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Observations of fault geometry and cumulative slip distribution serve as critical constraints on fault behavior over temporal scales
ranging from a single earthquake to a fault’s complete history. The increasing availability of high-resolution topography (at least
one observation per square meter) from air- and spaceborne platforms facilitates measuring geometric properties along faults over
a range of spatial scales. However, manually mapping faults and measuring slip or scarp height is time-intensive, limiting the use
of rich topography datasets. To substantially decrease the time required to analyze fault systems, we developed a novel approach
for systematically mapping dip-slip faults and measuring scarp height. Our MATLAB algorithm detects fault scarps from
topography by identifying regions of steep relief given length and slope parameters calibrated from a manually drawn fault
map. We applied our algorithm to well-preserved normal faults in the Volcanic Tablelands of eastern California using four
datasets: (1) structure-from-motion topography from a small uncrewed aerial system (sUAS; 20 cm resolution), (2) airborne
laser scanning (25 cm), (3) Pléiades stereosatellite imagery (50 cm), and SRTM (30m) topography. The algorithm and
manually mapped fault trace architectures are consistent for primary faults, although can differ for secondary faults. On
average, the scarp height profiles are asymmetric, suggesting fault lateral propagation and along-strike variations in the fault’s
mechanical properties. We applied our algorithm to Arizona and Utah with a specific focus on the normal Hurricane fault
where the algorithm mapped faults and other prominent topographic features well. This analysis demonstrates that the
algorithm can be applied in a variety of geomorphic and tectonic settings.

1. Introduction

Scientists use a tectonic fault’s three-dimensional geometry
and the surrounding damage zone to probe research ques-
tions about fault mechanics and hazard [1–6]. Testing rela-
tionships about fault mechanics including fault growth and
linking this behavior to seismic hazard [7–11] requires
observations of faults over many length scales and with vary-
ing properties including slip mode and structural maturity
[12, 13]. Until recently, making even a few observations

required to probe these relationships was very resource
intensive, often requiring a large amount of time collecting
field data and/or making measurements at a computer. Over
the past two decades, a proliferation of global and high-
resolution topography (HRT; more than one observation
per square meter) has greatly increased the number of obser-
vations along fault zones [14–17]. However, fault mapping
and measuring 3D geometry remains very time intensive.

Given the recent increase in topographic data availability
and quality, there have been recent efforts to automatize
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portions of dip-slip fault mapping and scarp height calcula-
tions on the assumption that scarp height indicates the
cumulative vertical fault slip [10]. Automatic approaches
for mapping strike- and dip-slip faults are often applied to
optical imagery and include edge-detection methods (e.g.,
[18]), “ant-tracking” methods [19], and an increasing variety
of deep-learning approaches (e.g., [20–22]). Methods for esti-
mating fault height or surface slip often use topography data.
For example, Zielke et al. [23] and Stewart et al. [24] each
developed algorithms that estimate lateral and vertical fault
slips from offset markers. Hodge et al.’s [25] Scarp Parameter
Algorithm (SPARTA) maps normal fault scarps from cali-
brated slope and curvature parameters. Sare et al.’s [26] algo-
rithm uses a curvature template and a hillslope diffusion
model to map dip-slip fault scarps and calculate height and
morphologic age. Howe et al.’s [27] approach constrains slip
by mapping paleolake shorelines from topographic inflection
points. Despite these advancements, many algorithms either
map faults or measure slip and are often applied to a single
geomorphic setting, which limited their broad usage.

Here, we present a new computational algorithm that
maps normal faults and estimates scarp height from high-
resolution and global topography datasets. Our algorithm
significantly reduces the time required to build large fault
geometry and scarp height datasets. Our approach identifies
fault scarps based on length and slope parameters calibrated
from a manually produced fault map. We applied the algo-
rithm to the Volcanic Tablelands of eastern California, where
faults are well-exposed and their length varies over several
orders of magnitude. We validated the results at two test
zones and compared results to those generated by a second
algorithm. We derived a height versus length scaling rela-
tionship for 152 faults which is consistent with the relation-
ship derived from ~850 faults from the literature in
different settings and over a variety of spatial scales. This
demonstrates the robustness of our measurements and hence
of our algorithm. We applied our algorithm to the normal
Hurricane fault of western Arizona and Utah and to the full
states of Arizona and Utah to demonstrate its broader utility.
We anticipate that our algorithm could successfully map nor-
mal fault systems in a variety of tectonic contexts.

