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A method is developed to calculate the ligand field (LF) parameters and the multiplet spectra of local magnetic
centers with open d and f shells in solids in a parameter-free way. This method proceeds from density functional
theory and employs Wannier projections of nonmagnetic band structures onto local d or f orbitals. Energies of
multiplets and optical, as well as x-ray spectra are determined by exact numerical diagonalization of a local
Hamiltonian describing Coulomb, LF, and spin-orbit interactions. The method is tested for several 3d and 5 f
compounds for which the LF parameters and multiplet spectra are experimentally well known. In this way, we
obtain good agreement with the experiments for La2NiO4, CaCuO2, Li2CuO2, ZnO:Co, and UO2.
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I. INTRODUCTION

A fundamental problem in electronic structure theory of
solids is the proper description of multiplet effects of local
magnetic centers built up of d or f electrons, which are intrin-
sically many-body states, in translational invariant settings.
Electronic structure calculations based on density functional
theory (DFT) are successful in predicting the atomic posi-
tions, the electronic, magnetic, and state densities in an ab
initio manner with high precision. However, these calculations
use a mean-field potential and one-electron states, and thus
in principle cannot access the many-electron multiplet levels
characterized by strong Coulomb interactions, electron cor-
relations, and spin orbit coupling. However, the structure of
local multiplets is well understood since many years in atomic
physics, mainly based on group theory applied to open-shell
atoms or ions. Such multiplets can persist in solids, either
as sharp levels in the gap of insulators or semiconductors or
as resonances in metals and small gap semiconductors. The
difference to the case of isolated atoms and ions is the appear-
ance of a small number of new parameters which effectively
describe the influence of the surrounding crystal. Tradition-
ally, they are often called crystal field (CF) [1] parameters
since they are partially caused by the electrostatic Madelung
potential in the crystal. However, in most cases, and especially
in the examples of 3d and 5 f compounds we are going to
treat, the hybridization to the neighboring ligands, also known
as ligand fields (LF), makes a much bigger influence and
that is the term which we will prefer here. Without explicit
hybridization with neighboring orbitals, a given set of LF pa-
rameters determines entirely the influence of the environment
on the multiplet structure of a localized open d or f shell.

The knowledge of LF parameters and multiplet spectra is
especially important for strongly correlated systems being of
high actual interest since they may show superconductivity

[2], multiferroism [3,4], or spin liquid behavior [5–7], as
well as many other interesting properties. Recently, new ex-
perimental techniques like resonant inelastic x-ray scattering
(RIXS) lead to important improvements to measure multiplet
spectra for cuprates, nickelates [8,9] and other materials.

In the literature, one can find several approaches to calcu-
late LF or CF parameters. First of all, there are wave function
quantum chemistry methods [10]. However, it is difficult for
these methods to treat a periodic crystal and they become
numerically expensive for heavy ions and large systems. This
motivates attempts to calculate multiplets and LF parameters
in an ab initio style and based on DFT [11–13]. Since we are
dealing here with highly correlated systems it is tempting to
start with the local spin density (LSDA) or spin dependent
generalized gradient approximation (SGGA) corrected for
Hubbard correlation effects, i.e., the LSDA+U or SGGA+U
functionals. And indeed the CF parameters of lanthanide and
actinide dioxides were successfully calculated by Zhu and
Ozoliņš [14] based on the LSDA+U method with occupation
matrix control. However, it is necessary in that case to cor-
rect the LSDA+U functional for self-interaction and double
counting terms and to modify it. Instead, we here use a simpler
method by starting with the original non spin-polarized GGA
functional [15]. Similar to the approach of Ref. [4], we obtain
then the LF parameters by a Wannier fit to the nonmagnetic
band structure. In our method, the strongly correlated 3d and
5 f electrons are included into the charge self-consistency
which is, however, not possible for 4 f electrons. Therefore,
our approach is not directly applicable to 4 f systems, unless
we do not go over to the slightly more sophisticated method
presented in Ref. [12]. Further, in a second step, we use the
LF parameters in an exact diagonalization computer program
to predict the outcome of a multitude of experiments being
sensible to local multiplet effects, i.e., electron paramagnetic
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resonance (EPR), optical spectroscopy, inelastic neutron scat-
tering (INS), x-ray absorption and x-ray magnetic circular
dichroism (XAS and XMCD) as well as resonant inelastic
x-ray scattering (RIXS). That computer program ELISA (elec-
trons localized in single atoms) was successfully used before
to analyze the XAS and XMCD spectra of Mn-based metal-
organic networks [16] so that we will concentrate here on the
other experimental techniques. In the present publication, we
test our method for La2NiO4, CaCuO2, Li2CuO2, Co impuri-
ties in ZnO, and UO2.

In our approach, we calculate the influence of the neigh-
boring ligands on the local one-electron energy levels of the
d or f center, i.e., the LF parameters. We then diagonalize
exactly the local, atomic like, multiplet Hamiltonian and do
not treat the ligand p orbitals explicitly. That is different to
the ab initio multiplet LF theory of Haverkort et al. [17].
Our approach is simpler, and yet fully justified as long as
charge-transfer processes in optics or x-ray spectroscopy are
not at play. Finally, we obtain various ab initio simulations
of multiplet spectra without any adjustable parameters oth-
ers than the line width. Calculating the LF parameters has
also the advantage to establish a connection to traditional
crystal field methods with parameters obtained by fitting to
experimental data.

II. METHOD

The multiplet spectrum of a local d or f center depends
on the local Coulomb interaction, the spin-orbit coupling and
the LF parameters. The Coulomb and spin-orbit parameters
of the free ion can either be obtained by Hartree-Fock calcu-
lations [18,19] or by fitting the optical spectra of free ions.
These data are easily accessible in the NIST data set [20] and
that is the way we follow here. The Coulomb parameter are
usually slightly screened in the solid but we will show that this
screening has only little influence on the multiplet spectrum,
especially in the low-energy part we are mostly interested in.

In a second step, we perform GGA calculations to ob-
tain the non spin-polarized band structure. These density
functional theory calculations were performed here using the
full-potential local-orbital (FPLO) code [21,22]. We have used
the default FPLO basis. The exchange and correlation poten-
tial of Ref. [15] was employed, i.e., the generalized gradient
approximation (GGA) functional. Wannier functions (WF)
were constructed via projection onto the respective d or f
orbitals of a magnetic atom; the site symmetry is fully taken
into account; as it is implemented in the FPLO code [23]. We
first do this ”Wannier fit” for the scalar relativistic case and
obtain then the LF parameters by a fit to the on-site energies of
the Wannier expansion. Next, we perform the same procedure
for the full relativistic, but nonmagnetic GGA functional. That
does not change the LF parameters, but opens the possibility
to calculate also the spin-orbit parameter being reduced in
the solid with respect to the free ion value. A remarkable
reduction was observed for the cuprates which we investigate
and will be discussed in detail later on.

The final step of our method consists in the exact diago-
nalization of an electronic Hamiltonian within the finite state

space of open atomic shell(s) using the ELISA code. That
code is able to treat several electronic configurations, an ar-
bitrary number of electrons in each shell, and contains all the
Coulomb interactions within one shell and between different
shells. The influence of the surrounding ligands is taken into
account by a LF Hamiltonian written in terms of Steven’s op-
erators with appropriate symmetry. The Hamiltonian contains
Coulomb interaction, the ligand field, the spin-orbit coupling,
and the magnetic field:

Ĥ = ĤCoul + ĤLF + ĤSO + ĤB. (1)

In the examples treated in the present study we are going to
consider 2p, 3d, and 5 f shells. To describe x-ray transitions
we have to consider at least two different configurations. The
Coulomb interaction

ĤCoul = 1

2

∑
miσσ ′

Vm1m2m3m4 c†
m1σ

c†
m2σ ′cm3σ ′cm4σ (2)

is treated as in rotationally invariant atoms and parametrized
by Slater parameters. For instance, the Coulomb interaction in
the 3d shell is given by

Vm1m2m3m4 = 25
∑

k=0,2,4

(−1)m1+m4 F (k)

× [
Ck,0

2,2,0,0

]2
Ck,m3−m1

2,2,m3,−m1
Ck,m4−m2

2,2,m4,−m2
(3)

with three Slater parameters F (k) which can also be ex-
pressed by three Racah parameters in the form F (0) = A +
7
5C, F (2) = 49B + 7C, and F (4) = 441

35 C. Ck,m
l1,l2,m1,m−m1

are the
usual Clebsch-Gordon parameters in the 3d shell when l1 =
l2 = 2. A similar expression holds also for the Coulomb in-
teraction in other shells and in between different shells. The
crystal environment influences the spectra by the electrostatic
Madelung potential (crystal field) but also by hybridization
to the neighboring ligands. Since the second contribution is
probably dominant in most cases we prefer the term ligand
field Hamiltonian here. It is a noninteracting Hamiltonian, like
also the spin-orbit coupling and the Zeemann term, which can
be written as

ĤLF + ĤSO + ĤB =
∑

i j

(
hi j

LF + hi j
SO + hi j

B

)
c†

i c j (4)

and which are quadratic in the Fermi creation c†
i and annihi-

lation c j operators with the combined indices i = {m, σ } and
j = {m′, σ ′}. The LF part

hi j
LF = Hmm′δσσ ′ (5)

can be expressed in terms of Steven’s operators. That part is
specific to each of the following examples and will be detailed
there. Finally, the spin-orbit coupling and the Zeemann term

hi j
SO + hi j

B = ζ 〈i|�̂s �̂l | j〉 + μB �B〈i|�̂l + gs�̂s | j〉 (6)

are expressed as matrix elements of the one-particle spin and
orbital momentum operators, and where gs = 2.0023 is the
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free electron gyromagnetic ratio. Please remind, that the pa-
rameters of the one-particle Hamiltonian are obtained by DFT
calculations, but the Coulomb parameters from free ions.

