: Two parent solutions S i = (x i 1 , x i 2 , . . . , x i n ) and S j = (x j 1 , x j 2 , . . . , x j n ). 2: Output: An offspring solutionS o = (x o 1 , x o 2 , . . . , x o n ). 3: S o ← ∅ /* Initialize S o (i.e., f (S o ) = 0)*/ 4: for a ← 1 to n do S o ← X 1/* Add all items belonging to X 1 into S o */ 12: Randomly shuffle all items in X 2 ; 13: for each a ∈ X 2 do

	5:	if x i a = 1 and x j a = 1 then	
	6: 7:	X 1 ← a else if x i a = 1 or x j a = 1 then	/* X 1 is the common items set */
	8:	X 2 ← a		/* X 2 is the unique items set */
	9:	end if	
	10: end for	
	11: 14: 15:	if S o ∪ (x o a = 1) is a feasible solution then x o a ← 1	/* The second backbone */
	16:	end if	
	17: end for	
	18: return S o	

1:

Table 1

 1 Summary of main characteristics of the 100 DCKP instances of Set I.

	Class	Total	n	C	η	Class	Total	n	C	η
	1Iy	5	500	1800	0.10	11Iy	5	1500	4000	0.04
	2Iy	5	500	1800	0.20	12Iy	5	1500	4000	0.08
	3Iy	5	500	1800	0.30	13Iy	5	1500	4000	0.12
	4Iy	5	500	1800	0.40	14Iy	5	1500	4000	0.16
	5Iy	5	1000	1800	0.05	15Iy	5	1500	4000	0.20
	6Iy	5	1000	2000	0.06	16Iy	5	2000	4000	0.04
	7Iy	5	1000	2000	0.07	17Iy	5	2000	4000	0.08
	8Iy	5	1000	2000	0.08	18Iy	5	2000	4000	0.12
	9Iy	5	1000	2000	0.09	19Iy	5	2000	4000	0.16
	10Iy	5	1000	2000	0.10	20Iy	5	2000	4000	0.20

Table 2

 2 Summary of main characteristics of the 6240 DCKP instances of Set II.

  Table3summarizes the parameter setting, where n is the number of items of the test instance, M inP is the minimum profit in the instance, and f (S b ) is the objective value of the best solution found during the TSP procedure. These parameter settings can be considered as the default settings and are consistently used in our experiments.

Table 3

 3 Summarized parameter settings of the TSBMA algorithm.

	Parameter Section Setting	Description	Comment
	|P |	3.3	n/100 + 5	Population size	-
	IterM ax	3.3	2n	Maximum consecutive iterations For population initialization
		3.4.1 (n/500 + 5) × 10000 of the TSP procedure	For local optimization
	T	3.4.1	f (S b ) -n/10	Threshold	For instances of Set I
			M inP + rand(20)		For instances of Set II

Table 4

 4 Summarized comparisons of the TSBMA algorithm against each reference algorithm with the p-values of the Wilcoxon signed-rank test (significance level 0.05) on the 100 DCKP instances of Set I.

	Algorithm pair	Instance	Indicator R + R -p-value
	TSBMA vs. PTS [33]	1Iy -10Iy (50)	f best	8	0 1.40e-2
			favg	45 0 5.34e-9
	TSBMA vs. PNS [32]	1Iy -10Iy (50)	f best	9	0 8.91e-3
		11Iy -20Iy (50)	f best	26 0 8.25e-6
	TSBMA vs. CPANS [31] 1Iy -10Iy (50)	f best	0	0	NA
		11Iy -20Iy (50)	f best	29 0 2.59e-6

Table 5

 5 Summarized comparisons of the TSBMA algorithm against each reference algorithm on the 6240 DCKP instances of Set II.

	Class	Total	ILP 1,2 [8] BCM [3] CFS [8] TSBMA (this work)		TSBMA vs. CFS
			Solved	Solved	Solved Solved New LB	#Wins #Ties #Losses
	C1	720	720	720	720	720	0	0	720	0
	C3	720	584	720	720	716	0	0	716	4
	C10	720	446	552	617	617	91	91	629	0
	C15	720	428	550	600	600	117	117	603	0
	R1	720	720	720	720	717	0	0	717	3
	R3	720	680	720	720	720	0	0	720	0
	R10	720	508	630	670	669	37	37	681	2
	R15	720	483	590	622	622	78	78	641	1
	SC	240	200	109	156	195	24	70	165	5
	SR	240	229	154	176	9	7	43	8	189
	Total on CC and CR 5760 4569	5201	5389	5381	323	323	5427	10
	Total on SC and SR 480	429	263	332	204	31	113	173	194
	Grand total	6240 4998	5424	5721	5585	354	436	5600	204

Table 6

 6 shows that the TSBMA algorithm is able to match eight optimal

	648	
	649	results. For seven other instances, its results are very close to the best-known
	650	results with a very small gap(%) value (-0.004% to -0.531%). One notices
		that TSBMA reports a gap value ranging from -2.381% to -4.537% on

651

most instances with more C3 1 constraints. This is because our approach 652

Table A .

