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In this paper we examine the spectral analysis of a spatially non-homogeneous Timoshenko beam mounted on
the periphery of a rigid root rotating about its axis at a constant angular speed. The junction between the beam
and the root is assumed to be elastically restrained and damped. The unbounded operator associated to the
physical problem in the associated Hilbert space is non-self-adjoint and with a compact resolvent. We show
that under some hypotheses on the physical properties of the beam, there exists a Riesz basis of root vectors of
this unbounded operator. Furthermore, the solution of the initial value problem has an expansion in terms of
this Riesz basis, uniform with respect to the time in a bounded interval.

1 Introduction

Flexible beams are fundamental components in many areas of structural engineering. The most commonly used
beam models are those of Euler-Bernoulli, Rayleigh and Timoshenko. Among these, the Timoshenko beam
model is the most advanced, because it includes the effects of rotary inertia and transverse shear deformation and
is suitable for thick beams.

The present work is devoted to the spectral analysis of a rotating Timoshenko beam model. We consider a
spatially non-homogeneous Timoshenko beam mounted on the periphery of a rigid root rotating about its axis
(fixed in space) at a constant angular speed [17]. We assume that the junction between the beam and the root is
elastically restrained and damped [16, 18–20]. The unbounded operator associated to the physical problem has
a compact resolvent but due to the damping it is non-self-adjoint. For that reason one must take into account
not only the eigenvectors of this operator but also its generalized eigenvectors or root vectors. A core problem
is to show that the set of root vectors of this operator is complete in the Hilbert space associated to the physical
problem. An other key issue is to prove that there exists a Riesz basis of root vectors of this operator in the
associated Hilbert space. In this paper we show that under some hypotheses on the physical properties of the
beam (see hypotheses 2.1, 3.6, 3.8, 3.12), there exists a Riesz basis of root vectors of this operator in the related
Hilbert space.

The spectral analysis of the Timoshenko beam model has been extensively studied in the past few years. In the
paper [29] the spectral analysis of a (non-rotating) Timoshenko beam model with the same boundary damping as
ours is analyzed. In this paper the completeness of the set of root vectors of the unbounded operator associated
to the physical problem is shown by applying the Keldysh theorem [6], p. 257, Theorem 8.1, [29], Theorem 6.4.
Then applying a theorem of Bari [6], p. 311, Theorem 2.1-5, and a theorem of Carleson related the the Riesz basis
property of a set of nonharmonic exponentials [26], p. 261, Theorem on Exponentials, the Riesz basis property
of a sequence of root vectors of the aforementioned operator is shown [29], Theorem 7.1.

In papers [36], [4], [37], the Riesz basis property of a sequence of root vectors of the unbounded operator
associated to the (non-rotating) Timoshenko beam model with similar boundary damping is examined. In these
papers the authors apply a theorem of Guo [7], Theorem 1 based on a theorem of Bari [6], p. 317, Theorem 2.3.
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All the aforementioned papers about the Riesz basis property are based on a precise asymptotic of the root
vectors.

In papers [39], [9], [8], [38], the spectral analysis of the (non-rotating) Timoshenko beam model with various
boundary conditions is studied by applying a theorem from Xu [35], Theorem 1.1 which provides sufficient
conditions for a sequence of root vectors of an unbounded operator to form a Riesz basis. The advantage of this
theorem is that it does not require to estimate the asymptotic of the root vectors. The idea of the method carried
out in the above-mentioned articles is basically to find the asymptotic of the spectrum of the associated unbounded
operator by reducing the problem to a first-order system asymptotically linear in the spectral parameter, then to
apply the Phragmén-Lindelöf principle to show that the set of root vectors of the operator is complete, and finally
to apply the theorem from Xu [35], Theorem 1.1. This latter method sounds simpler than the former ones and for
that reason it has been used in the present work.

The paper [21] is concerned with the completeness, minimality and the Riesz basis (with parentheses) property
of a sequence of root vectors of boundary value problems for first order systems of ordinary differential equations
on a bounded interval. The spectral problem discussed in [21] is linear in the spectral parameter. The results
of this article have been applied to the spectral analysis of the (non-rotating) Timoshenko beam model with
boundary damping. But these results cannot be applied directly to the rotating Timoshenko beam model, because
of the terms coming from the rotation which lead to a first order system of ordinary differential equations only
asymptotically linear (and not linear) in the spectral parameter. Like paper [21], the paper [33] treats the spectral
analysis of boundary value problems for first order systems of ordinary differential equations on a bounded
interval but the problem discussed in this article is linear in the spectral parameter and for the same reasons the
results of [33] cannot be applied directly to the rotating Timoshenko beam model.

As far as the (mathematical) spectral analysis of a rotating Timoshenko beam model is concerned, to the best
of our knowledge, very few research papers deal with this problem. Let us quote the papers [12,13,31,32] where
a very simplified model (without centrifugal force) is considered [12], p. 147. In the present work we have
chosen the most common formulation of the rotating Timoshenko beam model given for example in [5], p. 279
or [1], Appendix A. This model takes into account flexural and shear deformations of the beam. More advanced
models taking into account the coupling between extensional and flexural deformations can be found for example
in [30] or [17]. Let us stress that the equations of the rotating Timoshenko beam model in these two articles are
not exactly the same (compare equation (26) of [30] and equations (37), (38), (39) of [17]).

This paper is organized as follows. In Section 2, we outline a variational formulation of the problem and the
corresponding equations and boundary conditions. In order to deal with a coercive form we make a change of
variables regarding the dependance of the solution with respect to time. We write the equations as a first order
evolution equation and we prove that the (space) unbounded operator in this evolution equation (denoted A) has
a compact resolvent. As a result its spectrum consists of isolated eigenvalues of finite algebraic multiplicity.
Moreover this operator is maximal-dissipative and thus is the generator of a contraction semigroup. In Section 3
we study the asymptotics of its spectrum. To this end we make a change of variable in order to reduce the problem
to a first-order system asymptotically linear in the spectral parameter. Then we apply a result of R. Mennicken
and R. Möller [25] to get an asymptotic fundamental matrix function of this system from which we obtain the
asymptotics of its spectrum under some hypotheses on the physical properties of the beam (see hypotheses 2.1,
3.6, 3.8). It is shown that under an additional hypothesis on the physical properties of the beam (see hypothesis
3.12), the eigenvalues of the first-order system are asymptotically algebraically simple. In order to prove that
the same property is true for the operator A we have used some results of [25] and [24] on root functions of
holomorphic families of operators. Let us point out that the approach consisting in comparing carefully the
algebraic multiplicities of the root vectors ofA and those of the root functions associated to the first order system
is not usual in the literature on the spectral analysis of the Timoshenko beam model and this is an original feature
of the present paper (see for example [9], [8], [38]). In Section 4 using estimates of the resolvent in different parts
of the complex plane and the Phragmén-Lindelöf principle we prove that under the aforementioned hypotheses
on the physical properties of the beam the set of root vectors of A is complete and that there is a system of root
vectors of this operator which is minimal (Theorem 4.3). Using the theorem from Xu [35], Theorem 1.1, we prove
that under the same hypotheses there exists a sequence of root vectors of A which forms a Riesz basis (Theorem
4.5). As a consequence one can obtain an asymptotic expansion of the solution of the related (hyperbolic) initial
valued problem. This expansion is uniform with respect to the time in a bounded interval (Theorem 4.7).
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Comparisons of the hypotheses and results of the present paper and other papers in the literature are given in
Remark 4.6.

2 Formulation of the rotating Timoshenko beam model

In what follows, R is the (constant) radius of the root, Ω its (constant) angular speed, l the (constant) length of
the beam, S its cross-sectional area, E its Young modulus, ρ its mass density, J the moment of inertia of its
cross-section, G its shear modulus, αs > 0 its (constant) shear correction factor, S, E, ρ, J and G depending
on the abscissa x on the beam. The infinitesimal transverse displacement will be denoted by w, the infinitesimal
rotation of the cross-section by ϕ, the corresponding (constant) spring constants at the junction by kw and kϕ and
the corresponding (constant) damping constants at the junction by cw and cϕ (kw > 0, kϕ > 0, cw > 0, cϕ > 0).
The centrigugal force P (x) is given by (see [5], p. 279, [1], Appendix A)

P (x) =

∫ l

x

ρSΩ2(R+ y)dy (≥ 0), x ∈ [0, l]. (2.1)

Hereafter, the derivative with respect to the time will be denoted by a dot and the derivative with respect the
spatial variable by a prime.

The principle of virtual work for this rotating Timoshenko beam model is formally written as follows: find
w,ϕ sufficiently smooth functions with values in C such that for all w∗, ϕ∗ sufficiently smooth functions with
values in C, ∫ l

0

[Pw′w∗
′ + EJϕ′ϕ∗

′]dx+

∫ l

0

αsGS[(w′ − ϕ)w∗
′ − (w′ − ϕ)ϕ∗]dx+∫ l

0

ρJ [ϕ̈− Ω2ϕ]ϕ∗dx+

∫ l

0

ρSẅw∗dx =

− [kww + cwẇ](0)w∗(0)− [kϕϕ+ cϕϕ̇](0)ϕ∗(0). (2.2)

One gets formally the following equations (see [5], p. 279, [1], Appendix A)

(Pw′)′ + [αsGS(w′ − ϕ)]′ = ρSẅ, (2.3)

(EJϕ′)′ = ρJ(ϕ̈− ϕΩ2)− αsGS(w′ − ϕ), (2.4)

and boundary conditions

(Pw′)(0) + [αsGS(w′ − ϕ)](0) = [kww + cwẇ](0), (EJϕ′)(0) = [kϕϕ+ cϕϕ̇](0), (2.5)

(Pw′)(l) + [αsGS(w′ − ϕ)](l) = 0, (EJϕ′)(l) = 0. (2.6)

Let us recall some definitions. For m ∈ N, Hm(0, l) is the space of functions u in L2(0, l) such that the
derivatives of u in the sense of distributions up to order m are in L2(0, l) (in particular H0(0, l) = L2(0, l)).
The space Wm,∞(0, l) is the space of functions u ∈ L∞(0, l) such that the derivatives of u in the sense of
distributions up to order m are in L∞(0, l). A sesquilinear form a on a Hilbert space V is coercive if there exists
a constant C > 0 such that Re(a(u, u)) ≥ C||u||2V , ∀u ∈ V . In the sequel we will make the following hypothesis

Hypothesis 2.1 S, E, J , G ∈W 1,∞(0, l), ρ ∈ L∞(0, l) and there exists a constant C > 0 such that S ≥ C,
E ≥ C, J ≥ C, G ≥ C, ρ ≥ C on (0, l).

