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Abstract: We consider mobile robots described through unicycle dynamics equipped with
range sensors and cameras, one in the front and one in the back providing measurements of the
distance and misalignment to a target. We derive locally asymptotically stabilizing control laws
driving the robot to the target position and orientation. The local control laws are combined
into a hybrid global stabilizer, switching between control laws relying on the measurements
from the front and rear sensors. Using Lyapunov arguments in the local setting as well as in
the hybrid systems formulation, we prove global asymptotic stability of the target set for the
hybrid closed-loop system. The results are illustrated on numerical examples.

1. INTRODUCTION & MOTIVATION

Driving a robot described through unicycle dynamics
to a target set with a particular fixed final orientation
is a difficult task due to nonholonomic constraints. In
particular, the origin of the unicycle dynamics cannot be
globally asymptotically stabilized through a static state
feedback Brockett (1983). Indeed unicycle dynamics do
not satisfy the so-called Brockett conditions. Control laws
guaranteeing convergence to the origin, thus imply the
necessity to combine the controller designs with reference
tracking or path following approaches or to rely on discon-
tinuous feedback laws instead. We refer to Tzafestas (2013)
as a general reference for mobile robots and control.

In this work, we follow the second path, i.e., we consider
discontinuous feedback laws. While Lipschitz-continuous
feedback laws guarantee some intrinsic robustness proper-
ties with respect to stability and with respect to existence
and uniqueness of solutions, well-posedness and robustness
is more difficult to achieve with discontinuous feedback
laws (Sontag (1999)). To define a globally asymptotically
stabilizing feedback we use a hybrid systems formalism
and borrow results from hybrid Lyapunov theory (Goebel
et al. (2012)). We define locally stabilizing control laws and
orchestrate them through a switching mechanism to obtain
global results. The local controller design is motivated
through the results and derivations in Aicardi et al. (1995),
whereas the global design and the setup are motivated and
derived differently.

We consider mobile robots, which in Cartesian coordi-
nates are described through the dynamics

ẋ =

 ṗ1
ṗ2
ϕ̇

 = f(x, u) =

[
u1 cos(ϕ)
u1 sin(ϕ)

u2

]
, (1)

where p = [p1 p2]
T ∈ R2 captures the unicycle position in

the plane, ϕ ∈ R captures its orientation and the input u =
[u1 u2]

T ∈ R2 captures the velocity and angular velocity.
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Fig. 1. The robot is equipped with range sensors and cameras (a
front and a rear camera) with overlapping fields of view, pro-
viding measurements (r, αF, βF) and (r, αR, βR), respectively.
Each measurement is only available when the target is in the
camera’s field of view αi ∈ [−π

2
− δ, π

2
+ δ], i ∈ {F,R}.

We assume that the mobile robot is equipped with various
sensors, including a range sensor, measuring the distance
r ∈ R≥0 to the target position, and two cameras (a front
and a rear camera). The cameras provide measurements
of the misalignment of the heading of the robot in terms
of angles αF and αR corresponding to measurements
from the front and the rear camera. In addition, the
cameras provide measurements of the angles βF and βR,
as represented in Figure 1. By combining αi and βi,
i ∈ {F,R}, the mismatch of the robot orientation and
the target orientation is defined. The setting is visualized
in Figure 1, where it is apparent that, the field of view of
both front and rear cameras are as follows

αF, αR ∈ [−π
2 − δ, π

2 + δ], (2)

where δ ∈ (0, π
2 ) induces some overlap and ensures that the

combined fields of view are covering an area of 360◦. While
in certain configurations only one camera is available
(left and right cases in Figure 1), in some configurations
the target is in the field of view of both cameras. This
motivates the use of a hybrid controller, which switches
between measurements from the two cameras and makes



use of different error dynamics describing the mismatch of
the robot and the target position and orientation.

2. ROBOT DYNAMICS

In this section we derive dynamics in local coordinates
defined as zi = [ri βi αi]

T , i ∈ {R,F}. The relation
between the mobile robot in Cartesian coordinates and
the local coordinates related to the sensor measurements,
is described through the coordinate transformations[

p1
p2
ϕ

]
=

[
r cos(αR − βR)
r sin(αR − βR)

−βR

]
,

[
p1
p2
ϕ

]
=

[
r cos(αF−βF−π)
r sin(αF−βF−π)

−βF

]
(3)

where F and R again correspond to the front and rear
cameras. The coordinate transformations (3) follow from
trigonometric arguments applied to the variables defined
and illustrated through Figure 2.
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Fig. 2. Coordinate transformation from global Cartesian coordi-
nates to local coordinates depending on the robot orientation.

