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Optimizing shifted stabilizers with asymmetric
input saturation

P. Braun, Member, IEEE , G. Giordano, Senior Member, IEEE , C. M. Kellett, Senior Member, IEEE , I.
Shames, Member, IEEE , and L. Zaccarian Fellow, IEEE

Abstract— A stabilizing controller design for linear sys-
tems subject to asymmetric actuator saturation is pro-
posed. Stabilization is achieved by focusing on shifted
equilibria selected via the solution of an optimization prob-
lem ensuring convergence to the origin of the shifted
equilibrium. To enable the computational time required
by the optimizer, we impose sampled-data updates of the
shifted equilibria and cast our description within a hybrid
dynamical systems formulation. Two feedback solutions
are given, using exact and inaccurate optimization algo-
rithms, thus establishing interesting trade-offs between
continuous-time dynamics and computationally expensive
iterative discrete-time parametric optimization schemes.
Through numerical examples, estimates of the region of
attraction obtained through the method outlined in this
paper are compared to other methods in the literature.
Additionally, the real-time applicability of the control law is
illustrated on numerical examples.

I. INTRODUCTION

Linear matrix inequalities (LMIs) and semidefinite program-
ming [8] have become a standard tool to estimate regions
of attraction in terms of sublevel sets of Lyapunov functions
and to design controllers for linear systems subject to input
saturation constraints [20], [32]. Software interfaces such as
CVX [16], SOSTOOLS [29] or YALMIP [26], for example,
provide a straightforward way to set up optimization prob-
lems subject to LMIs and to efficiently compute solutions
from which control Lyapunov functions, controller gains and
estimates of the region of attraction can be recovered.

While most approaches focus on symmetric saturation
bounds, asymmetric limits often arise in practice [20], [21].
Thus, when applied to systems with asymmetric input con-
straints, results focusing on symmetric bounds are in general
suboptimal and conservative. LMI-based controller designs
for linear systems specifically taking asymmetric saturations
into account are rarely found in the literature. The mono-
graph [25] dedicates one chapter to asymmetric saturations
and the chapter relies on the results derived in the paper
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[23]. Some relevant examples using this technique are also
discussed in [25, Chapter 9.4]. Existing approaches focusing
on asymmetric actuator constraints include the use of non-
symmetric Lyapunov certificates for symmetric stabilizers [5],
[21]. Piecewise quadratic Lyapunov functions with symmetric
stabilizing saturated linear feedbacks are used in [24] and [17],
in the continuous-time and discrete-time cases, respectively.
In [6, Ch. 8] a shifted equilibrium is stabilized, which comes
at the cost that convergence of solutions to the origin is no
longer guaranteed. In [35], a switching dynamical controller is
designed to exploit the available range of the control action on
both sides of the saturation levels. A common feature of the
above-mentioned results is that a single Lyapunov function is
used to characterize solutions in the domain of interest.

An alternative approach may comprise gradually shifting
a reference xe to the origin, a point to be stabilized by
a linear feedback controller, following a gain scheduling
approach [31]. Additional frameworks that could be used
for asymmetrically bounded stabilization include dynamic
programming, relying on the solution of Hamilton-Jacobi-
Bellman equations, model predictive control (see [18] or [30]
for general references) and reference governors, for example.
Explicit model predictive control can handle linear systems
with symmetric or asymmetric input saturation levels in an
explicit controller design [4], [15]. However, explicit model
predictive control derives a control law based on discrete-time
systems in general, whereas here the problem is addressed in
the continuous-time setting.

In this paper, we follow a scheduling paradigm where a
Lyapunov certificate is applied in shifted coordinates, where a
shifted equilibrium xe ∈ Rn is adapted in a sample-and-hold
fashion. The approach is inspired by the work in [7]; it is
motivated by the work in [27], and it extends the subsequent
publication [10]. The paper [7] discusses controllability of
constrained linear systems and the maximal size of regions of
attraction of appropriately selected feedback laws. The ideas
in [7] are used in [27] to propose an asymmetric stabilizer for
systems of the form

ẋ = Ax+Bσ, σ ∈ [−u−, u+], u−, u+ ∈ Rm
>0, (1)

(where m ∈ N) based on convex scaling of a shifted stabilizer.
Through the shifted stabilizer, significantly larger guarantees
are obtained in terms of the estimate of the region of attraction
(abbreviated as ERA in the following). However, this comes at
the cost of reduced local performance. Throughout the paper,
an ERA refers to an arbitrary set, for which it can be rigorously



proven that the set is contained in the region of attraction. The
recent paper [10] proposes an alternative scheme preserving
the local performance and further increasing the size of the
estimate of the region of attraction. The preliminary ideas in
[10] are however restricted to single-input systems. In this
paper, we discuss a nontrivial extension for the general m-
dimensional setting. Moreover, we remove the assumption that
the matrix A in (1) be nonsingular. Removing this assumption
enables results extending the estimate of the region of attrac-
tion to infinity in some suitable directions, which provides
improved results for symmetric saturations as a special case.

An important contribution of this work as compared to
the single-input results of [10] is that, for the single-input
case, it is possible to explicitly solve an optimization problem
defining the shifted equilibrium xe, i.e., the controller is known
explicitly and thus a continuous update of xe is possible in an
implementation. For the multi-input case addressed here, such
a solution is not viable. Therefore we embed the continuous-
time feedback in a hybrid systems framework [14], where xe

is updated at discrete time steps. In this context, we analyze
the interplay between the continuous-time evolution of (1) and
state-dependent discrete-time updates of xe ruled by iterative
parametric optimization schemes. Consequently an interesting
interaction of feedback control and optimization emerges,
where the performance of the overall controller depends on the
rate of the discrete time-updates and, if a suboptimal solution
is used to update the shifted equilibria, on the accuracy of the
suboptimal solution.

In particular, the hybrid systems formalism allows us to
explicitly consider the complexity of the optimization problem
(i.e., the time needed to compute the feedback law) in the
controller design and to guarantee asymptotic stability of the
origin despite an optimization-based controller implementation
introducing delays in the application of the input signal. In
our second design, suboptimal solutions of the underlying
optimization problem are sufficient to define a stabilizing
feedback law, so that the online computational burden can
be reduced significantly. In this context, our stability results
rely on Lyapunov methods and forward invariance. Similar
hybrid systems formulations could also be proposed in the
model predictive control context, for example, to rigorously
take into account the delay caused by the optimization-based
control law. However, the Lyapunov arguments and forward
invariance tools used here need to be nontrivially adjusted in
an MPC setting.

The approach discussed here is closely related to reference
governors, or more precisely Lyapunov and invariance based
explicit reference governors. See [12], [13] and [28] for origins
and overviews on these approaches, for example. Explicit
reference governors, as described in [28], augment pre-defined
control laws designed for unconstrained dynamics to addition-
ally take input and state constraints into account. Then, similar
to the approach discussed here, instead of stabilizing the target
set directly, a reference point is stabilized for which constraints
described through inequalities can be shown to be satisfied.
The reference point is updated through a navigation field
and constraint satisfaction is guaranteed through a function
capturing a dynamic safety margin. As opposed to explicit

reference governors, in this paper, an explicit expression of the
viable set in terms of inequality constraints is not known. Thus,
we are not using navigation fields and safety margins here, but
update the reference point by using an appropriately selected
optimization problem and by leveraging forward invariance,
convexity and Lyapunov arguments.

The paper is structured as follows. In Section II the problem
formulation is defined and a feedback law based on the
shifted equilibrium is introduced. In Section III we introduce
the optimization problem behind the selection of the shifted
equilibrium xe and establish its properties. Then, Section IV
discusses a feedback law requiring the exact solution of
this optimization problem. Section V extends the results of
Section IV to a more general setting with inaccurate optimiz-
ers and iterative parametric optimization schemes. Numerical
examples are discussed in Section VI before our final remarks
in Section VII.
Notation. For m ∈ N, the function mins : Rm → R defines
the minimum of a vector, returning a scalar, i.e.,

mins(a) = min{ai ∈ R| i = 1, . . . ,m},

while minv : Rm × Rm → Rm defines the componentwise
minimum of two vectors returning a vector, i.e.,

minv,i(a, b) = mins([ai, bi]
⊤), i ∈ {1, . . . ,m}.

The functions maxs and maxv are defined analogously.
For u−, u+ ∈ Rm

≥0, m ∈ N, sat[u−,u+](u) =
maxv(minv(u

+, u),−u−) defines the saturation. The dead-
zone is defined as dz[u−,u+](u) = u − sat[u−,u+](u). For
Z ∈ Rn×n, He(Z) = Z + Z⊤. For Z ∈ Rn×m and
z ∈ Rn, Z[k] and zk denote the k-th row and the k-th entry,
respectively. A vector v ∈ Rn satisfies v ≤ minv(u

−, u+) if
vk ≤ mins([u

−
k , u

+
k ]

⊤) for all k ∈ {1, . . . , n}. A positive
definite matrix P ∈ Rn×n can be uniquely decomposed
as P = P

1
2P

1
2 where P

1
2 ∈ Rn×n is positive definite.

In Rn, we use the norms |x| =
√
x⊤x, |x|P =

√
x⊤Px

and P ∈ Rn×n positive definite, while λmin(P ), λmax(P )
denote the smallest and largest eigenvalues of the symmetric
matrix P . For A ∈ Rn×m the spectral norm is denoted by
∥A∥2 =

√
λmax(A⊤A). Moreover, I ∈ Rn×n denotes the

identity matrix, 1 satisfies 1k = 1, k ∈ {1, . . . , n}, and
int(A), A denote the interior and the closure of a set A ⊂ Rn,
respectively. Given two vectors x1 ∈ Rn, x2 ∈ Rm, for the
augmented vector the following notation is used: (x1, x2) =
[x⊤

1 x⊤
2 ]

⊤ ∈ Rn+m.

II. SYMMETRIC AND SHIFTED STABILIZERS

Consider a linear input-saturated continuous-time plant

ẋ = Ax+B sat[u−,u+](u) (2)

with state x ∈ Rn, input u ∈ Rm, A ∈ Rn×n, 0 ̸= B ∈ Rn×m

and saturation limits u−, u+ ∈ Rm
>0. We define the average

saturation range and the average saturation center as

ū := 1
2 (u

+ + u−), u◦ := 1
2 (u

+ − u−), (3)

respectively. For simplicity, we assume that the components
of the average saturation range ūk satisfy ūk = 1 for all k ∈



{1, . . . ,m}; this is not restrictive and can always be assumed
without loss of generality for u−, u+ ∈ Rm

>0 by scaling the
columns of B. Additionally, to define a stabilizing control law,
we need to assume that the pair (A,B) be stabilizable.