To calculate the optical and x-ray spectra, the dipole tran-
sition probabilities are calculated in the ELISA code as it was
already published for XAS and XMCD [16]. To determine the
RIXS intensity, we use the formula

I (ω) =
∑

f

δ(ωin − ωout − (E f − Ei ))|A f |2, (7)

where ω = ωin − ωout is the energy transfer, the indices i and
f denote initial and final states, respectively, and with the
scattering amplitude

A f = A f (ωin ) =
∑

m

〈 f | �Ein · �r|m〉〈m| �Eout · �r|0〉
ωin − (Em − Ei ) + i�

(8)

where we sum over all intermediate states m. The optical
absorption spectra are calculated by using the approach of
Sugano and Tanabe [24] where the d-d transitions between
two states a and b become possible by combining a parity
changing perturbation Vodd with the dipole operator �P = q · �r
to give the transition probability by

W =
∣∣∣∣ 2

�E
〈a|Vodd �P|b〉

∣∣∣∣
2

, (9)

where �E is the energy difference between the given con-
figuration with incomplete d shell and the first excited
configuration with odd parity. We applied this option of ELISA

to the case of ZnO:Co and specify the parity breaking pertur-
bation later on.

III. RESULTS

A. Nickelate La2NiO4

That compound is a 2D antiferromagnet and an interest-
ing reference material for 2D cuprates since it shares the
same crystal structure. However, in difference to the famous
La2CuO4 [2,25], the local spin is not S = 1/2 but S = 1,
instead. The presence of a 3d8 configuration in a tetragonal
environment allows for interesting multiplet effects and we
will use it here to demonstrate our method. The main fo-
cus is to calculate, without adjustable parameter, the RIXS
spectra of Ni2+ in La2NiO4 which were recently measured
[9] and to compare our method with quantum chemical wave
function methods [26]. To simulate the RIXS spectra, we use
two configurations in the ELISA code, namely, the 3d82p6

ground-state configuration of initial and final states as well
as the excited-state configuration with one core-hole 3d92p5

for the intermediate states of the RIXS scattering process.
The Hamiltonian contains all the Coulomb interactions within
each of the 3d and the 2p shells as well as between both
shells. The influence of the six surrounding oxygen ligands
(tetragonal ligand field) is taken into account by a ligand field
Hamiltonian written in terms of Steven’s operators.

1. Free ion

The above Hamiltonian (1) without the ligand-field HLF

and Zeeman HB parts, describes already very well the energy

TABLE I. Comparison of the experimental free ion levels of Ni2+

from the NIST data set [20] with the ELISA calculation using the
parameters given in the text.

Notation ELISA (eV) NIST (eV)

3F4 0.00 0.00
3F3 0.162 0.168
3F2 0.272 0.281
1D2 1.715 1.739
3P2 2.085 2.066
3P1 2.125 2.105
3P0 2.156 2.136
1G4 2.663 2.865
1S0 6.399 6.513

level scheme of a free Ni2+ ion (NIST data base [20]). That
fixes the intra-d Coulomb parameters to F (2) = 9.8 eV and
F (4) = 6.1 eV, as well as a small spin-orbit coupling in the
3d shell of ζ = 80 meV. The Slater parameter F (0) is not
relevant since initial and final states have the same number
of d electrons. In Table I, we show the very good agreement
between experimental and calculated levels.

2. Wannier fit

Stoichiometric La2NiO4 features an involved phase dia-
gram with an orthorhombic and two tetragonal phases [27].
Since the RIXS measurements were carried out at 20 K [9], at
which the tetragonal P42/ncm structure is dominant [27], we
choose this structure for further analysis. Note that despite the
tetragonal symmetry, the local z axes of neighboring elongated
NiO6 octahedra are neither mutually parallel, nor coincide
with the crystallographic c direction. Moreover, the four short
Ni–O bonds split into two pairs of equivalent bonds with the
lengths of 1.944 and 1.954 Å, respectively. In the following,
we refer to this structure as the experimental structure, to dis-
tinguish it from the simplified (fictitious) I4/mmm structure.
The lattice constants for the latter are chosen so that the con-
stituent NiO6 octahedra have a tetragonal point symmetry and
the Ni–O bond lengths are as close as possible to those of the
experimental structure. Atomic coordinates of both structures
are provided in Table II.

We start with scalar-relativistic calculations on 18 × 18 ×
8 (18 × 18 × 18) mesh of k-points for the experimental
(simplified) structure. Typical for correlated insulators, the
nonmagnetic GGA yields a metallic solution, signalled by
the bands crossing the Fermi level (Fig. 1). Site- and orbital-
resolved densities of states reveal the dominance of Ni 3d
states, with a significant admixture of O 2p states (Fig. 1, right
panels). To construct a minimal model, we perform Wannier
projections onto all Ni 3d states; the local axes that deter-
mine the Wannier orbital basis coincide with the axes of the
respective NiO6 octahedron. We choose the energy window
between −2.4 and 2.2 eV (2 eV for the simplified structure),
the width of the Gaussian tails is 0.3 eV. In this way, we obtain
a good agreement between the Fourier-transformed Wannier
Hamiltonian and the GGA band structure (Fig. 1, left panels).

Since we are interested in local processes, we restrict our
analysis to local hopping terms tii comprising the 5 × 5 onsite
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TABLE II. Atomic coordinates of the experimental (sp. gr.
P42/ncm (138); a = 5.4995 Å, c = 12.5052 Å) and simplified (sp. gr.
I4/mmm (139); a = 3.8983 Å, c = 12.58047 Å) La2NiO4 structures.

experimental La2NiO4 structure (from Ref. [27])

site Wyckoff position x/a y/b z/c

Ni 4d 0 0 0
La 8i −0.0072 −0.0072 0.3639
O 4e 1/4 1/4 −0.0155
O 4a 1/4 3/4 0
O 8i 0.0314 0.0314 0.1771

simplified (fictitious) La2NiO4 structure

site Wyckoff position x/a y/b z/c

Ni 2a 0 0 0
La 4e 0 0 0.6361
O 4c 0 1/2 0
O 4e 0 0 0.8229

Hamiltonian matrix Hii. All Ni sites in either structure are
equivalent, hence it is sufficient to consider a single site i. The
tetragonal crystal-field parameters Dt and Ds as well as the
cubic crystal-field splitting 10Dq are obtained by solving the

FIG. 1. GGA band structures (thin black lines) and Fourier-
transformed Wannier projections onto Ni 3d states (thick green
lines) for the experimental (top) and simplified (bottom) structure of
La2NiO4. Note that the experimental structure features two Ni sites
per cell giving rise to ten 3d bands, while the simplified structure has
only one Ni site per primitive cell, and hence only five bands. The
right panels show the densities of states (DOS): total (gray-shaded),
Ni 3d (green-shaded), and O 2p (blue). For the notation of k vectors,
see Ref. [28]. The Fermi level is at zero energy.

linear problem

⎛
⎜⎝

1 −4 −1 2
1 −4 4 −1
1 6 −6 −2
1 6 −1 2

⎞
⎟⎠

⎛
⎜⎝

ε0

Dq

Dt

Ds

⎞
⎟⎠ =

⎛
⎜⎝

〈dxy|Hii|dxy〉
〈dyz/xz|Hii|dyz/xz〉

〈d3z2−r2 |Hii|d3z2−r2〉
〈dx2−y2 |Hii|dx2−y2〉

⎞
⎟⎠,

(10)
where the coefficients of the matrix are adopted from
Ref. [29]. The vector in the right-hand side of the equation
comprises diagonal elements of Hii listed in Table III together
with the resulting crystal-field parameters for both structures.

