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In this paper we examine the spectral analysis of a spatially non-homogeneous Timoshenko beam mounted on the periphery of a rigid root rotating about its axis at a constant angular speed. The junction between the beam and the root is assumed to be elastically restrained and damped. The unbounded operator associated to the physical problem in the associated Hilbert space is non-self-adjoint and with a compact resolvent. We show that under some hypotheses on the physical properties of the beam, there exists a Riesz basis of root vectors of this unbounded operator. Furthermore, the solution of the initial value problem has an expansion in terms of this Riesz basis, uniform with respect to the time in a bounded interval.

Introduction

Flexible beams are fundamental components in many areas of structural engineering. The most commonly used beam models are those of Euler-Bernoulli, Rayleigh and Timoshenko. Among these, the Timoshenko beam model is the most advanced, because it includes the effects of rotary inertia and transverse shear deformation and is suitable for thick beams.

The present work is devoted to the spectral analysis of a rotating Timoshenko beam model. We consider a spatially non-homogeneous Timoshenko beam mounted on the periphery of a rigid root rotating about its axis (fixed in space) at a constant angular speed [START_REF] Lin | Vibration analysis of a rotating Timoshenko beam[END_REF]. We assume that the junction between the beam and the root is elastically restrained and damped [START_REF] Lee | Bending vibrations of rotating nonuniform Timoshenko beams with an elastically restrained root[END_REF][START_REF] Lin | Dynamic analysis of rotating nonuniform Timoshenko beams with an elastically restrained root[END_REF][START_REF] Lin | Prediction of vibration and instability of rotating damped beams with an elastically restrained root[END_REF][START_REF] Lin | Dynamic analysis of rotating damped beams with an elastically restrained root[END_REF]. The unbounded operator associated to the physical problem has a compact resolvent but due to the damping it is non-self-adjoint. For that reason one must take into account not only the eigenvectors of this operator but also its generalized eigenvectors or root vectors. A core problem is to show that the set of root vectors of this operator is complete in the Hilbert space associated to the physical problem. An other key issue is to prove that there exists a Riesz basis of root vectors of this operator in the associated Hilbert space. In this paper we show that under some hypotheses on the physical properties of the beam (see hypotheses 2.1, 3.6, 3.8, 3.12), there exists a Riesz basis of root vectors of this operator in the related Hilbert space.

The spectral analysis of the Timoshenko beam model has been extensively studied in the past few years. In the paper [START_REF] Shubov | Asymptotic and spectral analysis of the spatially nonhomogeneous Timoshenko beam model[END_REF] the spectral analysis of a (non-rotating) Timoshenko beam model with the same boundary damping as ours is analyzed. In this paper the completeness of the set of root vectors of the unbounded operator associated to the physical problem is shown by applying the Keldysh theorem [START_REF] Gohberg | Introduction to the theory of linear non-self-adjoint operators[END_REF], p. 257, Theorem 8.1, [START_REF] Shubov | Asymptotic and spectral analysis of the spatially nonhomogeneous Timoshenko beam model[END_REF], Theorem 6.4. Then applying a theorem of Bari [START_REF] Gohberg | Introduction to the theory of linear non-self-adjoint operators[END_REF], p. 311, Theorem 2.1-5, and a theorem of Carleson related the the Riesz basis property of a set of nonharmonic exponentials [START_REF] Nikol'skii | Treatise on the Shift Operator. Spectral Function Theory[END_REF], p. 261, Theorem on Exponentials, the Riesz basis property of a sequence of root vectors of the aforementioned operator is shown [START_REF] Shubov | Asymptotic and spectral analysis of the spatially nonhomogeneous Timoshenko beam model[END_REF], Theorem 7.1.

In papers [START_REF] Xu | The Riesz basis property of a Timoshenko beam with boundary feedback and application[END_REF], [START_REF] Feng | Riesz basis property of Timoshenko beams with boundary feedback control[END_REF], [START_REF] Xu | Riesz basis property of the generalized eigenvector system of a Timoshenko beam[END_REF], the Riesz basis property of a sequence of root vectors of the unbounded operator associated to the (non-rotating) Timoshenko beam model with similar boundary damping is examined. In these papers the authors apply a theorem of Guo [START_REF] Guo | The Riesz basis property of discrete operators and application to a Euler-Bernoulli beam equation with boundary linear feedback control[END_REF], Theorem 1 based on a theorem of Bari [START_REF] Gohberg | Introduction to the theory of linear non-self-adjoint operators[END_REF], p. 317, Theorem 2.3.

All the aforementioned papers about the Riesz basis property are based on a precise asymptotic of the root vectors.

In papers [START_REF] Xu | Exponential decay rate for a Timoshenko beam with boundary damping[END_REF], [START_REF] Han | Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks[END_REF], [START_REF] Han | Dynamical behavior of a hybrid system of nonhomogeneous Timoshenko beam with partial non-collocated inputs[END_REF], [START_REF] Xu | Riesz basis property of serially connected Timoshenko beams[END_REF], the spectral analysis of the (non-rotating) Timoshenko beam model with various boundary conditions is studied by applying a theorem from Xu [START_REF] Xu | The expansion of a semigroup and a Riesz basis criterion[END_REF], Theorem 1.1 which provides sufficient conditions for a sequence of root vectors of an unbounded operator to form a Riesz basis. The advantage of this theorem is that it does not require to estimate the asymptotic of the root vectors. The idea of the method carried out in the above-mentioned articles is basically to find the asymptotic of the spectrum of the associated unbounded operator by reducing the problem to a first-order system asymptotically linear in the spectral parameter, then to apply the Phragmén-Lindelöf principle to show that the set of root vectors of the operator is complete, and finally to apply the theorem from Xu [START_REF] Xu | The expansion of a semigroup and a Riesz basis criterion[END_REF], Theorem 1.1. This latter method sounds simpler than the former ones and for that reason it has been used in the present work.

The paper [START_REF] Lunyov | On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications[END_REF] is concerned with the completeness, minimality and the Riesz basis (with parentheses) property of a sequence of root vectors of boundary value problems for first order systems of ordinary differential equations on a bounded interval. The spectral problem discussed in [START_REF] Lunyov | On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications[END_REF] is linear in the spectral parameter. The results of this article have been applied to the spectral analysis of the (non-rotating) Timoshenko beam model with boundary damping. But these results cannot be applied directly to the rotating Timoshenko beam model, because of the terms coming from the rotation which lead to a first order system of ordinary differential equations only asymptotically linear (and not linear) in the spectral parameter. Like paper [START_REF] Lunyov | On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications[END_REF], the paper [START_REF] Tretter | Spectral problems for systems of differential equations y + a0y = λa1y with λ-polynomial boundary conditions[END_REF] treats the spectral analysis of boundary value problems for first order systems of ordinary differential equations on a bounded interval but the problem discussed in this article is linear in the spectral parameter and for the same reasons the results of [START_REF] Tretter | Spectral problems for systems of differential equations y + a0y = λa1y with λ-polynomial boundary conditions[END_REF] cannot be applied directly to the rotating Timoshenko beam model.

As far as the (mathematical) spectral analysis of a rotating Timoshenko beam model is concerned, to the best of our knowledge, very few research papers deal with this problem. Let us quote the papers [START_REF] Krabs | On controllability of linear vibrations[END_REF][START_REF] Krabs | On the set of reachable states in the problem of controllability of rotating Timoshenko beams[END_REF][START_REF] Sklyar | Spectral properties of non-homogeneous Timoshenko beam and its rest to rest controllability[END_REF][START_REF] Sklyar | Controlling a non-homogeneous Timoshenko beam with the aid of the torque[END_REF] where a very simplified model (without centrifugal force) is considered [START_REF] Krabs | On controllability of linear vibrations[END_REF], p. 147. In the present work we have chosen the most common formulation of the rotating Timoshenko beam model given for example in [START_REF] Ganguli | Finite Element Analysis of Rotating Beams[END_REF], p. 279 or [START_REF] Banerjee | Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams[END_REF], Appendix A. This model takes into account flexural and shear deformations of the beam. More advanced models taking into account the coupling between extensional and flexural deformations can be found for example in [START_REF] Simo | The role of non-linear theories in transient dynamic analysis of flexible structures[END_REF] or [START_REF] Lin | Vibration analysis of a rotating Timoshenko beam[END_REF]. Let us stress that the equations of the rotating Timoshenko beam model in these two articles are not exactly the same (compare equation [START_REF] Nikol'skii | Treatise on the Shift Operator. Spectral Function Theory[END_REF] of [START_REF] Simo | The role of non-linear theories in transient dynamic analysis of flexible structures[END_REF] and equations [START_REF] Xu | Riesz basis property of the generalized eigenvector system of a Timoshenko beam[END_REF], [START_REF] Xu | Riesz basis property of serially connected Timoshenko beams[END_REF], [START_REF] Xu | Exponential decay rate for a Timoshenko beam with boundary damping[END_REF] of [START_REF] Lin | Vibration analysis of a rotating Timoshenko beam[END_REF]).

This paper is organized as follows. In Section 2, we outline a variational formulation of the problem and the corresponding equations and boundary conditions. In order to deal with a coercive form we make a change of variables regarding the dependance of the solution with respect to time. We write the equations as a first order evolution equation and we prove that the (space) unbounded operator in this evolution equation (denoted A) has a compact resolvent. As a result its spectrum consists of isolated eigenvalues of finite algebraic multiplicity. Moreover this operator is maximal-dissipative and thus is the generator of a contraction semigroup. In Section 3 we study the asymptotics of its spectrum. To this end we make a change of variable in order to reduce the problem to a first-order system asymptotically linear in the spectral parameter. Then we apply a result of R. Mennicken and R. Möller [START_REF] Mennicken | Non-Self-Adjoint Boundary Eigenvalue Problems[END_REF] to get an asymptotic fundamental matrix function of this system from which we obtain the asymptotics of its spectrum under some hypotheses on the physical properties of the beam (see hypotheses 2.1, 3.6, 3.8). It is shown that under an additional hypothesis on the physical properties of the beam (see hypothesis 3.12), the eigenvalues of the first-order system are asymptotically algebraically simple. In order to prove that the same property is true for the operator A we have used some results of [START_REF] Mennicken | Non-Self-Adjoint Boundary Eigenvalue Problems[END_REF] and [START_REF] Mennicken | Root functions of boundary eigenvalue operator functions[END_REF] on root functions of holomorphic families of operators. Let us point out that the approach consisting in comparing carefully the algebraic multiplicities of the root vectors of A and those of the root functions associated to the first order system is not usual in the literature on the spectral analysis of the Timoshenko beam model and this is an original feature of the present paper (see for example [START_REF] Han | Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks[END_REF], [START_REF] Han | Dynamical behavior of a hybrid system of nonhomogeneous Timoshenko beam with partial non-collocated inputs[END_REF], [START_REF] Xu | Riesz basis property of serially connected Timoshenko beams[END_REF]). In Section 4 using estimates of the resolvent in different parts of the complex plane and the Phragmén-Lindelöf principle we prove that under the aforementioned hypotheses on the physical properties of the beam the set of root vectors of A is complete and that there is a system of root vectors of this operator which is minimal (Theorem 4.3). Using the theorem from Xu [START_REF] Xu | The expansion of a semigroup and a Riesz basis criterion[END_REF], Theorem 1.1, we prove that under the same hypotheses there exists a sequence of root vectors of A which forms a Riesz basis (Theorem 4.5). As a consequence one can obtain an asymptotic expansion of the solution of the related (hyperbolic) initial valued problem. This expansion is uniform with respect to the time in a bounded interval (Theorem 4.7).

Comparisons of the hypotheses and results of the present paper and other papers in the literature are given in Remark 4.6.