For m ∈ N, set Hm = Hm(0, l)⊗ C2 (in particular H0 = L2(0, l)⊗ C2). With the notations

u =

(
w
ϕ

)
,u∗ =

(
w∗
ϕ∗

)
, (2.7)

define the Hermitian forms a0, a and b on H1 by: for all u, u∗ ∈ H1,
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a0(u,u∗) =

∫ l

0

[Pw′w∗
′ + EJϕ′ϕ∗

′]dx+

∫ l

0

αsGS[(w′ − ϕ)w∗
′ − (w′ − ϕ)ϕ∗]dx+

kww(0)w∗(0) + kϕϕ(0)ϕ∗(0), (2.8)

a(u,u∗) = a0(u,u∗)− Ω2

∫ l

0

ρJϕϕ∗dx, (2.9)

b(u,u∗) = cww(0)w∗(0) + cϕϕ(0)ϕ∗(0), (2.10)

and the Hermitian form m on H0 by: for all u, u∗ ∈ H0,

m(u,u∗) =

∫ l

0

ρJϕϕ∗dx+

∫ l

0

ρSww∗dx. (2.11)

With the foregoing assumptions (Hypothesis 2.1) the Hermitian forms a0, a, b,m are well defined and continuous
on their respective domains of definition. The Hermitian forms a0 and b are non-negative onH1 and the Hermitian
form m is coercive on H0.

A variational formulation of the problem reads as follows: Given u0, v0 in subspaces of H1 and H0 to be
precised later, find u ∈ C1([0,+∞);H1) ∩ C2([0,+∞);H0) such that

m(ü,u∗) + b(u̇,u∗) + a(u,u∗) = 0, ∀u∗ ∈ H1, (2.12)

and satisfying the initial conditions

u(0) = u0; u̇(0) = v0. (2.13)

In order to deal with coercive forms we need the following lemma

Lemma 2.2 a0 is coercive: there exists C > 0 such that for all u ∈ H1,

a0(u,u) ≥ C||u||2H1 . (2.14)

Consequently for all u ∈ H1,

a(u,u) + Ω2m(u,u) ≥ C||u||2H1 , (2.15)

and there exists Ω0 > 0 such that for all Ω, 0 ≤ Ω ≤ Ω0, there exists CΩ > 0 such that for all u ∈ H1,

a(u,u) ≥ CΩ||u||2H1 . (2.16)

P r o o f. Suppose that (2.14) is not true. Hence one can find a sequence (un) ∈ H1 such that ∀n ∈ N,
||un||H1 = 1 and a0(un,un) → 0 when n → +∞. One can extract a subsequence still denoted by (un) such
that un ⇀ u in H1 (weak convergence) and un → u in H0 when n → +∞. Since a0(un,un) → 0 when
n → +∞, it follows that un(0) → 0, ϕ′n → 0 and w′n − ϕn → 0 in L2(0, l) when n → +∞. Consequently
(ϕn) is a Cauchy sequence, hence this sequence converges in H1(0, l) towards an element ϕ ∈ H1(0, l) such
that ϕ′ = 0 and ϕ(0) = 0, so that ϕ = 0. Hence w′n → 0 in L2(0, l) when n → +∞. In the same way as for
the sequence (ϕn) it implies that wn → 0 in H1(0, l). Therefore un → 0 in H1. This gives a contradiction since
∀n ∈ N, ||un||H1 = 1.

Let (H0)′ (resp. (H1)′) be the space of continuous antilinear forms on H0 (resp. H1). The form m be-
ing continuous on H0, it defines a continuous linear operator M from H0 to (H0)′ by: for all u,u∗ ∈ H0,
m(u,u∗) = 〈Mu,u∗〉(H0)′,H0 . The forms a and b being continuous on H1, they define continuous lin-
ear operators A and B from H1 to (H1)′ by: for all u,u∗ ∈ H1, a(u,u∗) = 〈Au,u∗〉(H1)′,H1 , b(u,u∗) =
〈Bu,u∗〉(H1)′,H1 . If H0 and (H0)′ are identified by the Riesz representation theorem, then H1 ⊂ H0 ⊂ (H1)′
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with continuous and dense injections and for all u ∈ H0, u∗ ∈ H1, one can writem(u,u∗) = 〈Mu,u∗〉(H1)′,H1 .
Consequently (2.12) can be replaced by: find u ∈ C1([0,+∞);H1) ∩ C2([0,+∞);H0) such that

M ü +Bu̇ +Au = 0 in (H1)′. (2.17)

The Hermitian form a is not coercive. In order to deal with a coercive form let us replace u(t) with eΩtu(t).
Consequently the variational problem reduces to: find u ∈ C1([0,+∞);H1) ∩ C2([0,+∞);H0) such that

M ü +BΩu̇ +AΩu = 0 in (H1)′, (2.18)

where

AΩ = A+ ΩB + Ω2M, (2.19)

BΩ = B + 2ΩM, (2.20)

or equivalently such that

m(ü,u∗) + bΩ(u̇,u∗) + aΩ(u,u∗) = 0, ∀u∗ ∈ H1, (2.21)

where

aΩ = a+ Ωb+ Ω2m, (2.22)

bΩ = b+ 2Ωm, (2.23)

and satisfying the initial conditions

u(0) = u0; u̇(0) = v0 − Ωu0. (2.24)

The Hermitian form aΩ is coercive on H1 because of (2.15) and since b is non-negative. This implies in
particular that AΩ is an isomorphism from H1 onto (H1)′. Set H1,1 = H1 × H1, H1,0 = H1 × H0, H1,1

∗ =

H1 × (H1)′: H1,1 ⊂ H1,0 ⊂ H1,1
∗ with continuous and dense injections. The operator

M̃ =

(
I 0
0 M

)
(2.25)

is an isomorphism fromH1,0 ontoH1,0. The operator

Ã =

(
0 I
−AΩ −BΩ

)
(2.26)

is continuous fromH1,1 onH1,1
∗ . Set

v =

(
z
)
,U =

(
u
v

)
,U0 =

(
u0

v0 − Ωu0

)
. (2.27)

The variational problem (2.21), (2.24) reduces to: find U ∈ C0([0,+∞);H1,1) ∩ C1([0,+∞);H1,0) such that

M̃U̇ = ÃU, (2.28)

and satisfying the initial conditions

U(0) = U0. (2.29)
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In order to solve (2.28), (2.29) in the space H1,0 = H1 ×H0, let us define the unbounded operator A on H1,0

with domain

D(A) = {U ∈ H1,1, ÃU ∈ H1,0} = {U ∈ H1,1, AΩu +BΩv ∈ H0} (2.30)

by: for all U ∈ D(A), AU = M̃−1ÃU, that is

AU =

(
v

−M−1(AΩu +BΩv)

)
. (2.31)

In the definition of D(A) one can replace ”U ∈ H1,1” with ”U ∈ H1,0”. For smooth u and u∗, Green’s formula
for the Hermitian form a is written as follows:

a(u,u∗) =

∫ l

0

Lau · u∗ + [Bau · u∗]l0 (2.32)

where

Lau =

(
−{(Pw′)′ + [αsGS(w′ − ϕ)]′}

−{(EJϕ′)′ + αsGS(w′ − ϕ)} − ρJΩ2ϕ

)
, (2.33)

Bau(0) =

(
(Pw′)(0) + [αsGS(w′ − ϕ)](0)− kww(0)

(EJϕ′)(0)− kϕϕ(0)

)
, (2.34)

and

Bau(l) =

(
(Pw′)(l) + [αsGS(w′ − ϕ)](l)

(EJϕ′)(l)

)
. (2.35)

Similarly for the Hermitian form b:

b(u,u∗) = [Bbu · u∗]l0 (2.36)

where

Bbu(0) =

(
−cww(0)
−cϕϕ(0)

)
(2.37)

and Bbu(l) = 0. Finally for the Hermitian form m we have:

m(u,u∗) =

∫ l

0

Mu · u∗ (2.38)

where

M =

(
ρS 0
0 ρJ

)
(2.39)

(M is an operator of order 0). Using the previous formulas, we infer that

D(A) = {U ∈ H1,1,
Lau + Ω2Mu + 2ΩMv ∈ H0,
[Bau + ΩBbu + Bbv] (0) = 0,Bau(l) = 0}.

(2.40)

SetH2,1 = H2 ×H1. One verifies that there exist constants C1 > 0, C2 > 0 such that for all U ∈ D(A),

C1(||U||H1,1 + ||AU||H1,0) ≤ ||U||H2,1 ≤ C2(||U||H1,1 + ||AU||H1,0). (2.41)
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Hence on D(A) the graph norm and the norm ||.||H2,1 are equivalent and A is a closed operator (that is to say its
graph is closed). Equations (2.40) and (2.41) give

D(A) = {U ∈ H2,1, [Bau + ΩBbu + Bbv] (0) = 0,Bau(l) = 0} (2.42)

that is

D(A) = {U ∈ H2,1,
(Pw′)(0) + [αsGS(w′ − ϕ)](0) = [(kw + Ωcw)w + cwz](0),
(EJϕ′)(0) = [(kϕ + Ωcϕ)ϕ+ cϕψ](0),
(Pw′)(l) + [αsGS(w′ − ϕ)](l) = 0, (EJϕ′)(l) = 0}

(2.43)

and for U ∈ D(A),

AΩu +BΩv = Lau + Ω2Mu + 2ΩMv, (2.44)

so that

AU =

(
v

−M−1(Lau + Ω2Mu + 2ΩMv)

)
. (2.45)

The adjoint A∗ of A is given by

D(A∗) = {U ∈ H1,1,
Lau + Ω2Mu + 2ΩMv ∈ H0,
[Bau + ΩBbu− Bbv] (0) = 0,Bau(l) = 0}

(2.46)

and

A∗U =

(
v

−M−1(Lau + Ω2Mu + 2ΩMv)

)
,∀U ∈ D(A∗) (2.47)

(same formula as AU). Since D(A) 6= D(A∗), A 6= A∗: A is not self-adjoint. One can write for U ∈ D(A)

Lau + Ω2Mu = A0u +A1u
′ +A2u

′′ (2.48)

where Ai, i = 0, 1, 2 are defined by

A0 =

[
Ω2ρS (αsGS)′

0 αsGS

]
, (2.49)

A1 =

[
−(P + αsGS)′ αsGS
−αsGS −(EJ)′

]
, (2.50)

A2 =

[
−(P + αsGS) 0

0 −EJ

]
. (2.51)

The boundary conditions in the characterization of D(A) ((2.42)) may be written in the form:[
Ab0u +Ab1u

′ +Bbv
]

(0) = 0,[
Ab0u +Ab1u

′ +Bbv
]

(l) = 0,
(2.52)

where Abi (i = 0, 1) and Bb are matrices defined on the set {0, l} by

Ab0(0) =

[
kw + Ωcw αsGS

0 kϕ + Ωcϕ

]
(0), Ab0(l) =

[
0 αsGS
0 0

]
(l), (2.53)

Ab1(0) =

[
−(P + αsGS) 0

0 −EJ

]
(0), Ab1(l) =

[
−(P + αsGS) 0

0 −EJ

]
(l), (2.54)
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Bb(0) =

[
cw 0
0 cϕ

]
, Bb(l) =

[
0 0
0 0

]
. (2.55)