Another key parameter that we can extract from DFT
calculations is the 3d-shell spin-orbit coupling constant ζ .
To this end, we perform full-relativistic nonmagnetic GGA
calculations, followed by a wannierization (see Appendix A
for details). We focus again on the onsite Hamiltonian matrix
Hii, which is now a 10 × 10 matrix due to the presence of
two spin channels. Let us start with the simplified structure.
Here, the Hii in Table XIII has precisely the same form as
the sum of the diagonal crystal-field and the atomic spin-orbit
(Table XIV) contributions. Since the latter has only one free
parameter, the spin-orbit coupling constant ζ , we can estimate
it by comparing the respective off-diagonal matrix elements
of Hii with that of Table XIV. Since the latter imply the local
cubic symmetry which is higher than the tetragonal symmetry
of our simplified structure, different matrix elements give
slightly different values of ζ . By averaging over all matrix
elements, we obtain ζ = 73 ± 3 meV.

Now we turn to the more complicated case of the exper-
imental structure. Here, the matrix form of Hii in Table XII
substantially differs from that of the simplified structure. The
reason is twofold. First, the local symmetry of Ni sites is
orthorhombic. As a result, some off-diagonal matrix elements
in the crystal-field Hamiltonian become nonzero. Second, the
x axis of the coordinate system utilized by FPLO does not
coincide with the local x axis of NiO6 octahedra; a 3

4π rotation
would put it in place. While the current version of FPLO does
not allow the user to choose the direction of the x axis, we can
rotate the basis of the matrix describing the atomic SOC such
that it has the same form as our Hii. The technical details of
this transformation are described in Appendix A 3. In this way,
we obtain ζ = 74 ± 2 meV, which is in excellent agreement
with the value obtained for the simplified structure.

3. Multiplet spectra

In the given case of tetragonal symmetry, the ligand-field
part of the Hamiltonian writes:

ĤLF,t = B20Ô0
2 + B40Ô0

4 + B44Ô4
4, (11)

where the explicit expressions of the Steven’s operators are
repeated in the Appendix B. Sometimes, the three crystal field
parameters are expressed differently by

Dq = 12

5
B44, Ds = 3B20, Dt = 12

5
B44 − 12B40. (12)

To calculate the multiplet spectrum (see Table IV), we use
the parameters 10Dq = 1.5835 eV, Ds = 0.0584 eV, and
Dt = 0.0461 eV; corresponding to B44 = 65.98 meV, B40 =
9.35 meV, and B20 = 19.47 meV; as obtained from a Wannier
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TABLE III. Diagonal matrix elements of Hii obtained using Wannier projections onto Ni 3d states for scalar-relativistic (no SOC) and
full-relativistic (with SOC) GGA calculations of the experimental as well as the simplified structure of La2NiO4. The cubic (10Dq) and
tetragonal (Dt , Ds) crystal-field parameters are calculated via Eq. (10). All values are in meV.

experimental structure simplified structure

no SOC with SOC no SOC with SOC

〈dxy|Hii|dxy〉 −1246.7 −1250.1 −1250.6 −1254.9
〈dyz|Hii|dyz〉 −1190.4 −1193.7 −1197.1 −1200.4
〈d3z2−r2 |Hii|d3z2−r2 〉 −1189.7 −1195.8 −1197.1 −1200.4
〈dxz|Hii|dxz〉 −126.8 −130.6 −125.1 −131.2
〈dx2−y2 |Hii|dx2−y2 〉 336.5 333.4 329.8 329.9
10Dq 1583.2 1583.5 1580.4 1584.9
Dt 46.2 46.1 45.1 45.8
Ds 58.1 58.4 57.3 58.1

fit to the bandstructure of the nonmagnetic DFT solution of
La2NiO4 in the realistic tetragonal structure. In Table IV, we
compare the Wannier parameter spectrum with the experi-
mental one as obtained by RIXS, as well as with a spectrum
obtained by a quantum chemical wave function method us-
ing the complete-active-space self-consistent-field (CASSCF)
and multireference configuration-interaction (MRCI) tech-
niques, finding a good agreement.

4. RIXS

To determine the RIXS intensity we use the Eqs. (7) and
(8). For the Ni L3-edge RIXS measurements, the interme-
diate states are those of the 2p53d9 excited configuration,
made of two open shells. They are separated by 855 eV
from the ground configuration containing the initial and
final states. The ELISA program can treat all interactions
within and in between the two configurations. In addition
to the three Coulomb parameters of the 3d shell, we use
the Coulomb interaction of the 2p shell F (2)

2p = 6 eV, inter-

shell Coulomb parameters F (2)
pd = 5.81 eV, G(1)

pd = 4.32 eV,

and G(3)
pd = 2.46 eV. These parameters are obtained from a

Hartree-Fock solution [18,19] of the free ion, but they are not
critical for the RIXS spectra.

The inclusion of the core-hole configuration does not in-
fluence the energy level scheme of the 3d8 configuration. It

TABLE IV. Comparison of multiplet energies of La2NiO4 as
obtained from the ELISA program with LF parameters from a Wannier
fit with quantum chemical calculations (QC) [26] and experimental
RIXS data [9]. (Spin-orbit coupling neglected for simplicity).

Quantum chemistry [26] This work Experiment [9]
Notation (eV) (eV) (eV)

3B1g 0.00 0.00 0.00
3Eg 0.74 1.15 1.06
3B2g 1.30 1.58 1.61
3A2g 1.46 2.04 1.61
1A1g 1.66 1.81 1.61
3Eg 1.73 2.24 2.29
1B1g 1.92 1.94 2.29
1Eg 2.59 3.03 2.93

is just needed to calculate the matrix elements of the scat-
tering amplitude. The energy of the incoming x rays ωin is
chosen such that we integrate over all states of the J = 3/2
manifold, i.e., we restrict ourselves to the L3 edge. The SO
coupling splits the ground-state triplet 3B1g (see Table IV)
into a lower singlet (B2g) and an upper doublet (Eg) which
are separated by 1.1 meV in our approach, and by 2.1 meV in
quantum chemistry [26]. The directions of the electric field for
incoming and outgoing x rays are dictated by the experimental
geometry (see Fig. 8.6 c in Ref. [26]). The incoming x rays
are linearly polarized, either perpendicular (σ polarization) to
the scattering plane or within the scattering plane (π polar-
ization). The c axis is directed perpendicular to the surface
and the incoming x ray has an angle of 
 with the surface.
The angle between incoming and outgoing x rays is fixed to
α = 50◦. Accordingly, the direction of the electric field for the
incoming beam with π and σ polarization is given by

Eπ
in = sin 
�ex + cos 
�ez, Eσ

in = �ey. (13)

For both cases, we sum the intensities for both possible polar-
izations of the outgoing beam, i.e.,

E (1)
out = sin(
 + α)�ex + cos(
 + α)�ez, E (2)

out = �ey. (14)

In Fig. 2, we compare the calculated spectra with experiment
[9]. We choose an income angle of 
 = 20◦ since there exist
detailed data showing a pronounced dichroism for that income
angle. We also calculated the RIXS spectra for other income
angles (not shown) and find generally a good agreement with
experiment as concerns the main peak positions, its relative
weight, and angle dependence. The experimental low-energy
peak at about −0.1 eV energy loss is shifted from the zero
of energy due to a local exchange field of the neighboring
spins in the antiferromagnetic structure which is possible for
an income angle of 
 = 20◦ and is situated at zero energy in
the theoretical curve.

B. High-Tc parent compound CaCuO2

Soon after the discovery of high-Tc superconductivity
in doped La2CuO4 [2], P. W. Anderson [30] realized that
strong correlations in the copper 3d shell and the quasi-
two-dimensional layered structure of this and related copper
oxide compounds are substantial for the understanding of their
physics [25]. The common structural unit for the rich family

085154-5



R. O. KUZIAN et al. PHYSICAL REVIEW B 104, 085154 (2021)

FIG. 2. Comparison of experimental [9] and theoretical RIXS
spectra for π and σ polarization and an income angle of 
 = 20◦

(The Gaussian broadening of the theoretical curve was set to 0.24 eV;
see text for more details).

of cuprate high-Tc superconductors is the CuO2 plane that is
built from corner-shared CuO4 plaquettes. In each plaquette,
the Cu2+ ion is surrounded by a square of four oxygen ligands.
The LF strongly splits the Cu 3d levels so that only the dx2−y2

orbital hybridized with oxygen pσ orbitals contributes to the
states in the vicinity of Fermi energy and defines the low
energy physics of the high-Tc cuprates. The so-called parent
(undoped) compounds contain exactly one hole per CuO4

plaquette. The strong correlations suppress charge fluctua-
tions. The low-energy physics is defined by spin degrees of
freedom. The parent compounds are charge-transfer insulators
described by the antiferromagnetic Heisenberg Hamiltonan.
The localized holes reside mainly on the copper dx2−y2 or-
bitals. A doping introduces extra holes or electrons into the
CuO2 planes. With the increase of carrier concentration, the
system becomes metallic and superconducting.