 A [START_REF] Bensana | Earth observation satellite management[END_REF] Computational results of the TSBMA algorithm with the reference algorithms on the 50 DCKP instances of Set I (1Iy to 10Iy).

	Instance	BKV	PNS [32]	CPANS [31]		PTS [33]		TSBMA (this work)
			f best	f best	tavg(s)	f best	favg	f best	favg	std	tavg(s)
	1I1								

Table A .

 A 2 Computational results and comparison of the TSBMA algorithm with the reference algorithms on the 50 DCKP instances of Set I (11Iy to 20Iy).

	Instance	BKV	PNS [32]	CPANS [31]		TSBMA (this work)	
			f best	f best	tavg(s)	f best	favg	std	tavg(s)
	11I1	4950	4950	4950	333.435	4960	4960	0.00	4.594
	11I2	4940	4940	4928	579.460	4940	4940	0.00	14.305
	11I3	4925	4920	4925	178.400	4950	4950	0.00	69.236
	11I4	4910	4890	4910	320.067	4930	4930	0.00	139.197
	11I5	4900	4890	4900	222.053	4920	4920	0.00	100.178
	12I1	4690	4690	4690	230.563	4690	4687.65	2.22	416.088
	12I2	4680	4680	4680	502.600	4680	4680	0.00	224.000
	12I3	4690	4690	4690	229.116	4690	4690	0.00	215.103
	12I4	4680	4680	4676	367.330	4680	4679.50	2.18	256.300
	12I5	4670	4670	4670	487.563	4670	4670	0.00	79.190
	13I1	4533	4533	4533	395.985	4539	4534.80	3.60	415.880
	13I2	4530	4530	4530	573.718	4530	4528	4.00	361.229
	13I3	4540	4530	4540	901.620	4540	4531	3.00	498.622
	13I4	4530	4530	4530	315.076	4530	4529.15	2.29	366.951
	13I5	4537	4537	4537	343.240	4537	4534.20	3.43	425.064
	14I1	4440	4440	4440	483.156	4440	4440	0.00	205.733
	14I2	4440	4440	4440	735.505	4440	4439.40	0.49	438.190
	14I3	4439	4439	4439	614.733	4439	4439	0.00	146.119
	14I4	4435	4435	4434	533.908	4435	4431.50	2.06	106.389
	14I5	4440	4440	4440	473.448	4440	4440	0.00	160.900
	15I1	4370	4370	4370	797.125	4370	4369.95	0.22	321.296
	15I2	4370	4370	4370	676.703	4370	4370	0.00	181.021
	15I3	4370	4370	4370	612.792	4370	4369.25	1.84	315.575
	15I4	4370	4370	4370	649.398	4370	4369.85	0.36	424.873
	15I5	4379	4379	4379	678.354	4379	4373.15	4.29	359.003
	16I1	4980	4980	4980	286.130	5020	5020	0.00	205.964
	16I2	4990	4990	4980	232.825	5010	5010	0.00	342.824
	16I3	5009	5000	5009	199.880	5020	5020	0.00	155.070
	16I4	5000	4997	5000	831.750	5020	5020	0.00	86.324
	16I5	5040	5020	5040	982.970	5060	5060	0.00	32.837
	17I1	4730	4730	4721	422.640	4730	4729.70	0.64	388.541
	17I2	4710	4710	4710	248.770	4720	4719.50	2.18	300.275
	17I3	4720	4720	4720	454.317	4729	4723.60	4.41	343.016
	17I4	4720	4720	4720	432.900	4730	4730	0.00	288.961
	17I5	4720	4720	4720	102.468	4730	4726.85	4.50	366.752
	18I1	4566	4566	4566	225.010	4568	4565.80	3.40	269.545
	18I2	4550	4550	4550	288.862	4560	4551.40	3.01	13.884
	18I3	4570	4570	4570	328.555	4570	4569.40	2.20	466.748
	18I4	4560	4560	4560	511.527	4568	4565.20	3.12	264.931
	18I5	4570	4570	4570	651.887	4570	4567.95	3.46	572.589
	19I1	4460	4460	4460	506.945	4460	4456.65	3.48	459.570
	19I2	4459	4459	4459	666.900	4460	4453.25	4.17	307.224
	19I3	4460	4460	4460	608.913	4469	4462.05	4.04	485.550
	19I4	4450	4450	4450	476.755	4460	4453.20	3.89	430.824
	19I5	4460	4460	4460	508.730	4466	4460.75	1.61	40.752
	20I1	4389	4389	4388	957.410	4390	4383.20	3.36	929.372
	20I2	4390	4390	4387	756.908	4390	4381.80	3.78	299.673
	20I3	4389	4383	4389	966.010	4389	4387.90	2.77	568.988
	20I4	4388	4388	4380	993.630	4389	4380.40	1.98	657.694
	20I5	4389	4389	4389	772.495	4390	4386.40	4.05	646.570
	#Avg	4608.54	4606.88	4607.58	513.011	4614.14	4611.83	1.80	303.390