Let us recall some definitions, notations and results about unbounded operators in Banach spaces. If E and F
are Banach spaces, L(E,F ) is the space of continuous linear operators from E to F , denoted by L(E) if E = F .
For an operator T ∈ L(E,F ), N(T ) = {x ∈ E |Tx = 0} denotes the null space and R(T ) = {Tx |x ∈ E}
the range of T . An operator T ∈ L(E,F ) is called a Fredholm operator if both its nullity nulT = dimN(T ) and
its deficiency defT = codimR(T ) are finite. The set of Fredholm operators from E to F is denoted by Φ(E,F ).
If T ∈ Φ(E,F ), indT = nulT - defT is well-defined and is called the index of T . Let A be an unbounded
closed operator in a Banach space E with domain D(A) (by definition an unbounded operator A is closed if its
graph is closed in E × E). If λ ∈ C and A − λI is a bijection from D(A) onto E, λ is said to belong to the
resolvent set of A, denoted by ρ(A). If λ ∈ ρ(A), since A is closed, it follows from the closed graph theorem
that (A− λI)−1 ∈ L(E) [15], p. 419. The spectrum of A is the complementary of ρ(A) in C, denoted by σ(A)
(σ(A) = C \ ρ(A)). The point spectrum of A is the set of eigenvalues of A, denoted by σp(A) (σp(A) ⊂ σ(A)).
The geometric multiplicity of an eigenvalue λ0 ∈ σp(A) is nul(A− λ0I). For λ0 ∈ σp(A) and all k ∈ N set

N k
λ0

(A) = {u |u ∈ D(Ak+1), (A− λ0I)k+1u = 0}. (2.56)

For all k ∈ N, Nk
λ0

(A) ⊂ Nk+1
λ0

(A). The smallest integer k > 0 such that Nk
λ0

(A) = Nk+1
λ0

(A) is called the
ascent of A− λ0I . The root subspace of A corresponding to λ0 ∈ σp(A) is defined by

Rλ0
(A) =

⋃
k∈N
N k
λ0

(A). (2.57)

Elements ofRλ0
(A) are root vectors. The dimension ofRλ0

(A) is the algebraic multiplicity of the eigenvalue λ0

∈ σp(A) of A [40], p. 26. If λ0 ∈ σp(A), the ascent ofA−λ0I is less than or equal to the algebraic multiplicity
of λ0. If A is an unbounded closed operator in E with compact resolvent, the spectrum of A consists of isolated
eigenvalues with finite algebraic multiplicity [10], p. 187, [3], p. 2292. The following lemma gives a sufficient
condition for an unbounded operator to have a compact resolvent (consequence of [10], Chapter 4, Remark 1.4).

Lemma 2.3 LetA be an unbounded closed operator in a Banach spaceE with domainD(A). D(A) equipped
with the graph norm is a Banach space continuously embedded in E and A is continuous from D(A) equipped
with the graph norm into E. Assume moreover that the embedding from D(A) equipped with the graph norm
into E is compact. Then, if ρ(A) 6= ∅, for all λ ∈ ρ(A), the resolvent (A− λI)−1 is compact.

Applying the previous lemma we obtain
Lemma 2.4 0 ∈ ρ(A) andA−1 is a compact operator ofH1,0. ConsequentlyA has a compact resolvent and

the spectrum of A consists of isolated eigenvalues of finite algebraic multiplicity. In particular σ(A) = σp(A)
⊂ C∗.

P r o o f. Let F =
(

f
g

)
∈ H1,0. We must find U =

(
u
v

)
∈ D(A) such that AU = F. This gives: v = f

and AΩu = −Mg − BΩf . Since AΩ is an isomorphism from H1 onto (H1)′ and since −Mg − BΩf ∈ (H1)′,
the latter equation has a unique solution u ∈ H1. By construction v ∈ H1 and AΩu + BΩv = −Mg ∈ H0, so
that U ∈ D(A). It follows that 0 ∈ ρ(A).

Remark 2.5 Quite frequently in the literature results like that of Lemma 2.4 are shown by explicit and rather
lengthy calculations [29], [9], [8], [38]. But these explicit calculations are not possible here because of the terms
coming from the rotation. Moreover, the proof of Lemma 2.4 is far simpler and more general.

The state spaceH1,0 will be equiped with the scalar product: for U1, U2 ∈ H1,0,

(U1,U2)H1,0 = aΩ(u1,u2) +m(v1,v2) (2.58)

which is equivalent to the natural scalar product.
Lemma 2.6 A is maximal-dissipative, D(A) is dense in H1,0 and A is the generator of a contraction semi-

group onH1,0.
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P r o o f. For all U ∈ D(A),

(AU,U)H1,0 = aΩ(v,u)− (AΩu +BΩv,v)H0 = aΩ(v,u)− 〈AΩu +BΩv,v〉(H1)′,H1 =

aΩ(v,u)− aΩ(u,v)− bΩ(v,v), (2.59)

so that

Re(AU,U)H1,0 = −bΩ(v,v) ≤ 0. (2.60)

It follows that A is dissipative. On the other hand, since 0 ∈ ρ(A), and since ρ(A) is open, there exists λ ∈ C
such that Re λ > 0 and R(A − λI) = H1,0. Consequently A is maximal dissipative and D(A) is dense in
H1,0 [34], Theorem 3.1.7. The Lumer-Phillips theorem (see [34], Theorem 3.8.4) shows that A is the generator
of a contraction semigroup onH1,0.

From Lemma 2.6 and Proposition 2.3.5 of [34] we obtain the following proposition (by replacing u(t) with
e−Ωtu(t))

Proposition 2.7 i) With the notation (2.27) the condition U0 ∈D(A) is equivalent to the conditions u0 ∈ H1,
v0 ∈ H1, Au0 +Bv0 ∈ H0 or to the conditions u0 ∈ H2, v0 ∈ H1, [Bau0 + Bbv0](0) = 0, [Bau](l) = 0.

ii) Let t ∈ [0,+∞)→ T (t) be the contraction semigroup generated byA. If U0 ∈D(A) there exists a unique
solution ∈ C1([0,+∞);H1,0) ∩ C0([0,+∞);D(A)) to the initial value problem on [0,+∞)

U̇ = AU, U(0) = U0 (2.61)

given by U(t) = T (t)U0, (t ∈ [0,+∞)).
iii) If u0 ∈ H1, v0 ∈ H1, Au0 + Bv0 ∈ H0, there exists a unique function u ∈ C1([0,+∞);H1) ∩

C2([0,+∞);H0) satisfying Au +Bu̇ ∈ C0([0,+∞);H0) and (2.12), (2.13).

P r o o f. i) The condition U0 ∈ D(A) is equivalent to the conditions u0 ∈ H1, v0 − Ωu0 ∈ H1, AΩu0 +
BΩ(v0 − Ωu0) ∈ H0. One verifies that these conditions are equivalent to the stated ones.

ii) This part is a consequence of Proposition 2.3.5 of [34]

iii) Setting U =
(

u
v

)
we see that u is the unique function ∈ C1([0,+∞);H1)∩C2([0,+∞);H0) satisfying

AΩu + BΩu̇ ∈ C0([0,+∞);H0) and (2.21), (2.24). Replacing u(t) by e−Ωtu(t) we see that there is a unique
function u ∈ C1([0,+∞);H1) ∩ C2([0,+∞);H0) satisfying Au + Bu̇ ∈ C0([0,+∞);H0) and (2.12), (2.13).

3 Asymptotics of the spectrum

Let us recall some definitions and results about holomorphic families of operators [25].
If Ω is an open nonempty subset of C, E is a Banach space, we will denote by H(Ω, E) the space of holomor-

phic functions from Ω toE. If F is a Banach space and T ∈ H(Ω, L(E,F )), ρ(T ) = {λ ∈ Ω, T (λ) is invertible}
is the resolvent set of T , σ(T ) = Ω \ ρ(T ) its spectrum, σp(T ) = {λ ∈ Ω,∃x ∈ E, x 6= 0, T (λ)x = 0} its point
spectrum (or the set of eigenvalues of T ) [25], p. 6. If µ ∈ Ω, x ∈ H(Ω, E) is called a root function of T at µ if
x(µ) 6= 0 and (Tx)(µ) = 0. ν(x) denotes the order of the zero of Tx at µ and is called the multiplicity of x with
respect to T at µ. If T ∈ H(Ω,Φ(E,F )) and ρ(T ) 6= ∅, σ(T ) is a discrete subset of Ω and T−1 is a meromorphic
operator function in Ω. If µ ∈ σ(T ), T−1 has a pole at µ [25], Theorem 1.3.1. Let T ∈ H(Ω,Φ(E,F )) be such
that ρ(T ) 6= ∅. For all µ ∈ σ(T ) and n ∈ N∗ set

L̃n = {y0 ∈ N(T (µ)); there is a root function y of T at µ with y(µ) = y0 and ν(y) ≥ n} (3.1)

and

Ln = L̃n ∪ {0} (3.2)
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which is a subspace of N(T (µ)). For j ∈ N with 0 < j ≤ nul T (µ), let us define

mj = max {n ∈ N∗|dimLn ≥ j}. (3.3)

The numbers mj are called the partial multiplicities of T at µ. They are well-defined since L1 = N(T (µ)) and
Ln = {0} if n is larger than the pole order of T−1 at µ. Obviously, mj ≥ mj+1. The number r = dim N(T (µ))
is called the geometric multiplicity of T at µ, and the number

m =
r∑
j=1

mj (3.4)

is called the algebraic multiplicity of T at µ [25], p. 14. In the sequel we will need the following lemma.
Lemma 3.1 Let EA, FA, EB , FB be Banach spaces, Ω an open nonempty subset of C, λ 7→ A(λ) ∈

H(Ω,Φ(EA, FA)) and λ 7→ B(λ) ∈ H(Ω,Φ(EB , FB)) holomorphic families of Fredholm operators. Let µ ∈ Ω
be such that 0 < nul(A(µ)) = nul(B(µ)) < +∞. For all n ∈ N∗, let us denote by Ln(A) and Ln(B) the spaces
defined by (3.1) and (3.2) corresponding to the holomorphic families A and B. Assume that for all n ∈ N∗ there
exists an injection in from Ln(A) into Ln(B). If we denote by mj(A) and mj(B) the partial multiplicities of A
and B at µ defined by (3.3) then for all j = 1, . . . , nul(A(µ)) (= nul(B(µ))), mj(A) ≤mj(B). If we denote by
m(A) and m(B) the algebraic multiplicities of A and B at µ then m(A) ≤m(B).

P r o o f. Since for all n ∈ N∗, dim Ln(A) = dim in(Ln(A)) ≤ dim Ln(B) definitions (3.1), (3.2), (3.3) and
(3.4) give the result.

Let A be an unbounded closed operator in a Banach space E with domain D(A) and λ0 ∈ σp(A). The
algebraic multiplicity of λ0 ∈ σp(A) has been defined as the dimension of the root subspace of A corresponding
to λ0. Since A is closed, D(A) equipped with the graph norm is a Banach space and A is a continuous operator
from D(A) equipped with the graph norm to E. D(A) will be equipped with the graph norm. If Ω is an open
nonempty subset of C such that λ0 ∈ Ω, we can associate to the operator A the holomorphic family λ ∈ Ω 7→
T (λ) = A−λI ∈ H(Ω, L(D(A), E)). If we assume that the embedding fromD(A) intoE is compact and ρ(A)
6= ∅, from Lemma 2.3, A has a compact resolvent consequently the spectrum of A consists entirely of isolated
eigenvalues (of finite algebraic multiplicity). Therefore ρ(T ) 6= ∅ and from [10], Theorem IV.5.26 or [25], p. 41,
T ∈ H(Ω,Φ(D(A), E)) and Ind T (λ) = 0, ∀λ ∈ Ω. The following lemma asserts that the two definitions of
algebraic multiplicity (for an operator and for a holomorphic family) are consistent (its proof is very simple and
is omitted).