Assumption 1: It holds that ū = 1 ∈ Rm and the pair
(A,B) is stabilizable. ⋄

The subspace of pairs of induced equilibria

Γ := {(xe, ue) ∈ Rn × Rm : Axe +Bue = 0} (4a)

can be characterized through the kernel of matrix [A B]. In
particular, there exist A⊥ ∈ Rn×p and B⊥ ∈ Rm×p such that

Γ = {(A⊥ρ,B⊥ρ) ∈ Rn × Rm : ρ ∈ Rp} (4b)

and the columns of
[
A⊥

B⊥

]
are a basis of the p-dimensional

subspace of the kernel of [A B]. Due to the assumption
u−, u+ ∈ Rm

>0, ρ = 0 ∈ int(Γ). Consequently, under
Assumption 1, there exists a linear controller (u = Kx, K ∈
Rm×n, with Kx ∈ [−u−, u+] for all |x| sufficiently small)
that locally asymptotically stabilizes the origin. In fact, if one
excludes the trivial case where A is Hurwitz (so that u = 0
globally exponentially stabilizes the origin), then u+ > 0 and
u− > 0 is generally a necessary condition for bounded (local)
stabilizability of the origin (see, e.g., [33, Remark 2.2]).

Using the notation of the kernel as in (4b), we may define
linear mappings from Rp to the set of induced equilibria
xe(·) : Rp → Rn, ue(·) : Rp → Rm depending on the shifting
parameter ρ in (4b) as follows

xe(ρ) = A⊥ρ, ue(ρ) = B⊥ρ. (5)

In the definition of Γ in (4b), the saturation levels are not
present. System (2) with u ∈ [−u−, u+] (to be understood
componentwise) can only be stabilized at xe(ρ) in (5) if a
corresponding input satisfies ue(ρ) ∈ [−u−, u+]. The corre-
sponding domain can be defined with respect to the shifting
parameter ρ as

Φ = {ρ ∈ Rp : −u− ≤ B⊥ρ ≤ u+}. (6)

The stabilizer discussed in this paper is designed by shifting
a given generic Lipschitz control law x 7→ γ(x), which should
be used in an ellipsoidal neighborhood of the origin. In this
ellipsoidal set, the ensuing closed loop with the plant (2) with
(at least) unitary saturation limits (i.e., ǔ− ≥ 1, ǔ+ ≥ 1)

ẋ = Ax+B sat[ǔ−,ǔ+](γ(x)) (7)

enjoys a desirable quadratic Lyapunov decrease as formalized
rigorously in the next property.

Property 1: Consider a Lipschitz continuous feedback law
x 7→ γ(x). There exist a matrix P = P⊤ > 0 and α ∈ R≥0

such that for any selection of vectors ǔ− ≥ 1 and ǔ+ ≥ 1,
the Lyapunov function V (x) = |x|2P = x⊤Px satisfies the
decrease condition

x ∈ {x ∈ Rn : x⊤Px ≤ 1} ⇒ V̇ (x) ≤ −2αV (x),

for the closed loop (7). △
Note that Assumption 1 is not necessary for the existence of

a stabilizer γ satisfying Property 1. However, if Assumption 1

is satisfied, stabilizability of (A,B) ensures the existence of
a sufficiently small α > 0 for which a linear stabilizer exists
(see, e.g., the LMI-based constructions in [32]).

Based on any function γ satisfying Property 1, a shifted
stabilizer can be designed as follows

u = k(x, ρ) := ue(ρ) + γ(x− xe(ρ)), (8)

so that exploiting the incremental coordinates x̃ := x− xe(ρ)
and ũ := u − ue(ρ), for any pair xe(ρ), ue(ρ), ρ ∈ Φ as
per (5), (6), linearity of (2) can be exploited to define the
shifted closed-loop ˙̃x = Ax̃ + B sat[u−+ue(ρ),u+−ue(ρ)] γ(x̃).
Following a MIMO generalization of the SISO derivations in
[10, Cor. 2], define the function β : Rp → R as

β(ρ) = mins(minv(u
− +B⊥ρ, u+ −B⊥ρ))

= mins(minv(u
− + ue(ρ), u

+ − ue(ρ))).
(9)

Focusing on the ρ-shifted quadratic Lyapunov function

Vρ(x) := |x− xe(ρ)|2P = (x− xe(ρ))
⊤P (x− xe(ρ)), (10)

a generalization of [10, Cor. 2] allows exploiting Property 1
to characterize a contractive sublevel set of Vρ defined as

Eρ(P ) = {x ∈ Rn : |x− xe(ρ)|P ≤ β(ρ)}, (11)

with β as in (9). The result is formalized below.
Proposition 1: Given the plant (2), let ū = 1 ∈ Rm. For

any stabilizer γ satisfying Property 1, and the ensuing matrix
P , the feedback interconnection between plant (2) and the
shifted controller (8) is such that, for each ρ ∈ int(Φ), the
Lyapunov function Vρ in (10) exponentially decreases with
rate larger than 2α within the set Eρ(P ) in (11), i.e., V̇ρ(x) ≤
−2αVρ(x) for all x ∈ Eρ(P ).

Consequently, the induced equilibrium xe(ρ) of plant (2) is
locally exponentially stable for the closed loop (2), (8) with
region of attraction containing Eρ(P ) in (11). ⌟

Proposition 1 generalizes the construction in [10], because
it allows for general Lipschitz stabilizers γ. Special cases
comprise MIMO generalizations of the piecewise affine stabi-
lizing laws defined implicitly through the well-posed solution
of the nonlinear algebraic loop given in [10, eq. (10b)] as
well as linear state feedbacks of the form γ(x) = Kx. Linear
feedbacks γ(x) = Kx can be designed by maximizing the
volume of the sublevel set in (11) by solving the following
convex optimization in the decision variables Q ∈ Rn×n,
Q > 0, W,Y ∈ Rm×n, U ∈ Rm×m, U > 0 diagonal

max
Q>0,W,Y,U>0 diag.

log det(Q) subject to (12)

He

[
AQ+BW + αQ −BU

W + Y −U

]
< 0[

1 Y[k]

Y ⊤
[k] Q

]
≥ 0, k = 1, . . . ,m,

and then selecting K = WQ−1, P = Q−1. With this specific
selection, which will be used in our numerical examples to
keep the discussion simple, the shifted stabilizer in (8) may
be chosen as

ulin = klin(x, ρ) := ue(ρ) +K(x− xe(ρ)). (13)



To simplify the notation of the closed-loop between plant (2)
and controller (8), let us introduce

ẋ =f(x, k(x, ρ)) := Ax+B sat[u−,u+](k(x, ρ)). (14)

Remark 1: With the notation in (14), the decrease condition
of the Lyapunov function Vρ established in Proposition 1 is
equivalent to

(x− xe(ρ))
⊤Pf(x, k(x, ρ)) ≤ −αVρ(x), (15)

for all x ∈ Eρ(P ). ◦

III. OPTIMIZATION-BASED SHIFTED STABILIZER

While the result of Proposition 1 applies to arbitrary shifted
equilibria, for the stabilization of the origin we make use of
the degree of freedom ρ in the feedback law k defined in (8).
In particular, to enlarge the ERA of our stabilizing feedback,
we consider the sets

R :=
⋃

ρ∈int(Φ)

Eρ(P ), R =
⋃
ρ∈Φ

Eρ(P ), (16)

comprising the union of all the ERAs established by Propo-
sition 1 for each xe(ρ), ρ ∈ int(Φ) and its closure. Note that
R is neither closed nor open as a subset of Rn, but it holds
that int(R) = int(R).

To select ρ in the feedback law (8) and (14), first focus on
the optimization problem

ρ⋆(x) := argmin
δ∈Φ

|δ|2

subject to |x− xe(δ)|P ≤ β(δ)
(17)

for all x ∈ R. In Lemma 1 in Section III-A, it will be
shown that for all x ∈ R the minimizer of (17) exists and
is unique, and thus ρ⋆(·) is indeed well defined. Through
ρ⋆(x), the optimization problem indirectly defines an induced
equilibrium xe(ρ

⋆(x)) such that x is in the ERA provided
by Proposition 1, while the distance of ρ⋆ to the origin is
minimized.

Remark 2: The optimization problem (17) can be written
as a standard optimization problem

argminδ h0(δ;x)

subject to hi(δ;x) ≤ 0, i = 1, . . . , d,
(18)

d ∈ N, where hi : Rn → R are twice continuously
differentiable functions for all i ∈ {0, . . . , d}.

Continuous differentiability does not directly hold for the
construction in (17) because the function

ρ 7→ g(x, ρ) := |x−A⊥ρ|P − β(ρ) (19)

is not continuously differentiable. Nevertheless, due to the
convexity of the norm, the concavity of β, and the positivity
of β on the domain Φ, the conditions g(x, δ) ≤ 0 and δ ∈ Φ
in (17), (19) are equivalent to

hj(δ;x) := |x−A⊥δ|2P − (u−
j +B⊥

[j]δ)
2 ≤ 0,

hj+m(δ;x) := |x−A⊥δ|2P − (u+
j −B⊥

[j]δ)
2 ≤ 0,

hj+2m(δ;x) := −u−
j −B⊥

[j]δ ≤ 0,

hj+3m(δ;x) := −u+
j +B⊥

[j]δ ≤ 0,

(20)

for all j = 1, . . . ,m, where B⊥
[j] denotes the j-th row of B⊥.

By additionally identifying h0(δ;χ) = |δ|2 and d = 4m, the
convex optimization problem (18) is an alternative representa-
tion of (17). For fixed x ∈ Rn, due to the quadratic objective
function and the quadratic constraints, (18) is classified as a
quadratically constrained quadratic problem (QCQP) in the
literature (see [3, Chapter 8.2.6], for example). Since the
solution of (18) additionally depends on the parameter x, it
can be classified as a parametric QCQP. ◦

A. Properties of the optimization problem (17)
In this section we analyze the properties of (17), as a

function of x ∈ R defined in (16). A related result has been
derived in [10, Lemma 1] for one-dimensional ρ.