2. Background

2.1. Geologic Setting of the Volcanic Tablelands. The Volca-
nic Tablelands near Bishop, California, are located in the
western portion of the Basin and Range province of western
North America (Figure 1). The province is in the Walker
Lane Belt of eastern California that includes a mix of Mio-
cene to present normal and strike-slip faulting (e.g., [28]).
Owens Valley forms a graben that is bounded to the west
by the Sierra Nevada range front normal fault system and
to the east by the White Mountain normal fault, each with
3-4 km of vertical throw [29, 30]. The Long Valley volcanic
system, located 70 km to the NNW of the Volcanic Table-
lands, erupted and produced the Bishop tuff in 758:9 ± 1:8
ka [31, 32]. In the Tablelands, the Bishop tuff is 150m thick
and consists of moderately welded ignimbrites with polygo-
nal cooling joints located stratigraphically above poorly

welded ignimbrite [33, 34]. The tuff buried the preexisting
topography with densely spaced normal faults. Likely, many
of these faults were reactivated posteruption. These faults
and their scarps are our focus.

The modern Tableland topography includes normal
fault scarps, ancient fumaroles, and fluvial channels. Faults
typically strike 335°W to 025°E, dip steeply in both east and
west directions, have scarp heights that can exceed 100m
and lengths of meters to ten kilometers. The ancient fumaroles
form meters to tens of meters long pillow-shaped structures.
As shown in Figure 1(b), cooling joints in the tuff are exposed
along the scarps’ steep faces [34]. The eroding scarps are bur-
ied by debris flow deposits and wash-slope sediments [35], as
shown in Figures 1(b) and 1(c). As the faults grow, they likely
reactivate the cooling joints [33].

Owens Valley is still seismically active: the 1892 oblique-
right lateral M7.5-7.9 Owens Valley (Figure 1(a)) earthquake
ruptured 120 km of the strike-slip and normal Owens Valley
fault with offsets still preserved a few tens of kilometers
south of the Volcanic Tablelands [36]. The 1986 M6.2 Chal-
fant earthquake (Figure 1(d)) ruptured the White Mountain
Fault with a primarily right-lateral focal mechanism [37]
and produced dilatational fractures with 1-2 cm of opening
distributed over 10 km in the Volcanic Tablelands [38].

2.2. Topographic Fault Scarps and Fault Mechanics. Fault
growth research has focused on constraining the scaling
between cumulative maximum displacement (dmax) and
fault length (L) with the power-law relationship,

dmax = cLn: ð1Þ

While there has been an extensive literature discussion
on the value of “n” and therefore how fault growth depends
on the fault’s current stage (e.g., [5–7]), researchers generally
agree on a linear scaling [2, 39]. We solve for Equation (1)
with our new measurements of scarp height and length in
the Volcanic Tablelands. We use the terminology maximum
displacement and fault slip interchangeably to describe gen-
eral fault behavior, often when referring to literature studies.
We use the term scarp height to refer to our measurements;
surface slip can be calculated from scarp height with knowl-
edge of fault dip.

3. Topographic Data

We applied our algorithm to four topographic datasets in
the Volcanic Tablelands with spatial resolution varying over
three orders of magnitude. “High-resolution topography”
includes small uncrewed aerial system (sUAS) photogram-
metric data, airborne lidar, and Pléiades satellite topogra-
phy (Figure 1(d)). We use the 30m global Shuttle Radar
Topography Mission (SRTM) topography dataset in the
Volcanic Tablelands (Figure 1(a)) and for the Arizona and
Utah mapping.

3.1. Small Uncrewed Aerial System (sUAS). We collected
2334 images over a single fault system in the southern test
zone (Figure 1(d)) on April 12, 2019, with a sUAS that flew
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Figure 1: (a) The Volcanic Tablelands near Bishop in eastern California. Base map is a hillshade from SRTM topography accessed from
OpenTopography (https://www.opentopography.org/, https://doi.org/10.5069/G9445JDF) showing the highest elevation colored in blue
and the lowest in red. The inset shows California (CA), Nevada (NV), and the Volcanic Tablelands (VT). (b, c) Field photographs of
normal fault scarps in the Volcanic Tablelands with geologists for scale. In (b), cooling joints are exposed along the scarp’s free face, and
the debris apron consists of large boulders. In (c), the scarp is almost completely covered by debris. (d) The Fish Slough fault (red) and
southern (blue) test zones shown on a hillshade illuminated from the SW produced from Pléiades topography. The Chalfant Valley
Earthquake location denotes the epicenter from the International Seismological Centre.
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at ~110m above ground level. We produced a topo-
graphic point cloud using structure-from-motion tech-
niques [15, 16, 40] and Agisoft Metashape software. We
used external georeferencing with differential Global Navi-
gation Satellite System (GNSS) and ground control points.
The average 3D root-mean-square error relative to the
GNSS positions is 2 cm for the six ground control points.
The point cloud covers 1.6 km2 and has a point sampling
of 278 points/m2. The algorithm input is the point cloud
resampled to 28 pts/m2, which reduces the computational
burden for the mapping. Scott et al. [41] published the
dataset which is available from OpenTopography (https://
www.opentopography.org/).