The CaCuO2 is a so-called infinite-layer compound, with
equal distances between the CuO2 planes, which are separated
only by Ca cations. Under hole doping, the Tc of super-
conductivity reaches 110 K [31]. Recently, the discovery of
superconductivity in hole doped NdNiO2, which is almost
isoelectronic to CaCuO2, renewed the interest to the electronic
structure of this compound [32,33].

This undoped layered cuprate has tetragonal space group
P4/mmm (No. 123) with lattice parameters a = b = 3.86 Å,
c = 3.20 Å. The band structure and projected densities of
states of the nonmagnetic GGA solution are depicted in Fig. 3.
The figure shows that the antibonding mixture of oxygen p
and copper d states (corresponding to five d-like bands in the
band structure) lies within the energy window −3 < ε − εF <

2.5 eV (see Appendix C for the choice of the energy window).
Within this window, we have constructed Wannier functions
having cubic harmonic symmetry (dxy, dxz, dzy, dx2−y2 , and
dz2 ). The dx2−y2 orbital has the highest energy. In the ground
state, a hole occupies this orbital and the d-d excitations cor-
respond to electron transitions from low lying d levels to the
empty dx2−y2 orbital. Thus, the d-d excitation energies can be

FIG. 3. Band structure (thin black lines) and Wannier projection
(thick green lines), as well as densities of states for the high-Tc parent
compound CaCuO2. The Fermi level εF is set to zero.

calculated by the onsite energy differences �i = Ex2−y2 − Ei

(Ex2−y2 = εF − 0.094 eV) for the Wannier functions. These
energy differences are given in the second column of Ta-
ble V and are in good agreement both with sophisticated
quantum chemical calculations [10] and experimental values
from RIXS measurements [8]. Following Ref. [10], the RIXS
energies are corrected by the magnetic energy value �Emagn =
0.26 eV.

Then we find the parameters of the Stevens Hamiltonian
(11) for CaCuO2 as

B44 = 1

24
(Ex2−y2 − Exy) ≈ 69.7 meV, (15)

B40 = B44

5
+ �t

105
− �g

140
≈ 1.4 meV, (16)

B20 = 1

21
(�t + �g) ≈ 123.9 meV. (17)

where we have introduced the notations �t ≡ Exy − (Eyz +
Exz )/2, �g ≡ Ex2−y2 − Ez2 .

Using the so determined LF parameters we can calculate
the multiplet spectrum and the RIXS curves. For a d9 con-
figuration, the energy differences in the multiplet spectrum
coincide with the energy differences of the single electron
spectrum (see Table V) and they are not at all influenced by the
Coulomb parameters. Correspondingly, the peak positions of
the RIXS spectra (see Fig. 4) can be interpreted with the help
of Table V. In the calculated RIXS spectrum without exchange
field [Fig. 4(a)], we can easily distinguish the excitations for
dxy, dxz/dyz, and dz2 orbitals at −1.7, −2.0, and −2.2 eV en-
ergy loss as single peaks or well developed shoulder. However,
the experimental spectrum shows also a magnetic peak due to
magnon excitations at −0.4 eV, which we can simulate in our
calculation by an exchange field of 0.42 eV acting only on the
spin moment and being directed towards the crystallographic

TABLE V. Results for the calculated Cu d-level splitting (in eV)
of CaCuO2 compared with quantum chemical calculations [10] and
RIXS [8]. Magnetic energy �Emagn = 0.26 eV is substracted from
each of the RIXS values [10].

This work QC RIXS

�x2−y2 0 0 0
�xy 1.67 1.36 1.38
�zx,zy 2.04 2.02 1.69
�z2 2.24 2.38 2.39
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FIG. 4. Comparison of experimental (cf. Fig. 2. of Ref. [8]) and
two theoretical (without and with exchange field) RIXS spectra for π

and σ polarization and an income angle of 
 = 20◦ (The Lorentzian
broadening of the theoretical curves was set to 0.23 eV; see text for
more details).

[110] direction as in the experimental magnetic structure. It
should be noted that an exchange field perpendicular to the
Cu-O plane does not lead to a magnetic peak in accordance
with the results of theoretical predictions [34]. Interestingly,
the inclusion of an exchange field improves also the agree-
ment between experiment and theory at large energy loss and
leads to the appearance of peaks between about −2.6 and
−2.7 eV energy loss.

C. Quasi-one-dimensional cuprate Li2CuO2

The compound Li2CuO2 belongs to the family of edge-
shared cuprates (ESC). The states near Fermi energy are
provided by CuO4 plaquets that share their edges and form
CuO2 chains. The ESC compounds represent a particular
class of quantum magnets in which the local geometry gives
rise to competing nearest ferromagnetic or antiferromagnetic
exchange coupling J1 and frustrating antiferromagnetic next-
nearest-neighbor J2 coupling. The one-dimensional spin-1/2
J1-J2 Heisenberg model is one prime example of frustrated
magnetism, where quantum fluctuations can alter both ground
state and spin correlations [35,36]. Due to its simple structure
with flat CuO2 chains, the compound Li2CuO2 was consid-
ered as a model system for studies of the highly nontrivial
magnetism in the edge-shared cuprates [37–48]. Almost two
decades passed from the determination of the crystal and mag-
netic structures of Li2CuO2 [37] to a reliable determination
of main magnetic interactions within and between the CuO2

chains [42,49]. This allowed understanding the thermodynam-
ics of the compound [43,45,48] and to demonstrate how the
charge-transfer excitation spectra having the scale of several
eV are governed by correlations in the spin system with an
energy scale ∼0.01 eV. This results in strong temperature
dependence of the spectra [41,44,46,47].

The space group of the crystal structure is Immm (No.
71), lattice parameters are a = 3.65445, b = 2.86022, and

FIG. 5. Band structure (thin black lines) and Wannier projection
(thick green lines), as well as densities of states for the quasi-one-
dimensional cuprate compound Li2CuO2.

c = 9.3774 Å. The CuO2 chains run along b direction in
the crystal bc plane. The copper site has D2h(mmm) point
group symmetry. It is convenient to take the local coordinate
system with the center on the Cu site and the x axis directed
along the crystallographic b direction, axis y ‖ c, and z ‖ a.
This coordinate system is rotated by π/4 around the z axis
compared to the one used for CaCuO2. Figure 5 shows that in
Li2CuO2 the antibonding mixture of oxygen p and copper d
states lies within an energy window −3 < ε − εF < 0.55 eV.

In the ground state of Li2CuO2, a hole occupies the dxy

orbital that lies in the bc plane (Exy = εF − 0.17 eV; that
orbital would correspond to the dx2−y2 orbital if we would have
chosen the same coordinate system as in CaCuO2). Because
of orthorhombic symmetry, the dzy and dzx orbitals are not
degenerated and, moreover, a nondiagonal matrix element
V = 〈dx2−y2 |ĤLF |dz2〉 is not prohibited by symmetry. How-
ever, V ≈ 0 for the chosen energy window [see Fig. 8(b) in
Appendix C]. The LF Hamiltonian for the Cu site in Li2CuO2

acquires additional terms compared with ĤLF,t (11)

ĤLF,o = ĤLF,t + B22Ô2
2 + B42Ô2

4. (18)

The parameters of ĤLF,t found from Eqs. (15)–(17) are B40 ≈
−0.55, B44 ≈ −79.1, and B20 ≈ 108.1 meV. The other param-
eters are

B42 = − 1

42
(Ezx − Ezy) ≈ 3.5 meV, (19)

B22 = −3B42 ≈ −10.5 meV. (20)

Table VI shows that the energy of d-d excitations obtained
from the Wannier function Hamiltonian are in good agreement
with the values measured in RIXS experiments and calculated
by the elaborated quantum chemical approach [50].

TABLE VI. Results for the calculated Cu d-level splitting (in
eV) of Li2CuO2 compared with quantum chemical calculations and
RIXS [50].

This work QC RIXS

�xy 0 0 0
�zx 1.82 2.02 2.1
�zy 1.96 2.09 2.1
�x2−y2 1.90 1.55 1.7
�z2 2.28 2.85 2.6
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A magnetic induction Bα , α = x, y, z applied along a sym-
metry axis α splits the ground state doublet according to the
effective spin-Hamiltonian

Ĥs = gαμBŝαBα. (21)

The g factors are precisely determined in electron paramag-
netic resonance experiments. The reported values for Li2CuO2

are ga ≈ 2.264, gb ≈ 2.047, and gc ≈ 2.033 [40]. The devia-
tion of g factors from the free electron value gs characterizes
the partial unquenching of the orbital moment due to the
spin-orbit interaction.