Lemma 3.2 With the previous definitions and hypotheses the algebraic multiplicity of the eigenvalue λ0 ∈
σp(A) is equal to the algebraic multiplicity of T at λ0.

To the unbounded operator A we will associate the holomorphic family of operators on C∗:

λ ∈ C∗ 7→ A(λ) = A− λI : D(A)→ H1,0. (3.5)

A is closed, the embedding from D(A) in H1,0 is compact and ρ(A) 6= ∅. Consequently ρ(A) 6= ∅, A ∈
H(C∗,Φ(D(A),H1,0)) and indA(λ) = 0, ∀λ ∈ C. Let λ0 ∈ σp(A) and let λ ∈ C∗ 7→ U(λ) ∈ D(A) be a root
function of the holomorphic (polynomial) family λ ∈ C∗ 7→ A(λ) at λ0 of multiplicity ν(U). Write U(λ) =(

u(λ)
v(λ)

)
. For λ ∈ C∗ we have u(λ) ∈ H2, v(λ) ∈ H1, and from (2.52)

[
Ab0u(λ) +Ab1u(λ)′ +Bbv(λ)

]
(0) = 0,[

Ab0u(λ) +Ab1u(λ)′ +Bbv(λ)
]

(l) = 0.
(3.6)

Moreover from (2.45) and (2.48) the relation [(A− λI)U](i)(λ0) = 0 (0 ≤ i ≤ ν(U)− 1) can be written

[v − λu]
(i)

(λ0) = 0, 0 ≤ i ≤ ν(U)− 1, (3.7)

[A0u +A1u
′ +A2u

′′ + 2ΩMv + λMv]
(i)

(λ0) = 0, 0 ≤ i ≤ ν(U)− 1. (3.8)
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If we set w(λ) = u(λ)′/λ, we obtain

{
[
Ab0u(λ) + λAb1w(λ) + λBbu(λ)

](i)
(λ0)}(0) = 0, 0 ≤ i ≤ ν(U)− 1,

{
[
Ab0u(λ) + λAb1w(λ) + λBbu(λ)

](i)
(λ0)}(l) = 0, 0 ≤ i ≤ ν(U)− 1,

(3.9)

and [
A0u + λA1w + λA2w

′ + 2ΩλMu + λ2Mu
](i)

(λ0) = 0, 0 ≤ i ≤ ν(U)− 1. (3.10)

It is easily seen that if λ0 ∈ C∗, E is a Banach space, λ ∈ C∗ 7→ x(λ) ∈ E is holomorphic and n ∈ N, the
conditions ”x(i)(λ0) = 0, i = 0, . . . , n” and ”(x/λ)(i)(λ0) = 0, i = 0, . . . , n” are equivalent. Hence (3.9),
(3.10) give: {[

Ab0
u(λ)
λ +Ab1w(λ) +Bbu(λ)

](i)
(λ0)

}
(0) = 0, 0 ≤ i ≤ ν(U)− 1,{[

Ab0
u(λ)
λ +Ab1w(λ) +Bbu(λ)

](i)
(λ0)

}
(l) = 0, 0 ≤ i ≤ ν(U)− 1,

(3.11)

[
A−1

2 A0
u

λ
+A−1

2 A1w + w′ + 2ΩA−1
2 Mu + λA−1

2 Mu
](i)

(λ0) = 0, 0 ≤ i ≤ ν(U)− 1. (3.12)

Setting

Y =

(
u
w

)
=

(
u

u′/λ

)
, (3.13)

we obtain [
Y ′ − (λÃ1 + Ã0 +

1

λ
Ã−1)Y

](i)

(λ0) = 0, 0 ≤ i ≤ ν(U)− 1, (3.14)

with

Ã1 =


0 0 1 0
0 0 0 1
ρS

P+αsGS
0 0 0

0 ρ
E 0 0

 , (3.15)

Ã0 =


0 0 0 0
0 0 0 0

2ΩρS
P+αsGS

0 − (P+αsGS)′

P+αsGS
αsGS

P+αsGS

0 2Ωρ
E −αsGSEJ − (EJ)′

EJ

 , (3.16)

Ã−1 =


0 0 0 0
0 0 0 0

Ω2ρS
P+αsGS

(αsGS)′

P+αsGS
0 0

0 αsGS
EJ 0 0

 . (3.17)

The boundary conditions (3.11) can be written under the form:[
(B̃1 +

1

λ
B̃0)Y (0) + (C̃1 +

1

λ
C̃0)Y (l)

](i)

(λ0) = 0, 0 ≤ i ≤ ν(U)− 1 (3.18)

where

B̃1 =

(
Bb(0) Ab1(0)

02 02

)
, B̃0 =

(
Ab0(0) 02

02 02

)
, (3.19)
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C̃1 =

(
02 02

02 Ab1(l)

)
, C̃0 =

(
02 02

Ab0(l) 02

)
. (3.20)

Set

α1 =

√
ρS

P + αsGS
(3.21)

and

α2 =

√
ρ

E
. (3.22)

The eigenvalues of Ã1 are ±α1 and ±α2. A matrix of eigenvectors of Ã1 associated to the eigenvalues α1, α2,
-α1, -α2 is

T0 =


1 0 1 0
0 1 0 1
α1 0 −α1 0
0 α2 0 −α2

 . (3.23)

Setting

Z(λ) = T−1
0 Y (λ) ∈ H1(0, l)⊗ C4, (3.24)

we get the following equation

(Z ′)(i)(λ0) =
[
T−1

0 (λÃ1 + Ã0 + 1
λ Ã−1)T0Z − T−1

0 T ′0Z
](i)

(λ0)

=
[
(λΛ̃1 + Λ̃0 + 1

λ Λ̃−1)Z
](i)

(λ0), 0 ≤ i ≤ ν(U)− 1,
(3.25)

where

Λ̃1 = T−1
0 Ã1T0 =


α1 0 0 0
0 α2 0 0
0 0 −α1 0
0 0 0 −α2

 , (3.26)

Λ̃0 = T−1
0 Ã0T0 − T−1

0 T ′0 =


Ωα1 − f1 ∗

Ωα2 − f2

−Ωα1 − f1

∗ −Ωα2 − f2

 , (3.27)

where f1 and f2 are the functions defined on [0, l] by

f1 =
1

4

(
(P + αsGS)′

P + αsGS
+

(ρS)′

ρS

)
(3.28)

and

f2 =
1

4

(
(EJ)′

EJ
+

(ρJ)′

ρJ

)
, (3.29)

and the boundary conditions[
(B̃1 +

1

λ
B̃0)T0Z(0) + (C̃1 +

1

λ
C̃0)T0Z(l)

](i)

(λ0) = 0, 0 ≤ i ≤ ν(U)− 1. (3.30)
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With the boundary eigenvalue problem (3.25), (3.30) we associate the holomorphic family of operators on C∗:

λ ∈ C∗ 7→ T (λ) =

(
TD(λ)
TR(λ)

)
: H1(0, l)⊗ C4 → (L2(0, l)⊗ C4)× C4 (3.31)

defined by

TD(λ)Z = Z ′ − (λΛ̃1 + Λ̃0 +
1

λ
Λ̃−1)Z, (3.32)

TR(λ)Z = (B̃1 +
1

λ
B̃0)T0Z(0) + (C̃1 +

1

λ
C̃0)T0Z(l). (3.33)

By Corollary 3.1.3 of [25], T ∈ H(C∗,Φ(H1(0, l) ⊗ C4, (L2(0, l) ⊗ C4) × C4)) and Ind T (λ) = 0, ∀λ ∈ C∗,
thus σ(T ) = σp(T ).

The previous calculations show that U ∈ D(A), U 6= 0 meets the condition AU = λ0U iff Z defined by
Z = T−1

0 Y , where Y and T0 are defined by (3.13), (3.23) satisfies Z ∈ H1(0, l)⊗C4, Z 6= 0 and T (λ0)Z = 0.
We have proved

Lemma 3.3 σ(A) = σp(A) = σ(T ) = σp(T ). Let λ0 ∈ σp(A) and let λ ∈ C∗ 7→ U(λ) ∈ D(A) be a root
function of the holomorphic (polynomial) family λ ∈ C∗ 7→ A(λ) at λ0 of multiplicity ν(U). Then λ ∈ C∗ 7→
Z(λ) ∈ H1(0, l)⊗C4 is a root function of the holomorphic family λ ∈ C∗ 7→ T (λ) at λ0 of multiplicity≥ ν(U).

A consequence of Lemma 3.3 is

Lemma 3.4 Let λ0 ∈ σp(A). The holomorphic families λ ∈ C∗ 7→ A(λ) and λ ∈ C∗ 7→ T (λ) have the same
geometric multiplicities at λ0 (= r). Let us denote by mj(A, λ0) (resp. mj(T, λ0)) the partial multiplicities of
the holomorphic families λ ∈ C∗ 7→ A(λ) (resp. T (λ)) at λ0. Then mj(A, λ0) ≤ mj(T, λ0), ∀j, 0 < j ≤ r.
As a consequence, if we denote by m(A, λ0) (resp. m(T, λ0)) the algebraic multiplicities of the holomorphic
families λ ∈ C∗ 7→ A(λ) (resp. T (λ)) at λ0, then m(A, λ0) ≤m(T, λ0).

P r o o f. The map J : U =

(
u
v

)
∈ N(A(λ0)) 7→ Z = T−1

0

(
u

u′/λ0

)
∈ N(T (λ0)) is an isomorphism.

Therefore the two holomorphic families A and T have the same geometric multiplicities at λ0. For all n ∈ N∗ let
us denote by Ln(A, λ0) and Ln(T, λ0) the spaces defined by (3.1) and (3.2) corresponding to the holomorphic
families A and T . Lemma 3.3 shows that the restriction of J to Ln(A, λ0) is an injection from Ln(A, λ0) into
Ln(T, λ0). Applying Lemma 3.1 the result follows.

Recall that a matrix function λ ∈ C∗ → Z(λ) ∈ H1(0, l)⊗C4 is a fundamental matrix function of TD(λ)Z =
0 if for all λ ∈ C∗ and for each y ∈ N(TD(λ)) there is a c(λ) ∈ C4 such that y = Z(λ)c(λ) (see [25], Definition
2.5.2 and Theorem 2.5.3 for the existence of a fundamental matrix function). In order to derive asymptotics of the
eigenvalues of T , we use the following proposition which guarantees the existence of an asymptotic fundamental
matrix function of TD(λ)Z = 0. This proposition holds for systems which are asymptotically linear in λ and
for which the coefficient of λ is diagonal. The proof of the proposition can be found in [25], Theorem 2.8.2 (see
also [33], Theorem 2.2). In the following statement, if m ∈ N∗ and S is a set, Mm(S) denotes the set of m×m
matrices with coefficients in S.