Formulation of the rotating Timoshenko beam model

In what follows, R is the (constant) radius of the root, Ω its (constant) angular speed, l the (constant) length of the beam, S its cross-sectional area, E its Young modulus, ρ its mass density, J the moment of inertia of its cross-section, G its shear modulus, α s > 0 its (constant) shear correction factor, S, E, ρ, J and G depending on the abscissa x on the beam. The infinitesimal transverse displacement will be denoted by w, the infinitesimal rotation of the cross-section by ϕ, the corresponding (constant) spring constants at the junction by k w and k ϕ and the corresponding (constant) damping constants at the junction by c w and c ϕ (k w > 0, k ϕ > 0, c w > 0, c ϕ > 0). The centrigugal force P (x) is given by (see [START_REF] Ganguli | Finite Element Analysis of Rotating Beams[END_REF], p. 279, [START_REF] Banerjee | Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams[END_REF], Appendix A)

P (x) = l x ρSΩ 2 (R + y)dy (≥ 0), x ∈ [0, l].
(2.1)

Hereafter, the derivative with respect to the time will be denoted by a dot and the derivative with respect the spatial variable by a prime.

The principle of virtual work for this rotating Timoshenko beam model is formally written as follows: find w, ϕ sufficiently smooth functions with values in C such that for all w * , ϕ * sufficiently smooth functions with values in C,

l 0 [P w w * + EJϕ ϕ * ]dx + l 0 α s GS[(w -ϕ)w * -(w -ϕ)ϕ * ]dx+ l 0 ρJ[ φ -Ω 2 ϕ]ϕ * dx + l 0 ρS ẅw * dx = -[k w w + c w ẇ](0)w * (0) -[k ϕ ϕ + c ϕ φ](0)ϕ * (0).
(2.2)

One gets formally the following equations (see [START_REF] Ganguli | Finite Element Analysis of Rotating Beams[END_REF], p. 279, [START_REF] Banerjee | Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams[END_REF], Appendix A)

(P w ) + [α s GS(w -ϕ)] = ρS ẅ, (2.3) 
(EJϕ ) = ρJ( φ -ϕΩ 2 ) -α s GS(w -ϕ), (2.4) 
and boundary conditions

(P w )(0) + [α s GS(w -ϕ)](0) = [k w w + c w ẇ](0), (EJϕ )(0) = [k ϕ ϕ + c ϕ φ](0), (2.5) 
(P w )(l) + [α s GS(w -ϕ)](l) = 0, (EJϕ )(l) = 0. (2.6)
Let us recall some definitions. For m ∈ N, H m (0, l) is the space of functions u in L 2 (0, l) such that the derivatives of u in the sense of distributions up to order m are in L 2 (0, l) (in particular H 0 (0, l) = L 2 (0, l)).

The space W m,∞ (0, l) is the space of functions u ∈ L ∞ (0, l) such that the derivatives of u in the sense of distributions up to order m are in L ∞ (0, l). A sesquilinear form a on a Hilbert space V is coercive if there exists a constant C > 0 such that Re(a(u, u)) ≥ C||u|| 2 V , ∀u ∈ V . In the sequel we will make the following hypothesis Hypothesis 2.1 S, E, J, G ∈ W 1,∞ (0, l), ρ ∈ L ∞ (0, l) and there exists a constant

C > 0 such that S ≥ C, E ≥ C, J ≥ C, G ≥ C, ρ ≥ C on (0, l). For m ∈ N, set H m = H m (0, l) ⊗ C 2 (in particular H 0 = L 2 (0, l) ⊗ C 2 ). With the notations u = w ϕ , u * = w * ϕ * , (2.7) 
define the Hermitian forms a 0 , a and b on H 1 by: for all u, u * ∈ H 1 ,

a 0 (u, u * ) = l 0 [P w w * + EJϕ ϕ * ]dx + l 0 α s GS[(w -ϕ)w * -(w -ϕ)ϕ * ]dx+ k w w(0)w * (0) + k ϕ ϕ(0)ϕ * (0), (2.8) 
a(u, u * ) = a 0 (u, u * ) -Ω 2 l 0 ρJϕϕ * dx, (2.9) b(u, u * ) = c w w(0)w * (0) + c ϕ ϕ(0)ϕ * (0), (2.10) 
and the Hermitian form m on H 0 by: for all u, u * ∈ H 0 ,

m(u, u * ) = l 0 ρJϕϕ * dx + l 0 ρSww * dx. (2.11)
With the foregoing assumptions (Hypothesis 2.1) the Hermitian forms a 0 , a, b, m are well defined and continuous on their respective domains of definition. The Hermitian forms a 0 and b are non-negative on H 1 and the Hermitian form m is coercive on H 0 . A variational formulation of the problem reads as follows: Given u 0 , v 0 in subspaces of H 1 and H 0 to be precised later, find u ∈ C 1 ([0, +∞);

H 1 ) ∩ C 2 ([0, +∞); H 0 ) such that m(ü, u * ) + b( u, u * ) + a(u, u * ) = 0, ∀u * ∈ H 1 , (2.12) 
and satisfying the initial conditions

u(0) = u 0 ; u(0) = v 0 . (2.13) 
In order to deal with coercive forms we need the following lemma Lemma 2.2 a 0 is coercive: there exists C > 0 such that for all u ∈ H 1 ,

a 0 (u, u) ≥ C||u|| 2 H 1 . (2.

14)

Consequently for all u ∈ H 1 ,

a(u, u) + Ω 2 m(u, u) ≥ C||u|| 2 H 1 , (2.15) 
and there exists Ω 0 > 0 such that for all Ω, 0 ≤ Ω ≤ Ω 0 , there exists

C Ω > 0 such that for all u ∈ H 1 , a(u, u) ≥ C Ω ||u|| 2 H 1 .
(2.16) P r o o f. Suppose that (2.14) is not true. Hence one can find a sequence (u n ) ∈ H 1 such that ∀n ∈ N, ||u n || H 1 = 1 and a 0 (u n , u n ) → 0 when n → +∞. One can extract a subsequence still denoted by (u n ) such that u n u in H 1 (weak convergence) and u n → u in H 0 when n → +∞. Since a 0 (u n , u n ) → 0 when n → +∞, it follows that u n (0) → 0, ϕ n → 0 and w n -ϕ n → 0 in L 2 (0, l) when n → +∞. Consequently (ϕ n ) is a Cauchy sequence, hence this sequence converges in H 1 (0, l) towards an element ϕ ∈ H 1 (0, l) such that ϕ = 0 and ϕ(0) = 0, so that ϕ = 0. Hence w n → 0 in L 2 (0, l) when n → +∞. In the same way as for the sequence (ϕ n ) it implies that w n → 0 in H 1 (0, l). Therefore u n → 0 in H 1 . This gives a contradiction since ∀n ∈ N,

||u n || H 1 = 1.
Let (H 0 ) (resp. (H 1 ) ) be the space of continuous antilinear forms on H 0 (resp. H 1 ). The form m being continuous on H 0 , it defines a continuous linear operator M from H 0 to (H 0 ) by: for all u, u * ∈ H 0 , m(u, u * ) = M u, u * (H 0 ) ,H 0 . The forms a and b being continuous on H 1 , they define continuous linear operators A and B from H 1 to (H 1 ) by: for all u, u * ∈ H 1 , a(u, u * ) = Au, u * (H 1 ) ,H 1 , b(u, u * ) = Bu, u * (H 1 ) ,H 1 . If H 0 and (H 0 ) are identified by the Riesz representation theorem, then

H 1 ⊂ H 0 ⊂ (H 1 )
with continuous and dense injections and for all u ∈ H 0 , u * ∈ H 1 , one can write m(u, u * ) = M u, u * (H 1 ) ,H 1 . Consequently (2.12) can be replaced by: find u ∈ C 1 ([0, +∞); H 1 ) ∩ C 2 ([0, +∞); H 0 ) such that M ü + B u + Au = 0 in (H 1 ) .

(2.17)

The Hermitian form a is not coercive. In order to deal with a coercive form let us replace u(t) with e Ωt u(t).

Consequently the variational problem reduces to:

find u ∈ C 1 ([0, +∞); H 1 ) ∩ C 2 ([0, +∞); H 0 ) such that M ü + B Ω u + A Ω u = 0 in (H 1 ) , (2.18) 
where

A Ω = A + ΩB + Ω 2 M, (2.19) 
B Ω = B + 2ΩM, (2.20) 
or equivalently such that

m(ü, u * ) + b Ω ( u, u * ) + a Ω (u, u * ) = 0, ∀u * ∈ H 1 , (2.21) 
where

a Ω = a + Ωb + Ω 2 m, (2.22) 
b

Ω = b + 2Ωm, (2.23) 
and satisfying the initial conditions

u(0) = u 0 ; u(0) = v 0 -Ωu 0 . (2.24)
The Hermitian form a Ω is coercive on H 1 because of (2.15) and since b is non-negative. This implies in particular that A Ω is an isomorphism from

H 1 onto (H 1 ) . Set H 1,1 = H 1 × H 1 , H 1,0 = H 1 × H 0 , H 1,1 * = H 1 × (H 1 ) : H 1,1 ⊂ H 1,0 ⊂ H 1,1
* with continuous and dense injections. The operator

M = I 0 0 M (2.25)
is an isomorphism from H 1,0 onto H 1,0 . The operator

à = 0 I -A Ω -B Ω (2.26) is continuous from H 1,1 on H 1,1 * . Set v = z , U = u v , U 0 = u 0 v 0 -Ωu 0 . (2.27)
The variational problem (2.21), (2.24) reduces to: find

U ∈ C 0 ([0, +∞); H 1,1 ) ∩ C 1 ([0, +∞); H 1,0 ) such that M U = ÃU, (2.28) 
and satisfying the initial conditions

U(0) = U 0 . (2.29)
In order to solve (2.28), (2.29) in the space H 1,0 = H 1 × H 0 , let us define the unbounded operator A on H 1,0 with domain

D(A) = {U ∈ H 1,1 , ÃU ∈ H 1,0 } = {U ∈ H 1,1 , A Ω u + B Ω v ∈ H 0 } (2.30)
by: for all U ∈ D(A), AU = M-1 ÃU, that is

AU = v -M -1 (A Ω u + B Ω v) . (2.31)
In the definition of D(A) one can replace "U ∈ H 1,1 " with "U ∈ H 1,0 ". For smooth u and u * , Green's formula for the Hermitian form a is written as follows:

a(u, u * ) = l 0 L a u • u * + [B a u • u * ] l 0 (2.32)
where

L a u = -{(P w ) + [α s GS(w -ϕ)] } -{(EJϕ ) + α s GS(w -ϕ)} -ρJΩ 2 ϕ , (2.33) 
B a u(0) = (P w )(0) + [α s GS(w -ϕ)](0) -k w w(0) (EJϕ )(0) -k ϕ ϕ(0) , (2.34) 
and

B a u(l) = (P w )(l) + [α s GS(w -ϕ)](l) (EJϕ )(l) . (2.35) 
Similarly for the Hermitian form b:

b(u, u * ) = [B b u • u * ] l 0 (2.36)
where

B b u(0) = -c w w(0) -c ϕ ϕ(0) (2.37)
and B b u(l) = 0. Finally for the Hermitian form m we have:

m(u, u * ) = l 0 M u • u * (2.38)
where

M = ρS 0 0 ρJ (2.39)
(M is an operator of order 0). Using the previous formulas, we infer that 

D(A) = {U ∈ H 1,1 , L a u + Ω 2 M u + 2ΩM v ∈ H 0 , [B a u + ΩB b u + B b v] (0) = 0, B a u(l) = 0}. (2.40) Set H 2,1 = H 2 × H 1 . One verifies that there exist constants C 1 > 0, C 2 > 0 such that for all U ∈ D(A), C 1 (||U|| H 1,1 + ||AU|| H 1,0 ) ≤ ||U|| H 2,1 ≤ C 2 (||U|| H 1,1 + ||AU|| H 1,0 ). ( 2 
D(A) = {U ∈ H 2,1 , [B a u + ΩB b u + B b v] (0) = 0, B a u(l) = 0} (2.42) that is D(A) = {U ∈ H 2,1 , (P w )(0) + [α s GS(w -ϕ)](0) = [(k w + Ωc w )w + c w z](0), (EJϕ )(0) = [(k ϕ + Ωc ϕ )ϕ + c ϕ ψ](0), (P w )(l) + [α s GS(w -ϕ)](l) = 0, (EJϕ )(l) = 0} (2.43)
and for U ∈ D(A),