To calculate the g factors, we need, besides the LF pa-
rameters, also the spin-orbit coupling ζ . For that purpose,
we performed a Wannier fit for the full-relativistic but non-
magnetic GGA calculation of Li2CuO2 (see Appendix A 2).
In contrast to La2NiO4, we observe a strong covalency re-
duction k and large deviations from spherical symmetry. The
covalency reduction of the free ion spin-orbit (SO) coupling
λ0 = −103 meV of Cu2+ [20] is defined as ζ = −kλ0. (Here,
ζ has a positive sign since it is defined for single electrons,
whereas λ is defined for the total spin and is negative). Despite
the fact that the covalency reduction is usually applied when
the rotational symmetry is preserved, we feel justified in the
present case of Li2CuO2 to take into account only the SO
matrix elements with the dxy ground state where the hole
resides predominantly. An average over the three relevant ma-
trix elements gives k = 0.57 which can be used in the ELISA

program to calculate the g factors. With such a procedure we
obtain high precision of the low-lying part of the multiplet
spetrum but accept deviations at higher energies.

In the given special case of a d9 configuration, we have a
more precise way of determining the g factors by diagonaliza-
tion of the on-site Hamiltonian matrix in the basis of Wannier
functions obtained in the full-relativistic calculation. The cal-
culation (see Appendix A 2 for the details) gives gz ≈ 2.255,
gx ≈ 2.062, and gy ≈ 2.053, that is in good agreement with
the experimental values. The calculation thus confirms the
strong reduction of spin-orbit coupling in Li2CuO2.

D. Diluted magnetic semiconductor Co doped ZnO

Co- or Mn-doped ZnO and similar systems were thor-
oughly studied as diluted magnetic semiconductors in which
room-temperature ferromagnetism was predicted due to
p-doping [51]. A ferromagnetic-like behavior at room tem-
perature was indeed observed in some samples of ZnO:Co and
other doped oxides [52–55]. The origin of this behavior is still
under debate [52,56].

The nonmagnetic Zn2+ ion of the host lattice is substituted
by the Co2+ impurity ion having three holes in the 3d shell
and an effective spin S = 3/2. One of the fingerprints of the
intrinsic magnetism in ZnO:Co is a strong easy-plane mag-
netic anisotropy [57]. The anisotropy is due to the single-ion
anisotropy of Co2+, which is the consequence of the d-level
splitting by the trigonal ligand field generated by a tetrahedral
oxygen surrounding [58].

ZnO has wurtzite structure (space group P6/mmm No.
186) with lattice parameters a = b = 3.2427 and c = 5.1948.
A unit cell contains two formula units. The Co impurity
is modeled here by the supercell method: we perform DFT

FIG. 6. Band structure (thin black lines) and Wannier projection
(thick purple lines), as well as densities of states for a CoZn15O16

(2 × 2 × 2) supercell with relaxed positions of Co and its oxygen
neighbors.

calculations for periodic system with unit cells CoZn7O8

(containing 4 = 2 × 2 × 1 primitive wurtzite unit cells) and
CoZn15O16 (8 = 2 × 2 × 2); one Zn atom in the supercell
being substituted by Co. The positions of Co and of the
surrounding oxygens were relaxed. The 3d states of Co form
a narrow band within the energy window −0.75 < E = εF <

0.2 (see Fig. 6).
For the trigonal field the Hamiltonian in terms of Stevens

operators may be written as

ĤLF = Ĥcub + Ĥtrig, (22)

Ĥcub = −2

3
B0

4

(
Ô0

4 − 20
√

2Ô3
4

)
,

Ĥtrig = B′
2Ô0

2 + B′
4Ô0

4. (23)

The basis of real functions

|x〉 =
√

2

3
|x2 − y2〉 −

√
1

3
|zx〉,

|y〉 = −
√

2

3
|xy〉 −

√
1

3
|zy〉,

|z〉 = |z2〉, (24)

|v〉 =
√

1

3
|x2 − y2〉 +

√
2

3
|zx〉,

|w〉 = −
√

1

3
|xy〉 +

√
2

3
|zy〉

diagonalizes the cubic part of ĤLF (C3 axis along z) with an
energy splitting �. The three basis functions |x〉, |y〉, and
|z〉 build up the t2g representation of the tetrahedral cubic
group and |v〉, |w〉 span up the eg subspace. The corre-
sponding diagonal on-site matrix-elements are Ez − Ed =
(2/5)� − (2/3)v, Ex − Ed = Ey − Ed = (2/5)� + v/3,
and Ev − Ed = Ew − Ed = −(3/5)�, all counted from
Ed = (2Ex + Ez + 2Ev )/5, which is the d-level energy in the
absence of ligand field. The trigonal part Ĥtrig splits the t2g

level (Ex − Ez ≡ v) and has nondiagonal matrix elements
〈x|Ĥtrig|v〉 = 〈y|Ĥtrig|w〉 ≡ −v′.

We have constructed Wannier functions via projection on
the combinations of the 3d-orbitals given by Eqs. (24). The
values of the on-site Wannier matrix are given in the first four
rows of Table VII. The LF parameters are then found by using
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TABLE VII. Values (in meV) of the on-site Wannier matrix and
the LF parameters of ZnO:Co to be used in ĤLF. The LF parameters
obtained by a Wannier fit are compared with two LF parameter sets
obtained by fitting to optical spectra [59] or using a point charge
model [60].

2 × 2 × 1, 2 × 2 × 2, Koidla Macfarlaneb

Ed − EF −250.3 −278.6
Ex − Ed 199.5 229.2 193.4 181.8
Ez − Ed 281.8 273.7 208.3 231.4
Ev − Ed −340.4 −366.0 −297.6 −297.6
v′ −81.1 −52.7 −39.7 −43.4
v −82.3 −44.5 −14.9 −49.6
� 567.4 610.0 495.9 495.9
B0

4 −4.0 −4.65 −3.86 −3.74
B′

4 1.8 1.12 0.71 1.01
B′

2 7.0 4.98 4.64 3.48

aReference [59].
bReference [60].

the relations (see also [58]):

B0
4 = 1

120
(Ev − Ex ) ≈ −4.6 meV,

B′
4 = − 1

140

(
Ex − Ez + 3v′√2

2

)
≈ 1.1 meV,

B′
2 = 1

21

(
Ex − Ez − 2v′√2

) ≈ 5.0 meV. (25)

The Wannier functions of the fully relativistic non spin-
polarized GGA functional lead to identical LF parameters
and allow to calculate also the spin-orbit couplings. The
corresponding on-site matrix shows medium deviations from
spherical symmetry, in between the weak deviations for
La2NiO4 and the strong ones for Li2CuO2. Since in the given
case of a d7 configuration all SOC matrix elements are im-
portant for the g factors and the multiplet spectrum, we take
an average over the four different numerical values of SOC
matrix elements to obtain ζ = 58.6 meV, quite close to the
value of 53.3 meV estimated by Koidl from a fit to the optical
absorption spectra [59].

With these LF and SOC parameters, we calculated the
multiplet spectrum, the zero field splitting (ZFS), the g factors,
and the optical spectrum with the help of the ELISA code. The
less critical Coulomb parameters F (2) = 7.65 eV and F (4) =
5.46 eV were taken as in Ref. [59]. These parameters lead
to a reasonable agreement with the experimental multiplet
spectrum, as visible in several absorption bands of ZnO:Co
[59]. In Table VIII, we compare the average position of each
band, i.e. the spectrum where SO coupling and trigonal dis-
tortion are neglected. The ELISA code reproduces also the fine
structure very well which is demonstrated in Table IX for the
4T2 absorption band lying in the infrared region.

The lowest 4A2 multiplet of ZnO:Co corresponds to an
effective spin 3/2 system with an easy plane anisotropy [58]
visible in a zero field splitting (ZFS) between a lower and
an upper doublet. In Table X, we compare ZFS and g-factors
obtained from the ELISA code using Wannier parameters with
experimental results, finding a good agreement in general.

TABLE VIII. Multiplet energies of Co2+ in ZnO as measured
by optical absorption [59] in comparison to those calculated by the
ELISA program with LF parameters from a Wannier fit. Tabulated are
the main levels without fine structure.

Experiment [59] This work
Notation (eV) (eV)

4A2 0.00 0.00
4T2 0.51 0.61
4T1 0.84 1.05
2E 1.88 1.95
4T1 2.04 2.21

A more precise comparison of the theoretical multiplet
spectrum with the optical absorption spectra demands also
the calculation of the dipole matrix elements which is done
here following the approach of Sugano and Tanabe [24] (9).
In the case of ZnO:Co, the parity breaking perturbation is
due to the lack of inversion symmetry in the tetrahedron and
the trigonal distortion. That perturbation can be expressed in
terms of spherical harmonics in the form

Vodd = B3

(√
5

2
Y 0

3 + Y +3
3 + Y −3

3

)
. (26)

As in the experiment [59], we distinguished two polarizations,
the linear π polarization along the z axis and the circular
polarizations σ+ and σ− within the x-y plane which are, how-
ever, identical without external magnetic field. We explain in
Appendix D how the dipole matrix element (9) simplifies for
these two polarizations and show in Fig. 7 the optical absorp-
tion with π and σ polarization for the 4T2 band. In the upper
panel, we choose LF parameters such that they represent the
experimental spectra [59] in an optimal way (� = 465.7 meV,
v = −14.9 meV, and v′ = −39.7 meV, being slightly
improved with respect to the values given in Ref. [59]). The
resulting curves coincide with the experimental spectra with
respect to the peak positions and the relative heights but can-
not reproduce the phonon side-band which is visible in the
experimental spectra between 2.2 and 2.4 μm wavelength. In
the lower panel of Fig. 7, we show the same 4T2 band, but
calculated with the Wannier parameter set. We find a good
agreement with the upper panel and with experiment, besides

TABLE IX. Fine structure of the 4T2 band in ZnO:Co; com-
parison between the ELISA multiplet calculation using parameters
explained in the text and experimental date. The lowest level of the
band has been set to zero in both cases.