Proposition 3.5 Let a, b ∈ R, a < b, k ∈ N, γ > 0 and let Â(., ρ), ρ ∈ C be such that

Â(., ρ) = ρÂ1 + Â0 +
k∑
j=1

ρ−jÂ−j + ρ−k−1Â−k−1(., ρ), |ρ| > γ, (3.34)

with the following properties:

1. Â1 ∈Mm(W k,∞(a, b)) and Â−j ∈Mm(W k−j,∞(a, b)), j = 0, . . . , k;

2. Â−k−1(., ρ) ∈Mm(L∞(a, b)) for |ρ| > γ and is bounded in Mm(L∞(a, b)) as ρ→ +∞;
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3. Â1 has a diagonal form:

Â1 =


r0In0

0
r1In1

. . .
0 rlInl

 (3.35)

where Inν denotes the nν-dimensional unit matrix,
∑l
ν=0 nν = m, and the functions rν are such that rν = 0

for some ν ∈ {0, . . . , l}, without loss of generality r0 = 0 (where we allow n0 to be 0, whereas nν > 0 for
ν > 0),

(rν − rµ)−1 ∈ L∞(a, b), ν, µ = 0, . . . , l, ν 6= µ, (3.36)

rν − rµ = |rν − rµ|eiϕνµ ν, µ = 0, . . . , l, on [a, b], (3.37)

with some constants ϕνµ ∈ R. In particular, for µ = 0, we obtain

r−1
ν ∈ L∞(a, b), ν = 1, . . . , l, (3.38)

rν = |rν |eiϕν , ν = 1, . . . , l, on [a, b], (3.39)

with ϕν = ϕν0 = ϕ0ν ± π.

For x ∈ [a, b] and ρ ∈ C we set

Rν(x) =

∫ x

a

rν(ξ)dξ, ν = 0, . . . l, (3.40)

Eν(x, ρ) = exp(ρRν(x))Inν , ν = 0, . . . l, (3.41)

Ê(x, ρ) =


E0(x, ρ) 0

E1(x, ρ)
. . .

0 El(x, ρ)

 . (3.42)

Then there exists a fundamental matrix Ŷ (., ρ) of

y′ − Â(., ρ)y = 0 (3.43)

such that for |ρ| > γ,

Ŷ (., ρ) = (
k∑
r=0

1

ρr
P [r] +

1

ρk
Bk(., ρ))Ê(., ρ) (3.44)

where Bk(., ρ) ∈ Mm(W 1,∞(a, b)), |ρ| > γ, Bk(., ρ) = o(1), 1
ρB
′
k(., ρ) = o(1) with respect to the norm in

Mm(L∞(a, b)), and where P [r] ∈Mm(W k+1−r,∞(a, b)) are determined by

P [0]Â1 − Â1P
[0] = 0, P [0](a) = Im, (3.45)

P [r]′ −
r∑
j=0

Â−jP
[r−j] + P [r+1]Â1 − Â1P

[r+1] = 0, r = 0, . . . , k − 1, (3.46)

P [k]
νν

′
− Â0,ννP

[k]
νν =

l∑
q=0,q 6=ν

Â0,νqP
[k]
qν +

k∑
j=1

l∑
q=0

Â−j,νqP
[k−j]
qν , ν = 0, . . . , l, (3.47)

with

Âj = (Âj,νµ)lν,µ=0, P
[r] = (P [r]

νµ)lν,µ=0 (3.48)

defined according to the block structure of Â1. Moreover P [0] is invertible in Mm(W k+1,∞(a, b)).
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From now on, we will make the following hypothesis
Hypothesis 3.6 With the notations (3.21), (3.22), 1/(α1−α2) ∈ L∞(0, l) (⇔∃C > 0 such that |α1−α2| ≥

C on [0, l])
Taking into account Hypothesis 2.1, Hypothesis 3.6 is equivalent to

∃C > 0 such that |P − S · (E − αsG)| ≥ C on [0, l]. (3.49)

With the hypotheses 2.1 and 3.6 the assumptions of Proposition 3.5 are fulfilled with a = 0, b = l, k = 0 and
Â(., ρ) = ρΛ̃1 + Λ̃0 + 1

ρ Λ̃−1. Since α1 6= α2, from (3.45), the matrix P [0] is diagonal. Equation (3.47) gives

P
[0]
ii

′
− Λ̃0,iiP

[0]
ii = 0 (i = 1, . . . , 4). Because of the initial condition P [0](0) = I4 ((3.45)) and the form of Λ̃0

((3.27)) we get

P [0](x) =
g1(x)eΩ

∫ x
0
α1(t)dt 0 0 0

0 g2(x)eΩ
∫ x
0
α2(t)dt 0 0

0 0 g1(x)e−Ω
∫ x
0
α1(t)dt 0

0 0 0 g2(x)e−Ω
∫ x
0
α2(t)dt

 (3.50)

where g1 and g2 are the functions defined on [0, l] by

g1(x) =

(
(P + αsGS)(0)

(P + αsGS)(x)

(ρS)(0)

(ρS)(x)

) 1
4

, x ∈ [0, l] (3.51)

and

g2(x) =

(
(EJ)(0)

(EJ)(x)

(ρJ)(0)

(ρJ)(x)

) 1
4

, x ∈ [0, l]. (3.52)

Set

Ê(x, λ) = exp

(
λ

∫ x

0

Λ̃1(t)dt

)
=

eλ
∫ x
0
α1(t)dt 0 0 0

0 eλ
∫ x
0
α2(t)dt 0 0

0 0 e−λ
∫ x
0
α1(t)dt 0

0 0 0 e−λ
∫ x
0
α2(t)dt

 . (3.53)

Then the asymptotic fundamental matrix function of TD(λ)Z = 0 is given by

Ẽ(x, λ) = (P [0](x) +B0(x, λ))Ê(x, λ) (3.54)

where B0(., λ) ∈ M4(W 1,∞(0, l)), |λ| > γ, B0(., λ) = o(1), 1
λB
′
0(., λ) = o(1) with respect to the norm in

M4(L∞(0, l)). Actually, due to the Sobolev embedding theorems, B0(., λ) ∈ M4(C0[0, l]), |λ| > γ, B0(., λ) =
o(1) with respect to the norm in M4(C0[0, l]). For λ ∈ C∗ set

M(λ) = TR(λ)Ẽ(., λ) =

(
B̃1 +

1

λ
B̃0

)
T0Ẽ(0, λ) +

(
C̃1 +

1

λ
C̃0

)
T0Ẽ(l, λ) (3.55)

and

∆(λ) = detM(λ). (3.56)

The map λ ∈ C∗ 7→M(λ) belongs toH(C∗,M4(C)) (see [25], p. 103) and also toH(C∗,Φ(C4,C4)). Applying
Theorem 3.1.2 and Corollary 3.1.3 of [25] we deduce
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Lemma 3.7 σ(T ) = σp(T ) = σ(M) = σp(M) = {λ ∈ C∗ |∆(λ) = 0}.
If a ∈ C or a ∈Mn(C) we will use the notation

[a]1 = a+ o(1) (3.57)

if [a]1 depends on λ and satisfies (3.57) when λ→ +∞. We have

Ẽ(0, λ) =


[1]1 [0]1 [0]1 [0]1
[0]1 [1]1 [0]1 [0]1
[0]1 [0]1 [1]1 [0]1
[0]1 [0]1 [0]1 [1]1

 = [I]1. (3.58)

With the notations

β1 =

∫ l

0

α1(t)dt, β2 =

∫ l

0

α2(t)dt (3.59)

and

γ1 = g1(l), γ2 = g2(l) (3.60)

Ẽ(l, λ) can be rewritten in the following form

Ẽ(l, λ) =


[γ1]1e

β1(λ+Ω) [0]1e
β2((λ+Ω)] [0]1e

−β1(λ+Ω) [0]1e
−β2(λ+Ω)

[0]1e
β1(λ+Ω) [γ2]1e

β2(λ+Ω) [0]1e
−β1(λ+Ω) [0]1e

−β2(λ+Ω)

[0]1e
β1(λ+Ω) [0]1e

β2(λ+Ω) [γ1]1e
−β1(λ+Ω) [0]1e

−β2(λ+Ω)

[0]1e
β1(λ+Ω) [0]1e

β2(λ+Ω) [0]1e
−β1(λ+Ω) [γ2]1e

−β2(λ+Ω)

 , (3.61)

so that

M(λ) =


[cw − (α1(P + αsGS))(0)]1 [0]1 [cw + (α1(P + αsGS))(0)]1 [0]1

[0]1 [cϕ − (α2EJ)(0)]1 [0]1 [cϕ + (α2EJ)(0)]1
−[γ1(α1(P + αsGS))(l)]1e

β1(λ+Ω) [0]1e
β2(λ+Ω) [γ1(α1(P + αsGS))(l)]1e

−β1(λ+Ω) [0]1e
−β2(λ+Ω)

[0]1e
β1(λ+Ω) −[γ2(α2EJ)(l)]1e

β2(λ+Ω) [0]1e
−β1(λ+Ω) [γ2(α2EJ)(l)]1e

−β2(λ+Ω)

.
(3.62)

Let us study the zeros of ∆(λ) = detM(λ). We have

lim
Reλ→+∞

∆(λ)

e(β1+β2)(λ+Ω)
= (γ1(α1(P + αsGS))(l))(γ2(α2EJ(l)))×

(cw + (α1(P + αsGS))(0))(cϕ + (α2EJ)(0)) (3.63)

and

lim
Reλ→−∞

∆(λ)

e−(β1+β2)(λ+Ω)
= (γ1(α1(P + αsGS))(l))(γ2(α2EJ(l)))×

(cw − (α1(P + αsGS))(0))(cϕ − (α2EJ)(0)). (3.64)

In what follows, we will make the following hypothesis
Hypothesis 3.8 With the notations (3.21), (3.22), cw 6= (α1(P+αsGS))(0), cϕ 6= (α2EJ)(0) or equivalently

cw 6=
√
ρS(0)

√
P + αsGS(0), cϕ 6=

√
ρJ(0)

√
EJ(0).

Lemmas 3.3 and 3.7, equations (2.60), (3.63), (3.64) and Hypothesis 3.8 yield the following lemma
Lemma 3.9 σ(A) = σp(A) is contained in a strip parallel to the imaginary axis included in the left half-plane,

that is there exists a constant h > 0 such that:

σ(A) = σp(A) = {λ ∈ C∗|∆(λ) = 0} ⊂ {λ ∈ C∗| − h ≤ Reλ ≤ 0}. (3.65)
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The next lemma gives formulas for the asymptotic of the eigenvalues of A.