A Ω u + B Ω v = L a u + Ω 2 M u + 2ΩM v, (2.44) 
so that

AU = v -M -1 (L a u + Ω 2 M u + 2ΩM v) . ( 2 

.45)

The adjoint A * of A is given by

D(A * ) = {U ∈ H 1,1 , L a u + Ω 2 M u + 2ΩM v ∈ H 0 , [B a u + ΩB b u -B b v] (0) = 0, B a u(l) = 0} (2.46) 
and

A * U = v -M -1 (L a u + Ω 2 M u + 2ΩM v) , ∀U ∈ D(A * ) (2.47) (same formula as AU). Since D(A) = D(A * ), A = A * : A is not self-adjoint. One can write for U ∈ D(A) L a u + Ω 2 M u = A 0 u + A 1 u + A 2 u (2.48)
where A i , i = 0, 1, 2 are defined by

A 0 = Ω 2 ρS (α s GS) 0 α s GS , (2.49) 
A 1 = -(P + α s GS) α s GS -α s GS -(EJ) , (2.50) 
A 2 = -(P + α s GS) 0 0 -EJ . ( 2 

.51)

The boundary conditions in the characterization of D(A) ((2.42)) may be written in the form:

A b 0 u + A b 1 u + B b v (0) = 0, A b 0 u + A b 1 u + B b v (l) = 0, (2.52) 
where A b i (i = 0, 1) and B b are matrices defined on the set {0, l} by

A b 0 (0) = k w + Ωc w α s GS 0 k ϕ + Ωc ϕ (0), A b 0 (l) = 0 α s GS 0 0 (l), (2.53) 
A b 1 (0) = -(P + α s GS) 0 0 -EJ (0), A b 1 (l) = -(P + α s GS) 0 0 -EJ (l), (2.54) B b (0) = c w 0 0 c ϕ , B b (l) = 0 0 0 0 . (2.55)
Let us recall some definitions, notations and results about unbounded operators in Banach spaces. If E and F are Banach spaces, L(E, F ) is the space of continuous linear operators from E to F , denoted by

L(E) if E = F . For an operator T ∈ L(E, F ), N (T ) = {x ∈ E | T x = 0} denotes the null space and R(T ) = {T x | x ∈ E} the range of T . An operator T ∈ L(E, F
) is called a Fredholm operator if both its nullity nulT = dimN (T ) and its deficiency defT = codimR(T ) are finite. The set of Fredholm operators from E to F is denoted by Φ(E, F ). If T ∈ Φ(E, F ), indT = nulT -defT is well-defined and is called the index of T . Let A be an unbounded closed operator in a Banach space E with domain D(A) (by definition an unbounded operator

A is closed if its graph is closed in E × E). If λ ∈ C and A -λI is a bijection from D(A) onto E, λ is said to belong to the resolvent set of A, denoted by ρ(A). If λ ∈ ρ(A), since A is closed, it follows from the closed graph theorem that (A -λI) -1 ∈ L(E) [15], p. 419. The spectrum of A is the complementary of ρ(A) in C, denoted by σ(A) (σ(A) = C \ ρ(A)). The point spectrum of A is the set of eigenvalues of A, denoted by σ p (A) (σ p (A) ⊂ σ(A)).
The geometric multiplicity of an eigenvalue

λ 0 ∈ σ p (A) is nul(A -λ 0 I). For λ 0 ∈ σ p (A) and all k ∈ N set N k λ0 (A) = {u | u ∈ D(A k+1 ), (A -λ 0 I) k+1 u = 0}. (2.56) For all k ∈ N, N k λ0 (A) ⊂ N k+1 λ0 (A). The smallest integer k > 0 such that N k λ0 (A) = N k+1 λ0 (A) is called the ascent of A -λ 0 I. The root subspace of A corresponding to λ 0 ∈ σ p (A) is defined by R λ0 (A) = k∈N N k λ0 (A). (2.57) Elements of R λ0 (A) are root vectors. The dimension of R λ0 (A) is the algebraic multiplicity of the eigenvalue λ 0 ∈ σ p (A) of A [40], p. 26. If λ 0 ∈ σ p (A)
, the ascent of A -λ 0 I is less than or equal to the algebraic multiplicity of λ 0 . If A is an unbounded closed operator in E with compact resolvent, the spectrum of A consists of isolated eigenvalues with finite algebraic multiplicity [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], p. 187, [START_REF] Dunford | Linear Operators, Part III[END_REF], p. 2292. The following lemma gives a sufficient condition for an unbounded operator to have a compact resolvent (consequence of [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], Chapter 4, Remark 1.4). Lemma 2.3 Let A be an unbounded closed operator in a Banach space E with domain D(A). D(A) equipped with the graph norm is a Banach space continuously embedded in E and A is continuous from D(A) equipped with the graph norm into E. Assume moreover that the embedding from D(A) equipped with the graph norm into E is compact. Then, if ρ(A) = ∅, for all λ ∈ ρ(A), the resolvent (A -λI) -1 is compact.

Applying the previous lemma we obtain Lemma 2.4 0 ∈ ρ(A) and A -1 is a compact operator of H 1,0 . Consequently A has a compact resolvent and the spectrum of A consists of isolated eigenvalues of finite algebraic multiplicity. In particular σ

(A) = σ p (A) ⊂ C * . P r o o f. Let F = f g ∈ H 1,0 . We must find U = u v ∈ D(A) such that AU = F. This gives: v = f and A Ω u = -M g -B Ω f . Since A Ω is an isomorphism from H 1 onto (H 1 ) and since -M g -B Ω f ∈ (H 1 ) , the latter equation has a unique solution u ∈ H 1 . By construction v ∈ H 1 and A Ω u + B Ω v = -M g ∈ H 0 , so that U ∈ D(A). It follows that 0 ∈ ρ(A).
Remark 2.5 Quite frequently in the literature results like that of Lemma 2.4 are shown by explicit and rather lengthy calculations [START_REF] Shubov | Asymptotic and spectral analysis of the spatially nonhomogeneous Timoshenko beam model[END_REF], [START_REF] Han | Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks[END_REF], [START_REF] Han | Dynamical behavior of a hybrid system of nonhomogeneous Timoshenko beam with partial non-collocated inputs[END_REF], [START_REF] Xu | Riesz basis property of serially connected Timoshenko beams[END_REF]. But these explicit calculations are not possible here because of the terms coming from the rotation. Moreover, the proof of Lemma 2.4 is far simpler and more general.

The state space H 1,0 will be equiped with the scalar product: for

U 1 , U 2 ∈ H 1,0 , (U 1 , U 2 ) H 1,0 = a Ω (u 1 , u 2 ) + m(v 1 , v 2 ) (2.58)
which is equivalent to the natural scalar product. Lemma 2.6 A is maximal-dissipative, D(A) is dense in H 1,0 and A is the generator of a contraction semigroup on H 1,0 . P r o o f. For all U ∈ D(A), 

(AU, U) H 1,0 = a Ω (v, u) -(A Ω u + B Ω v, v) H 0 = a Ω (v, u) -A Ω u + B Ω v, v (H 1 ) ,H 1 = a Ω (v, u) -a Ω (u, v) -b Ω (v, v), (2.59) so that Re(AU, U) H 1,0 = -b Ω (v, v) ≤ 0. ( 2 
∈ D(A) is equivalent to the conditions u 0 ∈ H 1 , v 0 ∈ H 1 , Au 0 + Bv 0 ∈ H 0 or to the conditions u 0 ∈ H 2 , v 0 ∈ H 1 , [B a u 0 + B b v 0 ](0) = 0, [B a u](l) = 0. ii) Let t ∈ [0, +∞) → T (t) be the contraction semigroup generated by A. If U 0 ∈ D(A) there exists a unique solution ∈ C 1 ([0, +∞); H 1,0 ) ∩ C 0 ([0, +∞); D(A)) to the initial value problem on [0, +∞) U = AU, U(0) = U 0 (2.61)
given by

U(t) = T (t)U 0 , (t ∈ [0, +∞)). iii) If u 0 ∈ H 1 , v 0 ∈ H 1 , Au 0 + Bv 0 ∈ H 0 , there exists a unique function u ∈ C 1 ([0, +∞); H 1 ) ∩ C 2 ([0, +∞); H 0 ) satisfying Au + B u ∈ C 0 ([0, +∞); H 0 ) and (2.12), (2.13). P r o o f. i) The condition U 0 ∈ D(A) is equivalent to the conditions u 0 ∈ H 1 , v 0 -Ωu 0 ∈ H 1 , A Ω u 0 + B Ω (v 0 -Ωu 0 ) ∈ H 0 .
One verifies that these conditions are equivalent to the stated ones.

ii) This part is a consequence of Proposition 2.3.5 of [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF] iii) Setting U = u v we see that u is the unique function ∈ C 1 ([0, +∞); H 1 )∩C 2 ([0, +∞); H 0 ) satisfying 

A Ω u + B Ω u ∈ C 0 ([0, +∞); H 0 )

Asymptotics of the spectrum

Let us recall some definitions and results about holomorphic families of operators [START_REF] Mennicken | Non-Self-Adjoint Boundary Eigenvalue Problems[END_REF].

If Ω is an open nonempty subset of C, E is a Banach space, we will denote by H(Ω, E) the space of holomorphic functions from

Ω to E. If F is a Banach space and T ∈ H(Ω, L(E, F )), ρ(T ) = {λ ∈ Ω, T (λ) is invertible} is the resolvent set of T , σ(T ) = Ω \ ρ(T ) its spectrum, σ p (T ) = {λ ∈ Ω, ∃ x ∈ E, x = 0, T (λ)x = 0} its point spectrum (or the set of eigenvalues of T ) [25], p. 6. If µ ∈ Ω, x ∈ H(Ω, E) is called a root function of T at µ if x(µ) = 0 and (T x)(µ) = 0. ν(x)
denotes the order of the zero of T x at µ and is called the multiplicity of x with respect to T at µ. 

If T ∈ H(Ω, Φ(E, F )) and ρ(T ) = ∅, σ(T ) is a discrete subset of Ω and T -1 is a meromorphic operator function in Ω. If µ ∈ σ(T ), T -1 has a pole at µ [25], Theorem 1.3.1. Let T ∈ H(Ω, Φ(E, F )) be such that ρ(T ) = ∅.
L n = Ln ∪ {0} (3.2)
which is a subspace of N (T (µ)). For j ∈ N with 0 < j ≤ nul T (µ), let us define

m j = max {n ∈ N * |dimL n ≥ j}. (3.3)
The numbers m j are called the partial multiplicities of T at µ. They are well-defined since L 1 = N (T (µ)) and L n = {0} if n is larger than the pole order of T -1 at µ. Obviously, m j ≥ m j+1 . The number r = dim N (T (µ)) is called the geometric multiplicity of T at µ, and the number

m = r j=1 m j (3.4)
is called the algebraic multiplicity of T at µ [START_REF] Mennicken | Non-Self-Adjoint Boundary Eigenvalue Problems[END_REF], p. 14. In the sequel we will need the following lemma. Let A be an unbounded closed operator in a Banach space E with domain D(A) and λ 0 ∈ σ p (A). The algebraic multiplicity of λ 0 ∈ σ p (A) has been defined as the dimension of the root subspace of A corresponding to λ 0 . Since A is closed, D(A) equipped with the graph norm is a Banach space and A is a continuous operator from D(A) equipped with the graph norm to E. D(A) will be equipped with the graph norm. If Ω is an open nonempty subset of C such that λ 0 ∈ Ω, we can associate to the operator A the holomorphic family λ ∈ Ω → T (λ) = A -λI ∈ H(Ω, L(D(A), E)). If we assume that the embedding from D(A) into E is compact and ρ(A) = ∅, from Lemma 2.3, A has a compact resolvent consequently the spectrum of A consists entirely of isolated eigenvalues (of finite algebraic multiplicity). Therefore ρ(T ) = ∅ and from [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], Theorem IV.5.26 or [START_REF] Mennicken | Non-Self-Adjoint Boundary Eigenvalue Problems[END_REF], p. 41, T ∈ H(Ω, Φ(D(A), E)) and Ind T (λ) = 0, ∀λ ∈ Ω. The following lemma asserts that the two definitions of algebraic multiplicity (for an operator and for a holomorphic family) are consistent (its proof is very simple and is omitted).