Lemma 1: Under Assumption 1, consider the optimization
problem (17) where β and R are defined in (9) and (16),
respectively, and the positive definite matrix P is defined
through Proposition 1. Then the following properties are
satisfied:

1) for each x ∈ R, (17) is feasible, and the feasible set is
closed and convex. Moreover, for each x ∈ int(R) the
interior of the feasible set is nonempty;

2) the set-valued map F : R ⇒ Φ,

F (x) = {ρ ∈ Φ : |x− xe(ρ)|P ≤ β(ρ)},

defining the feasible set of (17), is continuous in the
sense of Painlevé-Kuratowski (see [11, Chapter 3B]);

3) ρ⋆(x) = 0 for all x ∈ R such that |x|P ≤ β(0);
4) |x − xe(ρ

⋆(x))|P = β(ρ⋆(x)) for all x ∈ R such that
|x|P > β(0);

5) ρ⋆(x) ∈ Φ is unique for all x ∈ R;
6) ρ⋆(·) : R → Φ is continuous and ρ⋆(·) : int(R) → Φ is

Lipschitz continuous; and
7) ρ⋆(x) ∈ int(Φ) for all x ∈ int(R). ⌟

Proof: Item 1. Feasibility follows immediately from the
definitions of β and the set R. Closedness of the feasible
set follows from continuity of |x − A⊥(·)|P and β(·) and
the nonstrict inequality in (17). Convexity of the feasible set
follows from the fact that the function g(x, ·) in (19) is convex.
In particular, for x ∈ R and ρ1, ρ2 ∈ Φ such that g(x, ρ1) ≤ 0,
g(x, ρ2) ≤ 0 for all λ ∈ [0, 1], it holds that

|x−xe(λρ1 + (1− λ)ρ2)|P = |x−A⊥(λρ1 + (1− λ)ρ2)|P
≤ λβ(ρ1) + (1− λ)β(ρ2) ≤ β(λρ1 + (1− λ)ρ2). (21)

Finally, for x ∈ int(R) fixed, there exists ρ̄ ∈ int(Φ) such
that g(x, ρ̄) < 0. Otherwise, x needs to be on the boundary
of R, which contradicts the assumptions. Since |x−A⊥(·)|P
and β(·) are continuous and since ρ̄ ∈ int(Φ), there exists
ε > 0 such that g(x, ρ) ≤ 0 and ρ ∈ int(Φ) for all ρ such that
|ρ̄ − ρ| ≤ ε, which shows that the interior of the feasible set
is nonempty.

Item 2. Continuity of F follows from the properties estab-
lished in item 1 together with [11, Example 3B.4] (or [11,
Theorem 3B.3]). In particular, (21) shows that g(x, ·) in (19)
is convex on the domain of interest.

Item 3. This property follows immediately from |x|P ≤
β(0) and the objective function in (17).



Item 4. To obtain a contradiction, assume that |x −
xe(ρ

⋆)|P < β(ρ⋆). Since |x|P ≥ β(0) it follows that ρ⋆ ̸= 0.
Since xe(·) and | · |2 are continuous, there exists ρ# ∈ Φ with
|ρ#|2 < |ρ⋆|2 and |x−xe(ρ

#)|P < β(ρ#), which contradicts
the optimality of ρ⋆ and thus completes the proof.

Item 5. Since the feasible set is closed, convex and compact
(see item 1) and the objective function is continuous, the
minimum |ρ⋆(x)|2 in (17) is attained through ρ⋆(x) ∈ F (x) ⊂
Φ. Moreover, since the objective function is strictly convex,
ρ⋆(x) ∈ Φ is unique.

Item 6. Since F (·) is continuous and due to the selection
of the objective function, ρ⋆(·) is continuous on R (see
[2, Ch. 1, Sec. 7, Thm. 1] and [1, Ch. 6.5.1]). Lipschitz
continuity of ρ⋆(·) on int(R) follows from items 1, 2 and 5,
the representation (20) of the optimization problem (17), where
the constraints are twice continuously differentiable, and the
results derived in [19, Appendix D] (in particular Theorem
D.1).

Item 7. The statement follows from the fact that F (x) is
convex with nonempty interior for all x ∈ int(R), convexity of
the set Φ containing the origin in its interior and the objective
function minimizing the distance to the origin.

Remark 3: Note that Lemma 1, Item 6, establishes continu-
ity on a closed set R ⊂ Rn. Here, ρ⋆(·) should be understood
as a mapping from the metric space R to the metric space Φ in
terms of the definition of continuity to ensure that continuity
on the boundary of R be well defined. ◦

Remark 4: In the sequel, we study asymptotic stability of
the origin by restricting the attention to the set x ∈ int(R).
This restriction ensures that ρ⋆(x) ∈ int(Φ) according to
Lemma 1, item 7. This is important, because for any ρ̄ ∈
Φ\ int(Φ) we have β(ρ̄) = 0 and Proposition 1 provides the
trivial ERA Eρ̄(P ) = {xe(ρ̄)}, which is useless and thus
should be avoided. Instead, for x ∈ int(R), Proposition 1
characterizes an ellipsoid Eρ⋆(x)(P ) with nonzero volume.
Moreover, the Lipschitz continuity of ρ⋆(·) : int(R) → int(Φ)
(Lemma 1, Items 6 and 7) imply that the feedback law
u = k(x, ρ⋆(x)) in (8), is Lipschitz continuous. ◦

B. Sampled-data update of the shifting parameter
Under the assumption that an explicit expression of the

(unique) solution ρ⋆ : R → Φ of (17) is available, controller
(8) is implementable and stability of the origin of the closed
loop ẋ = f(x, k(x, ρ⋆(x))) can be investigated. However, in
this paper we assume that such an explicit solution is not
available and the time to solve (17) is not negligible. Thus, we
implement a piecewise constant selection of ρ in (8) and (14),
updated in a sampled-data fashion when the solution ρ⋆(χ) of
(17) for a sample-and-hold version χ of the state x becomes
available. (The definition of the state χ is made precise later
in (34).)

Remark 5: If ρ is one dimensional, i.e., p = 1, an explicit
solution of (17) can be derived [10]. In this case a continuous
update of ρ is not restrictive from an implementation view-
point. In this paper, we explicitly focus on the multi-input
case where an explicit solution of (17) is not available. ◦

Due to the delay stemming from the time it takes to solve
(17) for the sampled state χ, forward invariance of the set R

along the closed-loop solutions of (14) with delayed sampled-
data updates of ρ⋆ might be jeopardized. More specifically,
consider the sampled state χ and a value ρ ∈ Φ satisfying
χ ∈ Eρ(P ), or equivalently, g(χ, ρ) = |χ−A⊥ρ|P −β(ρ) ≤ 0.
During the time it takes to compute ρ⋆(χ) (which we denote
by T ), since ρ is held constant in (8) and (14), Proposition 1
implies that the state x remains in the interior of Eρ(P ),
namely g(x, ρ) < 0. On the other hand it may happen that
x does not belong to Eρ⋆(χ)(P ), due to the dynamic evolution
from χ to x over the T computation seconds.

Motivated by the above setting, we address below the
question of selecting a “retraction” ρ+ = π(x, ρ, ρopt) in such
a way that

[g(χ, ρ) ≤ 0 and g(x, ρ) ≤ 0] ⇒ g(x, ρ+) ≤ 0, (22)

where ρopt could be ρ⋆(χ) or any other (possibly suboptimal)
candidate update for ρ, computed by an optimizer running for
a sample-and-hold period T .

We call the set-valued map π a retraction,1 because it
ensures that x is included in the ellipsoid Eρ+(P ) by retracting
ρopt in the direction of ρ, which satisfies x ∈ Eρ(P ) as stated in
(22). If x ∈ Eρopt(P ), then a correction of ρopt is not necessary
and π returns ρopt, i.e., ρ+ = ρopt.

Based on the assumption that x ∈ Eρ(P ), henceforth we
focus on the set

Eρ(P )× Φ = {(x, ρ) ∈ R× Φ : g(x, ρ) ≤ 0}. (23)

We define π through a combination of two (retr)actions.
The first one ensures feasibility, and the second one ensures
optimality with respect to the distance of ρ+ to the origin.

For the first retraction, termed the feasibility retraction,
define µ(x, ρ, ρopt) ⊂ [0, 1], as

µ(x, ρ, ρopt) :=



{0} if
{
g(x, ρopt) < 0
g(x, ρ) ≤ 0

[0, 1] if
{
g(x, ρopt) = 0
g(x, ρ) = 0{

g(x,ρopt)
g(x,ρopt)−g(x,ρ)

}
if
{
g(x, ρopt) > 0
g(x, ρ) ≤ 0

(24)

and, with a slight abuse of notation, define the retracted convex
combination

ρµ := µρ+ (1− µ)ρopt for µ ∈ µ(x, ρ, ρopt) (25)

arbitrary. Under the assumption (x, ρ) ∈ Eρ(P ) × Φ, the
definition of µ(x, ρ, ρopt) ensures feasibility (namely x ∈
Eρµ(P ), for all µ ∈ µ(x, ρ, ρopt) as it will be stated and proven
in Lemma 2, in Section III-C). Note that µ(x, ρ, ρopt) ⊂ [0, 1]
since g(x, ρ) ≤ 0 by assumption.

Definitions (24) and (25) are illustrated in Figure 1. The
setting shown here corresponds to Example 1 in Section VI.

In Figure 1, for given x, ρ and ρopt the induced equilibria
xe(ρ) and xe(ρopt) together with the sets Eρ(P ), Eρopt(P ) are
shown. Since x /∈ Eρopt(P ), the third case in (24) needs to

1The term retraction is meant to describe the intuition behind the map
π, i.e., to retract ρopt by pulling it back towards the previous value ρ until
specific properties are satisfied for the update ρ+. The set-valued map π does
not satisfy all the properties of a retraction (in Topology) as defined, e.g., in
[34, Chapter 4.1], even though it shares analogous features.



be considered. The corresponding value µ and the convex
combination (25) leading to ρµ ensure that x ∈ Eρµ(P ). If x ∈
Eρopt(P ) (i.e., the first case in (24)), then xe(ρµ) = xe(ρopt).
In the case when x is on the boundary of Eρopt(P ) and Eρ(P ),
then any convex combination of ρ and ρopt can be used to
define ρµ since x ∈ Eρµ

(P ) for all µ ∈ [0, 1] due to convexity
arguments.

-2 -1 0 1
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1

1.5

xe(ρ)

xe(ρµ)

xe(ρopt)

x

0

Fig. 1. Illustration of (24) and (25) for Example 1 in Section VI.

For the second retraction, called the optimality retraction, let
µ ∈ µ(x, ρ, ρopt) arbitrary, and ρµ defined in (25). We further
retract ρµ in the direction of ρ, by relying on the solution of
the optimization problem

ν⋆µ := argminν∈[0,1] |νρµ + (1− ν)ρ|2

=argminν∈[0,1] |ν(1− µ)(ρopt − ρ) + ρ|2.
(26)

If µ ̸= 1 and ρopt ̸= ρ, the solution can be computed explicitly
as

ν⋆µ = mins

([
1,maxs

([
0, 1

1−µ
(ρ−ρopt)

⊤ρ
|ρ−ρopt|2

]⊤)]⊤)
. (27)

The statement is made precise in Lemma 3 in Section III-C.
For µ = 1, or ρopt = ρ, we simply define ν⋆µ = 0. Finally,
with

P := {ν⋆µ(1− µ) ∈ [0, 1] : µ ∈ µ(x, ρ, ρopt)}, (28)

the selection of the set-valued map π is completed by a further
convex combination with P , as follows2

π(x, ρ, ρopt) :=

 P · {ρopt−ρ}+{ρ}, |x|P > β(0),
P · {ρopt−ρ}+{ρ} ∪ {0}, |x|P = β(0),

{0}, |x|P < β(0).
(29)

Remark 6: From (28) and (29) it is immediately clear why
the selection of ν⋆µ in the case µ = 1 or ρopt = ρ is not
important, since in these cases ν⋆µ is multiplied by zero. ◦

Returning to the visualization in Figure 1 (and the dynami-
cal system discussed in Example 1 in Section VI), ρ, ρopt, ρµ,
and the corresponding induced equilibria are given by

ρ=

[
1.4

−0.2

]
, ρopt=

[
0.9
1.0

]
, ρµ=

[
1.16
0.37

]
,

xe(ρ)=

[
−0.36
0.85

]
, xe(ρopt)=

[
−1.13
0.46

]
, xe(ρµ)=

[
−0.73
0.66

]
.