Lemma 3.10 With the notations

µ1 =
1

2β1
ln

∣∣∣∣α1(P + αsGS)(0)− cw
α1(P + αsGS)(0) + cw

∣∣∣∣ =
1

2β1
ln

∣∣∣∣√ρS(0)
√
P + αsGS(0)− cw√

ρS(0)
√
P + αsGS(0) + cw

∣∣∣∣ , (3.66)

ν1
n =

{
inπ
β1

if α1(P + αsGS)(0)− cw > 0
i(2n+1)π

2β1
if α1(P + αsGS)(0)− cw < 0,

, n ∈ Z, (3.67)

µ2 =
1

2β2
ln

∣∣∣∣α2EJ(0)− cϕ
α2EJ(0) + cϕ

∣∣∣∣ =
1

2β2
ln

∣∣∣∣∣
√
ρJ(0)

√
EJ(0)− cϕ√

ρJ(0)
√
EJ(0) + cϕ

∣∣∣∣∣ , (3.68)

ν2
n =

{
inπ
β2

if α2EJ(0)− cϕ > 0
i(2n+1)π

2β2
if α2EJ(0)− cϕ < 0,

, n ∈ Z, (3.69)

the eigenvalues of A are given asymptotically by the formulas

λ1
n = µ1 − Ω + ν1

n + ε1
n (ε1

n → 0 when |n| → +∞) (3.70)

and

λ2
n = µ2 − Ω + ν2

n + ε2
n (ε2

n → 0 when |n| → +∞). (3.71)

P r o o f. When −h ≤ Reλ ≤ 0 and |λ| (thus |Imλ|)→ +∞,

∆(λ)−∆1(λ)∆2(λ)→ 0 (3.72)

where

∆1(λ) = [γ1α1(P + αsGS)(l)]2[(cw − α1(P + αsGS)(0))e−β1(λ+Ω)+

(cw + α1(P + αsGS)(0))eβ1(λ+Ω)], (3.73)

∆2(λ) = [γ2α2EJ(l)]2[(cϕ − α2EJ(0))e−β2(λ+Ω) + (cϕ + α2EJ(0))eβ2(λ+Ω)]. (3.74)

By Theorem 4 of [14] the zeros of ∆ are given asymptotically by the zeros of ∆1 and ∆2, that is the solutions of
the following equations

e2β1(λ+Ω) =
α1(P + αsGS)(0)− cw
α1(P + αsGS)(0) + cw

(3.75)

and

e2β2(λ+Ω) =
α2EJ(0)− cϕ
α2EJ(0) + cϕ

(3.76)

which proves the lemma.

Recall the following Proposition of [25] (Proposition 1.8.5)

Proposition 3.11 Let E and F be finite-dimensional spaces such that dimE = dimF. Let T ∈ H(Ω, L(E,F ))
and assume that ρ(T ) 6= ∅. For µ ∈ σ(T ) (= σp(T )) the algebraic multiplicity of T at µ is equal to the
multiplicity of the zero of det T at µ.

Hereafter we will make the following hypothesis

Hypothesis 3.12 With the notations (3.66) and (3.68), µ1 6= µ2.

Lemma 3.13 The eigenvalues of M are asymptotically algebraically simple.



18 J.-L. Akian: Spectral analysis of a non-homogeneous rotating Timoshenko beam

P r o o f. Lemmas 3.3, 3.7 and 3.9 show that ρ(M) = ρ(A) 6= ∅. When −h ≤ Reλ ≤ 0 and |λ| (thus |Imλ|)
→ +∞, from Cauchy’s estimates of a holomorphic function (see [28], p. 213) we get

∆′(λ)− (∆′1(λ)∆2(λ) + ∆1(λ)∆′2(λ))→ 0, (3.77)

consequently when n→ +∞

∆′(λ1
n)−∆′1(λ1

n)∆2(λ1
n)→ 0. (3.78)

It is easily seen that since µ1 6= µ2 there exists a constant C > 0 such that for all n ∈ Z,

|∆′1(λ1
n)∆2(λ1

n)| ≥ C, (3.79)

so that there exists a constant C > 0 and N ∈ N∗ such that for all n ∈ Z, |n| ≥ N ,

|∆′(λ1
n)| ≥ C. (3.80)

Similarly there exists a constant C > 0 and N ∈ N∗ such that for all n ∈ Z, |n| ≥ N ,

|∆′(λ2
n)| ≥ C. (3.81)

Thus the zeros of ∆ are asymptotically simple. From proposition 3.11 the conclusion follows.

The following lemma asserts that the holomorphic families M and T have the same partial and algebraic
multiplicities at an eigenvalue.

Lemma 3.14 Let λ0 ∈ σp(A). The holomorphic families λ ∈ C∗ 7→ T (λ) and λ ∈ C∗ 7→ M(λ) have the
same geometric multiplicities at λ0 (= r). Let us denote bymj(T, λ0) (resp. mj(M,λ0)) the partial multiplicities
of the holomorphic families λ ∈ C∗ 7→ T (λ) (resp. M(λ)) at λ0. Then mj(T, λ0) = mj(M,λ0), ∀j, 0 < j ≤ r.
Consequently if we denote bym(T, λ0) (resp. m(M,λ0)) the algebraic multiplicities of the holomorphic families
λ ∈ C∗ 7→ T (λ) (resp. M(λ)) at λ0 then m(T, λ0) = m(M,λ0).

P r o o f. Proposition 3.4 of [24] implies that for λ ∈ C∗, nul T (λ) = nul M(λ). The map J : c ∈ N(M(λ0))

7→ Ẽ(., λ0)c ∈ N(T (λ0)) is an isomorphism. For all n ∈ N∗ let us denote by Ln(M,λ0) and Ln(T, λ0) the
spaces defined by (3.1) and (3.2) corresponding to the holomorphic families M and T . From [24], Proposition
3.2, if µ ∈ C∗ and λ ∈ C∗ 7→ Z(λ) is a root function of T at µ of multiplicity p it follows that there exists a root
function λ ∈ C∗ 7→ c(λ) of λ ∈ C∗ 7→ M(λ) at µ of multiplicity ≥ p such that λ ∈ C∗ 7→ Z(λ)− Ẽ(., λ)c(λ)
has a zero of order ≥ p at µ and if λ ∈ C∗ 7→ c(λ) is a root function of M at µ of multiplicity p then there exists
a root function of λ ∈ C∗ 7→ T (λ) at µ of multiplicity p (= λ ∈ C∗ 7→ Ẽ(., λ)c(λ)). We deduce that for all
n ∈ N∗ the restriction of J to Ln(M,λ0) is an isomorphism from Ln(M,λ0) onto Ln(T, λ0). An application of
Lemma 3.1 gives the result.

Proposition 3.15 Under hypotheses 2.1, 3.6, 3.8 and 3.12, the eigenvalues of the operator A are asymptoti-
cally algebraically simple. Moreover if σ(A) = σp(A) = {λk, k ∈ N} then inf

n6=m
|λn − λm| > 0.

P r o o f. Lemmas 3.4, 3.14 and 3.13 show that the eigenvalues of the operator A are asymptotically alge-
braically simple. The second property of the eigenvalues ofA is a consequence of the formulas (3.66), . . . , (3.71)
and Hypothesis 3.12.

4 Riesz basis property and asymptotic expansion of the solution

In this section we show the completeness of the set of root vectors of A (Theorem 4.3), then the Riesz basis
property of a sequence of root vectors ofA (Theorem 4.5). Finally from the latter theorem we obtain an expansion
of the solution of (2.12), (2.13) (Theorem 4.7).

Let σ(A) = σp(A) = {λk, k ∈ N}. In order to prove the completeness of the set of root vectors ofA, one must
show that the space spanned by the root subspaces Rλk(A), k ∈ N, is dense in H1,0. For k ∈ N, let E(λk,A)
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be the Riesz projector associated to A and λk [3], p. 2255. According to [3], p. 2292, Lemma 2, for k ∈ N,
E(λk,A)H1,0 = Rλk(A). Let U ∈ H1,0 be such that U ⊥ Rλk(A), ∀k ∈ N. One must show that U = 0.
For all F ∈ H1,0, for all k ∈ N, (U, E(λk,A)F)H1,0 = 0. By [10], p. 184, (6.52), (E(λk,A))∗ = E(λk,A∗).
Thus E(λk,A∗)U = 0, ∀k ∈ N so that U ∈ S∞(A∗) = {U ∈ H1,0, ∀k ∈ N, E(λk,A∗)U = 0}. On account
of [10], p. 184, A∗ has a compact resolvent and σ(A∗) = σp(A∗) = {λk, k ∈ N}. From [3], p. 2296, Lemma 6,
S∞(A∗) is the set of U ∈ H1,0 such that λ ∈ C 7→ (A∗ − λI)−1U is an entire function of λ. It follows that for
any F ∈ H1,0, the function λ ∈ C 7→ G(λ) = ((A∗ − λI)−1U,F)H1,0 is an entire function of λ. Since A is the
generator of a contraction semigroup onH1,0 (Lemma 2.6), the Hille-Yosida theorem (see [27], p. 11, Corollary
3.6) implies that for all λ ∈ C, if Re λ > 0 then λ ∈ ρ(A) and ||(A − λI)−1|| ≤ 1/Reλ. One deduces that for
all λ ∈ C, if Re λ > 0 then λ ∈ ρ(A∗) and ||(A∗ − λI)−1|| ≤ 1/Reλ. Consequently there exists α > 0 such
that G(λ) is bounded on the closed half-plane Re λ ≥ α.

The following proposition gives an estimate of the resolvent for λ ∈ R, λ → −∞. The idea of its proof is to
compare A with the self-adjoint operator A0 corresponding to the case where cw = cϕ = 0 (no damping).

Proposition 4.1 There exist constants C1 > 0 and C2 > 0 such that (−∞,−C1] ⊂ ρ(A) and such that for
λ ∈ (−∞,−C1],

||(A− λI)−1|| ≤ C2/
√
|λ|. (4.1)

P r o o f. In the proof below the constants C1 and C2 are generic constants.
Let A0 be the unbounded operator defined by (2.30), (2.31) with cw = cϕ = 0. By Lemma 3.9 there exists

C > 0 such that (−∞,−C] ⊂ ρ(A) and (−∞,−C] ⊂ ρ(A0).

Let F =
(

f
g

)
∈ H1,0, λ ∈ (−∞,−C], U0 = (A0 − λI)−1F =

(
u0

v0

)
, U = (A − λI)−1F =

(
u
v

)
.

We have A0U0 = λU0 + F so that with (2.60)

λ(U0,U0)H1,0 +Re(F,U0)H1,0 = λ(aΩ(u0,u0)+m(v0,v0))+Re(F,U0)H1,0 = −2Ωm(v0,v0).