3.2. Airborne Light Detection and Ranging (Lidar). The air-
borne lidar data were acquired in 2014 [42] along predomi-
nantly ESE-oriented flight swaths with an ~375m spacing.

This dataset spans the southern half of the Tablelands and
has 15.5 pts/m2. Like many lidar datasets, absolute errors
are unreported, although surveys typically have 5-15 cm ver-
tical errors and five times larger horizontal errors [43–45].
The error is commonly observed as an apparent topographic
offset along the flight line overlap. The algorithm input is the
full resolution point cloud. The dataset is available from
OpenTopography.

3.3. Stereosatellite Topography. The stereosatellite imagery
was acquired on August 17, 2017, by the Pléiades satellites.
To produce digital surface models (DSMs), we follow the
same method as Mattéo et al. [22]. Each dataset has a one
panchromatic image at a 50 cm resolution and a multispec-
tral image with four bands at a 2m resolution. Using the
panchromatic tristereo images, we produced a 50 cm DSM
with a 1m vertical resolution (MicMac software, free open-
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Figure 2: Scarp mapping of the Pléiades topography on the X-X’ transect (Figure 3) along the Fish Slough fault. (a) A vertically exaggerated
topographic transect colored by slope. (b) The algorithm identifies topographic flats and scarps. (c) Scarp height indicator (red line)
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source solution for photogrammetry; [46, 47]). The algo-
rithm input is the DSM with points stored as individual x,
y, and z coordinates, like in a point cloud. Figure 2 shows
an example topographic profile from the Pléiades data.

3.4. Shuttle Radar Topography Mission (SRTM). We use the
30m global SRTM data [48] accessed from OpenTopogra-
phy. The topographic dataset has a vertical precision of
~10m. Like the Pléiades data, algorithm input is the DEM
with points stored as individual x, y, and z coordinates.

4. Manual Mapping and Test Zone Description

4.1. Manual Mapping. A modest-sized manually produced
fault map determines the algorithm’s mapping scale based
on a calibration step that optimizes the slope and length
mapping parameters based on this manual map. Manual
maps must be completed at the scale(s) of interest for the
fault mapping (i.e., coarse or fine) and must cover an area
large enough to include a variety of features at the relevant
scale. A single area can have more than one manual map if
the mapper would like to explore the impact of scale on
the results, as discussed in Section 6.1. Our maps for the
Volcanic Tablelands are several kilometers along-strike and
~1 km long perpendicular to the strike.

We provided three input fault maps: (1) a coarse- and a
(2) fine-scale map at the Fish Slough fault test zone based on
the Pléiades topography and (3) a fine-scale map at the
southern test zone based on the lidar topography, as shown
in Figure 1(d). The coarse-scale mapping includes only pri-
mary faults, while the fine-scale mapping includes primary
and secondary faults and ancient fumaroles. The fine-scale
mapping ensures sensitivity to faults with a similar geomet-
ric dimension to the fumaroles.

The scarps can be mapped consistently at their top, stee-
pest (approximate middle), or bottom location. Generally, a
fault is best mapped at its bottom. In the Volcanic Table-
lands, however, the scarp bottom is often obscured with a
debris and/or wash flow. An alternative approach is to
map the trace at the intersection between the scarp’s free
face and the debris or wash flow. We mapped the scarp at
its bottom (coarse-scale map at the Fish Slough fault) and
top (fine-scale map at both test zones). While the scarp top
is unusual to map as it does not represent the physical fault
trace, this location is more apparent in the Volcanic Table-
lands and hence easy and useful to track. We resampled
the manual fault maps to a 1m scale.

4.2. Fish Slough Fault Test Area. The Fish Slough fault is the
largest Tableland fault and has a scarp height over 100m.
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The fault has large breached relay ramps (Figures 1(d) and
3(a)), and the majority of the hanging wall forms a low relief
surface covered by welded tuff [33]. The test zone spans
5 km along-strike and contains primary and secondary
faults. The coarse- and fine-scale manual maps are shown
in Figures 3(b) and 3(c), respectively. Using the Pléiades-
derived topography, we mapped the faults and compared
the algorithm and manual scarp heights derived from the
coarse- and fine-scale calibration maps (Figures 4 and 5).

4.3. Southern Test Area. The southern test zone includes a
segmented west-dipping primary fault, secondary faults,
and ancient fumaroles, which are all included in the fine-

scale mapping. We applied the algorithm to all four topogra-
phy datasets (SRTM, Pléiades, lidar, and SfM) with the same
manual mapping, as shown in Figures 6 and 7.