The local coordinates are defined on the domain

zi ∈ Z := R≥0 × R× [−π
2 − δ, π

2 + δ], i ∈ {F,R}, (4)

for δ ∈ (0, π
2 ), where the third component of zi evolves in

a bounded set as defined in (2). Whenever the target is in
the field of view of both cameras (see the middle sketch in
Figure 1), by simple geometric considerations we obtain

αF = αR − π sign(αR), βF = βR,

αR = αF − π sign(αF), βR = βF.
(5)

Moreover, again due to the fact that δ > 0 by assumption,
for r ̸= 0, i.e., |p| ̸= 0, we can equivalently represent the
robot through Cartesian coordinates x or through at least
one of the local coordinates zi, i ∈ {F,R}.

As a next step, we derive from (1) and (3) the dynamics
in the local coordinates

żR = fR(zR, v) and żF = fF(zF, v), (6)

with a transformed input v ∈ R2.

Lemma 1. Whenever r ̸= 0, the dynamics (1) can be
equivalently represented through (6) where

fR(zR, v)=

[
v1r cos(αR)

−v2
−v1 sin(αR)− v2

]
, fF(zF, v)=

[ −v1r cos(αF)
−v2

v1 sin(αF)− v2

]
(7)

with transformed input v1r = u1 and v2 = u2. ⌟

Proof. We start with a derivation of fR. Let r ̸= 0 for the
remainder of the proof and define the angle θ = αR − βR.

Proceeding as in (Nešić et al., 2011, eq. (41)), we provide

an alternative expression of the Jacobian ∂p
∂p = I. In

particular, using the definition of θ as well as (3), the
matrix can be rewritten as

∂p

∂p
=

[
∂r
∂p1

cos(θ) ∂r
∂p2

cos(θ)
∂r
∂p1

sin(θ) ∂r
∂p2

sin(θ)

]
+r

[
− sin(θ) ∂θ

∂p1
− sin(θ) ∂θ

∂p2

cos(θ) ∂θ
∂p1

cos(θ) ∂θ
∂p2

]

=

[
cos(θ)
sin(θ)

] [
∂r
∂p1

∂r
∂p2

]
+ r

[
− sin(θ)
cos(θ)

] [
∂θ
∂p1

∂θ
∂p2

]
=

[
cos(θ)
sin(θ)

]
∂r

∂p
+ r

[
− sin(θ)
cos(θ)

]
∂θ

∂p
.

With the definition J =
[
0 −1
1 0

]
and the observations that

p

r
=

[
cos(θ)
sin(θ)

]
and Jp = r

[
− sin(θ)
cos(θ)

]
, (8)

for r ̸= 0, the calculations above can be further simplified
and summarized as

I =
∂p

∂p
=

∂

∂p

(
r

[
cos(θ)
sin(θ)

])
=

1

r
p
∂r

∂p
+ Jp

∂θ

∂p
. (9)

Note that pTJp = 0 follows from the definition of J . Hence,
left-multiplying (9) by pT gives

pT = 1
rp

T p ∂r
∂p + pTJp∂θ

∂p = r2

r
∂r
∂p = r ∂r

∂p .

Similarly, the following equations hold

(Jp)T I = 1
rp

TJT p ∂r
∂p + pT p∂θ

∂p = r2 ∂θ
∂p ,

which leads to the partial derivatives
∂r
∂p = 1

rp
T and ∂θ

∂p = 1
r2 (Jp)

T . (10)

With these calculations, the definition of the function fB
follows from (1):

ṙ = ∂r
∂p ṗ = 1

rp
T ṗ = 1

r [r cos(θ) r sin(θ)]
[
u1 cos(ϕ)
u2 sin(ϕ)

]
= u1[cos(θ) cos(ϕ)− sin(θ) sin(ϕ)] = v1r cos(ϕ− θ)

= v1r cos(−βR − αR + βR) = v1r cos(αR)

θ̇ = ∂θ
∂p ṗ = 1

r2 p
TJT ṗ = 1

r2 [r cos(θ) r sin(θ)]
[

u1 sin(ϕ)
−u1 cos(ϕ)

]
= u1(cos(θ) sin(ϕ)− sin(θ) cos(ϕ)) = v1 sin(ϕ− θ)αR)

= −v1 sin(αR)

β̇R = −ϕ̇ = −v2

α̇R = β̇R + θ̇ = −v2 − v1 sin(αR).