2Here, for A,B ⊂ Rn and P ⊂ R, we use the set operations P · A =
{p·a ∈ Rn : p ∈ P, a ∈ A} and A+B = {a+b ∈ Rn : a ∈ A, b ∈ B}.

The second retraction minimizes the norm of ρ+ as a convex
combination of ρ and ρµ and correspondingly, xe(ρ

+) is a
convex combination of xe(ρ) and xe(ρµ). Here, |ρ| = 1.41,
|ρµ| = 1.22 and ν⋆µ = 1. Thus, if x /∈ E0(P ), then ρ+ = ρµ
(and xe(ρ

+) = xe(ρµ)) according to (29). If x ∈ E0(P ), then
ρ+ can be set to 0 according to the third case in (29). The
second case in (29) where π(x, ρ, ρopt) defines a set, allows
for non-unique updates, thus ensuring that π is outer semi-
continuous.3 These properties are made precise in the next
result, whose proof is given in Section III-C to avoid breaking
the flow of the exposition.

Proposition 2: Let P ∈ Rn×n be positive definite and recall
the definitions of A⊥ and B⊥ after equation (4), as well
as the definitions of β, Φ and Eρ(P ) in (9), (6) and (11),
respectively. Moreover, let (x, ρ, ρopt) ∈ Eρ(P ) × Φ × Rp.
Then, the set-valued map π : Eρ × Φ × Rp ⇒ Φ in (29)
with ρ+ ∈ π(x, ρ, ρopt) satisfies

|x−A⊥ρ+|P ≤ β(ρ+) and |ρ+| ≤ |ρ|. (30)

Moreover, π is outer semi-continuous. ⌟
Remark 7: According to (30), the set-valued map (29)

provides an update ρ+ ∈ π(x, ρ, ρopt) such that g(x, ρ+) ≤ 0.
Through a slight variation, i.e., by replacing (29) by

πε(x, ρ, ρopt) := P · {(1−ε)(ρopt−ρ)}+{ρ}, |x|P > β(0),
P · {(1−ε)(ρopt−ρ)}+{ρ} ∪ {0}, |x|P = β(0),

{0}, |x|P < β(0),

for some small ε > 0, and considering the update ρ+ ∈
πε(x, ρ, ρopt), it can also be guaranteed that both g(x, ρ+) < 0
and |ρ+| ≤ |ρ| whenever

g(x, ρ) < 0 and |x|P ̸= β(0), (31)

which follows from the convexity of Φ. ◦

C. Proof of Proposition 2
To prove Proposition 2, we first state and prove two lemmas

that establish the properties of each of the two retractions de-
scribed in the previous subsection. The first lemma establishes
the properties of the convex combination in (25).

Lemma 2: Let the assumptions of Proposition 2 be satisfied
and let (x, ρ, ρopt) ∈ Eρ(P ) × Φ × Rp. Then, for any µ ∈
µ(x, ρ, ρopt) the convex combination ρµ in (24), (25) satisfies
g(x, ρµ) ≤ 0, namely x ∈ Eρµ(P ). Moreover, µ : Eρ(P ) ×
Φ× Rp ⇒ [0, 1] is outer semi-continuous. ⌟

Proof: Let µ ∈ µ(x, ρ, ρopt). If g(x, ρopt) < 0, then µ = 0
and the statement follows directly from the definition of ρµ.
Similarly, for g(x, ρopt) = 0 and g(x, ρ) = 0 it holds that

µg(x, ρopt) + (1− µ)g(x, ρ) = 0 ∀ µ ∈ [0, 1].

For g(x, ρopt) > 0 the definition of µ implies µ = (0, 1] and

g(x, ρµ) = g(x, µρ+ (1− µ)ρopt)

≤ µg(x, ρ) + (1− µ)g(x, ρopt)

=
g(x,ρopt)

g(x,ρopt)−g(x,ρ)g(x, ρ) +
g(x,ρopt)−g(x,ρ)−g(x,ρopt)

g(x,ρopt)−g(x,ρ) g(x, ρopt)

= 0

3For a definition of outer semi-continuity see, e.g., [14, Definition 5.9].



where the inequality follows from the convexity of g.
From the definition of µ(·), continuity of µ(·) follows

for all (x, ρ, ρopt) ∈ Eρ(P ) × Φ × Rp satisfying the ad-
ditional properties g(x, ρopt) ̸= 0 and g(x, ρ) ̸= 0. Let
(xi, ρi, ρopti)i∈N ⊂ Eρi

(P ) × Φ × Rp denote an arbitrary
sequence with the properties (xi, ρi, ρopti) → (x̄, ρ̄, ρ̄opt) for
i → ∞ and g(x̄, ρ̄opt) = 0, g(x̄, ρ̄) = 0. Since the domain of
µ(·) is closed, it holds that (x̄, ρ̄, ρ̄opt) ∈ Eρ̄(P ) × Φ × Rp.
Moreover, from the properties of the function g and the
definition of µ(·) it follows that

0 ≤ µ(xi, ρi, ρopti) ≤ 1, ∀ i ∈ N,

i.e., µ(xi, ρi, ρopti) ∈ µ(x̄, ρ̄, ρ̄opt) = [0, 1] for all i ∈ N, which
shows that µ(·) is outer semi-continuous.

The second lemma establishes the properties of the convex
combination in (29). Interestingly, feasibility is guaranteed for
any such convex combination (for any ν ∈ [0, ν⋆µ]), which
shows a desirable robustness property.

Lemma 3: Let the assumptions of Proposition 2 be satisfied
and let (x, ρ, ρopt) ∈ Eρ(P ) × Φ × Rp, µ ∈ µ(x, ρ, ρopt) and
define ρµ as in (25). Then g(x, νρµ + (1 − ν)ρ) ≤ 0 for all
ν ∈ [0, 1]. Moreover, for µ ̸= 1 and ρopt ̸= ρ, the value ν⋆µ in
(27) defines the unique solution of the optimization problem
(26) and ν⋆µ depends continuously on µ, ρ and ρopt.

Proof: First note that Lemma 2 implies g(x, ρµ) ≤ 0
and g(x, ρ) ≤ 0. Then inequality g(x, νρµ + (1 − ν)ρ) ≤ 0
follows immediately from the convexity of g(x, ·). For a fixed
ρµ, optimality of ν⋆µ in (26) follows from direct calculations
and existence and uniqueness of ν⋆µ follows from the strict
convexity of the objective function and the compactness and
the convexity of the set [0, 1]. Similarly, continuity of ν⋆µ with
respect to µ, ρ and ρopt follows from (26).

With Lemmas 2 and 3 we can finally prove Proposition 2.
Proof of Proposition 2: The properties in (30) follow from

Lemma 2 and Lemma 3. Outer semi-continuity follows from
the outer semi-continuity of µ(·) established in Lemma 2 and
the continuity of ν⋆µ discussed in Lemma 3.

In particular, an arbitrary sequence (µi, xi, ρi, ρopti)i∈N ⊂
[0, 1]×Eρi

(P )×Φ×Rp with µi ∈ µ(xi, ρi, ρopti) for all i ∈ N
and (µi, ρi, ρopti) → (µ̄, ρ̄, ρ̄opt) ∈ [0, 1]× Φ× Rp for i → ∞
satisfies

ν⋆µi
(1− µi)(ρopti + ρi) + ρi → ν⋆µ̄(1− µ̄)(ρ̄opt + ρ̄) + ρ̄

for i → ∞. Thus, outer semi-continuity can be concluded
from the definition of π in (29). Recall that we have defined
ν⋆µ = 0 for µ = 1 or ρopt = ρ, as justified in Remark 6. Finally,
the property |ρ+| ≤ |ρ| in (30) follows from the optimization
problem (26) which selects ν ∈ [0, 1] such that |νρµ + (1 −
ν)ρ|2 is minimal and thus the property

|ρ+| = |ν⋆µρµ + (1− ν⋆µ)ρ| ≤ |ρ|

is satisfied. ■

IV. CLOSED-LOOP ANALYSIS BASED ON A HYBRID
SYSTEM FORMULATION

We discuss in this section a first control scheme based
on the exact solution of the optimization problem (17). The

Plant
ẋ=Ax+Bsat(u)

Controller
k(x, ρ) Retraction

π(x, ρ, ρ⋆(χ))

sample
and hold

Optimization
ρ⋆(χ)

Computationally expensiveComputationally cheap
ẋ = f(x, k(x, ρ))

u x

ρ+ ρ

χ

Fig. 2. Hybrid closed loop discussed in Section IV and represented
by (34). The overall system can be split in continuous-time dynamics
and discrete-time dynamics. The discrete time update through the
optimization problem (17) may be computationally expensive, while the
rest of the components are computationally cheap.

scheme, shown in Figure 2, combines the shifted stabilizer k
in (14) (whose properties are established in Section II) with a
sampled-data update of ρ coming from the optimizer (whose
properties are established in Section III). More specifically,
in Figure 2, we represent on the left the plant (2) with the
shifted stabilizer in (13), while on the right we represent the
optimizer computing ρ⋆ based on a sample-and-hold version χ
of the plant state x. Note that ρ⋆ only depends on the quantity
χ, which remains constant during the hold period, so that the
optimizer has enough time for the algorithm to converge (we
will clarify below that this time can actually be arbitrarily
large).

When updating ρ, rather than directly using ρ⋆ given by the
optimizer, we process it with the retraction π defined in (29).
While the computation of ρ⋆(χ) might take time, evaluating
π is computationally cheap. We then separate Figure 2 in the
left part, which is computationally cheap, and the right part,
which is computationally expensive, comprising the evaluation
of ρ⋆(χ). In our second design scheme, presented in Sec-
tion V, we relax the requirement to compute the potentially
computationally expensive ρ⋆, thus further improving the
computational demand of our solutions.