(4.2)

From (4.2) we see that there exist constants C1 ≥ C > 0 and C2 > 0 such that for λ ∈ (−∞,−C1],

|λ|(aΩ(u0,u0) +m(v0,v0)) ≤ C2|(F,U0)H1,0 | (4.3)

therefore

||(A0 − λI)−1|| ≤ C2/|λ|. (4.4)

On the other hand we have AU = λU + F so that with (2.60)

λ(U,U)H1,0 +Re(F,U)H1,0 = λ(aΩ(u,u) +m(v,v)) +Re(F,U)H1,0 = −bΩ(v,v). (4.5)

Equation (4.5) shows that there exist constants C1 ≥ C > 0 and C2 > 0 such that for λ ∈ (−∞,−C1],

|λ|(aΩ(u,u) +m(v,v)) ≤ C2(|(F,U)H1,0 |+ |v(0)|2) (4.6)

and since v(0) = λu(0)+f(0), from the trace theorem inH1(0, l) there exist constants C1 ≥ C > 0 and C2 > 0
such that for λ ∈ (−∞,−C1],

|λ|||U||2H1,0 ≤ C2(||F||H1,0 ||U||H1,0 + |λu(0)|2 + ||F||2H1,0). (4.7)

Let Y =
(

u
u′/λ

)
and Y0 =

(
u0

u0
′/λ

)
be associated to u and u0 by (3.13) and set Z = T−1

0 Y , Z0 = T−1
0 Y0,

where T0 is defined by (3.23). If T is the holomorphic family of operators on C∗ associated to the unbounded
operator A by (3.31), (3.32), (3.33), Z − Z0 satisfies the following equations

TD(λ)(Z − Z0) = 0 (4.8)
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and

TR(λ)(Z − Z0) =

(
−
(
Bb(0) + 1

λΩBb(0)
)
u0(0)

0

)
. (4.9)

Since Z − Z0 can be written under the form

Z − Z0 = Ẽ(., λ)c(λ) (4.10)

where c(λ) ∈ C4 and since from (3.54) we have Ẽ(0, λ) = [I]1, this gives

M(λ)[I]1(Z(0)− Z0(0)) =

(
−
(
Bb(0) + 1

λΩBb(0)
)
u0(0)

0

)
(4.11)

consequently

Y (0)− Y0(0) = T0[I]1M
−1(λ)

(
−
(
Bb(0) + 1

λΩBb(0)
)
u0(0)

0

)
. (4.12)

Equation (3.62) implies that when λ ∈ R, λ→−∞

M−1(λ) = D(λ)N(λ) (4.13)

where

D(λ) = diag(1, 1, eβ1(λ+Ω), eβ2(λ+Ω)) (4.14)

and

N(λ) =


[1/(cw − (α1(P + αsGS))(0))]1 [0]1 [0]1 [0]1

[0]1 [1/(cϕ − (α2EJ)(0))]1 [0]1 [0]1
[0]1 [0]1 [1/(γ1(α1(P + αsGS))(l))]1 [0]1
[0]1 [0]1 [0]1 [1/(γ2(α2EJ)(l))]1

. (4.15)

Equations (4.12), (4.13), (4.14) and (4.15) show that there exist constants C1 ≥ C > 0 and C2 > 0 such that for
λ ∈ (−∞,−C1],

|u(0)| ≤ C2|u0(0)|. (4.16)

According to (4.4) and from the trace theorem in H1(0, l) there exist constants C1 ≥ C > 0 and C2 > 0 such
that for λ ∈ (−∞,−C1],

|λ||u0(0)| ≤ C2||F||H1,0 . (4.17)

On account of (4.7), (4.16) and (4.17) there exist constants C1 ≥ C > 0 and C2 > 0 such that for λ ∈
(−∞,−C1],

|λ|||U||2H1,0 ≤ C2(||F||H1,0 ||U||H1,0 + ||F||2H1,0). (4.18)

From (4.18), the result follows.

Proposition 4.1 yields (−∞,−C1] ⊂ ρ(A) thus (−∞,−C1] ⊂ ρ(A∗) and G(λ) = ((A∗ − λI)−1U,F)H1,0

= (U, (A− λI)−1F)H1,0 → 0 when λ→ −∞. Hence G(λ) is bounded on the set Imλ = 0, Re λ ≤ α (since G
is an entire function, thus continuous).

Recall that an entire function f is said to be of exponential type if there is a constant A ∈ R and a constant
C > 0 such that |f(z)| ≤ CeA|z|, ∀z ∈ C [41], p. 53. This property is one of the assumptions of the Phragmén-
Lindelöf principle.

Proposition 4.2 The entire function λ ∈ C 7→ G(λ) is of exponential type.



21

P r o o f. Let F =
(

f
g

)
∈ H1,0, λ ∈ ρ(A) and U =

(
u
v

)
= (A−λI)−1F. It follows thatAU = λU+F.

Let Y =
(

u
u′/λ

)
be associated to u by (3.13) and set Z = T−1

0 Y , where T0 is defined by (3.23). We get

Z ′ −
(
λΛ̃1 + Λ̃0 +

1

λ
Λ̃−1

)
Z = T−1

0 Fλ, (4.19)

(
B̃1 +

1

λ
B̃0

)
T0Z(0) +

(
C̃1 +

1

λ
C̃0

)
T0Z(l) =

1

λ
D̃ (4.20)

where

Fλ =

(
0

−A−1
2 (Mg + +2ΩMf + λMf)/λ

)
(4.21)

and

D̃ =

(
−Bb(0)f(0)

0

)
. (4.22)

By seeking a solution of (4.19) under the form Z(x, λ) = Ẽ(x, λ)A(x, λ), where A(x, λ) ∈ C4, we get

A(x, λ) =

∫ x

0

Ẽ−1(t, λ)T−1
0 Fλ(t)dt+Kλ (4.23)

where Kλ ∈ R4 depends only on λ. An easy computation shows that

Kλ = M−1(λ)

(
1

λ
D̃ −

(
C̃1 +

1

λ
C̃0

)
T0Ẽ(l, λ)

∫ l

0

Ẽ−1(t, λ)T−1
0 Fλ(t)dt

)
(4.24)

and

Y (x, λ) = T0Ẽ(x, λ)M−1(λ)N(x, λ) (4.25)

where

N(x, λ) = M(λ)

∫ x

0

Ẽ−1(t, λ)T−1
0 Fλ(t)dt+

1

λ
D̃−(

C̃1 +
1

λ
C̃0

)
T0Ẽ(l, λ)

∫ l

0

Ẽ−1(t, λ)T−1
0 Fλ(t)dt. (4.26)

It is easily seen that there exist β > 0 and C1 > 0, C2 > 0 such that for all λ ∈ C, |λ| ≥ C1, ||N(., λ)||L∞(0,l) ≤
C2e

β|λ|||F||H1,0 . On the other hand, one can write

M−1(λ)N(x, λ) =
P (x, λ)

∆(λ)
(4.27)

where P (x, λ) satisfies the same type of inequality than N(x, λ). Hence Y can be written under the form

Y (x, λ) =
Q(x, λ)

∆(λ)
(4.28)

where Q(x, λ) satisfies the same type of inequality than N(x, λ). Consequently there exist β > 0 and C1 > 0,
C2 > 0 such that for all λ ∈ ρ(A) and |λ| ≥ C1, |∆(λ)| ||(A − λI)−1F||H1,0 ≤ C2e

β|λ|||F||H1,0 so that
|∆(λ)| ||(A − λI)−1|| ≤ C2e

β|λ|. For λ ∈ ρ(A∗) (thus λ̄ ∈ ρ(A)), G(λ) = ((A∗ − λI)−1U,F)H1,0 =
(U, (A − λ̄I)−1F)H1,0 . Thus for all λ ∈ ρ(A∗) and |λ| ≥ C1, |∆(λ̄)G(λ)| ≤ C2 e

β|λ|||U||H1,0 ||F||H1,0 .
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Since ∆(λ̄) = 0 for λ 6∈ ρ(A∗), we see that there exist β > 0 and C > 0 such that for all λ ∈ C, |∆(λ̄)G(λ)| ≤
C eβ|λ|.

Let us show that when |λ| → +∞, |∆(λ)| ∼ |∆(λ̄)|. Let us remark that since the matrices Λ̃i, i = −1, 0, 1
have real coefficients, if for all λ ∈ C∗, Z(., λ) is a fundamental matrix of TD(λ)Z = 0 it follows that for all
λ ∈ C∗, Z̄(., λ̄) is also a fundamental matrix of TD(λ)Z = 0. By the definition of a fundamental matrix there
exists a λ-dependant invertible matrix A(λ) ∈M4(C) (λ ∈ C∗) such that for all λ ∈ C∗, Z̄(., λ̄) = Z(., λ) A(λ).
Choosing the asymptotic fundamental matrix function given by Proposition 3.5, namely Ẽ(x, λ) given by (3.54),
we obtain ¯̃E(x, λ̄) = Ẽ(x, λ) A(λ). Taking x = 0 in this equation and letting |λ| tend to infinity, we deduce that
A(λ)→ I when |λ| → +∞. As a consequence for all λ ∈ C∗, M̄(λ̄) = T̄R(λ̄) ¯̃E(x, λ̄) = TR(λ)Ẽ(x, λ)A(λ) =
M(λ)A(λ) and |∆(λ̄)| = |∆(λ)||detA(λ)| thus |∆(λ̄)| ∼ |∆(λ)| when |λ| → +∞.

One deduces that there exist β > 0 and C > 0 such that for all λ ∈ C, |∆(λ)G(λ)| ≤ C eβ|λ|. Therefore
∆(λ)G(λ) is of exponential type. It follows that G(λ) is the ratio of two entire functions of exponential type and
thus is of exponential type [11], p. 22.

Let us recall that if H is a Hilbert space, a sequence (hn)n∈N of vectors of H is called minimal if no vector
hn0

belongs to the closed linear span of the remaining vectors hn, n 6= n0 [23], p. 187. Lemma 2.4 of [22] asserts
that if T is a compact operator of a Hilbert space such that N(T ) = {0}, then there is a system of root vectors of
T which is minimal. Since 0 ∈ ρ(A) andA−1 is compact, this lemma applies toA−1. We are in position to state
and prove one of the main theorems of this paper

Theorem 4.3 Under hypotheses 2.1, 3.6, 3.8 and 3.12, the set of root vectors of A is complete in H1,0 and
there is a system of root vectors of A which is minimal inH1,0.

P r o o f. We have proved that G(λ) is bounded on the half-plane Reλ ≥ α and on the line Reλ ≤ α, Imλ = 0
and that G(λ) is of exponential type. By the Phragmén-Lindelöf principle [41], p. 80, G(λ) is bounded on C.
Since G(λ) → 0 when Reλ → +∞, the Liouville theorem shows that G ≡ 0 hence (A∗ − λI)−1U ≡ 0 and
U = 0. The proof of Theorem 4.3 is complete.