This work Experiment [59]
Notation (meV) (meV)

E3/2 0.0 0.00
E1/2 5.9 2.4
E1/2 17.3 12.2
E3/2 40.5 38.2
E1/2 50.8 42.1
E1/2 63.7 55.1
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TABLE X. Comparison of g-factors and ZFS of Co2+ in ZnO.

This work Sati [57] Koidl [59]

ZFS/cm−1 5.98 5.52 5.4
gz 2.22 2.236
gx = gy 2.25 2.277

a general shift of about 0.75 μm due to an overestimation of
the cubic LF splitting � in the Wannier fit.

E. Actinide oxyde UO2

To test the applicability of our approach to a 5 f -electron
system, we have chosen UO2, whose importance as a nuclear
fuel makes it an object of intensive studies. It is an antiferro-
magnetic insulator. However, that is not correctly reproduced
by standard spin-polarized DFT calculations without Hubbard
U correction (LSDA or SGGA functionals) [63] who find
metallic behavior. To obtain correct total energies for the
study of point defects, diffusion, or thermodynamic proper-
ties it is important to combine the DFT+U functionals with
the occupation matrix control [64] to avoid spurious local
minima. In such a way, also the LF parameters of UO2 had
been calculated modifying the standard SGGA+U functional
[14]. However, we will show now that the much more simple
Wannier function method leads already to correct results.

The U4+ ion has 5 f 2 configuration and is surrounded by
four oxygen ions forming an ideal tetrahedron. The ligand
field has a cubic symmetry and is described by the effective
Hamiltonian

ĤLF,c = B4
(
Ô0

4 + 5Ô4
4

) + B6
(
Ô0

6 − 21Ô4
6

)
. (27)

FIG. 7. Optical absorption spectra of the 4T2 band in ZnO:Co
with π and σ polarization as calculated from the ELISA code with
parameters fitted to the experimental result [59] (a) or Wannier
parameters (b). The width of the Gaussian broadening increases
linearly from 0.1 to 1 meV going from lower to higher energies.

TABLE XI. The parameters and resulting energies (in meV)
for UO2.

This work LDA+U a INSb INSc

V4 −146 −93 −123 −116.2
V6 34 16 26.5 25.8
F 2 5339.3 5649 5339.3
F 4 4562.9 3774 4562.9
F 6 3607.2 2791 3607.2
ζ 222.7 230 222.7
�5 0 0 0 0
�3 165.1 125.7 150.1 150
�4 169.7 156.3 166.7 158
�1 175.5 174.0 174.8 170

aReference [14].
bReference [61].
cReference [62].

The common notations for its two parameters are [61,65]

B4 ≡ V4β, β = 2

11 · 45
, (28)

B6 ≡ V6γ , γ = − 4

11 · 13 · 27
. (29)

To perform the Wannier fit we use the non-spin-polarized
GGA band structure of UO2 (not shown). There, the 5 f
bands are localized close to the Fermi energy and well
separated from the rest of the spectrum. Using an energy
window between −1.0 and 2.2 eV, we find the Wannier
function on-site matrix given in Table XVI. The Wannier
functions are found by projecting onto 5 f real spherical
harmonics, as defined in Ref. [22]. The on-site Wannier
matrix can be easily diagonalized leading to the exact an-
alytical eigenvalues and eigenfunctions given in Ref. [65].
The eigenenergies of the on-site Wannier matrix in the
notation of Ref. [65] are (in meV) E (�2) = 1212.0 + εF ,
E (�5) ≡ E (�2) + V = 318.3 + εF and E (�4) ≡ E (�2) +
V ′ = 393.9 + εF . From these energy differences, one can cal-
culate the LF parameter values using the exact expressions of
Ref. [65]:

B4 = −V + 3V ′

2640
, (30)

B6 = 9V − 5V ′

110 880
. (31)

The so obtained LF parameters are compared in Table XI with
those obtained by the elaborated LSDA+U calculation with
occupation matrix control [14], and with parameter sets due to
fitting to inelastic neutron scattering experiments [61,62]. The
Wannier LF parameter are then also used in the ELISA program
to calculate the multiplet structure of the 5 f 2 configuration.
For simplicity, we used the same SO and Coulomb parameter
as in [61]. The lowest multiplet of the 5 f 2 configuration is
3H4 which is split by the cubic ligand field into the levels
given in Table XI. We find a very good agreement despite the
numerical simplicity of our approach.
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IV. DISCUSSION

The good agreement between our ab initio calculated LF
parameters and experimentally well established values for the
treated examples demonstrates that there are indeed only two
main contributions to the LFs: the electrostatic potential in
the crystal and hybridization to the neighboring ligands (see
also Refs. [66,67]). One can also conclude that the electron-
electron interaction has only a small influence. There is only
one exception in the list of materials which we treated: it is
ZnO:Co where the calculated cubic splitting � (or B0

4) ex-
ceeds the experimental value considerably. The cubic splitting
is mainly determined by the energy distance between d and
p levels [58] which is probably not correctly calculated in
GGA. It was shown by the authors of Ref. [12] that the relative
position of the ligand levels with respect to the d or f bands is
influenced by electron correlation effects for which they used
this energy distance as a free parameter in their method to
determine CF (or LF) parameters.

Due to the rather simple origin of the LF parameters it
can also be expected that the filling of the d or f shell in
otherwise similar compounds does not drastically change the
LF parameters, reflecting their one-electron character. In that
respect, it is instructive to compare the two treated tetragonal
cases, La2NiO4 and CaCuO2 which show a similar d-level
ordering with one exception: the position of the dz2 and dxy

orbitals are exchanged. That can be explained by the absence
of the apex oxygen in the infinite layer compound CaCuO2.
Since it is just this apex oxygen which pushes the dz2 level
higher in energy such that it becomes most close to the dx2−y2

orbital.
The results of our method depend in a sensitive way on

the choice of the energy window for the Wannier fit. The
dependence is less critical when the d or f band is well
separated from the rest of the band structure as for UO2,
or when the overlap is small as for La2NiO4 or ZnO:Co. In
these situations the energy window has just to encompass the
relevant bands and increasing its width does not alter the LF
parameters in a sensitive case as it is shown in Appendix C
for ZnO:Co. The choice of the energy window is more critical
when there is no clear separation as for CaCuO2. In that case
we fix the lower limit of the energy window such that it
separates the antibonding d-like states from the bonding ones
(see Appendix C), but there remains an error of the Wannier
matrix elements Hii which we estimate to be about 0.1 eV.
In the case of a good separation the error is about ten times
smaller.

We call our method ab initio but we do not under-
stand that in the most strict sense. So, we propose to add
a level broadening by hand to simplify the comparison
with the experimental spectra. Also, we have shown that,
occasionally, an adjustable exchange field improves the RIXS
spectra for cuprates. This latter should be understood as aris-
ing from the antiferromagnetic nearest neighbor exchange
couplings in the CuO2 plane which are not explicitly included

in our Hamiltonian, but nevertheless physically very well jus-
tified.

A possible improvement of our method is to relax the
condition of spherical symmetry for SOC first, and after that
also for the Coulomb interaction, two secondary effects of
reducing the symmetry in the crystal. That introduces many
new parameters, but the example of Li2CuO2 shows that they
can be calculated from the Wannier fit. To perform an anal-
ogous procedure for the Coulomb interaction demands more
work.

The method which we propose is close in spirit to Ref. [12]
but applied here to less correlated 3d and 5 f electrons in con-
trast to the 4 f systems there. Treating the energy difference to
the ligand levels as free parameter might sometimes improve
the resulting LF parameters. However, in most cases which
we considered, we found such a correction not necessary,
except for ZnO:Co as mentioned above. Importantly, we do
not only calculate the LF parameter, but also the multiplet
spectra and many spectroscopical curves. That is similar to
Ref. [17] where, however, the ligand orbitals are explicitely
treated in the exact diagonalization procedure to calculate the
multiplet spectra which breaks the relation to the traditionally
known LF parameters.