A. Hybrid closed-loop dynamics

To describe and analyze the closed-loop dynamics, we use
the hybrid systems formalism of [14]. First introduce the
augmented state ξ = (x, χ, ρ, τ) ∈ Ξ, where Ξ is the closure
of the set

Ξ :=Eρ(P )× Eρ(P )× int(Φ)× [0, τ ], (32)

=




x
χ
ρ
τ

 ∈ R2n+p+1

∣∣∣∣∣∣∣∣
|x−A⊥ρ|P ≤ β(ρ)
|χ−A⊥ρ|P ≤ β(ρ)
−u− < B⊥ρ < u+

τ ∈ [0, τ ]


with τ ∈ R>0. Here, x is the state of plant (2) and χ
is a sample-and-hold version of x at certain sampling in-
stants. Moreover, ρ ∈ Φ defines an induced equilibrium pair
(xe, ue) = (A⊥ρ,B⊥ρ) ∈ Γ (see (4b)). Finally, τ is used to
trigger discrete-time updates based on lower and upper bounds
τ , τ ∈ R>0 satisfying τ ≤ τ . In particular, with τ and τ , the
flow and the jump sets are defined as

C = Ξ, D = Eρ(P )× Eρ(P )× Φ× [τ , τ ], (33)



respectively. The continuous dynamics is selected as

ξ̇=


ẋ
χ̇
ρ̇
τ̇

=F (ξ) :=


f(x, k(x, ρ))

0
0
1

 , ξ ∈ C (34a)

where f and k are defined in (14) and (8), respectively. As
pointed out before, if A does not have full rank or even more
restrictively if B⊥ = 0, then Φ is unbounded and consequently
xe(ρ) = A⊥ρ, ρ ∈ int(Φ) is unbounded. Thus, the estimate of
the region of attraction projected in the directions of the plant
state x is unbounded. This is, e.g., the case in Example 2
presented in Section VI. The jump map is defined as

ξ+ =


x+

χ+

ρ+

τ+

 ∈ G(ξ) :=


x
x

π(x, ρ, ρ⋆(χ))
0

 , ξ ∈ D, (34b)

where the “retraction” π defined in (29) describes the update of
the shifting parameter ρ, and ρ⋆ defines the optimal solution
of (17). With this jump map, the value of χ is available to
the optimizer after each jump and the optimal solution ρ⋆(χ)
must be available before the next jump time. Therefore, as
long as the time required to compute the optimal solution of
(17) is upper bounded by τ̄ , the optimizer has enough time
to compute ρ⋆(χ). Since the optimization problem (17) is
convex, according to the properties established in Lemma 1,
the function ρ⋆(·) can be evaluated efficiently by solving a
convex optimization problem.

Remark 8: Note that the definition of Ξ in (32), with a
slight abuse of notation, uses the Cartesian product even
though Eρ(P ) depends on ρ ∈ Φ, and thus the shape of Ξ
is non-trivial. ◦

Before we analyze and prove properties of the hybrid
closed-loop system (34), we point out that the hybrid system
is well posed [14] and its solutions enjoy desirable properties.

Lemma 4: Consider the plant (2), let Assumption 1 be sat-
isfied, let the feedback law γ and P ∈ Rn×n positive definite
correspond to Proposition 1 and recall the definition of π in
(29). Then the hybrid system (34) satisfies the hybrid basic
conditions of [14, Assumption 6.5]. Moreover, all maximal
solutions are complete and have domains that are unbounded
in the t ∈ R≥0 and j ∈ N directions. ⌟

Proof: The first statement follows immediately from the
fact that f and k (see (14) and (8)) are continuous, the fact
that π is outer semi-continuous (see Proposition 2) and the
fact that C and D are closed.

To prove completeness of maximal solutions, first note that
the selection and the properties of the feedback law k(x, ρ)
and the properties of the update ρ⋆ of ρ ensure forward
invariance of Ξ for the hybrid closed-loop (34). Then, the
viability condition [14, Prop. 6.10] holds and completeness of
solutions follows from standard arguments. Finally, from the
definitions of the flow and jumps sets through τ , τ ∈ R>0 it
holds that two consecutive jumps of any solution are separated
by at least τ and at most τ units of flowing time. This
last observation means that all solutions enjoy uniform direct

and reverse dwell-time properties, namely their domains are
unbounded both in the t and the j directions.

A solution of the hybrid system (34) evolves in the state-
space Ξ (see (32)) with hybrid time domain dom(ξ) ⊂ R≥0×
N, see [14, Definition 2.3]. With a slight abuse of notation,
since the x-component of each hybrid solution remains con-
stant across jumps, according to the jump map (34b), we use
the notation x(t), t ∈ R≥0 and x(t, j), (t, j) ∈ dom(ξ)
interchangeably. Thus, x(·) : R≥0 → Rn is well defined
according to Lemma 4 and absolutely continuous due to the
properties of the feedback law k(x, ρ).

B. Closed loop analysis of the hybrid system

In this section we derive the stability properties of the hybrid
closed-loop system (34). To this end, for τ > 0, we introduce
the compact set

A = {0} × {0} × {0} × [0, τ ] ⊂ Ξ, (35)

which captures the desired asymptotic behavior of the plant-
controller states (i.e., all of them should be zero) without
imposing any specific requirement on the timer τ .

Theorem 1: Consider the plant (2), let Assumption 1 be
satisfied and let γ and P correspond to Proposition 1. Consider
the hybrid closed loop (34) with f defined in (14), k defined
in (8), π defined in (29), and ρ⋆(·) denoting the optimizer of
(17). Moreover, let 0 < τ ≤ τ be arbitrary. Then, the set A in
(35) is asymptotically stable. Moreover, the set Ξ ⊂ Ξ in (32)
is forward invariant and contained in the region of attraction
of A. ⌟

The proof of this main result is postponed to the end of this
section and relies on the properties established in Proposition 3
discussed next.

Proposition 3: Consider the plant (2), let Assumption 1 be
satisfied and let γ and P correspond to Proposition 1. Consider
the hybrid closed loop (34) with f defined in (14), k defined
in (8), π defined in (29), and ρ⋆(·) denoting the optimizer of
(17). Moreover, let 0 < τ ≤ τ be arbitrary.

For any initial condition ξ ∈ Ξ (as per (32)), all the ensuing
solutions are such that

1) ρ(t, j) ∈ int(Φ) for all (t, j) ∈ dom(ξ);
2) g(x(t, j), ρ(t, j)) ≤ 0 for all (t, j) ∈ dom(ξ);
3) there exists (T, J) ∈ dom(ξ) such that ρ(T, J) = 0 and

g(x(T, J), 0) ≤ 0; and
4) |x(t, j)| → 0 for (t, j) → ∞. ⌟
Note that initial conditions ξ0 ∈ Ξ\Ξ need to be excluded

in Proposition 3 due to the discussion given in Remark 4.
Proof: Item 1. The condition ρ0 ∈ int(Φ) ensures that

ρ⋆(χ(t, j)) ∈ int(Φ) for all (t, j) ∈ dom(ξ). Thus, the first
statement follows immediately from the convexity of the set Φ
together with the definition of the function π and the parameter
ν⋆µ updating ρ through a convex combination, thus ensuring
that int(Φ) is not left.

Item 2. The second statement follows from the definition
of the control law (8) stabilizing the reference point xe(ρ) =
A⊥ρ and the properties of the function π, established in (30)
in Proposition 2.



Item 3. From the definition of π and in particular from
Proposition 2, it follows that |ρ(t, j)| is monotonically decreas-
ing (but not necessarily strictly monotonically decreasing).
Since ρ(t, j) is only updated at discrete time steps, we use the
notation ρ(j) for simplicity in the following. Since τ ∈ R>0,
it holds that j → ∞ whenever (t, j) ∈ dom(ξ), (t, j) → ∞.

Due to the monotonicity of |ρ(j)| ≥ 0, the sequence
|ρ(j)| is convergent and, since ρ(j) is bounded, there exists a
convergent subsequence ρ(jk), k ∈ N, satisfying ρ(jk) → ρ#

for k → ∞, and ρ# denotes an accumulation point of ρ(j)
(in view of the Bolzano-Weierstrass theorem).

To show that (ρ(j))j∈N converges, by contradiction, we as-
sume that (ρ(j))j∈N has multiple accumulation points ρ#1 ̸=
ρ#2 . However, the existence of multiple accumulation points
is a contradiction to the update of ρ defined through the
function π in Proposition 2 and in particular the selection
of ν⋆µ in Lemma 3, which is unique. We can thus conclude
that (ρ(j))j∈N is converging, i.e., there exists ρ# such that
ρ(j) → ρ# for j → ∞.

According to Remark 1, it holds that

(x(t, j)−xe(ρ(t, j)))
⊤Pf(x(t, j), k(x(t, j), ρ(t, j)))

≤ −α|x(t, j)− xe(ρ(t, j))|2P
for almost all (t, j) ∈ dom(ξ). (In the following we drop the
time argument for simplicity of notation.) Moreover, with

(x−A⊥ρ#)⊤Pf(x, k(x, ρ))

−(ρ− ρ#)⊤(A⊥)⊤Pf(x, k(x, ρ))

= (x−A⊥ρ)⊤Pf(x, k(x, ρ))

and

− α|x−A⊥ρ|2P ≤ −α|x−A⊥ρ#|2P + α∥A⊥∥|ρ− ρ#|2P
it holds that

(x−A⊥ρ#)⊤Pf(x, k(x, ρ)) ≤ −α|x−A⊥ρ#|2P (36)

+ α∥A⊥∥|ρ− ρ#|2P + (ρ− ρ#)⊤(A⊥)⊤Pf(x, k(x, ρ)).

As a next step, we observe that Eρ(P ) is bounded for all
ρ ∈ Φ. Moreover, by construction x(t, j) ∈ Eρ(t,j)(P ) for
all (t, j) ∈ dom(ξ) and |ρ(t, j)| is monotonically decreasing.
This implies that

M(x0, ρ0) := sup
x∈Eρ(P ), |ρ|≤|ρ0|, u∈[−u−,u+]

|f(x, k(x, ρ))| < ∞.

We can continue with the estimate (36) and for almost all
(t, j) ∈ dom(ξ) it holds that

1
2

d
dtVρ#(x) = (x−A⊥ρ#)⊤Pf(x, k(x, ρ))

≤ −α|x−A⊥ρ#|2P + c1|ρ− ρ#|2 + c2M(x0, ρ0)|ρ− ρ#|

for appropriately selected c1, c2 ∈ R>0. This implies that there
exist κ ∈ KL and γ ∈ K such that

|x(t, j)−A⊥ρ#|
≤ κ(|x(t, j)−A⊥ρ#|, t) + γ(∥ρ(t, j)− ρ#∥L∞)

(37)

(i.e., the system is input-to-state stable with respect to “dis-
turbances” ρ(t, j) − ρ#). From inequality (37) together with

the fact that x(t, j) is bounded and ρ(t, j) → ρ# for t → ∞,
it follows that x(t, j) → A⊥ρ# for (t, j) → ∞.