Lemma 3.1 Let E A , F A , E B , F B be Banach spaces, Ω an open nonempty subset of C, λ → A(λ) ∈ H(Ω, Φ(E A , F A )) and λ → B(λ) ∈ H(Ω, Φ(E B , F B )) holomorphic families of Fredholm operators. Let µ ∈ Ω be such that 0 < nul(A(µ)) = nul(B(µ)) < +∞.
P r o o f. Since for all n ∈ N * , dim L n (A) = dim i n (L n (A)) ≤ dim L n (B) definitions (3.
Lemma 3.2 With the previous definitions and hypotheses the algebraic multiplicity of the eigenvalue λ 0 ∈ σ p (A) is equal to the algebraic multiplicity of T at λ 0 .

To the unbounded operator A we will associate the holomorphic family of operators on C * :

λ ∈ C * → A(λ) = A -λI : D(A) → H 1,0 . (3.5) A is closed, the embedding from D(A) in H 1,0 is compact and ρ(A) = ∅. Consequently ρ(A) = ∅, A ∈ H(C * , Φ(D(A), H 1,0 )) and indA(λ) = 0, ∀λ ∈ C. Let λ 0 ∈ σ p (A) and let λ ∈ C * → U(λ) ∈ D(A) be a root function of the holomorphic (polynomial) family λ ∈ C * → A(λ) at λ 0 of multiplicity ν(U). Write U(λ) = u(λ) v(λ) . For λ ∈ C * we have u(λ) ∈ H 2 , v(λ) ∈ H 1
, and from (2.52)

A b 0 u(λ) + A b 1 u(λ) + B b v(λ) (0) = 0, A b 0 u(λ) + A b 1 u(λ) + B b v(λ) (l) = 0. (3.6)
Moreover from (2.45) and (2.48) the relation

[(A -λI)U] (i) (λ 0 ) = 0 (0 ≤ i ≤ ν(U) -1) can be written [v -λu] (i) (λ 0 ) = 0, 0 ≤ i ≤ ν(U) -1, (3.7) 
[A 0 u + A 1 u + A 2 u + 2ΩM v + λM v] (i) (λ 0 ) = 0, 0 ≤ i ≤ ν(U) -1. (3.8) 
If we set w(λ) = u(λ) /λ, we obtain

{ A b 0 u(λ) + λA b 1 w(λ) + λB b u(λ) (i) (λ 0 )}(0) = 0, 0 ≤ i ≤ ν(U) -1, { A b 0 u(λ) + λA b 1 w(λ) + λB b u(λ) (i) (λ 0 )}(l) = 0, 0 ≤ i ≤ ν(U) -1, (3.9) 
and

A 0 u + λA 1 w + λA 2 w + 2ΩλM u + λ 2 M u (i) (λ 0 ) = 0, 0 ≤ i ≤ ν(U) -1. (3.10) It is easily seen that if λ 0 ∈ C * , E is a Banach space, λ ∈ C * → x(λ)
∈ E is holomorphic and n ∈ N, the conditions "x (i) (λ 0 ) = 0, i = 0, . . . , n" and "(x/λ) (i) (λ 0 ) = 0, i = 0, . . . , n" are equivalent. Hence (3.9), (3.10) give:

A b 0 u(λ) λ + A b 1 w(λ) + B b u(λ) (i) (λ 0 ) (0) = 0, 0 ≤ i ≤ ν(U) -1, A b 0 u(λ) λ + A b 1 w(λ) + B b u(λ) (i) (λ 0 ) (l) = 0, 0 ≤ i ≤ ν(U) -1, (3.11) 
A -1 2 A 0 u λ + A -1 2 A 1 w + w + 2ΩA -1 2 M u + λA -1 2 M u (i) (λ 0 ) = 0, 0 ≤ i ≤ ν(U) -1. (3.12) Setting Y = u w = u u /λ , (3.13) 
we obtain

Y -(λ Ã1 + Ã0 + 1 λ Ã-1 )Y (i) (λ 0 ) = 0, 0 ≤ i ≤ ν(U) -1, (3.14) 
with

Ã1 =     0 0 1 0 0 0 0 1 ρS P +αsGS 0 0 0 0 ρ E 0 0     , (3.15) Ã0 =      0 0 0 0 0 0 0 0 2ΩρS P +αsGS 0 -(P +αsGS) P +αsGS αsGS P +αsGS 0 2Ωρ E -αsGS EJ -(EJ) EJ      , (3.16 
)

Ã-1 =     0 0 0 0 0 0 0 0 Ω 2 ρS P +αsGS (αsGS) P +αsGS 0 0 0 αsGS EJ 0 0     .
(3.17)

The boundary conditions (3.11) can be written under the form:

( B1 + 1 λ B0 )Y (0) + ( C1 + 1 λ C0 )Y (l) (i) (λ 0 ) = 0, 0 ≤ i ≤ ν(U) -1 (3.18) 
where

B1 = B b (0) A b 1 (0) 0 2 0 2 , B0 = A b 0 (0) 0 2 0 2 0 2 , (3.19) 
C1 = 0 2 0 2 0 2 A b 1 (l) , C0 = 0 2 0 2 A b 0 (l) 0 2 . ( 3.20) 
Set

α 1 = ρS P + α s GS (3.21)
and

α 2 = ρ E . (3.22)
The eigenvalues of Ã1 are ±α 1 and ±α 2 . A matrix of eigenvectors of Ã1 associated to the eigenvalues

α 1 , α 2 , -α 1 , -α 2 is T 0 =     1 0 1 0 0 1 0 1 α 1 0 -α 1 0 0 α 2 0 -α 2     . (3.23) 
Setting

Z(λ) = T -1 0 Y (λ) ∈ H 1 (0, l) ⊗ C 4 , (3.24) 
we get the following equation

(Z ) (i) (λ 0 ) = T -1 0 (λ Ã1 + Ã0 + 1 λ Ã-1 )T 0 Z -T -1 0 T 0 Z (i) (λ 0 ) = (λ Λ1 + Λ0 + 1 λ Λ-1 )Z (i) (λ 0 ), 0 ≤ i ≤ ν(U) -1, (3.25) 
where

Λ1 = T -1 0 Ã1 T 0 =     α 1 0 0 0 0 α 2 0 0 0 0 -α 1 0 0 0 0 -α 2     , (3.26) 
Λ0 = T -1 0 Ã0 T 0 -T -1 0 T 0 =     Ωα 1 -f 1 * Ωα 2 -f 2 -Ωα 1 -f 1 * -Ωα 2 -f 2     , (3.27) 
where f 1 and f 2 are the functions defined on [0, l] by

f 1 = 1 4 (P + α s GS) P + α s GS + (ρS) ρS (3.28)
and

f 2 = 1 4 (EJ) EJ + (ρJ) ρJ , (3.29) 
and the boundary conditions

( B1 + 1 λ B0 )T 0 Z(0) + ( C1 + 1 λ C0 )T 0 Z(l) (i) (λ 0 ) = 0, 0 ≤ i ≤ ν(U) -1. (3.30)
With the boundary eigenvalue problem (3.25), (3.30) we associate the holomorphic family of operators on C * :

λ ∈ C * → T (λ) = T D (λ) T R (λ) : H 1 (0, l) ⊗ C 4 → (L 2 (0, l) ⊗ C 4 ) × C 4 (3.31)
defined by

T D (λ)Z = Z -(λ Λ1 + Λ0 + 1 λ Λ-1 )Z, (3.32) 
T R (λ)Z = ( B1 + 1 λ B0 )T 0 Z(0) + ( C1 + 1 λ C0 )T 0 Z(l). (3.33) By Corollary 3.1.3 of [25], T ∈ H(C * , Φ(H 1 (0, l) ⊗ C 4 , (L 2 (0, l) ⊗ C 4 ) × C 4 )) and Ind T (λ) = 0, ∀λ ∈ C * , thus σ(T ) = σ p (T ).
The previous calculations show that U ∈ D(A), U = 0 meets the condition AU = λ 0 U iff Z defined by

Z = T -1 0 Y
, where Y and T 0 are defined by (3.13), (3.23) satisfies Z ∈ H 1 (0, l) ⊗ C 4 , Z = 0 and T (λ 0 )Z = 0. We have proved

Lemma 3.3 σ(A) = σ p (A) = σ(T ) = σ p (T ). Let λ 0 ∈ σ p (A) and let λ ∈ C * → U(λ) ∈ D(A) be a root function of the holomorphic (polynomial) family λ ∈ C * → A(λ) at λ 0 of multiplicity ν(U). Then λ ∈ C * → Z(λ) ∈ H 1 (0, l) ⊗ C 4 is a root function of the holomorphic family λ ∈ C * → T (λ) at λ 0 of multiplicity ≥ ν(U).
A consequence of Lemma 3.3 is Lemma 3.4 Let λ 0 ∈ σ p (A). The holomorphic families λ ∈ C * → A(λ) and λ ∈ C * → T (λ) have the same geometric multiplicities at λ 0 (= r). Let us denote by m j (A, λ 0 ) (resp. m j (T, λ 0 )) the partial multiplicities of the holomorphic families λ ∈ C * → A(λ) (resp. T (λ)) at λ 0 . Then m j (A, λ 0 ) ≤ m j (T, λ 0 ), ∀j, 0 < j ≤ r. As a consequence, if we denote by m(A, λ 0 ) (resp. m(T, λ 0 )) the algebraic multiplicities of the holomorphic families λ ∈ C * → A(λ) (resp. T (λ)) at λ 0 , then m(A, λ 0 ) ≤ m(T, λ 0 ).

P r o o f. The map

J : U = u v ∈ N (A(λ 0 )) → Z = T -1 0 u u /λ 0 ∈ N (T (λ 0 )) is an isomorphism.
Therefore the two holomorphic families A and T have the same geometric multiplicities at λ 0 . For all n ∈ N * let us denote by L n (A, λ 0 ) and L n (T, λ 0 ) the spaces defined by (3.1) and (3.2) corresponding to the holomorphic families A and T . Lemma 3.3 shows that the restriction of J to L n (A, λ 0 ) is an injection from L n (A, λ 0 ) into L n (T, λ 0 ). Applying Lemma 3.1 the result follows.

Recall that a matrix function λ ∈ C * → Z(λ) ∈ H 1 (0, l)⊗C 4 is a fundamental matrix function of T D (λ)Z = 0 if for all λ ∈ C * and for each y ∈ N (T D (λ)) there is a c(λ) ∈ C 4 such that y = Z(λ)c(λ) (see [START_REF] Mennicken | Non-Self-Adjoint Boundary Eigenvalue Problems[END_REF], Definition 2.5.2 and Theorem 2.5.3 for the existence of a fundamental matrix function). In order to derive asymptotics of the eigenvalues of T , we use the following proposition which guarantees the existence of an asymptotic fundamental matrix function of T D (λ)Z = 0. This proposition holds for systems which are asymptotically linear in λ and for which the coefficient of λ is diagonal. The proof of the proposition can be found in [START_REF] Mennicken | Non-Self-Adjoint Boundary Eigenvalue Problems[END_REF], Theorem 2.8.2 (see also [START_REF] Tretter | Spectral problems for systems of differential equations y + a0y = λa1y with λ-polynomial boundary conditions[END_REF], Theorem 2.2). In the following statement, if m ∈ N * and S is a set, M m (S) denotes the set of m × m matrices with coefficients in S.