V. CONCLUSION

We present a simple, general, and precise method of calcu-
lations of the multiplet spectrum and the relevant experimental
spectra of local magnetic d and f centers in solids in an ab
initio manner. The method combines the Wannier analysis of
the nonmagnetic GGA band-structure with an exact diagonal-
ization method of the local, atomic like, multiplet Hamiltonian
containing Coulomb, spin orbit, and ligand field interactions.
Despite its simplicity our method is remarkably precise. That
gives us confidence to predict the multiplet structure of less
well known systems. The precision we obtained is sufficient
to classify the relevant spectroscopic terms.

ACKNOWLEDGMENTS

This work was supported by the National Academy of Sci-
ences of Ukraine (Project No. III-4-19). We especially thank
Manuel Richter and Liviu Hozoi for detailed discussions on
the subject. We also thank Shi Lei, Ibrahim Mansouri, and
Maen Salman for preliminary calculations at an early stage of
the project, as well as Ulrike Nitzsche, Claude Arnold, and
Andrey Likhtin for technical assistance, and the IFW Dresden
(Germany) for the use of their computer facilities. We had
valuable discussions with Valentina Bisogni, Yuri Ralchenko,
Michael Kuzmin, and Michel Freyss on several subjects of
the presented work, for which we are very grateful. O.J. was
supported by the Leibniz Association through the Leibniz
Competition.

085154-11



R. O. KUZIAN et al. PHYSICAL REVIEW B 104, 085154 (2021)

TABLE XII. On-site Hamiltonian Hii obtained by wannierization of the full-relativistic band-structure for the experimental structure of
La2NiO4. All values are in meV.

|xy, ↑〉 |yz, ↑〉 |3z2−r2, ↑〉 |xz, ↑〉 |x2−y2,↑〉 |xy, ↓〉 |yz, ↓〉 |3z2−r2, ↓〉 |xz, ↓〉 |x2−y2, ↓〉

〈xy, ↑| −1250.1 21.9 −0.2i −4.3i 69.7i 0.0 −26.0−26.0i 0.0 −25.7+25.7i −5.4+5.4i
〈yz, ↑| 21.9 −1193.7 −6.0i 39.0i −2.9i 26.0+26.0i 0.0 −45.5+45.5i −2.4+2.4i −25.3+25.3i

〈3z2−r2, ↑| 0.2i 6.0i −130.6 3.0 6.1 0.0 45.5 − 45.5i 0.0 45.9+45.9i 0.0
〈xz, ↑| 4.3i −39.0i 3.0 −1195.8 −0.5 25.7 − 25.7i 2.4 − 2.4i −45.9−45.9i 0.0 25.6+25.6i
〈x2−y2, ↑| −69.7i 2.9i 6.1 −0.5 333.4 5.4 − 5.4i 25.3 − 25.3i 0.0 −25.6−25.6i 0.0
〈xy, ↓| 0.0 26.0 − 26.0i 0.0 25.7+25.7i 5.4+5.4i −1250.1 21.9 0.2i 4.3i −69.7i
〈yz, ↓| −26.0+26.0i 0.0 45.5+45.5i 2.4+2.4i 25.3+25.3i 21.9 −1193.7 6.0i −39.0i 2.9i

〈3z2−r2, ↓| 0.0 −45.5−45.5i 0.0 −45.9+45.9i 0.0 −0.2i −6.0i −130.6 3.0 6.1
〈xz, ↓| −25.7−25.7i −2.4−2.4i 45.9 − 45.9i 0.0 −25.6+25.6i −4.3i 39.0i 3.0 −1195.8 −0.5
〈x2−y2, ↓| −5.4−5.4i −25.3−25.3i 0.0 25.6 − 25.6i 0.0 69.7i −2.9i 6.1 −0.5 333.4

APPENDIX A: AB INITIO DETERMINATION OF SPIN-ORBIT COUPLING PARAMETERS

1. On-site Hamiltonians Hii obtained by wannierization of full-relativistic band-structures of La2NiO4

The on-site Hamiltonians obtained by wannierization of the full-relativistic band-structures are given in Table XII for the
experimental crystal structure and in Table XIII for the simplified crystal structure. The corresponding crystal structures are
explained in the main text.

2. Spin-orbit interaction

The spin-orbit interaction Hamiltonian (6) may be rewritten as

ĤSOC = ζ

2

∑
i

[
2l̂ z

i ŝz
i + l̂+

i ŝ−
i + l̂−

i ŝ+
i

]
, (A1)

where the summation goes over electrons. We will write its matrix in the basis of real spherical harmonics |m, σ 〉, where m =
xy, yz, 3z2 − r2, xz, x2 − y2, σ = ±1/2. The matrix element values

〈m, σ |2l̂ z ŝz + l̂+ŝ− + l̂−ŝ+|m′, σ ′〉 = 2σδσ,σ ′ 〈m|l̂ z|m′〉 + δσ,−1/2δσ ′,1/2〈m, |l̂+|m′〉 + δσ,1/2δσ ′,−1/2〈m|l̂−|m′〉 (A2)

are given in Table XIV. This matrix we compare with the nondiagonal part of the Hamiltonian matrix in the basis of Wannier
functions obtained in the full-relativistic calculation for La2NiO4 (see previous section) and Li2CuO2 (Table XV). We may see
that the full matrix of Li2CuO2 cannot be described by a single parameter ζ because the Wannier functions are not spherically
symmetrical and has contributions from different sites. But to calculate the response of the system to the application of a magnetic
field we need only the ground state Kramers doublet. This doublet contains the dxy orbital with an admixture of other dm orbitals
coupled to it by the spin-orbit interaction. The exact diagonalization of the matrix gives the doublet wave functions

|ψ0,↑〉 = 0.9993|xy,↑〉 − 0.0319i|x2 − y2,↑〉 + 0.0134|yz,↓〉 + 0.0157i|xz,↓〉, (A3)

|ψ0,↓〉 = 0.9993|xy,↓〉 + 0.0319i|x2 − y2,↓〉 − 0.0134|yz,↑〉 + 0.0157i|xz,↑〉. (A4)

TABLE XIII. On-site Hamiltonian Hii obtained by wannierization of the full-relativistic band-structure for the simplified structure of
La2NiO4. All values are in meV.

|xy, ↑〉 |yz,↑〉 |3z2−r2, ↑〉 |xz, ↑〉 |x2−y2, ↑〉 |xy, ↓〉 |yz,↓〉 |3z2−r2,↓〉 |xz, ↓〉 |x2−y2, ↓〉
〈xy, ↑ | −1254.9 0.0 0.0 0.0 69.2i 0.0 36.8 0.0 −36.8i 0.0
〈yz, ↑ | 0.0 −1200.4 0.0 38.9i 0.0 −36.8 0.0 −64.3i 0.0 −35.3i
〈3z2−r2, ↑ | 0.0 0.0 −131.2 0.0 0.0 0.0 64.3i 0.0 −64.3 0.0
〈xz, ↑ | 0.0 −38.9i 0.0 −1200.4 0.0 36.8i 0.0 64.3 0.0 −35.3
〈x2−y2, ↑ | −69.2i 0.0 0.0 0.0 329.9 0.0 35.3i 0.0 35.3 0.0
〈xy, ↓ | 0.0 −36.8 0.0 −36.8i 0.0 −1254.9 0.0 0.0 0.0 −69.2i
〈yz, ↓ | 36.8 0.0 −64.3i 0.0 −35.3i 0.0 −1200.4 0.0 −38.9i 0.0
〈3z2−r2, ↓ | 0.0 64.3i 0.0 64.3 0.0 0.0 0.0 −131.2 0.0 0.0
〈xz, ↓ | 36.8i 0.0 −64.3 0.0 35.3 0.0 38.9i 0.0 −1200.4 0.0
〈x2−y2, ↓ | 0.0 35.3i 0.0 −35.3 0.0 69.2i 0.0 0.0 0.0 329.9
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TABLE XIV. The matrix of SO interaction in the basis |m, ms〉.

|xy, ↑〉 |yz,↑〉 |3z2 − r2, ↑〉 |xz,↑〉 |x2 − y2, ↑〉 |xy, ↓〉 |yz,↓〉 |3z2 − r2,↓〉 |xz, ↓〉 |x2 − y2, ↓〉
〈xy, ↑| 0 0 0 0 2i 0 1 0 −i 0
〈yz, ↑| 0 0 0 i 0 −1 0 −i

√
3 0 −i

〈3z2 − r2, ↑| 0 0 0 0 0 0 i
√

3 0 −√
3 0

〈xz, ↑| 0 −i 0 0 0 i 0
√

3 0 −1
〈x2 − y2, ↑| −2i 0 0 0 0 0 i 0 1 0
〈xy, ↓| 0 −1 0 −i 0 0 0 0 0 −2i
〈yz, ↓| 1 0 −i