As a last step we need to show that ρ# = 0. In this
context, note that ρ# ̸= 0 combined with x(t, j) → A⊥ρ#

for (t, j) → ∞ leads to a contradiction with respect to the
update of ρ(t, j) defined through the function π defined in
Proposition 2. Moreover, from x(t, j) → 0 for (t, j) → ∞, the
existence of (T, J) ∈ dom(ξ) with |x(T, J)| ≤ β(0) follows.
Thus, ρ(t, j) = 0 is satisfied in finite time.

Item 4. This item follows immediately from the proof of
item 3.

With the properties established in Proposition 3 we are in
the position to show asymptotic stability of A. We emphasize
that due to the well-posedness conditions proved in Lemma 4,
the established asymptotic stability property is intrinsically
robust and equivalent to a robust KL stability property of A,
due to the results in [14, Chapter 7].

Proof of Theorem 1: We prove asymptotic stability of A by
first proving Lyapunov stability and then local convergence for
all solutions starting in Ξ.

For Lyapunov stability, we use the ε-δ-criterion and we start
by defining three constants, c1 = mins([1, ∥A⊥∥−1

2 ]⊤),

c2=mins

([
1, 1√

λmax(P )

]⊤)
, c3=mins

([
1,
√
λmin(P )

]⊤)
,

which satisfy c1, c2, c3 ∈ (0, 1] by definition. Moreover,
observe that the estimate

|xe(ρ)|2 = ρ⊤(A⊥)⊤A⊥ρ ≤ ∥A⊥∥22ρ⊤ρ

holds for all ρ ∈ Φ and ∥A⊥∥2 > 0 since B ̸= 0 and thus
A⊥ ̸= 0. As a next step, let ε ∈ (0, 1) be arbitrary and let
ξ0 ∈ Ξ satisfy

|ξ0|A ≤ εc1c2c3
16 β(0).

Then, the individual components of ξ0 satisfy

|x0| ≤ εc1c2c3
16 β(0) ≤ εc2c3

16 β(0),

|χ0| ≤ εc1c2c3
16 β(0) ≤ εc2c3

16 β(0),

|ρ0| ≤ εc1c2c3
16 β(0) ≤ εc2c3

16 β(0),

and the last inequality together with the definition of c1 imply

|xe(ρ0)| ≤ ∥A⊥∥2|ρ0| ≤ εc2c3
16 β(0).

Moreover, these inequalities together with x⊤Px ≤ λmax(P )
imply that

|xe(ρ0)|P ≤
√
λmax(P )|xe(ρ0)| ≤ εc3

16 β(0), (38)

|x0 − xe(ρ0)|P ≤
√

λmax(P )|x0 − xe(ρ0)| ≤ εc3
8 β(0).

Note that

{x ∈ Rn : |x− xe(ρ0)|P ≤ εc3
8 β(0)}

⊂ {x ∈ Rn : |x|P − |xe(ρ0)|P ≤ εc3
8 β(0)}

⊂ {x ∈ Rn : |x|P ≤ εc3
4 β(0)} ⊂ E0(P ),

where the last inclusion holds in view of (38). Based on the
definition and the properties of the closed-loop dynamics (34),
|ρ(t, j)| is decreasing for all (t, j) ∈ dom(ξ) and the x- and



χ-components satisfy |x(t, j)|P ≤ εc3
4 β(0) and |χ(t, j)|P ≤

εc3
4 β(0) for all (t, j) ∈ dom(ξ) since ρ jumps to ρ+ = 0 at

the first discrete-time step.
Using λmin(P )x⊤x ≤ x⊤Px, we can conclude that

|ξ(t, j)|A ≤ |x(t, j)|+ |χ(t, j)|+ |ρ(t, j)|
≤ 1√

λmin(P )
(|x(t, j)|P + |χ(t, j)|P ) + |ρ(t, j)|

≤ 2√
λmin(P )

ε̄c3
4 β(0) + ε̄c2c3

16 β(0)

≤ 1
2εβ(0) +

ε
16β(0) ≤ εβ(0).

Thus, for all ε ∈ [0, β(0))], there exists δ(ε) = c1c2c3
16 ε such

that |ξ0|A ≤ δ(ε) implies |ξ(t, j)|A ≤ ε for all (t, j) ∈
dom(ξ), which concludes the proof of Lyapunov stability.

Convergence to A for any solution starting in the set Ξ
follows immediately from items 3 and 4 of Proposition 3, the
fact that χ is a sampled version of x and the persistent jumping
properties induced by the timeout quantity τ . ■

Remark 9: Theorem 1 guarantees asymptotic stability of A
defined in (35) with ERA Ξ for the hybrid closed loop (34).
While one may expect the actual region of attraction to be
larger than Ξ, a possible difficulty arises from the fact that
the update function ρ⋆(χ) for the controller state ρ+ is only
defined for χ ∈ R, i.e., the jump map (34b) cannot even be
evaluated outside this set. We consider a heuristic extension
of (34) that is defined on the larger flow and jump sets Ĉ =
R2n × Φ × [0, τ ] and D̂ = R2n × Φ × [τ , τ ] and it provides
a simple way to initialize k(x, ρ) outside the set Ξ. While
the flow map remains unchanged, we consider the following
augmented version of optimization problem (17) to adapt the
jump map:

ρ̃⋆c(χ) ∈ argminδ s

subject to |χ−A⊥δ|P ≤ cβ(δ) + s,

− u ≤ B⊥δ ≤ u, s ≥ 0.

(39)

Here, s ≥ 0 is a slack variable and c ∈ (0, 1) denotes a
parameter. We replace (34b) by

ξ+ =


x+

χ+

ρ+

τ+

 ∈ G̃(ξ) :=


x
x

ρ̃⋆c(χ)
0

 , ξ ∈ D̂ (40)

in (34) and the optimization problem (39) is feasible by design.
If s⋆(χ) = 0 for c ∈ (0, 1), then (χ, ρ+) ∈ R× int(Φ). Thus,
if at any point, along a solution, we obtain g(x+, ρ+) < 0,
then we can replace (40) with the original jump map (34b)
and continue with the dynamics (34). ◦

V. CONTROLLER DESIGN THROUGH INACCURATE
SOLUTIONS OF (17)

The controller discussed in Section IV relies on the avail-
ability of the computationally expensive solution ρ⋆(·) of
the optimization problem (17). In this section we relax this
assumption and investigate the properties of an extended
hybrid closed loop relying on inaccurate solutions of (17), by
limiting the number of iterations of an underlying optimization
algorithm. Figure 3 shows the corresponding adaptation of

the scheme of Figure 2, which essentially comprises all the
elements of the exact solution, together with a function ω
that replaces the optimizer ρ⋆. Function ω may range from
a computationally cheap and inaccurate algorithm comprising
a few iterations, up to the exact selection ρ⋆ already discussed
in Section IV. Therefore, the computationally expensive side
of the feedback scheme can be suitably adjusted in terms of
computational burden. Due to the possibly inaccurate solution,
we introduce an additional state r and exploit the enhanced
retraction πε discussed in Remark 7.

Plant
ẋ=Ax+Bsat(u)

Controller
k(x, ρ) Retraction

πr(x, ρ, r+)

sample
and hold

r+ = ω(χ, ρ, r)

Computationally expensiveComputationally cheap
ẋ = f(x, k(x, ρ))

u
x

ρ+

r+

r+

r

ρ

χ

Fig. 3. Hybrid closed loop discussed in Section V and represented by
(42). The diagram extends the setting in Figure 2.

A. Extended hybrid system formulation
To suitably represent the dynamics of the scheme in Fig-

ure 3, we extend the hybrid dynamics (34) with the new state
r ∈ Rp and thus define ξr = (x, χ, ρ, r, τ) ∈ Ξr, where Ξr is
the closure of the set

Ξr := Eρ(P )× Eρ(P )× int(Φ)× int(Φ)× [0, τ ], (41)

paralleling the definition in (32). Accordingly, the flow set and
the jump set are defined as

Cr = Ξr and Dr = Eρ(P )× Eρ(P )× Φ× Φ× [τ , τ ].

The corresponding closed-loop dynamics is

ξ̇r =


ẋ
χ̇
ρ̇
ṙ
τ̇

 = Fr(ξ) :=


f(x, k(x, ρ))

0
0
0
1

 , ξr ∈ Cr, (42a)

ξ+r =


x+

χ+

ρ+

r+

τ+

 ∈ Gr(ξ) :=


x
x

πε(x, ρ, r
+)

ω(χ, ρ, r)
0

 , ξr ∈ Dr, (42b)

where ω : Rn × Φ × Φ ⇒ Rp denotes an outer semi-
continuous and locally bounded set-valued map. Outer semi-
continuity and local boundedness are necessary to ensure that
the hybrid basic conditions [14, Assumption 6.5] are satisfied,
i.e., Lemma 4 is also applicable to (42). The retraction πε

introduced in Remark 7 is necessary here to guarantee ρ+ ∈
int(Φ) which held before due to optimality of ρ⋆(χ), whereas
r+ is not necessarily optimal in this extended scheme.

To state a result similar to Proposition 3 and Theorem 1,
we assume that the set-valued map ω satisfies the following
property.



Property 2: For all (χ, r0) ∈ Er0(P ) × Φ, an arbitrary
sequence (rk)k∈N ⊂ Φ defined through the set valued map
ω : Eρ(P )× Φ× Φ ⇒ Φ,

rk+1 ∈ ω(χ, ρ, rk), r0 ∈ Φ, (43)

converges to some r# ∈ Φ as k → ∞. Moreover, the sequence
and the limit satisfy g(χ, rk) ≤ 0 for all k ∈ N and

|r# − ρ⋆(χ)| ≤ 1
2

√
λmin(P )

∥A⊥∥ β(ρ⋆(χ)). (44)

⋄
Together with |A⊥r# − A⊥ρ⋆(χ)| ≤ ∥A⊥∥|r# − ρ⋆(χ)|,

condition (44) implies that

A⊥r# ∈ int(Eρ⋆(χ)(P )).

In particular, even if A⊥r# is asymptotically stabilized instead
of A⊥ρ⋆(χ), the proximity between A⊥r# and A⊥ρ⋆(χ)
implies that r# is pulled towards the origin. Once xe(r

#) =
A⊥r# ∈ E0(P ) and x(t, j) converges to xe(r

#), the shifting
parameter is updated through ρ+ = 0, according to the
definition of πε. Note that the scalar 1

2 at the right-hand side
of (44) is arbitrary and can be replaced by any number in the
interval [0, 1).

In the next subsection we give an example of a function ω
satisfying Property 2 and stemming from an interior point al-
gorithm. We conclude this section by extending Proposition 3
and Theorem 1 to the hybrid dynamics (42).

Proposition 4: Consider the plant (2), let Assumption 1 be
satisfied and let γ and P correspond to Proposition 1. Consider
the hybrid closed loop (42) with f defined in (14), k defined
in (8), where πε is defined in Remark 7 for some ε ∈ (0, 1),
and ω is outer semi-continuous, locally bounded and satisfies
Property 2. Additionally, let 0 < τ ≤ τ be arbitrary.