If H is a separable Hilbert space, a sequence (hn)n∈N of vectors of H is a Riesz basis of H if by definition
there exists an invertible operator D such that the sequence (Dhn) is an orthonormal basis of H [23], p. 168.
Theorem 2.1, p. 310 of [6] states that a sequence (hn)n∈N of vectors of H is a Riesz basis of H iff it is complete
in H and there exist two constants a1, a2 > 0 such that for all n ∈ N, for all γ1, · · · γn ∈ C,

a2(
n∑
j=1

|γj |2) ≤ |
n∑
j=1

γjhj |2 ≤ a1(
n∑
j=1

|γj |2). (4.29)

Recall that two sequences (hn)n∈N and (kn)n∈N of vectors of H are biorthogonal if (hn, km)H = δnm (n,m ∈
N) and that if (hn)n∈N is a Riesz basis of H , there exists a Riesz basis (kn)n∈N of H such that (hn)n∈N and
(kn)n∈N are biorthogonal [6], p. 310. Let us recall the following theorem from Xu [35], Theorem 1.1:

Theorem 4.4 Let H be a separable Hilbert space and A be the generator of a C0 semigroup T (t) on H.
Assume that

(1) σ(A) = σ1(A) ∪ σ2(A), where σ2(A) = {λk}+∞k=0 consists of isolated eigenvalues of A with finite
algebraic multiplicity,

(2) sup
k≥0

dim E(λk,A)H < +∞, where E(λk,A) is the Riesz projector associated with λk,

(3) There is a constant α such that sup{Reλ, λ ∈ σ1(A)} ≤ α ≤ inf{Reλ, λ ∈ σ2(A)} and inf
n6=m
|λn−λm| >

0.
With these hypotheses the following assertions are true
(i) There exist two T (t)-invariant closed subspacesH1,H2 with the property that σ(A|H1

) = σ1(A), σ(A|H2
)

= σ2(A), {E(λk,A)H2}+∞k=0 forms a subspace Riesz basis for H2 (see [6], p. 332 for the definition) and H =

H1 ⊕H2,
(ii) If sup

k≥0
||E(λk,A)|| < +∞, then D(A) ⊂ H1 ⊕H2 ⊂ H,
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(iii)H has the decompositionH = H1 ⊕H2 (topological direct sum) if and only if

sup
n≥0

∥∥∥∥∥
n∑
k=0

E(λk,A)

∥∥∥∥∥ < +∞. (4.30)

The other main result of this paper reads as follows

Theorem 4.5 Under hypotheses 2.1, 3.6, 3.8 and 3.12, there exists a sequence of root vectors of A (defined
by (2.30), (2.31)) which forms a Riesz basis ofH1,0.

P r o o f. Lemmas 2.4, 2.6, 3.9 and Proposition 3.15 show that the hypotheses of theorem 4.4 are fulfilled with
H = H1,0, A defined by (2.30), (2.31), σ1(A) = ∅, σ2(A) = σ(A) = σp(A). Therefore, since the eigenvalues
of A are asymptotically algebraically simple, there exists a sequence of root vectors of A which forms a Riesz
basis ofH2. Theorem 4.3 givesH2 =H =H1,0 and the result follows.

Remark 4.6 Let us compare Theorem 4.5 with other results in the literature on the spectral analysis of the
Timoshenko beam model.

In [29], the spectral analysis of the (non rotating) Timoshenko beam model with the same boundary damping
as ours on one end is addressed. Under some hypotheses on the physical properties of the beam which are similar
to ours, the Riesz basis property of a sequence of root vectors of the unbounded operator associated to the problem
(corresponding to A) is shown. More precisely our hypotheses 3.6 and 3.8 are equivalent to hypotheses (3.17)
and (4.8) of [29]. But in [29] the hypothesis corresponding to our hypothesis 3.12 does not appear. In [29],
Theorem 4.2, it is written ”The entire set of eigenvalues asymptotically splits into two disjoint sets”, but as it is
well explained in [21], Remark 6.6, it is not the case in general, but this assertion is true if our hypothesis 3.12 is
satisfied.

In [39], the spectral analysis of the (non rotating) Timoshenko beam model with a more general boundary
damping than ours is examined. The Riesz basis property of a sequence of root vectors of the unbounded operator
associated to the problem (corresponding to A) is shown under hypotheses equivalent to our hypotheses 3.8 and
3.12 but with no hypothesis equivalent to our hypothesis 3.6 (Theorem 4.1 of [39]).

In [21], the spectral analysis of the (non rotating) Timoshenko beam model with the same boundary damping
as in [39] is analysed. Under hypotheses on the regularity of the physical parameters, an hypothesis similar to
our hypothesis 3.8 (conditions (6.29a) and (6.29b) of [21]), and an hypothesis which, with our notations, can
be written E/G = const. (condition (6.9) of [21]), it is shown that there is a system of root vectors of the
unbounded operator associated to the problem (corresponding to A) which is complete and minimal (Theorem
6.3 (i) of [21]). In the case of the same boundary damping as ours on one end, and with additional hypotheses on
the regularity of the physical parameters, the Riesz basis property with parentheses of a sequence of root vectors
of the unbounded operator associated to the problem is shown (Theorem 6.3 (ii) of [21]).

From Theorem 4.5 we get an expansion of the solution of (2.12), (2.13) as a function of a sequence of root
vectors of A.

Theorem 4.7 Assume that hypotheses 2.1, 3.6, 3.8 and 3.12 are satisfied. Assume moreover that u0 ∈ H1,
v0 ∈ H1, Au0 +Bv0 ∈ H0 or (which is equivalent) u0 ∈ H2, v0 ∈ H1, [Bau0 +Bbv0](0) = 0, [Bau](l) = 0.
Let u be the solution to (2.12), (2.13) given by Proposition 2.7, iii). Let σp(A) = {λk, k ∈ N} be the (point)
spectrum of A. For all k ∈ N, let rk be the geometric multiplicity of λk, mk,i, i = 1, . . . , rk the partial
multiplicities of the holomorphic familyA(λ) =A−λI at λk, (Uk,i,j), i = 1, . . . rk, j = 0, . . . ,mk,i−1 a family
of root vectors corresponding to λk such that (A − λkI)Uk,i,j = Uk,i,j−1, i = 1, . . . rk, j = 0, . . . ,mk,i − 1

(with Uk,i,−1 = 0) and set Uk,i,j =
(

uk,i,j
vk,i,j

)
. Then there exists a family of polynomial functions (Pk,i,j) of

degree ≤ mk,i − 1 − j, k ∈ N, i = 1, . . . rk, j = 0, . . . ,mk,i − 1 such that setting ak,i,j(t) = eλktPk,i,j(t)
(t ∈ R) and

un(t) =
n∑
k=0

rk∑
i=1

mk,i−1∑
j=0

ak,i,j(t)uk,i,j (n ∈ N, t ∈ R), (4.31)
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we have

un(t)→ e−Ωtu(t) in H2 uniformly on [0,+∞), (4.32)

u̇n(t)→ (e−Ωtu)
.
(t) in H1 uniformly on [0,+∞), (4.33)

ün(t)→ (e−Ωtu)
..
(t) in H0 uniformly on [0,+∞), (4.34)

so that for all T > 0

eΩtun(t)→ u(t) in H2 uniformly on [0, T ], (4.35)

(eΩtun)
.
(t)→ u̇(t) in H1 uniformly on [0, T ], (4.36)

(eΩtun)
..
(t)→ ü(t) in H0 uniformly on [0, T ]. (4.37)

P r o o f. Let t ∈ [0,+∞)→ T (t) be the contraction semigroup generated by A. Under the hypotheses of the

theorem, from Proposition 2.7-i), U0 =
(

u0

v0 − Ωu0

)
∈ D(A). From Proposition 2.7-ii) there exists a unique

solution ∈ C1([0,+∞);H1,0)∩C0([0,+∞);D(A)) to the initial value problem (2.61) given by U(t) = T (t)U0,
(t ∈ [0,+∞)).

Theorem 4.5 implies that the family (Uk,i,j), k ∈ N, i = 1, . . . rk, j = 0, . . . ,mk,i−1 is a Riesz basis ofH1,0.
Let (Vk,i,j), k ∈ N, i = 1, . . . rk, j = 0, . . . ,mk,i − 1 be the Riesz basis of H1,0 which is biorthogonal to the
Riesz basis (Uk,i,j). Every element U ∈H1,0 can be written in a unique way U =

∑
k,i,j(U,Vk,i,j)H1,0Uk,i,j ,

the convergence being in H1,0. Equation (4.29) implies
∑
k,i,j |(U,Vk,i,j)H1,0 |2 < +∞. By a proof similar to

that of [2], Theorem 2.3.5-b, one can show that

D(A) =

U ∈ H1,0;
∑
k,i,j

|λk|2|(U,Vk,i,j)H1,0 |2 < +∞

 (4.38)

and for all U ∈ D(A),

AU =
∑
k,i,j(U,Vk,i,j)H1,0{λkUk,i,j + Uk,i,j−1}

=
∑
k,i,j{λk(U,Vk,i,j)H1,0 + (U,Vk,i,j+1)H1,0}Uk,i,j

(4.39)

(with Vk,i,mk,i = 0), the convergence being inH1,0. Setting for all n ∈ N

Un
0 =

n∑
k=0

∑
i,j

(U0,Vk,i,j)H1,0Uk,i,j

 , (4.40)

we have: Un
0 → U0 in H1,0 when n → +∞. Since U0 ∈ D(A), from (4.38) and (4.39), AUn

0 → AU0 in
H1,0 when n → +∞. Since T (t) is a contraction semigroup in H1,0 (for all t ∈ [0,+∞), ||T (t)||H1,0→H1,0

≤ 1) we infer that Un(t) = T (t)Un
0 → T (t)U0 = U(t) in H1,0 uniformly on [0,+∞). Moreover U̇n(t) =

AUn(t) = AT (t)Un
0 = T (t)AUn

0 → T (t)AU0 = AT (t)U0 = AU(t) = U̇(t) inH1,0 uniformly on [0,+∞).
Since from (2.41), on D(A) the graph norm is equivalent to the norm ||.||H2,1 it follows that Un(t) → U(t)

in H2,1 uniformly on [0,+∞). If we set Wk,i,j(t) = T (t)Uk,i,j then Ẇk,i,j(t) = AWk,i,j(t) = AT (t)Uk,i,j

= T (t)AUk,i,j = T (t)(λkUk,i,j + Uk,i,j−1) = λkWk,i,j + Wk,i,j−1. This differential system and the initial
conditions Wk,i,j(0) = Uk,i,j give

Wk,i,j(t) = eλkt
{
Uk,i,j + Uk,i,j−1t+ · · ·+ Uk,i,0

tj

j!

}
. (4.41)

Therefore

mk,i−1∑
j=0

(U0,Vk,i,j)H1,0Wk,i,j(t) = eλkt


mk,i−1∑
j=0

Pk,i,j(t)Uk,i,j

 (4.42)
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where

Pk,i,j(t) = (U0,Vk,i,j)H1,0+(U0,Vk,i,j+1)H1,0t+· · ·+(U0,Vk,i,mk,i−1)H1,0

tmk,i−1−j

(mk,i − 1− j)!
(4.43)

so that

Un(t) = T (t)Un
0 =

n∑
k=0

eλkt
rk∑
i=1


mk,i−1∑
j=0

Pk,i,j(t)Uk,i,j

 . (4.44)

Recall that the solution to (2.61) is written under the form U =
(

u
v

)
. For n ∈ N set Un =

(
un

vn

)
. We have

v = u̇ and vn = u̇n. Since Un(t)→ U(t) inH2,1 and U̇n(t)→ U̇(t) inH1,0 uniformly on [0,+∞) we deduce
that un(t)→ u(t) in H2, u̇n(t)→ u̇(t) in H1, ün(t)→ ü(t) in H0 uniformly on [0,+∞). Replacing u(t) by
eΩtu(t) the result follows.
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