5. Algorithm for Mapping Fault Traces and
Calculating Scarp Height

Our MATLAB algorithm maps scarps based on fault-
perpendicular topographic gradients. In a rocky landscape
such as the Volcanic Tablelands, individual boulders often
cause more local topographic relief and roughness than the
major faults. The scale of our manual mapping indicates
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the algorithm’s sensitivity to features at the fault scarp-scale
and not boulders.

Conceptually, the algorithm maps scarps as regions
where a high topographic slope is maintained for a specified

distance or longer. These slope and length criteria based on
the manually produced map ensure that the scarps are
prominent features in the topography. The slope and length
parameter values are determined based on a wide-range grid
search. For each slope and length parameter set, a fault map
is produced by the algorithm and compared to the manual
calibration map through a scoring metric described in
Section 5.5. The algorithm then calculates the scarp height
from the offset of the hanging wall and footwall flats at the
scarp location. The resulting maps depend on the manual
map scale: a coarse manual map results in only major faults
while a fine scale resolves major and secondary faults. The
mapping parameter set that has the highest score over the
calibration zone is then applied to produce a final fault
map and calculate scarp height over the full area of interest.
Table 1 presents the mapping algorithm steps, which are dis-
cussed as follows.

5.1. Topographic Swath Extraction. The algorithm extracts
topographic transects perpendicular to the main fault strike.
The swath width is 5m and 90m for the HRT and SRTM
topography, respectively. The several-pixel swath width
dampens noise, although we did no testing of different
widths. Figure 2 shows an example topographic profile along
the Fish Slough fault from Pléiades topography.

5.2. Topographic Slope. For each transect, the algorithm cal-
culates the absolute value of the topographic slope over the
full 5m (HRT) and 90m (SRTM) width every 1m with a
2m sliding window (HRT) and every 30m over a 90m slid-
ing window (SRTM). The transect width and moving win-
dow dampen the noise. See Figure 2(a) for the slope
differences between scarps and flats.

5.3. Identify Topographic Scarps and Flats. Based on a set of
slope ðθslopeÞ and length ðθlengthÞ calibration parameters
which are later optimized (see Section 5.5), the algorithm
identifies topographic scarps and flats from a parameter grid
search. For the HRT, θslope ranges from 0.01 to 0.75 and
θlength from 1 to 72m. For SRTM topography, θslope ranges
from 0.02 to 0.4 and θlength from 30 to 540m. Conducting
the grid search on a narrow set of parameters can result in
local minima.

Individual 1m segments along the transect are part of a
scarp based on the following conditions: for each meter (xi)
along the transect, the slope parameter ðφslopeÞ is the mean
slope over the distance θlength,

φslope = Mean slope xi −
θlength
2

, xi +
θlength
2

� �� �
: ð2Þ

The square brackets indicate extracting the slope over the
closed interval surrounding xi. xi belongs to a scarp when

φslope > θslope: ð3Þ

There are many gentle benches or flats located along more
prominent fault scarps. The calibration map detail determines
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when a bench that divides a scarp is grouped with the larger
scarp or remains a bench. A potential bench or flat with length
of lengthflat remains a flat when

lengthflat > θlength: ð4Þ

If lengthflat < θlength, the potential flat does not become a
flat, but instead, the potential flat and two bordering scarps
are grouped into a single scarp.

5.4. Calculate Scarp Height. The algorithm fits lines to the
topographic flats bordering each fault (Figure 2(c)) using
least-squares. The hanging wall and footwall slopes border-
ing a fault can differ. The best-fit lines are projected to the
scarp’s steepest location, and their vertical offset is the scarp
height. The algorithm records the top, steepest, and bottom
scarp positions.

5.5. Slope and Length Mapping Parameter Calibration. Along
each topographic transect, we conducted a grid search over
the mapping parameters (θlength and θslope) based on the
manual maps, as shown in Figures 4 and 5. The ideal map-
ping parameters depend on dataset resolution and noise,
mapping scale, and the overall fault size. We evaluate the
mapping parameters with two criteria that penalize for man-
ually mapped faults missed by the algorithm and for algo-
rithm mapped faults not mapped manually. A higher score
indicates better performance. For the HRT, we used a 10m
buffer for the offset of the algorithm and manually mapped
faults, which allows for some variability in fault position.

The correct fault score (CorrFault) is the fraction of the
algorithm’s fault points with a corresponding manually
mapped fault within the distance buffer:

CorrFault =
#of algorithm points with correspondingmanual point

#of algorithmpoints
:

ð5Þ

This score penalizes for false positives, in other words,
for faults mapped by the algorithm but not manually. With
many false positives, much of the algorithm fault will lack
a corresponding manual fault, and CorrFault will indicate
low performance.