The benchmark instances are available from the Mendeley Data repository at: http://dx.doi.org/10.17632/gb5hhjkygd.1

The code of our TSBMA algorithm will be available at: http://www.info. univ-angers.fr/pub/hao/DCKP_TSBMA.html.

The benchmark instances are available at the Mendeley Data repository at: http: //dx.doi.org/10.17632/2kbzg9nw3b.1
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Experimental settings

Reference algorithms. For the 100 DCKP instances of Set I that were widely tested by heuristic algorithms, we adopt as our reference methods three stateof-the-art heuristic algorithms: parallel neighborhood search algorithm (PNS) [START_REF] Quan | Design and evaluation of a parallel neighbor algorithm for the disjunctively constrained knapsack problem[END_REF], cooperative parallel adaptive neighborhood search algorithm (CPANS) [START_REF] Quan | Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem[END_REF], and probabilistic tabu search algorithm (PTS) [START_REF] Salem | Probabilistic tabu search with multiple neighborhoods for the disjunctively constrained knapsack problem[END_REF]. Note that PTS only reported results of the 50 instances 1Iy to 10Iy, since the other 50 instances of 11Iy to 20Iy were designed later. For the 6240 DCKP instances of Set II that were only tested by exact algorithms until now, we cite the results of three best performing methods: branch-and-bound algorithms BCM [START_REF] Bettinelli | A branch-and-bound algorithm for the knapsack problem with conflict graph[END_REF] and CFS [START_REF] Coniglio | A new combinatorial branch-andbound algorithm for the knapsack problem with conflicts[END_REF]) as well as the integer linear programming formulations solved by the CPLEX solver (ILP) [START_REF] Coniglio | A new combinatorial branch-andbound algorithm for the knapsack problem with conflicts[END_REF].

Computing platform. The proposed TSBMA algorithm was written in memory) and a large number of physical constraints (such as non-overlapping trials, minimal transition times between trials and bounded instantaneous data flow) are satisfied [START_REF] Bensana | Earth observation satellite management[END_REF].

Let P = {p 1 , . . . , p n } be the set of n candidate photographs including mono and stereo photographs, where each photograph ρ i ∈ P has a profit p i > 0 and a weight w i > 0 (memory consumption). Each mono photograph can be taken by any of the three cameras of the satellite (front-camera1, middle-camera2 and rear-camera3), while each stereo photograph can only be obtained by the front and rear cameras simultaneously. A legal schedule must satisfy the following constraints.

• Knapsack constraint (C1): This constraint indicates that the photographs that are taken and recorded on board cannot excess the recording memory M ax Capacity of the satellite.

• Binary constraints (C2): These constraints forbid the simultaneous selection of two pairs (photo, camera) and express the non overlapping of two trials and the minimal transition time between two successive trials of a camera, as well as some constraints involving limitations on instantaneous data flow relating two pairs (photo, camera).

• Ternary constraints (C3): These constraints forbid the simultaneous presence of three pairs (photo, camera) and concern limitations on instantaneous data flow that cannot be expressed in the form of binary constraints (C3 1). Additionally, for a mono photograph, a ternary constraint is defined to ensure that the photograph can be scheduled to at most one camera (C3 2).