Observe that for fF we need to consider the relation
αR = αF−π and thus the representation fF follows. 2

While Lemma 1 excludes the case r = 0, note that the
functions fR and fF are well-defined for r = 0.

3. LOCAL CONTROLLER DESIGN

In this section, we derive control laws locally asymptot-
ically stabilizing the set

A = {0} × R× {0} (11)

as well as the origin of the dynamical system (6). The
Lyapunov construction is inspired by Aicardi et al. (1995).

Lemma 2. Let the feedback gains kr, kα ∈ R>0 be arbi-
trary. Consider the dynamics (6) with zR ∈ Z. Then

vR =

[
−kr cos(αR)

kr cos(αR) sin(αR) + kααR

]
(12)

locally asymptotically stabilizes the set A in (11). More-
over, V (zR) =

1
2 (r

2 + α2
R) is a Lyapunov function for the

closed-loop dynamics with respect to A. ⌟

Proof. First observe that 1
2 |zR|

2
A ≤ V (zR) ≤ 1

2 |zR|
2
A, i.e.,

V radially unbounded. Moreover, the directional derivative
of V along the dynamics satisfies



⟨∇V (zR),fR(zR, vR)⟩
= r2vR1 cos(αR) + α(−vR2 − vR1 sin(αR))

= −krr
2 cos2(αR)− kαα

2
R < 0,

and thus d
dtV (zR(t)) < 0 for all zR ∈ R3\A which implies

asymptotic stability of A. 2

To additionally ensure that βR(t) → 0 for t → ∞, we
may include an additional term in the feedback law vR and
in the Lyapunov function.

Lemma 3. Let kr, kα, kβ ∈ R>0 be arbitrary. Consider the
dynamics (6) with zR ∈ Z. Then the control law

vR=

[ −kr cos(αR)

kr cos(αR) sin(αR)+kααR+kβ(αR−βR)
cos(αR) sin(αR)

αR

]
(13)

is well-defined for all zR ∈ Z, locally asymptotically

stabilizes the origin 0 ∈ R3 and V (zR) =
1
2 (r

2 +
kβ

kr
(αR −

βR)
2 + α2

R) is monotonically decreasing for all zR ∈ Z. ⌟

Proof. First note that limαR→0
sin(αR)

αR
= 1 and thus the

feedback law is well-defined. Moreover, since the matrix[
kβ+kr −kβ

−kβ kβ

]
is positive definite, V is radially unbounded.

Extending the derivations in Lemma 2, it holds that

⟨∇V (zR), fR(zR, vR)⟩
= r2vR1 cos(αR)+

kβ

kr
(−vR2

−vR1
sin(αR)+vR2

)(αR−βR)

+ αR(−vR2 − vR1 sin(αR))

= −krr
2 cos2(αR)− kαα

2
R + kβ(αR − βR) cos(αR) sin(αR)

− αRkβ(αR − βR)
(
cos(αR)

sin(αR)
αR

)
= −krr

2 cos2(αR)− kαα
2
R ≤ 0 ∀ zR ∈ Z

and thus, local stability of the origin follows. Moreover,
for all zR ∈ Z for which V is not strictly decreasing it
holds that żTR = [ 0 kββR kββR ] , whose right-hand side is
unequal to zero for all βR ̸= 0. Hence, local asymptotic
stability follows from the Krasovskii-LaSalle invariance
theorem (Vidyasagar, 1993, Theorem 5.3.77). 2

Observe that through kβ = 0, Lemma 3 covers the result
of Lemma 2 as a special case because (13) reduces to (12).
For the zF-dynamics in (6), using the same ideas, a result
equivalent to Lemma 3 can be derived. We summarize this
result in the following corollary.