The complete fault score (ComFault) is the fraction of
manually mapped fault points with a corresponding algo-
rithm fault point within the distance buffer:

ComFault =
#of manual points with a corresponding algorithm point

#of manual points
:

ð6Þ

A low ComFault indicates low algorithm performance
and that many manually mapped faults lack a corresponding
algorithm fault. Total score (TS) sums CorrFault and
ComFault:

TS = CorrFault + ComFault: ð7Þ

The best mapping parameter sets have the greatest TS.

Table 1: Fault mapping algorithm: the table summarizes the major steps in the workflow and the section in this paper where they are
discussed.

Input datasets Additional details Paper section

Topography Resolution: submeter to tens of meters, e.g., sUAS, lidar, stereo-DEMs, SRTM 3

Calibration maps Coarse or fine scale manually mapping 4

Mapping over the calibration zone: map topographic scarps for all sets of length (θlength) and slope (θslope) mapping parameters

Swath extraction
Perpendicular to user-input fault strike
Width: 5m for HRT; 90m for SRTM

5.1

Topographic slope
Calculated over a moving window

Window size: 2m for HRT; 90m for SRTM
5.2

Identify scarps and flats
Scarps satisfy Equations (2) and (3)

Multimeter flats remain flat when length > θlength
5.3

Calculate scarp height
Solve for best-fit lines to both flats; project lines to the steepest part of fault;

scarp height is the vertical offset of the fault
5.4

Calibration

Score mapping parameters Best set: fewest missing faults and false positives relative to the manual mapping 5.5

Scarp height error

Scarp height error Error based on the ensemble of good mapping parameters 5.6

Apply algorithm over the entire study area

Calibrated parameters Apply optimal mapping parameters 5.7

Tectonic interpretation (optional)
Manually identify nearby measurements as the same fault and exclude nontectonic

features (e.g., rivers)
5.8

HRT: high-resolution topography includes sUAS, lidar, and the Pléiades topography; SRTM: Shuttle Radar Topography Mission.
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5.6. Scarp Height Error. There are three main error sources
in the scarp heights: (1) the choice of mapping parame-
ters, (2) topographic dataset error, and (3) nonfault fea-
tures identified by the algorithm. (1) The parameter
calibration depends on the scale and fault map quality,
which determine the landforms identified as scarps. The
Fish Slough mapping results at the two scales indicate
the large impact of the mapping parameters (Figure 3).
However, this error is difficult to quantify. Due to (2),
we interpret some heights with caution, for example, the
EW “scarps” in the lidar-derived heights (particularly vis-
ible in the southern half of Figure 6(e)). (3) Non-fault fea-
ture like ancient fumaroles and river channels are
approximately symmetric so their net height is often close
to zero. Asymmetric features can be removed by a geolo-
gist (Section 5.8).

To calculate height measurement uncertainty, we iden-
tify the mapping parameters with

TS ≥ 0:95 TSbest: ð8Þ

The scarp height error is the 16th and 84th percentiles
(i.e., 1σ) of the height ensemble that satisfies Equation
(8), which are along the same transect and are within
10m (HRT) or 225m (SRTM) along the transect path
from the TSbest measurement of focus. These distances
allow for variability in scarp location with different map-
ping parameters.

5.7. Fault Mapping over the Entire Area of Interest.With cal-
ibrated parameters, the mapping can be completed over the
full area of interest. To calculate the scarp height error, the
mapping must be done with the ensemble of parameters that
satisfy Equation (8).

The algorithm mapped scarps over ~290 km2 in the
Volcanic Tablelands from the Pléiades topography with
θslope = 20m and θlength = 0:17, as shown in Figure 8. This
parameter set is an approximate average of the test zone cal-
ibration parameters. With one parameter set, any biases
introduced by the parameter choice are consistent through-
out the mapping.
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Figure 8: Algorithm-derived height map calculated from the Pléiades data with θslope = 20m and θlength = 0:17. Most mapped features are
faults such as the Fish Slough fault. The algorithm also mapped the Owens Valley River which is bounded by prominent fluvial scarps.
Blue and red show dips to the east and west, respectively. This figure’s location is shown in Figure 1(a).
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5.8. Analysis of the Faults and Their Height Derived from the
Fault-Mapping Algorithm. Following the scarp mapping
over ~290 km2 in the Volcanic Tablelands, we manually
extracted scarp height profiles. Our algorithm does not
group or label individual height measurements into faults,
so this process must be done manually.