Proposition 3.5 Let a, b ∈ R, a < b, k ∈ N, γ > 0 and let Â(., ρ), ρ ∈ C be such that Â(., ρ) = ρ Â1 + Â0 + k j=1 ρ -j Â-j + ρ -k-1 Â-k-1 (., ρ), |ρ| > γ, (3.34) 
with the following properties:

1. Â1 ∈ M m (W k,∞ (a, b)) and Â-j ∈ M m (W k-j,∞ (a, b)), j = 0, . . . , k; 2. Â-k-1 (., ρ) ∈ M m (L ∞ (a, b)) for |ρ| > γ and is bounded in M m (L ∞ (a, b)) as ρ → +∞;
3. Â1 has a diagonal form:

Â1 =      r 0 I n0 0 r 1 I n1 . . . 0 r l I n l      (3.35)
where I nν denotes the n ν -dimensional unit matrix, l ν=0 n ν = m, and the functions r ν are such that r ν = 0 for some ν ∈ {0, . . . , l}, without loss of generality r 0 = 0 (where we allow n 0 to be 0, whereas

n ν > 0 for ν > 0), (r ν -r µ ) -1 ∈ L ∞ (a, b), ν, µ = 0, . . . , l, ν = µ, (3.36) 
r ν -r µ = |r ν -r µ |e iϕνµ ν, µ = 0, . . . , l, on [a, b], (3.37) 
with some constants ϕ νµ ∈ R. In particular, for µ = 0, we obtain

r -1 ν ∈ L ∞ (a, b), ν = 1, . . . , l, (3.38) 
r ν = |r ν |e iϕν , ν = 1, . . . , l, on [a, b], (3.39) 
with ϕ ν = ϕ ν0 = ϕ 0ν ± π.

For x ∈ [a, b] and ρ ∈ C we set R ν (x) = x a r ν (ξ)dξ, ν = 0, . . . l, (3.40) 
E ν (x, ρ) = exp(ρR ν (x))I nν , ν = 0, . . . l, (3.41) 
Ê(x, ρ) =      E 0 (x, ρ) 0 E 1 (x, ρ) . . . 0 E l (x, ρ)      . ( 3 

.42)

Then there exists a fundamental matrix Ŷ (., ρ) of y -Â(., ρ)y = 0 (3.43)

such that for |ρ| > γ, Ŷ (., ρ) = ( k r=0 1 ρ r P [r] + 1 ρ k B k (., ρ)) Ê(., ρ) (3.44) where B k (., ρ) ∈ M m (W 1,∞ (a, b)), |ρ| > γ, B k (., ρ) = o(1), 1 ρ B k (., ρ) = o(1)
with respect to the norm in M m (L ∞ (a, b)), and where P [r] ∈ M m (W k+1-r,∞ (a, b)) are determined by

P [0] Â1 -Â1 P [0] = 0, P [0] (a) = I m , (3.45 
)

P [r] - r j=0 Â-j P [r-j] + P [r+1] Â1 -Â1 P [r+1] = 0, r = 0, . . . , k -1, (3.46) 
P [k] νν -Â0,νν P [k] νν = l q=0,q =ν Â0,νq P [k] qν + k j=1 l q=0 Â-j,νq P [k-j] qν , ν = 0, . . . , l, (3.47) 
with Âj = ( Âj,νµ ) l ν,µ=0 , P

[r] = (P [r] νµ ) l ν,µ=0 (3.48) 
defined according to the block structure of Â1 . Moreover P [0] is invertible in M m (W k+1,∞ (a, b)).

From now on, we will make the following hypothesis Hypothesis 3.6 With the notations (3.21), (3.22),

1/(α 1 -α 2 ) ∈ L ∞ (0, l) (⇔ ∃C > 0 such that |α 1 -α 2 | ≥ C on [0, l])
Taking into account Hypothesis 2.1, Hypothesis 3.6 is equivalent to 

∃C > 0 such that |P -S • (E -α s G)| ≥ C on [0, l]. ( 3 
P [0] (x) =     g 1 (x)e Ω x 0 α1(t)dt 0 0 0 0 g 2 (x)e Ω x 0 α2(t)dt 0 0 0 0 g 1 (x)e -Ω x 0 α1(t)dt 0 0 0 0 g 2 (x)e -Ω x 0 α2(t)dt     (3.50)
where g 1 and g 2 are the functions defined on [0, l] by

g 1 (x) = (P + α s GS)(0) (P + α s GS)(x) (ρS)(0) (ρS)(x) 1 4 , x ∈ [0, l] (3.51) 
and

g 2 (x) = (EJ)(0) (EJ)(x) (ρJ)(0) (ρJ)(x) 1 4 , x ∈ [0, l]. (3.52) Set Ê(x, λ) = exp λ x 0 Λ1 (t)dt =     e λ x 0 α1(t)dt 0 0 0 0 e λ x 0 α2(t)dt 0 0 0 0 e -λ x 0 α1(t)dt 0 0 0 0 e -λ x 0 α2(t)dt     . (3.53)
Then the asymptotic fundamental matrix function of T D (λ)Z = 0 is given by

Ẽ(x, λ) = (P [0] (x) + B 0 (x, λ)) Ê(x, λ) (3.54) where B 0 (., λ) ∈ M 4 (W 1,∞ (0, l)), |λ| > γ, B 0 (., λ) = o(1), 1 λ B 0 (., λ) = o(1)
with respect to the norm in M 4 (L ∞ (0, l)). Actually, due to the Sobolev embedding theorems, B 0 (., λ)

∈ M 4 (C 0 [0, l]), |λ| > γ, B 0 (., λ) = o(1) with respect to the norm in M 4 (C 0 [0, l]). For λ ∈ C * set M (λ) = T R (λ) Ẽ(., λ) = B1 + 1 λ B0 T 0 Ẽ(0, λ) + C1 + 1 λ C0 T 0 Ẽ(l, λ) (3.55)
and

∆(λ) = detM (λ). (3.56)
The map λ ∈ C * → M (λ) belongs to H(C * , M 4 (C)) (see [START_REF] Mennicken | Non-Self-Adjoint Boundary Eigenvalue Problems[END_REF], p. 103) and also to H(C * , Φ(C 4 , C 4 )). Applying Theorem 3.1.2 and Corollary 3.1.3 of [START_REF] Mennicken | Non-Self-Adjoint Boundary Eigenvalue Problems[END_REF] we deduce

Lemma 3.7 σ(T ) = σ p (T ) = σ(M ) = σ p (M ) = {λ ∈ C * | ∆(λ) = 0}.
If a ∈ C or a ∈ M n (C) we will use the notation

[a] 1 = a + o(1) (3.57) if [a]
1 depends on λ and satisfies (3.57) when λ → +∞. We have

Ẽ(0, λ) =     [1] 1 [0] 1 [0] 1 [0] 1 [0] 1 [1] 1 [0] 1 [0] 1 [0] 1 [0] 1 [1] 1 [0] 1 [0] 1 [0] 1 [0] 1 [1] 1     = [I] 1 .
(3.58)

With the notations

β 1 = l 0 α 1 (t)dt, β 2 = l 0 α 2 (t)dt (3.59)
and

γ 1 = g 1 (l), γ 2 = g 2 (l) (3.60)
Ẽ(l, λ) can be rewritten in the following form

Ẽ(l, λ) =     [γ 1 ] 1 e β1(λ+Ω) [0] 1 e β2((λ+Ω)] [0] 1 e -β1(λ+Ω) [0] 1 e -β2(λ+Ω) [0] 1 e β1(λ+Ω) [γ 2 ] 1 e β2(λ+Ω) [0] 1 e -β1(λ+Ω) [0] 1 e -β2(λ+Ω) [0] 1 e β1(λ+Ω) [0] 1 e β2(λ+Ω) [γ 1 ] 1 e -β1(λ+Ω) [0] 1 e -β2(λ+Ω) [0] 1 e β1(λ+Ω) [0] 1 e β2(λ+Ω) [0] 1 e -β1(λ+Ω) [γ 2 ] 1 e -β2(λ+Ω)     , (3.61) 
so that λ+Ω) [0] 1 e β2(λ+Ω) [γ 1 (α

M (λ) =     [c w -(α 1 (P + α s GS))(0)] 1 [0] 1 [c w + (α 1 (P + α s GS))(0)] 1 [0] 1 [0] 1 [c ϕ -(α 2 EJ)(0)] 1 [0] 1 [c ϕ + (α 2 EJ)(0)] 1 -[γ 1 (α 1 (P + α s GS))(l)] 1 e β1(
1 (P + α s GS))(l)] 1 e -β1(λ+Ω) [0] 1 e -β2(λ+Ω) [0] 1 e β1(λ+Ω) -[γ 2 (α 2 EJ)(l)] 1 e β2(λ+Ω) [0] 1 e -β1(λ+Ω) [γ 2 (α 2 EJ)(l)] 1 e -β2(λ+Ω)     .
(3.62)

Let us study the zeros of ∆(λ) = det M (λ). We have

lim Reλ→+∞ ∆(λ) e (β1+β2)(λ+Ω) = (γ 1 (α 1 (P + α s GS))(l))(γ 2 (α 2 EJ(l)))× (c w + (α 1 (P + α s GS))(0))(c ϕ + (α 2 EJ)(0)) (3.63) and lim Reλ→-∞ ∆(λ) e -(β1+β2)(λ+Ω) = (γ 1 (α 1 (P + α s GS))(l))(γ 2 (α 2 EJ(l)))× (c w -(α 1 (P + α s GS))(0))(c ϕ -(α 2 EJ)(0)). (3.64)
In what follows, we will make the following hypothesis Hypothesis 3.8 With the notations (3.21), (3.22), c w = (α 1 (P +α s GS))(0), c ϕ = (α 2 EJ)(0) or equivalently

c w = √ ρS(0) √ P + α s GS(0), c ϕ = √ ρJ(0) √ EJ(0).
Lemmas 3.3 and 3.7, equations (2.60), (3.63), (3.64) and Hypothesis 3.8 yield the following lemma Lemma 3.9 σ(A) = σ p (A) is contained in a strip parallel to the imaginary axis included in the left half-plane, that is there exists a constant h > 0 such that:

σ(A) = σ p (A) = {λ ∈ C * |∆(λ) = 0} ⊂ {λ ∈ C * | -h ≤ Reλ ≤ 0}.
(3.65)

The next lemma gives formulas for the asymptotic of the eigenvalues of A. Lemma 3.10 With the notations

µ 1 = 1 2β 1 ln α 1 (P + α s GS)(0) -c w α 1 (P + α s GS)(0) + c w = 1 2β 1 ln √ ρS(0) √ P + α s GS(0) -c w √ ρS(0) √ P + α s GS(0) + c w , ( 3 
.66)

ν 1 n = inπ β1 if α 1 (P + α s GS)(0) -c w > 0 i(2n+1)π 2β1 if α 1 (P + α s GS)(0) -c w < 0, , n ∈ Z, (3.67) µ 2 = 1 2β 2 ln α 2 EJ(0) -c ϕ α 2 EJ(0) + c ϕ = 1 2β 2 ln √ ρJ(0) √ EJ(0) -c ϕ √ ρJ(0) √ EJ(0) + c ϕ , (3.68) ν 2 n = inπ β2 if α 2 EJ(0) -c ϕ > 0 i(2n+1)π 2β2 if α 2 EJ(0) -c ϕ < 0, , n ∈ Z, (3.69)
the eigenvalues of A are given asymptotically by the formulas

λ 1 n = µ 1 -Ω + ν 1 n + ε 1 n (ε 1 n → 0 when |n| → +∞) (3.70)
and

λ 2 n = µ 2 -Ω + ν 2 n + ε 2 n (ε 2 n → 0 when |n| → +∞). (3.71) P r o o f. When -h ≤ Reλ ≤ 0 and |λ| (thus |Imλ|) → +∞, ∆(λ) -∆ 1 (λ)∆ 2 (λ) → 0 (3.72)
where

∆ 1 (λ) = [γ 1 α 1 (P + α s GS)(l)] 2 [(c w -α 1 (P + α s GS)( 0 
))e -β1(λ+Ω) + (c w + α 1 (P + α s GS)(0))e β1(λ+Ω) ],

(3.73)

∆ 2 (λ) = [γ 2 α 2 EJ(l)] 2 [(c ϕ -α 2 EJ(0))e -β2(λ+Ω) + (c ϕ + α 2 EJ(0))e β2(λ+Ω) ]. (3.74)
By Theorem 4 of [START_REF] Langer | On the zeros of exponential sums and integrals[END_REF] the zeros of ∆ are given asymptotically by the zeros of ∆ 1 and ∆ 2 , that is the solutions of the following equations

e 2β1(λ+Ω) = α 1 (P + α s GS)(0) -c w α 1 (P + α s GS)(0) + c w (3.75) and e 2β2(λ+Ω) = α 2 EJ(0) -c ϕ α 2 EJ(0) + c ϕ (3.76)
which proves the lemma.