For any initial condition ξr ∈ Ξr (as per (41)), all the
ensuing solutions are such that

1) ρ(t, j) ∈ int(Φ) for all (t, j) ∈ dom(ξr);
2) g(x(t, j), ρ(t, j)) ≤ 0 for all (t, j) ∈ dom(ξr);
3) there exists (T, J) ∈ dom(ξr) such that ρ(T, J) = 0 and

g(x(T, J), 0) ≤ 0; and
4) |x(t, j)|P → 0 for (t, j) → ∞. ⌟
Theorem 2: Consider the plant (2), let Assumption 1 be

satisfied and let γ and P correspond to Proposition 1. Consider
the hybrid closed loop (42) with f defined in (14), k defined
in (8), πε for ε ∈ (0, 1) defined in Remark 7 and ω outer
semi-continuous, locally bounded and satisfying Property 2.
Moreover, let 0 < τ ≤ τ be arbitrary. Then, the set

Ar := {0} × {0} × {0} × {ω(0, 0, r)|r ∈ Φ} × [0, τ ]

is asymptotically stable. Moreover, the set Ξr ⊂ Ξr is forward
invariant and contained in the region of attraction of Ar. ⌟

Proof of Proposition 4: Item 1. The first statement follows
again from the convexity of Φ together with the properties
of πε and ν⋆µ. Here, the function πε (defined in Remark 7)
instead of the function π ensures that ρ+ ∈ int(Φ). Note that
the parameter ε is not necessary in the proof of Proposition 3
since ρ⋆(χ) is in the interior of Φ for all χ ∈ R (according
to Lemma 1), while r+ might be on the boundary of Φ. In
particular, in Proposition 3, ρ+ is a convex combination of

ρ ∈ int(Φ) and ρ⋆(χ) ∈ int(Φ), i.e., ρ+ ∈ int(Φ). Here,
r+ ∈ Φ and ρ ∈ int(Φ) and the set-valued map πε ensures
that ρ+ ∈ int(Φ).

Item 2. Note that the second item only depends on the
definition of the control law (8) and the definition of the
function π replaced by πε, i.e., the result follows exactly the
same lines as the proof of Proposition 3, item 2.

Item 3. Convergence of ρ(t, j) → ρ# ∈ Rp for (t, j) → ∞
as well as convergence x(t, j) → A⊥ρ# for (t, j) → ∞
follows the same arguments as in the proof of Theorem 3,
item 2. The fact that ρ# = 0 follows from the property
x(t, j) → A⊥ρ# for (t, j) → ∞, the properties (43)-(44) and
the selection of the update ρ(t, j). Moreover, from x(t, j) → 0
for (t, j) → ∞ the existence of (T, J) ∈ dom(ξr) with
|x(T, J)| ≤ β(0) follows. Thus, ρ(t, j) = 0 is satisfied in
finite time.

Item 4. As in the proof of Proposition 3, item 4 follows
immediately from items 2 and 3. ■

Proof of Theorem 2: The statement follows from similar
ideas to the ones used in the proof of Theorem 1. ■

B. The function ω, a logarithmic barrier method example

In this section we discuss a possible implementation of ω
satisfying Property 1 in terms of a logarithmic barrier method
where we follow the notation in [9, Chapter 11] for the
derivation. Thus, instead of using a black-box optimization
algorithm to evaluate ρ⋆(·), as in Section IV, we discuss
here a possible explicit implementation of ω(·, ·, ·), which is
computationally cheaper.

To this end, we recall optimization problem (20). To com-
pute an approximation of the optimal solution of (18) using
the logarithmic barrier method, we define the function

ϕ(δ;χ) = −
∑r

j=1 log(−hj(δ;χ))

and, for a parameter ℓ ∈ R>0, we approximate the optimiza-
tion problem (18) through

ρ#ℓ(χ) = argminδ h0(δ;χ) +
1
ℓϕ(δ;χ). (45)

For ℓ → ∞, it holds that ρ#ℓ(χ) → ρ⋆(χ) and in particular
the estimate

0 ≤ |ρ#ℓ(χ)|2 − |ρ⋆(χ)|2 ≤ d
ℓ (46)

is satisfied [9, Chapter 11.3].
Moreover, under the assumption that rk, k ∈ N, satisfies

hi(r
k;χ) < 0 for a fixed χ ∈ R and for all i ∈ {1, . . . , d},

we may select ω satisfying Property 2 by choosing

rk+1 = rk + αr∆.

Here, r∆ denotes the solution of a Newton step[
ℓ∇2

δh0(r
k;χ) +∇2

δϕ(r
k;χ)

]
r∆

=
[
ℓ∇δh0(r

k;χ) +∇δϕ(r
k;χ)

]
and α ∈ (0, 1) denotes a small enough stepsize such that
rk+1 is again strictly feasible, i.e., hi(r

k+1;χ) < 0 for all
i ∈ {1, . . . , d}. Based on this idea, we can define the update
r+ = ω(χ, ρ, r) through Algorithm 1.



Algorithm 1: Update of r+ = ω(χ, ρ, r)

Input: Parameters ℓ > 0, α1, α2 ∈ (0, 1), κ ∈ N and
ρ ∈ int(Φ), r ∈ Φ, χ ∈ int(Er(P )).

Output: r+ = rκ ∈ int(Φ).
1) Step 1: For s ∈ N, compute r0 = αs

1r + (1− αs
1)ρ

until g(χ, r0) < 0 is satisfied.
2) Step 2: For k = 0, . . . , κ− 1, compute

r∆ = −
[
ℓ∇2

δh0(r
k;χ) +∇2

δϕ(r
k;χ)

]−1

·
[
ℓ∇δh0(r

k;χ) +∇δϕ(rj ;χ)
]

and for s ∈ N compute rk+1 = rk + (α2)
sr∆ until

g(χ, rk+1) < 0 is satisfied.

Step 1 in Algorithm 1 is necessary to ensure that χ ∈
int(Eρ(P )) satisfies χ ∈ int(Er0(P )). Once a strictly feasible
r0 is found, i.e., g(χ, r0) < 0 is satisfied, κ ∈ N Newton
steps are performed to update r. Since g(χ, ρ) < 0 is satisfied
by assumption, a feasible r0 is found in a finite number
of iterations in Step 1. Moreover, from g(χ, r0) < 0 it
additionally follows that r0 ∈ int(Φ). Similarly, the update
from rk to rk+1 in Step 2 is achieved in a finite number
of iterations. The number of evaluations needed in Step 1 and
Step 2 depend on the stepsizes defined through α1, α2 ∈ (0, 1).
However, since the optimization problem (45) has a strongly
convex objective function, convergence rκ → ρ#ℓ(χ) in
Algorithm 1 holds for κ → ∞ independent of the selection of
α1 and α2 [9, Section 9.5.3 and Section 11.3.3]. Nevertheless,
a fixed number κ ∈ N is sufficient to update r+ and to push it
towards the origin. In the limit, if g(χ, r#ℓ) = 0 is satisfied,
the update of ρ through πε ensures that g(x, ρ+) < 0, i.e.,
ρ+ ∈ int(Φ) is strictly feasible when Algorithm 1 is initialized
at the next discrete time step.

Lemma 5: Consider the function ω : Rn × Φ × Φ ⇒ Rp

defined through Algorithm 1. Let α1, α2 ∈ (0, 1), let κ ∈ N,
assume Φ is bounded and define M = maxδ∈Φ |δ|. Moreover,
for χ ∈ int(R) define ℓ ∈ R>0 such that

ℓ ≥ 2∥A⊥∥2d√
λmin(P )Mβ(ρ⋆(χ))

. (47)

Then, the update ρ+ = ω(χ, ρ, r) defined through Algorithm 1
satisfies Property 2. ⌟

While (47) is not accessible since ρ⋆(χ) is not known
under the assumptions in this section, the current reference
point ρ, and in particular β(ρ), can be used as an estimate
for β(ρ⋆(χ)). Moreover, while the statement of the lemma
is restricted to the case that the set Φ is bounded, since |ρ|
is monotonically decreasing, M can be defined based on the
initial condition ρ0 ∈ Φ.

Proof: Condition (44) together with the triangular in-
equality, the upper bound in (46) and the condition on ℓ in
(46) ensure that the following chain of inequalities is satisfied:

(|ρ#ℓ | − |ρ⋆(χ)|)(|ρ#ℓ − ρ⋆(χ)|)
≤ (|ρ#ℓ | − |ρ⋆(χ)|)(|ρ#ℓ |+ |ρ⋆(χ)|)

= |ρ⋆|2 − |ρ#ℓ(χ)|2 ≤ d

ℓ

≤ 1
2∥A⊥∥2

√
λmin(P )Mβ(ρ⋆(χ)).

Additionally, since 0 ≤ |ρ#ℓ(χ)| − |ρ⋆(χ)| < M according to
(46) and the definition of M , it further holds that

|ρ#ℓ − ρ⋆(χ)| ≤ 1
2∥A⊥∥2

√
λmin(P )β(ρ⋆(χ))

which completes the proof.
Algorithm 1 is one possible way to define function ω in

the hybrid dynamics (42). However, while the function ω
implicitly defined through Algorithm 1 satisfies Property 2
for appropriately selected parameters, ω is not outer semi-
continuous due to the computation of rk, k ∈ N, depending
on the calculation of a feasible stepsize. To guarantee outer
semi-continuity, Step 1 in Algorithm 1 can be replaced by
an update similar to the convex combination in (25) and the
stepsize selection in Step 2 can be replaced by a sufficiently
small constant stepsize. Here, a sufficiently small stepsize can
be explicitly calculated based on the strong convexity of the
objective function of (45) (see [9, Section 9.5.3], for example).
Instead of going into these details, we illustrate the main
results of this paper based on numerical examples in the next
section.

However, before we get to the numerical simulations, we
briefly summarize the properties of the proposed control
schemes in Figures 2 and 3, and the ensuing hybrid closed-
loop systems (34) and (42), respectively. The upper bound
τ ∈ R>0 enforcing an update of ρ at least every τ units can
be arbitrarily large without jeopardizing asymptotic stability
as discussed in Theorems 1 and 2. Accordingly, a very
conservative bound can be used to define τ . Nevertheless, if
τ = τ is large, solutions will get very close to the shifted
equilibria xe(ρ) before ρ is updated every τ time units,
thus degrading the transient closed-loop performance through
solutions hopping from one equilibrium to the subsequent one.
While from a theoretical point of view, a jump (that is, an
update of ρ) can be triggered arbitrarily in the interval [τ , τ ],
it is a natural choice to trigger a jump when the solution of
the corresponding optimization problem becomes available.
This raises a question with respect to the selection of the
underlying optimization algorithm and suboptimal solutions
of the optimization problem (17). In particular, with respect
to Algorithm 1, the question can be phrased in terms of the
parameter κ ∈ N.