Corollary 1. Let kr, kα, kβ ∈ R>0 be arbitrary. Consider
the dynamics (6) with zF ∈ Z. Then the control law

vF=

[
kr cos(αF)

kr cos(αF) sin(αF)+kααF+kβ(αF−βF)
cos(αF) sin(αF)

αF

]
(14)

is well-defined for all zF ∈ Z, locally asymptotically

stabilizes the origin 0 ∈ R3 and V (zF) =
1
2 (r

2 +
kβ

kr
(αF −

βF)
2 + α2

F) is monotonically decreasing for all zF ∈ Z. ⌟

4. A GLOBAL HYBRID STABILIZER

In this section we combine the two local control laws
introduced in the preceding section in a hybrid systems
formulation. As a first step, we introduce an additional
discrete variable q ∈ {−1, 1} where q = −1 represents the
rear camera R and q = 1 represents the front camera F.
In the overall system representation we consider the state

ξ = [r β α q]T ∈ Ξ (15a)

where the pair (α, β) can either represent (αR, βR) when
q = −1 or (αF, βF) when q = 1 and where the domain Ξ
is defined as

Ξ := R≥0 × R× [−π
2 − δ, π

2 + δ]× {−1, 1} (15b)

for δ ∈ (0, π
2 ). With this definition, the dynamics (6) can

be summarized through the flow map

ξ̇ =

 ṙ

β̇
α̇
q̇

 =

 −qv1r cos(α)
−v2

−v2 + qv1 sin(α)
0

 , ξ ∈ C (15c)

and the feedback laws (13) and (14) are captured through

v=

[
qkr cos(α)

kr cos(α) sin(α)+kαα+kβ(α−β) cos(α) sin(α)α

]
(15d)

The set C, denoting the flow set, is defined as

C := {ξ ∈ Ξ : |α| ≤ π
2 + δ, |β| ≤ 3

2π + δ}.
For the jump map and the jump set, we first define the
functions

gβ(ξ) =

[ r
β−2π sign(β)

α
q

]
, gα(ξ) =

[ r
β

α−π sign(α)
−q

]
and the sets

Dα := {ξ ∈ Ξ : |α|≥ π
2 +δ ∧ |β|≤ 3

2π+δ},
Dβ := {ξ ∈ Ξ : |β|≥ 3

2π+δ}.
Then the jump map is defined as

ξ+ ∈ G(ξ) =

{ {gβ(ξ)} if ξ ∈ Dβ\Dα,
{gα(ξ)} if ξ ∈ Dα\Dβ ,

{gα(ξ)} ∪ {gβ(ξ)} if ξ ∈ Dα ∩ Dβ ,
(15e)

and the jump set is defined as the union

D := Dβ ∪ Dα. (15f)

Note that β+ = β − 2π sign(β) defined through gβ
guarantees that β+ and β differ by a multiple of 2π
and |β+| < |β| for all ξ ∈ Dβ (wherein |β| ≥ 3

2π +
δ). Thus, β+ and β describe the same information with
respect to the position of the robot but β+ is closer to the
target orientation β = 0. Similarly, α+ = α − π sign(α)
defined through gα captures the properties in (5) when
the perspective of the cameras is switched. Additionally,
from the definition of the hybrid system it is clear that
multiple consecutive jumps are possible, but, due to the
selection of the parameter δ, Zeno behavior is not possible.
Finally, since (15) satisfies (Goebel et al., 2012, As. 6.5),
then asymptotic stability is robust in the sense of (Goebel
et al., 2012, Ch. 7).

Theorem 1. Let δ ∈ (0, π
2 ), kr, kα ∈ R>0 and kβ ∈

(0, 2δkr

3π ] be arbitrary. Then, the set Aq = {0} × {0} ×
{0}×{−1, 1} is globally robustly asymptotically stable for
the hybrid closed-loop system dynamics (15). Moreover,

V (ξ) = 1
2 (r

2+
kβ

kr
(α−β)2+α2) is monotonically decreasing

along solutions ξ : dom(ξ) → Ξ. ⌟

Proof. We have established local properties of the closed-
loop dynamics in Lemma 3 and in Corollary 1. What is left
to show, is that the function V is decreasing at discrete
time updates. Let ξ ∈ Dβ . Then it holds that

V (ξ+)− V (ξ) =
kβ

2kr
(α+ − β+)2 − kβ

2kr
(α− β)2

=
kβ

2kr

[
4(α− β) sign(β)π + 4π2

]
= 2

kβ

kr

[
α sign(β)π − β sign(β)π + π2

]



≤ 2
kβ

kr

[
(π2 + δ)π − ( 32π + δ)π + π2

]
= 0.