Recall the following Proposition of [START_REF] Mennicken | Non-Self-Adjoint Boundary Eigenvalue Problems[END_REF] (Proposition 1.8.5) Proposition 3.11 Let E and F be finite-dimensional spaces such that dimE = dimF. Let T ∈ H(Ω, L(E, F )) and assume that ρ(T ) = ∅. For µ ∈ σ(T ) (= σ p (T )) the algebraic multiplicity of T at µ is equal to the multiplicity of the zero of det T at µ.

Hereafter we will make the following hypothesis Hypothesis 3.12 With the notations (3.66) and (3.68), µ 1 = µ 2 . Lemma 3. [START_REF] Krabs | On the set of reachable states in the problem of controllability of rotating Timoshenko beams[END_REF] The eigenvalues of M are asymptotically algebraically simple. P r o o f. Lemmas 3.3, 3.7 and 3.9 show that ρ(M ) = ρ(A) = ∅. When -h ≤ Reλ ≤ 0 and |λ| (thus |Imλ|) → +∞, from Cauchy's estimates of a holomorphic function (see [START_REF] Rudin | Real and complex analysis[END_REF], p. 213) we get

∆ (λ) -(∆ 1 (λ)∆ 2 (λ) + ∆ 1 (λ)∆ 2 (λ)) → 0, (3.77) consequently when n → +∞ ∆ (λ 1 n ) -∆ 1 (λ 1 n )∆ 2 (λ 1 n ) → 0. (3.78) 
It is easily seen that since µ 1 = µ 2 there exists a constant C > 0 such that for all n ∈ Z,

|∆ 1 (λ 1 n )∆ 2 (λ 1 n )| ≥ C, (3.79) 
so that there exists a constant C > 0 and N ∈ N * such that for all n ∈ Z, |n| ≥ N ,

|∆ (λ 1 n )| ≥ C. (3.80) 
Similarly there exists a constant C > 0 and N ∈ N * such that for all n ∈ Z, |n| ≥ N ,

|∆ (λ 2 n )| ≥ C. (3.81) 
Thus the zeros of ∆ are asymptotically simple. From proposition 3.11 the conclusion follows.

The following lemma asserts that the holomorphic families M and T have the same partial and algebraic multiplicities at an eigenvalue.

Lemma 3.14 Let λ 0 ∈ σ p (A). The holomorphic families λ ∈ C * → T (λ) and λ ∈ C * → M (λ) have the same geometric multiplicities at λ 0 (= r). Let us denote by m j (T, λ 0 ) (resp. m j (M, λ 0 )) the partial multiplicities of the holomorphic families λ ∈ C * → T (λ) (resp. M (λ)) at λ 0 . Then m j (T, λ 0 ) = m j (M, λ 0 ), ∀j, 0 < j ≤ r. Consequently if we denote by m(T, λ 0 ) (resp. m(M, λ 0 )) the algebraic multiplicities of the holomorphic families λ ∈ C * → T (λ) (resp. M (λ)) at λ 0 then m(T, λ 0 ) = m(M, λ 0 ). P r o o f. Proposition 3.4 of [START_REF] Mennicken | Root functions of boundary eigenvalue operator functions[END_REF] implies that for λ ∈ C * , nul T (λ) = nul M (λ). The map J : c ∈ N (M (λ 0 )) → Ẽ(., λ 0 )c ∈ N (T (λ 0 )) is an isomorphism. For all n ∈ N * let us denote by L n (M, λ 0 ) and L n (T, λ 0 ) the spaces defined by (3.1) and (3.2) corresponding to the holomorphic families M and T . From [START_REF] Mennicken | Root functions of boundary eigenvalue operator functions[END_REF], Proposition 3.2, if µ ∈ C * and λ ∈ C * → Z(λ) is a root function of T at µ of multiplicity p it follows that there exists a root function

λ ∈ C * → c(λ) of λ ∈ C * → M (λ) at µ of multiplicity ≥ p such that λ ∈ C * → Z(λ) -Ẽ(., λ)c(λ)
has a zero of order ≥ p at µ and if λ ∈ C * → c(λ) is a root function of M at µ of multiplicity p then there exists a root function of λ ∈ C * → T (λ) at µ of multiplicity p (= λ ∈ C * → Ẽ(., λ)c(λ)). We deduce that for all n ∈ N * the restriction of J to L n (M, λ 0 ) is an isomorphism from L n (M, λ 0 ) onto L n (T, λ 0 ). An application of Lemma 3.1 gives the result. Proposition 3.15 Under hypotheses 2.1, 3.6, 3.8 and 3.12, the eigenvalues of the operator A are asymptotically algebraically simple. Moreover if

σ(A) = σ p (A) = {λ k , k ∈ N} then inf n =m |λ n -λ m | > 0.
P r o o f. Lemmas 3.4, 3.14 and 3.13 show that the eigenvalues of the operator A are asymptotically algebraically simple. The second property of the eigenvalues of A is a consequence of the formulas (3.66), . . . , (3.71) and Hypothesis 3.12.

Riesz basis property and asymptotic expansion of the solution

In this section we show the completeness of the set of root vectors of A (Theorem 4.3), then the Riesz basis property of a sequence of root vectors of A (Theorem 4.5). Finally from the latter theorem we obtain an expansion of the solution of (2.12), (2.13) (Theorem 4.7).

Let σ(A) = σ p (A) = {λ k , k ∈ N}. In order to prove the completeness of the set of root vectors of A, one must show that the space spanned by the root subspaces

R λ k (A), k ∈ N, is dense in H 1,0 . For k ∈ N, let E(λ k , A)
be the Riesz projector associated to A and λ k [START_REF] Dunford | Linear Operators, Part III[END_REF], p. 2255. According to [START_REF] Dunford | Linear Operators, Part III[END_REF]

, p. 2292, Lemma 2, for k ∈ N, E(λ k , A)H 1,0 = R λ k (A). Let U ∈ H 1,0 be such that U ⊥ R λ k (A), ∀k ∈ N. One must show that U = 0.
For all F ∈ H 1,0 , for all k ∈ N, (U, E(λ k , A)F) H 1,0 = 0. By [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], p. 184, (6.52), (E(λ k , A)

) * = E(λ k , A * ). Thus E(λ k , A * )U = 0, ∀k ∈ N so that U ∈ S ∞ (A * ) = {U ∈ H 1,0 , ∀k ∈ N, E(λ k , A * )U = 0}. On account of [10], p. 184, A * has a compact resolvent and σ(A * ) = σ p (A * ) = {λ k , k ∈ N}. From [3], p. 2296, Lemma 6, S ∞ (A * ) is the set of U ∈ H 1,0 such that λ ∈ C → (A * -λI) -1 U is an entire function of λ. It follows that for any F ∈ H 1,0 , the function λ ∈ C → G(λ) = ((A * -λI) -1 U, F) H 1,
0 is an entire function of λ. Since A is the generator of a contraction semigroup on H 1,0 (Lemma 2.6), the Hille-Yosida theorem (see [START_REF] Pazy | Semigroups of linear operators and applications[END_REF], p. 11, Corollary 3.6) implies that for all λ ∈ C, if Re λ > 0 then λ ∈ ρ(A) and ||(A -λI) -1 || ≤ 1/Reλ. One deduces that for all λ ∈ C, if Re λ > 0 then λ ∈ ρ(A * ) and ||(A * -λI) -1 || ≤ 1/Reλ. Consequently there exists α > 0 such that G(λ) is bounded on the closed half-plane Re λ ≥ α.

The following proposition gives an estimate of the resolvent for λ ∈ R, λ → -∞. The idea of its proof is to compare A with the self-adjoint operator A 0 corresponding to the case where c w = c ϕ = 0 (no damping).

Proposition 4.1 There exist constants

C 1 > 0 and C 2 > 0 such that (-∞, -C 1 ] ⊂ ρ(A) and such that for λ ∈ (-∞, -C 1 ], ||(A -λI) -1 || ≤ C 2 / |λ|. (4.1) 
P r o o f. In the proof below the constants C 1 and C 2 are generic constants. Let A 0 be the unbounded operator defined by (2.30), (2.31) with c w = c ϕ = 0. By Lemma 3.9 there exists

C > 0 such that (-∞, -C] ⊂ ρ(A) and (-∞, -C] ⊂ ρ(A 0 ). Let F = f g ∈ H 1,0 , λ ∈ (-∞, -C], U 0 = (A 0 -λI) -1 F = u 0 v 0 , U = (A -λI) -1 F = u v .
We have A 0 U 0 = λU 0 + F so that with (2.60)

λ(U 0 , U 0 ) H 1,0 + Re(F, U 0 ) H 1,0 = λ(a Ω (u 0 , u 0 ) + m(v 0 , v 0 )) + Re(F, U 0 ) H 1,0 = -2Ωm(v 0 , v 0 ). (4.2) 
From (4.2) we see that there exist constants

C 1 ≥ C > 0 and C 2 > 0 such that for λ ∈ (-∞, -C 1 ], |λ|(a Ω (u 0 , u 0 ) + m(v 0 , v 0 )) ≤ C 2 |(F, U 0 ) H 1,0 | (4.3) therefore ||(A 0 -λI) -1 || ≤ C 2 /|λ|. (4.4) 
On the other hand we have AU = λU + F so that with (2.60)

λ(U, U) H 1,0 + Re(F, U) H 1,0 = λ(a Ω (u, u) + m(v, v)) + Re(F, U) H 1,0 = -b Ω (v, v). (4.5) 
Equation (4.5) shows that there exist constants

C 1 ≥ C > 0 and C 2 > 0 such that for λ ∈ (-∞, -C 1 ], |λ|(a Ω (u, u) + m(v, v)) ≤ C 2 (|(F, U) H 1,0 | + |v(0)| 2 ) (4.6)
and since v(0) = λu(0)+f (0), from the trace theorem in H 1 (0, l) there exist constants 

C 1 ≥ C > 0 and C 2 > 0 such that for λ ∈ (-∞, -C 1 ], |λ|||U|| 2 H 1,0 ≤ C 2 (||F|| H 1,0 ||U|| H 1,0 + |λu(0)| 2 + ||F|| 2 H 1,0 ). ( 4 
M (λ)[I] 1 (Z(0) -Z 0 (0)) = -B b (0) + 1 λ ΩB b (0) u 0 (0) 0 (4.11) consequently Y (0) -Y 0 (0) = T 0 [I] 1 M -1 (λ) -B b (0) + 1 λ ΩB b (0) u 0 (0) 0 . (4.12) Equation (3.62) implies that when λ ∈ R, λ → -∞ M -1 (λ) = D(λ)N (λ) (4.13) 
where

D(λ) = diag(1, 1, e β1(λ+Ω) , e β2(λ+Ω) ) (4.14) 
and According to (4.4) and from the trace theorem in H 1 (0, l) there exist constants

N (λ) =     [1/(c w -(α 1 (P + α s GS))(0))] 1 [0] 1 [0] 1 [0] 1 [0] 1 [1/(c ϕ -(α 2 EJ)(0))] 1 [0] 1 [0] 1 [0] 1 [0] 1 [1/(γ 1 (α 1 (P + α s GS))(l))] 1 [0] 1 [0] 1 [0] 1 [0] 1 [1/(γ 2 (α 2 EJ)(l))] 1     . ( 4 
C 1 ≥ C > 0 and C 2 > 0 such that for λ ∈ (-∞, -C 1 ], |λ||u 0 (0)| ≤ C 2 ||F|| H 1,0 . (4.17)
On account of (4.7), (4.16) and (4.17) there exist constants

C 1 ≥ C > 0 and C 2 > 0 such that for λ ∈ (-∞, -C 1 ], |λ|||U|| 2 H 1,0 ≤ C 2 (||F|| H 1,0 ||U|| H 1,0 + ||F|| 2 H 1,0 ). (4.18) 
From (4.18), the result follows.