Is it better to select a large number of iterations κ to obtain
an accurate solution ρ⋆(x) of the optimization problem for
a potentially outdated sample x, or is it better to rely on
suboptimal solutions obtained through small κ but to trigger
updates more often?

This question is out of the scope of this paper but it is
relevant for general optimization-based controller designs and
will be addressed in future work.

VI. NUMERICAL ILLUSTRATION

We discuss two examples illustrating the size of the esti-
mated region of attraction (ERA) and clarifying the nature of
the closed-loop trajectories induced by our controllers.



Example 1: Consider the dynamics (2) defined through the
matrices

A =

[
0.6 −0.8
0.8 0.6

]
, B =

[
1.2045 1.4183
0.1259 1.3739

]
(48)

together with the saturation limits

u− =
2

3

[
2
1

]
and u+ =

2

3

[
1
2

]
.

The dynamical system is taken from [23], [25, Chapter 9.4],
where different Lyapunov functions and corresponding feed-
back laws stabilizing the origin are discussed. Here, we have
scaled u−, u+ and the columns of B to satisfy Assumption 1.
Estimates of the region of attraction using an asymmetric
Lyapunov function (ALF) and a generalized ALF discussed in
[23] and [25, Chapter 9.4], respectively, are shown in Figure 4
(left).
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Fig. 4. Left: Estimates of the region of attraction given in [25, Chapter
9.4] and [23] through an asymmetric Lyapunov function (ALF) (blue − ·
−) and through a generalized ALF (black —). Right: Visualization of the
ERA E0(P ) (in black) together with R (blue) for which convergence
to the origin of the closed-loop system (34) and (42) are guaranteed
through Theorems 1 and 2. Additionally the set of induced equilibria
xe(ρ), ρ ∈ Φ, is shown in red.

On the right, Figure 4 shows in blue the set R, which is
an estimate of the region of attraction of the origin for the
closed-loop systems (34) and (42), according to Theorems 1
and 2. Additionally, the ERA E0(P ) obtained through the
linear stabilizer (13) stemming from the solution of (12) for
ρ = 0 is visualized in black together with the set of induced
equilibria xe(ρ) that can be stabilized through the saturated
input u ∈ [−u−, u+], shown in red.4 For the LMI optimization
(12), the parameter α is set to α = 0.05, the decision variables
of the LMI (12) are lower and upper bounded by −10 and 10.

Fig. 5. Visualization of ρ⋆(x) numerically showing that ρ⋆ is a
piecewise differentiable function. The function is defined on R and is
zero on E0(P ) (see the blue and black sets in Figure 4, right).

The function ρ⋆(·) defined in (17) is shown in Figure 5.
One can clearly see different domains showing where different

4Note that not only the ERAs of the origin in Figure 4 differ, but also
the regions of attraction are different since different control laws are used to
stabilize the origin.

constraints in (17) (or (18)) are active. The feedback law (8),
defined through ρ⋆(x) and x is shown in Figure 6.

Fig. 6. Visualization of the feedback law u(x) defined in (8), for the
parameters discussed in Example 1.

We continue with an analysis of the closed-loop solution
of the hybrid system (34) and (42), respectively, starting at
x0 = χ0 = [−2.35, 1.35]

⊤. The remaining states of ξ0 are
initialized at zero. Figure 7 shows the closed-loop solution of
(34) for different selections of τ , i.e., τ ∈ {0.001, 0.1} and
τ = 0.1. Since the system is initialized with ρ = 0, first
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Fig. 7. Closed-loop solution of the hybrid system (34) for τ = 0.1 and
different τ (left: τ = 0.1; right: τ = 0.001).

a feasible ρ ∈ Φ needs to be determined (see Remark 9).
Due to this fact, we observe that, in the case τ = 0.1, the
set with guaranteed stability R (see Theorem 1) is left at the
beginning of the simulation. As expected, once a feasible pair
(x, ρ) ∈ Eρ(P ) × int(Φ) is found, the closed-loop solution
x(t) converges to zero as t → ∞.

Figure 8 shows the closed-loop solution of (42). Here, in
addition to the previous selections we fixed α1 = α2 = 0.5,
ℓ = 100 and κ = 1 (left) and κ = 10 (right) in Algorithm
1. For the function πε in Remark 7, the parameter ε = 0.01
is used. The time to evaluate the individual components of
the controller dynamics in (34) and (42), corresponding to
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Fig. 8. Closed-loop solution of the hybrid system (42) for τ = 0.1,
τ = 0.1 and κ = 1 on the left and τ = 0.001, τ = 0.1 and
κ = 10 on the right. Additionally the parameter ℓ = 100 is used for
both settings.



Figures 7 and 8 are shown in Figure 9 and Figure 10,
respectively. Based on these results, the time to evaluate π and
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Fig. 9. Time to solve the optimization problem (17) and time to evaluate
π between every discrete time update for the solutions in Figure 7.
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Fig. 10. Time to run Algorithm 1 and time to evaluate πε between every
discrete time update for the solutions in Figure 8.

πε does not seem to be restrictive. In particular, the inaccurate
solution (42) of Section V, with the flexibility to select the
number of iterations κ in Algorithm 1 small, allows for high
sampling rates if necessary.

Example 2: We extend the two-dimensional dynamics dis-
cussed in Example 1 to the three dimensional system

A =

 0.6 −0.8 1.2045
0.8 0.6 0.1259
0 0 0

 , B =

 0 1.4183
0 1.3739
1 0

 (49)

with the same saturation limits as in Example 1. The rationale
of (49) is to perform a dynamic extension to represent rate
saturation on the first input of the plant (48), as in [22]. Then,
the magnitude saturated dynamics (49) comprises plant (48)
with rate saturation on input 1 and magnitude saturation on
input 2.

For this setting, the matrices A⊥ and B⊥ are given by

A⊥ =

 0.3692 −0.8019
−0.5937 −0.0784
−0.7066 −0.2720

 , B⊥ =

[
0 0

0.1090 0.5261

]
.

Since matrix A is not full rank, the two columns of B⊥ are
linearly dependent and the estimate of the region of attraction
R guaranteed through Theorems 1 and 2 is unbounded.
Figure 11 shows a chunk of R in a neighborhood around the
origin in blue. Additionally, the sets E0(P ) and Φ are shown
in red and black, respectively.

In Figure 12 and in Figure 13 the closed-loop solution
and the evaluation times for the hybrid systems (34) and
(42) are shown. Here, the system is initialized at x0 =
χ0 = [−10, 13, 14]⊤ and the same set of parameters as in
the two-dimensional setting are used. Also in this case, the
computation times shown in the figures illustrate the possible

Fig. 11. Estimates of regions of attraction R (blue) and E0(P ) (red)
from different angles for a three dimensional system. Additionally the set
of stabilizable induced equilibria Φ is shown in black.
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Fig. 12. Closed-loop solution and corresponding computation times of
the hybrid system (34) for τ = 0.001, τ = 0.1 (left) and τ = τ = 0.1
(right).

advantages stemming from the inaccurate solution discussed
in Section V, which does not require the exact computation of
ρ⋆. The numerical example shows that the proposed controller
design is not restricted to the planar case and the controller
can be equally applied in higher dimensions.

VII. CONCLUSIONS

In this paper we have derived a controller for linear systems
with (asymmetric) input saturation that stabilizes the origin,
with enlarged estimate of the region of attraction with conver-
gence guarantees, by stabilizing a shifted equilibrium that is
gradually driven to the origin in a sampled-data fashion.

To prove our main results, we have embedded the setting in
a hybrid systems formalism, where the linear system evolves
in continuous time, while the shifted equilibrium is updated
at discrete times so that the intersample intervals can be
used to solve nontrivial optimization problems. Our stability
proofs require a deep investigation of the complex interplay
between continuous-time dynamics and iterative parametric
optimization schemes. The results are illustrated on numerical
examples, showing advantages in terms of enlarged estimates
for regions of attraction as compared to existing results.
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0 20 40
10

-6

10
-4

10
-2

0 20 40
10

-6

10
-4

10
-2

Fig. 13. Closed-loop solution and corresponding computation times of
the hybrid system (42) for τ = 0.001, τ = 0.1 (left) and τ = τ = 0.1
(right). Additionally, κ in Algorithm 1 is defined as 1 (left) and 10 (right),
respectively.

[2] J.-P. Aubin and A. Cellina. Differential Inclusions: Set-Valued Maps
and Viability Theory. Springer, 1984.

[3] A. Beck. Introduction to Nonlinear Optimization: Theory, Algorithms,
and Applications with MATLAB. SIAM, 2014.

[4] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit
linear quadratic regulator for constrained systems. Automatica, 38(1):3–
20, 2002.

[5] A. Benzaouia. Constrained stabilization: an enlargement technique of
positively invariant sets. IMA Journal of Mathematical Control and
Information, 22(1):109–118, 2005.

[6] A. Benzaouia, F. Mesquine, and M. Benhayoun. Saturated Control of
Linear Systems. Springer, 2017.

[7] F. Blanchini and S. Miani. Any domain of attraction for a linear
constrained system is a tracking domain of attraction. SIAM Journal
on Control and Optimization, 38(3):971–994, 2000.

[8] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix
Inequalities in System and Control Theory. SIAM, 1994.

[9] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[10] P. Braun, G. Giordano, C. M. Kellett, and L. Zaccarian. An asymmetric
stabilizer based on scheduling shifted coordinates for single-input linear
systems with asymmetric saturation. IEEE Control System Letters, 2021.

[11] A. L. Dontchev and R. T. Rockafellar. Implicit Functions and Solution
Mappings. Springer, 2009.

[12] E. Garone and M. M. Nicotra. Explicit reference governor for con-
strained nonlinear systems. IEEE Transactions on Automatic Control,
61(5):1379–1384, 2016.

[13] E.G. Gilbert and I.V. Kolmanovsky. Set-point control of nonlinear sys-
tems with state and control constraints: a Lyapunov-function, reference-
governor approach. In Proc. of the 38th IEEE Conference on Decision
and Control, volume 3, pages 2507–2512, 1999.

[14] R. Goebel, R.G. Sanfelice, and A.R. Teel. Hybrid Dynamical Systems:
modeling, stability, and robustness. Princeton University Press, 2012.

[15] A. Grancharova and T. A. Johansen. Explicit Nonlinear Model Predictive
Control: Theory and Applications, volume 429. Springer Science &
Business Media, 2012.

[16] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex
programming, version 2.1. http://cvxr.com/cvx, 2014.

[17] L. B. Groff, J. M. Gomes da Silva, and G. Valmorbida. Regional stability
of discrete-time linear systems subject to asymmetric input saturation.
In Proc. of the 58th IEEE Conference on Decision and Control, pages
169–174, 2019.
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