In [START_REF] Vasquez | A "logic-constrained" knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[END_REF], the DPSP was formulated as a "logic-constrained" 0/1 knapsack problem, which is highly related to the DCKP, where a binary variable is used to represent a pair (photo, camera). Let P = P 1 ∪ P 2 , where P 1 and P 2 are the set of mono and stereo photographs, respectively. Let ρ ∈ P be a candidate photograph. If ρ ∈ P 1 , three pairs (ρ, camera1), (ρ, camera2) and (ρ, camera3) are associated to three binary variables to enumerate the three possibilities of shooting the mono photograph. If ρ ∈ P 2 , one binary variable is used to indicate the only shooting possibility (ρ, camera13) for the stereo photograph ρ. Then a photograph schedule can be represented by a binary

, where x i = 1 if the corresponding pair (photo, camera) is selected, and x i = 0 otherwise.

The DPSP corresponds to the following "logic-constrained" 0/1 knapsack problem [START_REF] Vasquez | A "logic-constrained" knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[END_REF].

and heuristic algorithms [START_REF] Bensana | Exact and approximate methods for the daily management of an earth observation satellite[END_REF][START_REF] Vasquez | A "logic-constrained" knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite[END_REF][START_REF] Vasquez | Upper bounds for the spot 5 daily photograph scheduling problem[END_REF][START_REF] Verfaillie | Russian doll search for solving constraint optimization problems[END_REF] 

Conclusions

The disjunctively constrained knapsack problem is a well-known NP-hard model. Given its practical significance and intrinsic difficulty, a variety of exact and heuristic algorithms have been designed for solving the problem.

We proposed the threshold search based memetic algorithm that combines for the first time threshold search with the memetic framework. The primary novelty of our approach concerns the design of the threshold search procedure that relies on three complementary neighborhoods and an original neighborhood exploration strategy. This intensification oriented component is reinforced by the specially designed crossover operator and the distance-and-quality based population update strategy.

Extensive evaluations on a large number of benchmark instances in the literature (6340 instances in total) showed that the algorithm performs competitively with respect to the state-of-the-art algorithms. Our approach is able to discover 24 new lower bounds out of the 100 instances of Set I and 354 new lower bounds out of the 6240 instances of Set II. These new lower bounds are useful for future studies on the DCKP. The algorithm also attains the best-known or known optimal results on most of the remaining instances. We carried out additional experiments to investigate the two essential ingredients of the algorithm (the threshold search technique and the operation-prohibiting mechanism). The disjunctively constrained knapsack problem is a useful model to formulate a number of practical applications.

The algorithm and its code (that we will make available) can contribute to solving these problems. In this regards, we presented an application of our approach to deal with the real-life daily photograph scheduling problem of the earth observation satellite SPOT5.

There are at least two possible directions for future work. First, TSBMA performed badly on random sparse instances of SR. It would be interesting to improve the algorithm to better handle such instances. Second, given the good performance of the adopted approach, it is worth investigating its underlying ideas to solve related problems mentioned in the introduction as well as other knapsack problems such as multiple knapsack [START_REF] Detti | A new upper bound for the multiple knapsack problem[END_REF], knapsack with setups [START_REF] Furini | Exact approaches for the knapsack problem with setups[END_REF] and multiple non-linear separable knapsack [START_REF] D'ambrosio | Relaxations and heuristics for the multiple non-linear separable knapsack problem[END_REF].
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A Computational results on the 100 DCKP instances of Set I Tables A.1 and A.2 report the detailed computational results of the TSBMA algorithm and the reference algorithms (PNS [START_REF] Quan | Design and evaluation of a parallel neighbor algorithm for the disjunctively constrained knapsack problem[END_REF], CPANS [START_REF] Quan | Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem[END_REF] and PTS [START_REF] Salem | Probabilistic tabu search with multiple neighborhoods for the disjunctively constrained knapsack problem[END_REF])

on the 100 DCKP instances of Set I.

The first two columns of the tables give the name of each instance and the best-known objective values (BKV) ever reported in the literature. We employ the following four performance indicators to present our results: best objective value (f best ), average objective value over 20 runs (f avg ), standard deviations over 20 runs (std), and average run time t avg in seconds to reach the best objective value. However, some of the performance indicators of the reference algorithms are not available in the literature (i.e., f avg , t avg and std). Note that for [START_REF] Quan | Design and evaluation of a parallel neighbor algorithm for the disjunctively constrained knapsack problem[END_REF] (PNS) and [START_REF] Quan | Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem[END_REF] (CPANS), the authors reported several groups of results obtained by using different numbers of processors (range from 10 to 400). To make a fair comparison, we take the best f best value of each instance in these groups of results as the final result. We use the average of the t avg values in these groups as the final average run time. The last row #Avg indicates the average value of each column. The 24 new lower bounds discovered by our TSBMA algorithm are highlighted in bold.