Proposition 4.1 yields (-∞, -C 1 ] ⊂ ρ(A) thus (-∞, -C 1 ] ⊂ ρ(A * ) and G(λ) = ((A * -λI) -1 U, F) H 1,0 = (U, (A -λI) -1 F) H 1,0 → 0 when λ → -∞.
Hence G(λ) is bounded on the set Imλ = 0, Re λ ≤ α (since G is an entire function, thus continuous).

Recall that an entire function f is said to be of exponential type if there is a constant A ∈ R and a constant C > 0 such that |f (z)| ≤ Ce A|z| , ∀z ∈ C [START_REF] Young | An Introduction to Nonharmonic Fourier Series[END_REF], p. 53. This property is one of the assumptions of the Phragmén-Lindelöf principle. Let Y = u u /λ be associated to u by (3.13) and set Z = T -1 0 Y , where T 0 is defined by (3.23). We get

Z -λ Λ1 + Λ0 + 1 λ Λ-1 Z = T -1 0 F λ , (4.19) 
B1 + 1 λ B0 T 0 Z(0) + C1 + 1 λ C0 T 0 Z(l) = 1 λ D (4.20)
where

F λ = 0 -A -1 2 (M g + +2ΩM f + λM f )/λ (4.21)
and

D = -B b (0)f (0) 0 . (4.22)
By seeking a solution of (4.19) under the form Z(x, λ) = Ẽ(x, λ)A(x, λ), where A(x, λ) ∈ C 4 , we get

A(x, λ) = x 0 Ẽ-1 (t, λ)T -1 0 F λ (t)dt + K λ (4.23) 
where K λ ∈ R 4 depends only on λ. An easy computation shows that

K λ = M -1 (λ) 1 λ D -C1 + 1 λ C0 T 0 Ẽ(l, λ) l 0 Ẽ-1 (t, λ)T -1 0 F λ (t)dt (4.24)
and

Y (x, λ) = T 0 Ẽ(x, λ)M -1 (λ)N (x, λ) (4.25) 
where

N (x, λ) = M (λ) x 0 Ẽ-1 (t, λ)T -1 0 F λ (t)dt + 1 λ D- C1 + 1 λ C0 T 0 Ẽ(l, λ) l 0 Ẽ-1 (t, λ)T -1 0 F λ (t)dt. (4.26) 
It is easily seen that there exist β > 0 and

C 1 > 0, C 2 > 0 such that for all λ ∈ C, |λ| ≥ C 1 , ||N (., λ)|| L ∞ (0,l) ≤ C 2 e β|λ| ||F|| H 1,0 .
On the other hand, one can write

M -1 (λ)N (x, λ) = P (x, λ) ∆(λ) (4.27) 
where P (x, λ) satisfies the same type of inequality than N (x, λ). Hence Y can be written under the form

Y (x, λ) = Q(x, λ) ∆(λ) (4.28)
where Q(x, λ) satisfies the same type of inequality than N (x, λ). Consequently there exist β > 0 and C 1 > 0, C 2 > 0 such that for all λ ∈ ρ(A)

and |λ| ≥ C 1 , |∆(λ)| ||(A -λI) -1 F|| H 1,0 ≤ C 2 e β|λ| ||F|| H 1,0 so that |∆(λ)| ||(A -λI) -1 || ≤ C 2 e β|λ| . For λ ∈ ρ(A * ) (thus λ ∈ ρ(A)), G(λ) = ((A * -λI) -1 U, F) H 1,0 = (U, (A -λI) -1 F) H 1,0 . Thus for all λ ∈ ρ(A * ) and |λ| ≥ C 1 , |∆( λ)G(λ)| ≤ C 2 e β|λ| ||U|| H 1,0 ||F|| H 1,0 .
Since ∆( λ) = 0 for λ ∈ ρ(A * ), we see that there exist β > 0 and C > 0 such that for all λ ∈ C, |∆( λ)G(λ)| ≤ C e β|λ| . Let us show that when |λ| → +∞, |∆(λ)| ∼ |∆( λ)|. Let us remark that since the matrices Λi , i = -1, 0, 1 have real coefficients, if for all λ ∈ C * , Z(., λ) is a fundamental matrix of T D (λ)Z = 0 it follows that for all λ ∈ C * , Z(., λ) is also a fundamental matrix of T D (λ)Z = 0. By the definition of a fundamental matrix there exists a λ-dependant invertible matrix A(λ) ∈ M 4 (C) (λ ∈ C * ) such that for all λ ∈ C * , Z(., λ) = Z(., λ) A(λ). Choosing the asymptotic fundamental matrix function given by Proposition 3.5, namely Ẽ(x, λ) given by (3.54), we obtain Ē(x, λ) = Ẽ(x, λ) A(λ). Taking x = 0 in this equation and letting |λ| tend to infinity, we deduce that A(λ) → I when |λ| → +∞. As a consequence for all λ

∈ C * , M ( λ) = T R ( λ) Ē(x, λ) = T R (λ) Ẽ(x, λ)A(λ) = M (λ)A(λ) and |∆( λ)| = |∆(λ)||detA(λ)| thus |∆( λ)| ∼ |∆(λ)| when |λ| → +∞.
One deduces that there exist β > 0 and C > 0 such that for all λ ∈ C, |∆(λ)G(λ)| ≤ C e β|λ| . Therefore ∆(λ)G(λ) is of exponential type. It follows that G(λ) is the ratio of two entire functions of exponential type and thus is of exponential type [START_REF] Koosis | The Logarithmic Integral I[END_REF], p. 22.

Let us recall that if H is a Hilbert space, a sequence (h n ) n∈N of vectors of H is called minimal if no vector h n0 belongs to the closed linear span of the remaining vectors h n , n = n 0 [START_REF] Markus | Introduction to the Spectral Theory of Polynomial Operator Pencils[END_REF], p. 187. Lemma 2.4 of [START_REF] Malamud | On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations[END_REF] asserts that if T is a compact operator of a Hilbert space such that N (T ) = {0}, then there is a system of root vectors of T which is minimal. Since 0 ∈ ρ(A) and A -1 is compact, this lemma applies to A -1 . We are in position to state and prove one of the main theorems of this paper Theorem 4.3 Under hypotheses 2.1, 3.6, 3.8 and 3.12, the set of root vectors of A is complete in H 1,0 and there is a system of root vectors of A which is minimal in H 1,0 . P r o o f. We have proved that G(λ) is bounded on the half-plane Reλ ≥ α and on the line Reλ ≤ α, Imλ = 0 and that G(λ) is of exponential type. By the Phragmén-Lindelöf principle [START_REF] Young | An Introduction to Nonharmonic Fourier Series[END_REF], p. 80, G(λ) is bounded on C. Since G(λ) → 0 when Reλ → +∞, the Liouville theorem shows that G ≡ 0 hence (A * -λI) -1 U ≡ 0 and U = 0. The proof of Theorem 4.3 is complete.

If H is a separable Hilbert space, a sequence (h n ) n∈N of vectors of H is a Riesz basis of H if by definition there exists an invertible operator D such that the sequence (Dh n ) is an orthonormal basis of H [START_REF] Markus | Introduction to the Spectral Theory of Polynomial Operator Pencils[END_REF], p. 168. Theorem 2.1, p. 310 of [START_REF] Gohberg | Introduction to the theory of linear non-self-adjoint operators[END_REF] states that a sequence (h n ) n∈N of vectors of H is a Riesz basis of H iff it is complete in H and there exist two constants a 1 , a 2 > 0 such that for all n ∈ N, for all γ 

1 , • • • γ n ∈ C, a 2 ( n j=1 |γ j | 2 ) ≤ | n j=1 γ j h j | 2 ≤ a 1 ( n j=1 |γ j | 2 ). ( 4 
(A) = ∅, σ 2 (A) = σ(A) = σ p (A)
. Therefore, since the eigenvalues of A are asymptotically algebraically simple, there exists a sequence of root vectors of A which forms a Riesz basis of H 2 . Theorem 4.3 gives H 2 = H = H 1,0 and the result follows. In [START_REF] Shubov | Asymptotic and spectral analysis of the spatially nonhomogeneous Timoshenko beam model[END_REF], the spectral analysis of the (non rotating) Timoshenko beam model with the same boundary damping as ours on one end is addressed. Under some hypotheses on the physical properties of the beam which are similar to ours, the Riesz basis property of a sequence of root vectors of the unbounded operator associated to the problem (corresponding to A) is shown. More precisely our hypotheses 3.6 and 3.8 are equivalent to hypotheses (3.17) and (4.8) of [START_REF] Shubov | Asymptotic and spectral analysis of the spatially nonhomogeneous Timoshenko beam model[END_REF]. But in [START_REF] Shubov | Asymptotic and spectral analysis of the spatially nonhomogeneous Timoshenko beam model[END_REF] the hypothesis corresponding to our hypothesis 3.12 does not appear. In [START_REF] Shubov | Asymptotic and spectral analysis of the spatially nonhomogeneous Timoshenko beam model[END_REF], Theorem 4.2, it is written "The entire set of eigenvalues asymptotically splits into two disjoint sets", but as it is well explained in [START_REF] Lunyov | On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications[END_REF], Remark 6.6, it is not the case in general, but this assertion is true if our hypothesis 3.12 is satisfied.

In [START_REF] Xu | Exponential decay rate for a Timoshenko beam with boundary damping[END_REF], the spectral analysis of the (non rotating) Timoshenko beam model with a more general boundary damping than ours is examined. The Riesz basis property of a sequence of root vectors of the unbounded operator associated to the problem (corresponding to A) is shown under hypotheses equivalent to our hypotheses 3.8 and 3.12 but with no hypothesis equivalent to our hypothesis 3.6 (Theorem 4.1 of [START_REF] Xu | Exponential decay rate for a Timoshenko beam with boundary damping[END_REF]).

In [START_REF] Lunyov | On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications[END_REF], the spectral analysis of the (non rotating) Timoshenko beam model with the same boundary damping as in [START_REF] Xu | Exponential decay rate for a Timoshenko beam with boundary damping[END_REF] is analysed. Under hypotheses on the regularity of the physical parameters, an hypothesis similar to our hypothesis 3.8 (conditions (6.29a) and (6.29b) of [START_REF] Lunyov | On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications[END_REF]), and an hypothesis which, with our notations, can be written E/G = const. (condition (6.9) of [START_REF] Lunyov | On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications[END_REF]), it is shown that there is a system of root vectors of the unbounded operator associated to the problem (corresponding to A) which is complete and minimal (Theorem 6.3 (i) of [START_REF] Lunyov | On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications[END_REF]). In the case of the same boundary damping as ours on one end, and with additional hypotheses on the regularity of the physical parameters, the Riesz basis property with parentheses of a sequence of root vectors of the unbounded operator associated to the problem is shown (Theorem 6.3 (ii) of [START_REF] Lunyov | On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications[END_REF]).

From Theorem 4.5 we get an expansion of the solution of (2.12), (2.13) as a function of a sequence of root vectors of A.