√
3 0 −i 0 0 0 −i 0

〈3z2 − r2, ↓| 0 i
√

3 0
√

3 0 0 0 0 0 0
〈xz, ↓| i 0 −√

3 0 1 0 i 0 0 0
〈x2 − y2, ↓| 0 i 0 −1 0 2i 0 0 0 0

The g factors entering in the effective spin-Hamiltonian (21) are then calculated as

gα = 2|〈ψ0,↑|l̂α + gsŝ
α|ψ0,↑〉|. (A5)

3. Rotation of the atomic spin-orbit coupling matrix

While the rotation of the full 10 × 10 matrix is cumbersome, it can be largely simplified if we restrict ourselves to the t2g basis

states. Here, the respective basis transformation reduces to the rotation of orbital angular momentum matrices L′ R−→ L which
can be done using conventional rotation matrices R (here, we rotate by 3

4π around the z axis):

H
t2g

SOC = ζL′ · S = ζ
(

R 3π
4 zLRT

3π
4 z

)
· S

= ζ

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −
√

2
2 −

√
2

2 i −
√

2
2 +

√
2

2 i

0 0 i
√

2
2 +

√
2

2 i 0 0

0 −i 0
√

2
2 −

√
2

2 i 0 0

0
√

2
2 −

√
2

2 i
√

2
2 +

√
2

2 i 0 0 0

−
√

2
2 +

√
2

2 i 0 0 0 0 −i

−
√

2
2 −

√
2

2 i 0 0 0 i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

Here, L and S are orbital and spin angular momentum operators in the matrix form. The rotation matrix is given in the
(xy, yz, xz) = (z, x, y) basis and for the 3

4π rotation around z equals to

R 3π
4 z =

⎛
⎜⎝

1 0 0

0 −
√

2
2

√
2

2

0 −
√

2
2 −

√
2

2

⎞
⎟⎠. (A7)

TABLE XV. The matrix of the Hamiltonian (in meV) in the basis of Wannier functions obtained in the full-relativistic calculation
for Li2CuO2.

|xy, ↑〉 |yz, ↑〉 |3z2 − r2, ↑〉 |xz,↑〉 |x2 − y2, ↑〉 |xy, ↓〉 |yz, ↓〉 |3z2 − r2, ↓〉 |xz, ↓〉 |x2 − y2, ↓〉
〈xy, ↑| −171.31 0 0 0 62.20i 0 27.14 0 −29.49i 0
〈yz, ↑| 0 −2135.16 0 39.44i 0 −27.14 0 −75.896i 0 −43.74i
〈3z2 − r2, ↑| 0 0 −2456.79 0 0 0 75.896i 0 −75.83 0
〈xz, ↑| 0 −39.43i 0 −1989.89 0 29.49i 0 75.83 0 −44.24
〈x2 − y2, ↑| −62.20i 0 0 0 −2075.00 0 43.74i 0 44.24 0
〈xy, ↓| 0 −27.14 0 −29.49i 0 −171.31 0 0 0 −62.20i
〈yz, ↓| 27.14 0 −75.896i 0 −43.74i 0 −2135.15 0 −39.44i 0
〈3z2 − r2, ↓| 0 75.896i 0 75.83 0 0 0 −2456.79 0 0
〈xz, ↓| 29.49i 0 −75.83 0 44.24 0 39.44i 0 −1989.89 0
〈x2 − y2, ↓| 0 43.74i 0 −44.24 0 62.20i 0 0 0 −2075.00
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APPENDIX B: STEVENS OPERATORS

Traditionally, the one-particle ligand field Hamiltonian is expressed in terms of Stevens equivalent operators [65]. Here we
give the formulas for operators that was used in this work. For d-electron systems, the ligand field is expressed via the operators
of second

Ô0
2 = 3l̂2

z − l (l + 1), Ô2
2 = 1

2

(
l̂2
+ + l̂2

−
)
, (B1)

and fourth order

Ô2
4 = 1

4

{[
7l̂2

z − l (l + 1) − 5
](

l̂2
+ + l̂2

−
) + (

l̂2
+ + l̂2

−
)[

7l̂2
z − l (l + 1) − 5

]}
, (B2)

Ô0
4 = 35l̂4

z − 30l (l + 1)l̂2
z + 25l̂2

z − 6l (l + 1) + 3l2(l + 1)2, (B3)

Ô4
4 = 1

2

(
l̂4
+ + l̂4

−
)
, (B4)

Ô3
4 = 1

4

{
l̂z(l̂3

+ + l̂3
−) + (

l̂3
+ + l̂3

−
)
l̂z
}
, (B5)

where l̂z, l̂+, and l̂− are angular momentum operators. For f -electron systems, the sixth-order operators appear

Ô0
6 = 231l̂6

z − 315l (l + 1)l̂4
z + 735l̂4

z + 105l2(l + 1)2 l̂2
z − 525l (l + 1)l̂2

z + 294l̂2
z

− 5l3(l + 1)3 + 40l2(l + 1)2 − 60l (l + 1), (B6)

Ô4
6 = 1

4

{(
11l̂2

z − l (l + 1) − 38
)(

l̂4
+ + l̂4

−
) + (

l̂4
+ + l̂4

−
)(

11l̂2
z − l (l + 1) − 38

)}
. (B7)

APPENDIX C: CHOICE OF THE ENERGY WINDOW

Figure 8 illustrates the dependence of d-level splitting on the width of the Wannier functions energy window. The upper
limit of the window is set to the top of the valence band for each compound. When we chose the window that includes only
antibonding states, the splitting is much larger as compared with the case when the window includes all the states in the valence
band. In the latter case, the splitting is due to the electrostatic potential only (the bare crystal field), whereas in the former case it
also includes the hybridization contribution into the ligand field. The variation of on-site energies is very small for ZnO:Co when
we vary the lower bound of the energy window between −0.75 and −2 eV since we are then in a gap of the density of states.
That is not the case for the two cuprates where we choose the lower bound to be −3 eV separating in such a way antibonding
and bonding states. However, there is no gap around −3 eV and we estimate an error of the on-site energies Ei of about 0.1 eV.
The Gaussian width dE should be chosen as small as possible to reduce the error on Ei but a too small value of dE reduces
the localisation of the Wannier orbitals. We have checked that the chosen values of dE are the optimal compromise between
precision of Ei and localisation of Wannier orbitals.

FIG. 8. The dependence of on-site energies of Wannier functions having d-function symmetry on the energy window for the compounds
CaCuO2 (a), Li2CuO2 (b), and ZnO : Co (c). The energy window is defined by a function being 1 between Emin and Emax and falling of as a
Gaussian with a width dE = 1 eV outside this window for (a) and (b) and with a width dE = 0.5 eV for (c). The lower limit of the energy
window which was really taken into account in our determination of LF parameters was −3 eV for (a) and (b) and −0.75 eV for (c).
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TABLE XVI. The matrix of the on-site Hamiltonian (in meV) using the basis of real spherical harmonics for the Wannier expansion of UO2.

|5 f , −3〉 |5 f , −2〉 |5 f , −1〉 |5 f , 0〉 |5 f , +1〉 |5 f , +2〉 |5 f , +3〉
〈5 f , −3| 365.58 0 36.62 0 0 0
〈5 f , −2| 0 1212.03 0 0 0 0 0
〈5 f , −1| 36.62 0 346.67 0 0 0 0
〈5 f , 0| 0 0 0 393.94 0 0 0
〈5 f , +1| 0 0 0 0 346.67 0 −36.62
〈5 f , +2| 0 0 0 0 0 318.30 0
〈5 f , +3| 0 0 0 0 −36.62 0 365.58

APPENDIX D: DIPOLE MATRIX ELEMENTS OF OPTICAL TRANSITION

In this Appendix, we use the parity breaking perturbation (26) and follow Ref. [24] to express the dipole operator in the
coordinate system

�k+ = − 1√
2

(�ex + i�ey), �k− = + 1√
2

(�ex − i�ey), �k0 = �ez, (D1)

to be

�P = −P+�k− − P−�k+ + P0�k0, (D2)

where the component P0 ∝ Y 0
1 and P± ∝ Y ±1

1 . Using the rules for coupling two angular momenta we can calculate the dipole
matrix element for π polarization

W0 ∝
∣∣∣∣〈a|

(
9√
14

Y 0
2 +

√
40

7
Y 0

4 + Y +3
4 − Y −3

4

)
|b〉

∣∣∣∣
2

, (D3)

and for σ polarization

W± ∝
∣∣∣∣〈a|

(
−3

√
3√

2
Y ±1

2 + 5Y ±1
4 ±

√
28Y ±4

4 ± 3
√

3Y ∓2
2 ∓ Y ∓2

4

)
|b〉

∣∣∣∣
2

. (D4)

APPENDIX E: ON-SITE HAMILTONIAN Hii FOR THE ACTINIDE OXYDE UO2

The on-site Hamiltonian for uranium oxyde is given in Table XVI.
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