To do so, we extracted the height and length profiles for
152 individual and composite fault systems. For each of the
152 faults, we manually encircled the measurements that
compose each fault scarp and no other scarp or geomorphic
feature. We manually mapped a single trace which denotes
the location of the fault or the main fault in the case of a
composite scarp. We used the length of this manually drawn
strike line to calculate the fault length because the algorithm
can miss the fault tips and thus underestimate length
(Figure 4). This process of labelling and simple mapping of
faults is greatly expedited by the algorithm’s results. Along
composite arrays, we summed the height profiles (as in
Figure 7). The 152 fault maps and their profiles are shown
in the supplemental material (available here). We summa-
rized this analysis with normalized cumulative scarp heights
(Figure 9) and fault length to height scaling relationships
(Figure 10).

5.9. Validation: Manual Estimation of Scarp Height. To
make manual scarp height measurements, we used the
MATLAB code published by Scott et al. [63] for Bello et al.
[64]. We extracted 2m wide transects of the Pléiades topog-
raphy separated by 50m and perpendicular to the average
fault strike. We manually selected two points along each of
the footwall and hanging wall flats and one point at the scarp
middle. Identical to our algorithm, scarp height is the offset
of the best-fit hanging wall and footwall lines projected to
the fault location. Scarp height error is calculated from a
propagation of uncertainty based on fault height and loca-
tion error as shown in Equation (4) of Bello et al. [64]:

Δheight =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mfoot −mhanging
� �2ΔFx2 + Δbfoot

2 + Δbhanging
2

q
:

ð9Þ

mfoot and mhanging are the best-fit slopes to the footwall
and hanging wall lines, respectively, and bfoot and bhanging
are the y-intercepts. ΔFx is the fault position error, equal
to 25% of the scarp height.

6. Fault Mapping in the Volcanic Tablelands

6.1. Fish Slough Fault Test Zone. For validation, we com-
pared the algorithm maps and scarp heights to each other
and to our manual results. In the X-X’ transect of Figure 3,
the two faults are measured similarly by the coarse- and
fine-scale mapping parameters, although their errors do
not quite overlap. In contrast for the Y-Y’ transect, the
coarse-scale mapping parameters resolved a single 101m tall
scarp, while the fine-scale parameters resolved three scarps
with a total 70m height. This lower height reflected topo-
graphic warping between scarps that is not counted as
height.

The mapping scale impacts the resulting fault map. The
coarse-scale map has few false positives (Figure 4(g)) while
the fine-scale map has false positives along secondary faults
(Figure 4(j)). For both calibrations, the algorithm missed
~100m of fault length at the tips (Figures 4(h) and 4(k)).
Overall, the coarse-scale map captures the bulk fault geome-
try and therefore may often be preferable. The fine-scale
results illustrate that the algorithm can capture additional
detail, although the scarp heights miss warping.

The coarse-scale scarp height profile (Figure 5(a)) shows
a southern and several overlapping northern scarps. The
errors are small except in areas of fault overlap. The algo-
rithm and manual heights agree well (Figure 5(b)). For the
fine-scale map, the main fault and secondary faults have a
larger error with a high upper bound (Figure 5(d)), because
the mapping parameters with 95% TS did not all divide the
large scarp into the smaller scarps. For the northern faults
(Figure 5(e)), the manual and algorithm measurements gen-
erally agree because the two faults are distinct. Along the
southern fault, the algorithm captures smaller-scale fault
steps that were too small to be measured manually.

6.2. Southern Test Zone. As shown in Figures 6 and 7, the
algorithm identified the major NNE striking and west dip-
ping faults in each dataset. With SRTM data, the algorithm
mapped the central portion of the two major west-dipping
faults but missed many secondary faults. With the Pléiades
and lidar data, the algorithm mapped the primary faults,
many secondary faults, and ancient fumaroles. The lidar
flight line offset produced east-west-oriented strips of
“scarps” separated by 300-400m.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized length

N
or

m
al

iz
ed

 h
ei

gh
t

Figure 9: Normalized scarp height (i.e., cumulative vertical slip)
versus normalized length for 152 faults measured with our
algorithm in the Volcanic Tablelands. Black lines: fault height
profiles plotted so that their maximum height occurs along 0 to
0.5 of the normalized length; red: 50th percentile (i.e., median
height); blue: 16th and 84th (i.e., 1σ) percentile distribution. The
supplemental material shows the individual mapped faults and
their height profiles.

12 Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2021/9031662/5551372/9031662.pdf
by guest
on 23 February 2022



The optimal mapping parameters (shown in the lower
right corner of each panel in Figure 6) have a similar θslope
for all datasets and small variations reflect resolution and
noise. θlength varies more: SRTM’s θlength of 30m equals the
data resolution. For the lidar and SfM datasets, θlength is
5m. SfM’s lack of extra sensitivity may reflect that the man-
ual mapping is done on the lidar data, the algorithm ignores
small-scale details, and/or the SfM data was resampled by a
factor of 10.

