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Abstract

The optimization of parallel kinematic manipulators (PKM) involve several constraints that
are difficult to formalize, thus making optimal synthesis problem highly challenging. The
presence of passive joint limits as well as the singularities and self-collisions lead to a compli-
cated relation between the input and output parameters. In this article, a novel optimization
methodology is proposed by combining a local search, Nelder-Mead algorithm, with global
search methodologies such as low discrepancy distribution for faster and more efficient explo-
ration of the optimization space. The effect of the dimension of the optimization problem and
the different constraints are discussed to highlight the complexities of closed-loop kinematic
chain optimization. The work also presents the approaches used to consider constraints for
passive joint boundaries as well as singularities to avoid internal collisions in such mecha-
nisms. The proposed algorithm can also optimize the length of the prismatic actuators and
the constraints can be added in modular fashion, allowing to understand the impact of given
criteria on the final result. The application of the presented approach is used to optimize
two PKMs of different degrees of freedom.
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Figure 1: The parallel mechanisms used in different applications. From left: Orthoglide used in milling
operations [19], active ankle used in humanoids [24], RCM mechanism used in surgery [12]

1. Introduction

A Parallel Kinematic Manipulator (PKM) is a closed-loop mechanism with multiple legs
that are connected to the end-effector from the base. These mechanisms have seen recent
rise in applications due to their high speed, high load and precision capacity in contrast
to serial mechanisms [1]. Conversely, their design is more difficult because of singularities
within their workspace and kinematic models that are difficult to calculate [2, 3]. The first
applications of these architectures were flight simulators with the Gough-Stewart platform
[4] and pick-and-place robots with the Delta robot [5].

Due to their advantages, PKM are used as sub mechanism modules in series-parallel
hybrid robots in various fields such as humanoids, (THOR [6], LOLA [7], Charlie [8]), ex-
oskeletons [9, 10], haptic interface [11], surgeries [12], and industrial applications [13, 14]),
see [15] for an extensive survey. PKMs are also prominently employed in high speed indus-
trial assembly lines, for example the DELTA + 1 DOF wrist robot [16]. Another important
application of PKMs is the machining of parts, and they have been considered for milling
operations as well as high speed machining tasks [17, 18, 19].
Given the wide applications, the design of PKM must meet user needs and process con-
straints. These needs may be related to the mobility of the robot, the size of its workspace,
its movement accuracy, its dynamic performance, and its stiffness. Numerous performance
indices have been defined to meet these requirements, which can be used in optimization
problems [20, 21, 22]. These include the conditioning of the Jacobian matrix, velocity am-
plification factors and regular workspace shapes as discussed in [23]

In the past, several optimization methods were proposed for mechanism synthesis. Some
of them utilize the mathematical formulation of the objective function in order to implement
the gradient descent method [25]. Where the objective function is not available in closed
form and/or one cannot exploit gradient-based algorithms, numerical approaches and evo-
lutionary algorithms were extensively implemented. Among them, we mention Differential
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Evolution (DE) [26] and Genetic Algorithms (GA) [27] for single objective optimization and
Branch and Prune [28], Interval based analysis [23] and Non-dominated Sorting Genetic Al-
gorithm (NSGA-II) [29, 30, 31, 32] for Multi Objective Optimization (MOO), in which the
theory of genetic evolution is implemented. Other evolutionary algorithms that have been
implemented are Particle Swarm Optimization (PSO) [33] and Multi-Objective Evolution-
ary Algorithm based on Decomposition (MOEA/D), which are claimed to be superior to
NSGA-II [34]. In general, the above-mentioned algorithms are computationally expensive,
and their efficiency highly depends on the population size. Also, only a guess of the required
set of initial population is available for convergence in the global search. The computational
time increases considerably with increasing population size and thus limits the application of
such methodologies in case of computationally expensive objective functions and also limits
the number of constraints that can be implemented.
A recent work in mechanism design optimization is co-optimization with the motion trajec-
tories [35]. In this approach, the design parameters and the motion equations are represented
implicitly and efficient algorithms are used to explore the implicitly defined manifold. This
type of methodology utilizes all the advantages of expressing the problem as an implicit
function, but it is not always possible to do the same.

To reduce the computational cost of optimizing a mechanism, a local search method can
be implemented. To avoid the solution converging to a local optimum, different method-
ologies are employed to combine local optimization methodologies with global searches
[36, 37, 38, 39]. Most of the literature presented above focuses primarily upon the problem
formulation and use the existing methodology as an optimization tool. A deeper analysis
into the implementation of the optimization algorithm for PKM provides more flexibility and
capability to handle different constraints efficiently. The geometrical method of proposing
the next best solution in Nelder-Mead algorithm is best suited for mechanism optimization
as the properties of the mechanisms are influenced by the lengths of the links and the explo-
ration of design space in Nelder-Mead approach is very relevant to convergence to optimized
parameters.