Similarly, for ξ ∈ Dα it holds that

V (ξ+)−V (ξ)=
kβ

2kr
(α+−β+)2+ 1

2 (α
+)2− kβ

2kr
(α−β)2− 1

2α
2

=
kβ

kr
(α− β) sign(α)π +

kβ

2kr
π2 − |α|π + 1

2π
2

= −kβ

kr
|α|π +

kβ

kr
β sign(α)π +

kβ

2kr
π2 − |α|π + 1

2π
2

= −kβ

kr
|α|π + β sign(α)π +

kβ

2kr
π2 − |α|π + 1

2π
2

≤ −kβ

kr
(π2 +δ)π+

kβ

kr
( 3π2 +δ)π+

kβ

2kr
π2 − (π2 + δ)π + 1

2π
2

≤ −δπ + 3
2
kβ

kr
π2 ≤ 0

and where the last inequality follows from the assumption
kβ ≤ 2δkr

3π . Thus, V is monotonically decreasing and we can
conclude global asymptotic stability. Finally, robustness
follows from (Goebel et al., 2012, Thm 7.21). 2

5. NUMERICAL SIMULATIONS

We illustrate the results derived in the preceding section
based on numerical simulations. Figure 3 shows closed-
loop solutions using the feedback law (15d) with kβ = 0,
i.e., the final orientation ϕ (or β) is not penalized. In par-

Fig. 3. Closed-loop solutions of the hybrid system (15) with
controller gain kβ = 0.

ticular, closed-loop solutions for various initial conditions
in the (p1, p2)-plane, as well as the evolution over time in
the x and z coordinates are shown. The remaining gains
are defined as kr = 2 and kα = 1, respectively. Addition-
ally, the parameter δ = π

10 is used for the simulations.
To illustrate robustness properties of the controller, ξ is
replaced by ξ + [εr εβ εα 0]T in the right-hand side of
(15c) in the simulations, where εr, εβ and εα represent
white Gaussian noise with zero mean and standard devi-
ations σr = 0.05, σβ = σα = 3π

180 . As expected from the
theoretical results, r and α converge to to origin, while the
angle β does not necessarily converge to zero.

For the simulations in Figure 4 the gain kβ = 0 has

been replaced by kβ = 2δkr

3π . As expected, the controller
ensures that additionally the orientation in terms of β or
ϕ, respectively converges to zero for t → ∞ according to
Theorem 1. Figure 4 additionally shows the decrease of
the function V defined in Theorem 1.

6. CONCLUSIONS

Inspired by the controller design in Aicardi et al. (1995),
in this work we have proposed a globally stabilizing con-
troller for unicycle dynamics relying on a hybrid systems
formulation. The controller is motivated through mobile
robots equipped with range sensors and front and rear
cameras with overlapping fields of view.

While the control law derived in Theorem 1 is un-
bounded, a bounded globally stabilizing control law can be
obtained by appropriately scaling v in (15d) (see (Braun
et al., 2021, Theorem 2.3), for example). Such a scaling

Fig. 4. Closed loop solutions of the hybrid system (15).

can also be used to handle unknown input gains, which
have been encountered for example in Vinco et al. (2021),
where the input gain depends on the (unknown) state
of charge of the battery. Future work will focus on the
analysis of robustness properties of the controller and will
incorporate obstacle avoidance properties in the overall
controller design. In this context we will take inspiration
from Braun and Zaccarian (2021) and Marley et al. (2021).
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Tzafestas, S.G. (2013). Introduction to Mobile Robot
Control. Elsevier.

Vidyasagar, M. (1993). Nonlinear Systems Analysis: Sec-
ond Edition. Prentice-Hall.

Vinco, G.M., Braun, P., and Zaccarian, L. (2021). A
modular architecture for mobile robots equipped with
continuous-discrete observers. In IEEE International
Conference on Mechatronics, 1–6.