Theorem 4.7 Assume that hypotheses 2.1, 3.6, 3.8 and 3.12 are satisfied. Assume moreover that u 0 ∈ H 1 , v 0 ∈ H 1 , Au 0 + Bv 0 ∈ H 0 or (which is equivalent)

u 0 ∈ H 2 , v 0 ∈ H 1 , [B a u 0 + B b v 0 ](0) = 0, [B a u](l) = 0.
Let u be the solution to (2.12), (2.13) given by Proposition 2.7, iii). Let σ p (A) = {λ k , k ∈ N} be the (point) spectrum of A. For all k ∈ N, let r k be the geometric multiplicity of λ k , m k,i , i = 1, . . . , r k the partial multiplicities of the holomorphic family A(λ) = A-λI at λ k , (U k,i,j ), i = 1, . . . r k , j = 0, . . . , m k,i -1 a family of root vectors corresponding to λ k such that (A -λ k I)U k,i,j = U k,i,j-1 , i = 1, . . . r k , j = 0, . . . , m k,i -1 (with U k,i,-1 = 0) and set U k,i,j = u k,i,j v k,i,j . Then there exists a family of polynomial functions (P k,i,j ) of degree ≤ m k,i -1 -j, k ∈ N, i = 1, . . . r k , j = 0, . . . , m k,i -1 such that setting a k,i,j (t) = e λ k t P k,i,j (t) Theorem 4.5 implies that the family (U k,i,j ), k ∈ N, i = 1, . . . r k , j = 0, . . . , m k,i -1 is a Riesz basis of H 1,0 . Let (V k,i,j ), k ∈ N, i = 1, . . . r k , j = 0, . . . , m k,i -1 be the Riesz basis of H 1,0 which is biorthogonal to the Riesz basis (U k,i,j ). Every element U ∈ H 1,0 can be written in a unique way U = k,i,j (U, V k,i,j ) H 1,0 U k,i,j , the convergence being in H 1,0 . Equation (4.29) implies k,i,j |(U, V k,i,j ) H 1,0 | 2 < +∞. By a proof similar to that of [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems[END_REF], Theorem 2.3.5-b, one can show that

(
D(A) =    U ∈ H 1,0 ; k,i,j |λ k | 2 |(U, V k,i,j ) H 1,0 | 2 < +∞    (4.38)
and for all U ∈ D(A), AU = k,i,j (U, V k,i,j ) H 1,0 {λ k U k,i,j + U k,i,j-1 } = k,i,j {λ k (U, V k,i,j ) H 1,0 + (U, V k,i,j+1 ) H 1,0 }U k,i,j (4.39) (with V k,i,m k,i = 0), the convergence being in H 1,0 . Setting for all n ∈ N

U n 0 = n k=0   i,j (U 0 , V k,i,j ) H 1,0 U k,i,j   , (4.40) 
we have: U n 0 → U 0 in H 1,0 when n → +∞. Since U 0 ∈ D(A), from (4.38) and (4.39), AU n 0 → AU 0 in H 1,0 when n → +∞. Since T (t) is a contraction semigroup in H 1,0 (for all t ∈ [0, +∞), ||T (t)|| H 1,0 →H 1,0 ≤ 1) we infer that U n (t) = T (t)U n 0 → T (t)U 0 = U(t) in H 1,0 uniformly on [0, +∞). Moreover Un (t) = AU n (t) = AT (t)U n 0 = T (t)AU n 0 → T (t)AU 0 = AT (t)U 0 = AU(t) = U(t) in H 1,0 uniformly on [0, +∞). Since from (2.41), on D(A) the graph norm is equivalent to the norm ||.|| H 2,1 it follows that U n (t) → U(t) in H 2,1 uniformly on [0, +∞). If we set W k,i,j (t) = T (t)U k,i,j then Ẇk,i,j (t) = AW k,i,j (t) = AT (t)U k,i,j = T (t)AU k,i,j = T (t)(λ k U k,i,j + U k,i,j-1 ) = λ k W k,i,j + W k,i,j-1 . This differential system and the initial conditions W k,i,j (0) = U k,i,j give W k,i,j (t) = e λ k t U k,i,j + U k,i,j-1 t + • • • + U k,i,0 t j j! . where P k,i,j (t) = (U 0 , V k,i,j ) H 1,0 +(U 0 , V k,i,j+1 ) H 1,0 t+• • •+(U 0 , V k,i,m k,i -1 ) H 1,0 t m k,i -1-j (m k,i -1 -j)! Recall that the solution to (2.61) is written under the form U = u v . For n ∈ N set U n = u n v n . We have v = u and v n = un . Since U n (t) → U(t) in H 2,1 and Un (t) → U(t) in H 1,0 uniformly on [0, +∞) we deduce that u n (t) → u(t) in H 2 , un (t) → u(t) in H 1 , ün (t) → ü(t) in H 0 uniformly on [0, +∞). Replacing u(t) by e Ωt u(t) the result follows.

  For all µ ∈ σ(T ) and n ∈ N * set Ln = {y 0 ∈ N (T (µ)); there is a root function y of T at µ with y(µ) = y 0 and ν(y) ≥ n} (3.1) and

  For all n ∈ N * , let us denote by L n (A) and L n (B) the spaces defined by (3.1) and (3.2) corresponding to the holomorphic families A and B. Assume that for all n ∈ N * there exists an injection i n from L n (A) into L n (B). If we denote by m j (A) and m j (B) the partial multiplicities of A and B at µ defined by (3.3) then for all j = 1, . . . , nul(A(µ)) (= nul(B(µ))), m j (A) ≤ m j (B). If we denote by m(A) and m(B) the algebraic multiplicities of A and B at µ then m(A) ≤ m(B).

  1), (3.2), (3.3) and (3.4) give the result.

  .49) With the hypotheses 2.1 and 3.6 the assumptions of Proposition 3.5 are fulfilled with a = 0, b = l, k = 0 and Â(., ρ) = ρ Λ1 + Λ0 + 1 ρ Λ-1 . Since α 1 = α 2 , from (3.45), the matrix P [0] is diagonal. Equation (3.47) gives P [0] ii -Λ0,ii P [0] ii = 0 (i = 1, . . . , 4). Because of the initial condition P [0] (0) = I 4 ((3.45)) and the form of Λ0 ((3.27)) we get

  be associated to u and u 0 by(3.13) and setZ = T -1 0 Y , Z 0 = T -10 Y 0 , where T 0 is defined by(3.23). If T is the holomorphic family of operators on C * associated to the unbounded operator A by (3.31), (3.32), (3.33), Z -Z 0 satisfies the following equationsT D (λ)(Z -Z 0 ) = 0 (4.8)andT R (λ)(Z -Z 0 ) = -B b (0) + 1 λ ΩB b (0) u 0 (0) 0 .(4.9)Since Z -Z 0 can be written under the formZ -Z 0 = Ẽ(., λ)c(λ) (4.10) where c(λ) ∈ C 4 and since from (3.54) we have Ẽ(0, λ) = [I] 1 , this gives

. 15 )

 15 Equations (4.12), (4.13), (4.14) and(4.15) show that there exist constantsC 1 ≥ C > 0 and C 2 > 0 such that for λ ∈ (-∞, -C 1 ], |u(0)| ≤ C 2 |u 0 (0)|.(4.16)

Proposition 4 . 2

 42 The entire function λ ∈ C → G(λ) is of exponential type. P r o o f. Let F = f g ∈ H 1,0 , λ ∈ ρ(A) and U = u v = (A -λI) -1 F. It follows that AU = λU + F.

Remark 4 . 6

 46 Let us compare Theorem 4.5 with other results in the literature on the spectral analysis of the Timoshenko beam model.

- 1 j=0(

 1 U 0 , V k,i,j ) H 1,0 W k,i,j (t) = e λ k t    m k,i -1 j=0 P k,i,j (t)U k,i,j

  .41) Hence on D(A) the graph norm and the norm ||.|| H 2,1 are equivalent and A is a closed operator (that is to say its graph is closed). Equations (2.40) and (2.41) give

  .60) It follows that A is dissipative. On the other hand, since 0 ∈ ρ(A), and since ρ(A) is open, there exists λ ∈ C such that Re λ > 0 and R(A -λI) = H 1,0 . Consequently A is maximal dissipative and D(A) is dense in H 1,0 [34], Theorem 3.1.7. The Lumer-Phillips theorem (see[START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF], Theorem 3.8.4) shows that A is the generator of a contraction semigroup on H 1,0 . Proposition 2.7 i) With the notation (2.27) the condition U 0

From Lemma 2.6 and Proposition 2.3.5 of

[START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF] 

we obtain the following proposition (by replacing u(t) with e -Ωt u(t))

  .29) Recall that two sequences (h n ) n∈N and (k n ) n∈N of vectors of H are biorthogonal if(h n , k m ) H = δ nm (n, m ∈ N) and that if (h n ) n∈N is a Riesz basis of H, there exists a Riesz basis (k n ) n∈N of H such that (h n ) n∈N and (k n ) n∈N are biorthogonal[START_REF] Gohberg | Introduction to the theory of linear non-self-adjoint operators[END_REF], p. 310. Let us recall the following theorem from Xu[START_REF] Xu | The expansion of a semigroup and a Riesz basis criterion[END_REF], Theorem 1.1: Theorem 4.4 Let H be a separable Hilbert space and A be the generator of a C 0 semigroup T (t) on H. +∞, where E(λ k , A) is the Riesz projector associated with λ k , (3) There is a constant α such that sup{Reλ, λ ∈ σ 1 (A)} ≤ α ≤ inf{Reλ, λ ∈ σ 2 (A)} and inf There exist two T (t)-invariant closed subspaces H 1 , H 2 with the property that σ(A|H1 ) = σ 1 (A), σ(A| H2 ) = σ 2 (A), {E(λ k , A)H 2 } +∞ (iii) H has the decomposition H = H 1 ⊕ H 2 (topological directsum) if and only if Under hypotheses 2.1, 3.6, 3.8 and 3.12, there exists a sequence of root vectors of A (defined by (2.30), (2.31)) which forms a Riesz basis of H 1,0 . P r o o f. Lemmas 2.4, 2.6, 3.9 and Proposition 3.15 show that the hypotheses of theorem 4.4 are fulfilled with H = H 1,0 , A defined by (2.30), (2.31), σ 1

	n
	Assume that (1) σ(A) = σ 1 (A) ∪ σ 2 (A), where σ 2 (A) = {λ k } +∞ k=0 consists of isolated eigenvalues of A with finite algebraic multiplicity, (2) sup n =m |λ n -λ m | > 0. With these hypotheses the following assertions are true n≥0 k=0 E(λ k , A) < +∞. (4.30) The other main result of this paper reads as follows (i) sup Theorem 4.5

k≥0 dim E(λ k , A)H < k=0 forms a subspace Riesz basis for H 2 (see

[START_REF] Gohberg | Introduction to the theory of linear non-self-adjoint operators[END_REF]

, p. 332 for the definition) and

H = H 1 ⊕ H 2 , (ii) If sup k≥0 ||E(λ k , A)|| < +∞, then D(A) ⊂ H 1 ⊕ H 2 ⊂ H,

  (t) → e -Ωt u(t) in H 2 uniformly on [0, +∞), (4.32) un (t) → (e -Ωt u) . (t) in H 1 uniformly on [0, +∞), (4.33) ün (t) → (e -Ωt u) .. (t) in H 0 uniformly on [0, +∞), (4.34)so that for all T > 0e Ωt u n (t) → u(t) in H 2 uniformly on [0, T ],(4.35)(e Ωt u n ) . (t) → u(t) in H 1 uniformly on [0, T ],(4.36)(e Ωt u n ) .. (t) → ü(t) in H 0 uniformly on [0, T ]. (4.37) P r o o f. Let t ∈ [0, +∞) → T (t) be the contraction semigroup generated by A. Under the hypotheses of the theorem, from Proposition 2.7-i), U 0 = u 0 v 0 -Ωu 0 ∈ D(A). From Proposition 2.7-ii) there exists a unique solution ∈ C 1 ([0, +∞); H 1,0 )∩C 0 ([0, +∞); D(A)) to the initial value problem (2.61) given by U(t) = T (t)U 0 , (t ∈ [0, +∞)).

	n	r k	m k,i -1
	k=0	i=1	

t ∈ R) and

u n (t) = j=0 a k,i,j (t)u k,i,j (n ∈ N, t ∈ R),

(4.31)

we have u n
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