The main fault has four segments whose height decreases
northward. Using all four datasets, the algorithm resolved
the ~30m maximum scarp height and the second largest
scarp whose apparent height decreases with dataset resolu-
tion. The algorithm identified the two northern segments
from the HRT and a single broader segment from the SRTM
topography.

6.3. Comparison to the Brigham2021 Algorithm. We com-
pared our algorithm to Brigham and Crider’s [65] algorithm,
abbreviated here as Brigham2021. Brigham2021 automati-
cally maps fault scarps and estimates scarp height by mea-
suring the elevation difference between the fault scarp’s
lower and upper extremes (the toe and crest, respectively)
that bound the free face and the talus slope, as shown in
Figure 11(a). The algorithm inputs are scarp profiles that
are roughly perpendicular to the fault strike. To determine
the local curvature minima and maxima, each topographic
profile is fit with a sum of B-spline functions using the
Python package NURBS-Python [66]. To map the scarp
crest position, the algorithm considers the angle a between
each curvature maximum and its proximate points (situated
m = 20 profile points away from the maximum); the crest is
the maximum with the smallest a. The toe is determined in a
similar fashion, as the point with the smallest angle b

between the crest, the curvature minimum, and the profile
starting point. The scarp height is the difference in elevation
between the crest and toe.

The Brigham2021 (Figures 11(b) and 11(c)) and our
algorithm both captured similar major fault traces and
height profiles. However, there are some differences: The
along-strike continuity of the fault is less pronounced in
Brigham2021 where there are 100m wide gaps between fault
segments and some secondary faults obscure the primary
fault. Both algorithms extracted similar height profiles for
the two largest peaks and the maximum summed heights
are within 2-5m. The northern area differs as follows: Brig-
ham2021 mapped a several-hundred-meter-long scarp with
summed height peak of 20m, while our algorithm measured
an ~1 km broad area with several local 20m height maxi-
mums. This difference may reflect the fact that Brigham2021
characterizes composite scarps formed by successive earth-
quakes for morphologic dating and may join several local
peaks into a larger peak.

7. Application of the Mapping Algorithm to
Arizona and Utah

7.1. Hurricane Fault. The normal Hurricane fault [67, 68]
crosses the western Arizona and Utah state border in the
physiographic region between the Basin and Range and Col-
orado Plateau, as shown in Figure 12. The high-angle fault is
250 km long with west-side down synthetic scarps and east-
side down antithetic scarps. We chose this as a second loca-
tion for our mapping algorithm because of the prominent
fault and other features such as the Grand Canyon. The
Hurricane fault is larger than the Tableland faults, so this
analysis demonstrates that our algorithm can be successfully
applied to faults of different scales. We used SRTM topogra-
phy because this dataset is ubiquitous below 60° latitude [48]
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and therefore covers the Hurricane fault as well as other loca-
tions where our algorithm could be applied in future studies.

For the calibration, we manually mapped the synthetic
and antithetic scarps surrounding the Shivwits section
(Figure 12(b)). With the optimized mapping parameters of
θlength = 360m and θslope= 0.21, the algorithm detected the
synthetic trace yet missed many of the antithetic segments.
Other mapping parameters would have mapped more anti-

thetic scarps as well as synthetic fault steps and the cinder
cones that were not in the manual map.

We applied the algorithm to the entire Hurricane fault
(Figures 12(d) and 12(e)). The resulting trace follows the trace
visible in the topographic hillshade. The algorithm detects
nontectonic features such as the Grand Canyon’s walls and
tributaries, as expected due to its sensitivity to topographic
scarps independent of their direct relationship to faulting.
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7.2. Arizona and Utah. We applied the algorithm to SRTM
topography in Arizona and Utah using θlength = 360m and
θslope = 0:21, as optimized for the Hurricane fault and shown

in Figure 13. The algorithm detected many faults in the US
Geological Survey’s Quaternary fault database [69], for
example, the Hurricane and Wasatch faults. It mapped some
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Quaternary and older faults in southern Arizona as well as
the WNW-oriented transition between the Basin and Range
province and the Colorado Plateau in central Arizona. The
Grand Canyon’s tributaries highlight the algorithm’s sensi-
tivity to both tectonic and nontectonic features. In Utah,
the algorithm distinguished between the western Basin and
Range landscape and the Canyonlands and Uinta Mountains
to the east.

8. Discussion

8.1. Optimal Fault Mapping Parameters. The ideal fault
mapping parameters depend on the dataset resolution,
noise, and feature size. Without surprise, at the Fish Slough
fault, the fine-scale mapping (Figure 3) requires a lower
θlength than the coarse-scale mapping. At the southern test
zone, the optimized θslope varied from 0.09 to 0.13m/m with
the highest value for the Pléiades data, likely due to the high
pixel to pixel noise. The SRTM data had the largest θlength
equal to 30m, the pixel size. The lidar and SfM datasets
had identical mapping parameters, likely because the pixel
size is much smaller than the dimension of the faults and
boulders. The Hurricane fault mapping parameters exceeded
those at the southern test zone in the Volcanic Tablelands

with SRTM topography due to the Hurricane fault’s large
scale.

8.2. Fault Cumulative Height Profiles. As shown in Figure 9,
the envelope shape of the cumulative height profile for the
average Volcanic Tablelands fault is asymmetric and not
elliptical or bell-shaped. When the height profile is normal-
ized and plotted with the maximum height between 0 and
0.5, the maximum height occurs from 0.3 to 0.45. The profile
is approximately straight prior to the maximum height and
curved afterwards. These observations are consistent with
other faults worldwide, whose cumulative slip profiles are
roughly triangular and systematically asymmetric indepen-
dent of fault length [10, 70].

The nonelliptical shape of the many individual and aver-
age fault height profiles in the Volcanic Tablelands indicates
that these faults, like most other faults worldwide, do not
behave as elastic cracks in a homogeneous elastic medium
[10, 71]. While different mechanical factors impact a fault’s
slip distribution [1], tectonic damage surrounding major
faults is likely responsible for the asymmetric subtriangular
profiles [10, 11, 72]. Greater slip occurs on the fault section
embedded in more compliant rock that is typically the most
mature and therefore has had the longest slip activity. The
fault profile asymmetry attests to its history, in particular
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the long-term lateral fault propagation and lengthening that
produces a maturity gradient as the fault zone becomes
damaged [8, 11, 72].

8.3. Fault Slip-Length Scaling Relationships. We compared
the fault length to height scaling relationships for the 152
Bishop faults that we measured to 847 faults from other
studies in the Volcanic Tablelands and globally whose
lengths span ten orders of magnitude, as shown in
Figure 10. For the length to maximum displacement scaling
law (Equation (1)), we solve for a best-fit n of 0.62 for the
152 Volcanic Tableland faults. There is considerable scatter,
and the n = 1 line passes through the observations, particu-
larly for the larger faults. A recognized challenge is that there
is often a low number of larger faults, and therefore, the few
large faults have a disproportionate impact on the n-value.
We conclude that our dataset is consistent with a large fault
compilation from the literature which shows linear scaling.

In detail, the small faults (length < ~ 300 − 400m) have a
higher Dmax/L ratio. The faults that were active prior to the
758:9 ± 1:8 ka Long Valley eruption which deposited a
150m thick layer of volcanic tuff will now be relatively long
relative to younger faults because we can only measure
height accumulated post-eruption. Dawers et al. [73] made
a similar observation on Tablelands faults. The variability
may also indicate that faults grow by an initial lengthening
followed by a period of a dominant increase in slip [74]. Still,
we conclude an overall Dmax to length scaling from the
Tablelands faults that is consistent with the literature compi-
lation. Therefore, while fault growth includes phases of
irregular slip accumulation, overall, when considered over
multiple seismic cycles, fault growth occurs through generic,
length-dependent slip accumulation. And semiautomatic
processing of topography which serves as an offset marker
is a powerful tool for examining the geometric and offset
properties of faults.

9. Conclusions

We developed a new algorithm that maps dip-slip faults and
measures scarp height from well-preserved faults using the
growing archive of global and high-resolution topography
datasets. The algorithm detects fault scarps from the spatial
extent of the scarp’s high slope area based on relatively small
calibration maps produced by an expert geologist. We
focused the application of our algorithm on normal faults
in eastern California’s Volcanic Tablelands. We used topog-
raphy datasets with a decimeter to tens-of-meters resolution.
After applying our algorithm to the entire Volcanic Table-
lands, we solved for a fault slip to length scaling relationship
that is broadly consistent with literature studies and further
demonstrates a fairly linear scaling between maximum slip
and length. The cumulative fault height profiles are typically
asymmetric, consistent with observations of other faults
worldwide. This asymmetry is likely related to the fault’s
mechanical properties, the surrounding damage zone, and
growth by lateral propagation. We successfully applied the
algorithm to the Hurricane fault in western Arizona and
Utah and to the entire states of Arizona and Utah. We antic-

ipate that our algorithm will serve as a powerful tool for
mapping and measuring 3D fault geometry along normal
faults using a variety of high-resolution and global topogra-
phy datasets.

Data Availability
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G9445JDF) topography datasets are available from OpenTopo-
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PX_W119N37_0712_01909, DS_PHR1A_201709151853179
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152 faults. The following figures each refer to a single fault
and show the fault in map view with algorithm measure-
ments colored by fault height and the fault height profile.
(Supplementary Materials)
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