In this work, we present a new design optimization methodology that can adapt to con-
straints involving internal collisions along with the physical joint limits and physical stroke
of the actuator and classical criteria such as the condition number or the velocity amplifica-
tion factor (VAF). We propose a fast local search algorithm, i.e. the Nelder-Mead algorithm,
coupled with a global search procedure. A novel method is proposed to the local search by
using different initialization in enabling one to compare results from a greater span in the
optimization space. This method allows moving towards a global optimum faster, even for
mechanisms that have computationally expensive objective functions. The overall output of
the work is an accelerated general algorithm for PKM design optimization which is flexible
with respect to the definition of the objective function as well as is modular and adaptive
to any constraints. Two different PKMs used in different applications are optimized using
the proposed method to illustrate the advantage in terms of flexibility of the methodology.
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The paper is organized in the following way: Section 2 discusses the objective functions
and constraints relevant to PKM design. It highlights the importance of choosing proper
constraints for mechanisms with prismatic joint. Section 3 details the optimization method-
ology that combines local and global searches and illustrates the novelty in accelerating the
local search. Section 4 provides the examples for the two PKM design optimization with
different objective functions and constraints and their corresponding optimized parameters.
In Section 5, some conclusions are presented, along with a few pointers to future work.
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2. Design considerations in PKM optimization

In the parallel kinematic mechanism design the following choices have to be made:

1. Architecture of the manipulator (e.g: 3RRR(Revolute-Revolute(actuated)-Revolute),
3RPR(Revolute-Prismatic(actuated)-Revolute) etc.)

2. Type of joints: different combinations of joints to achieve the same degrees of freedom
(dof) (e.g: UPS(Universal-Prismatic(actuated)-Spherical), RUS, RRPS)

3. Pose of the joints: where to place and how to place a particular joint’s frame?

Making a particular choice is non-trivial, especially because of its effect on the workspace,
the kinematic solutions and the size of the mechanism. Another interesting challenge is
that the same architecture can be used to perform different tasks with either kinematic or
dynamic constraints, and thus have to be optimized accordingly. The following subsections
elaborate on the common objective functions and constraints involved in mechanism opti-
mization to motivate the choice of the algorithm.

2.1. Objective function
It is important to evaluate the quality of the motion performed while designing a manip-
ulator with kinematic characteristics. The quality indices widely used in the past are the
conditioning number [20] and the manipulability ellipsoid [21]. The feasible workspace and
the global quality of the manipulator are directly related in the presented case, and thus
can be implemented together with appropriate weights.

2.1.1. Workspace of the manipulator

This work considers a Regular Dextrous Workspace (RDW) without singularity which is an
n-dimensional sphere in the n-dimensional output space and the center of the workspace is
the home configuration (i.e, where all the actuator values are zero). To allow the imple-
mentation of the mechanism for multipurpose applications, the required workspace is not
treated as a constraint. Instead, the algorithm tries to achieve maximum feasible workspace
in the desired RDW (RDWd) [23].

In contemporary, the concept of safe working zone for parallel manipulators has been
introduced in [40] where a feasible workspace is free of singularities and internal link collisions
and satisfies passive joint limits. This work considers only the collision of actuating prismatic
joints, as the rest of the links can be redesigned to counter the resulting collision issues, if
any. The context of feasible set (F) in this literature relates to the set of all points in the
discretized output space (K) such that:

1. They are non-singular configurations

2. Respect passive joint limits

3. For any postures, there is no internal collision between the actuators and the moving
platform

5



2.1.2. Quality of the manipulator

The conditioning number (κ) was introduced in [20] to quantify the quality of motion. It
is defined as the value of the asymptotic worst-case relative change in the output for a rela-
tive change in the input, and is used to measure how sensitive the output is to changes in the
input. The geometrical interpretation of κ is the quantity proportional to the eccentricity of
the ellipsoid, giving information about the ease of travel in a particular direction from a cur-
rent end effector pose. When the κ is equal to 1, we have a sphere, and it corresponds to the
isotropic configuration. The value of κ ranges from 1 to∞ and so its inverse, κ−1, is used for
bounded values and is given by (1), where σ are the singular values of the Jacobian matrix, J.

κ−1 =
σmin
σmax

, κ−1 ∈ [0, 1] (1)

The conditioning number suffers from dimensional non-homogeneity of the Jacobian ma-
trix and is not suitable for manipulators with both translational and rotational movements
[41]. This is an important issue to consider while implementing the proposed optimization
methodology for a general manipulator. The manipulators presented in Section 4 have only
rotational, dof and so the inverse of the conditioning number is chosen as the quality index.
A global conditioning index (κ−1

g ) (GCI), the mean of summation of the values of quality
index (κ−1) over the regular dextrous workspace, is defined as follows,

κ−1
g :=

RDWd∑
1

κ−1

RDWd

(2)

2.2. Constraints
Parallel Kinematic Manipulators (PKMs) have three distinct features from a serial chain:

1. singularity inside the workspace where the control of the end-effector is lost;

2. passive joints whose orientation can be calculated but not controlled explicitly;

3. multiple legs - serial chains connecting the end-effector with the base.

These three features are of great importance as they affect the workspace of the manipulator
as well as the nature of the motion. So, we take note that the passive joint limits and
avoiding internal collisions among different legs of the PKM are two important constraints
to be implemented in our optimization problem.

2.2.1. Non-singular constraint

The discretized output space (K) of the parallel mechanism is separated by the singularity
surfaces, thus resulting into several connected regions also called aspects [42]. As it is not
possible to travel from one aspect to another, it is important that the desired RDW (RDWd)
lies in a single aspect. As an example, Figure 2 represents the output space for a mechanism
with 2 orientation dofs and the black circle is the desired workspace. Figure 2(left) illustrates
a valid set of parameters whereas figure 2(right) corresponds to a non-valid architecture of
the mechanism because it consists of multiple connected regions, then there are multiple
aspects, and thus we cannot travel to every configuration in the RDW.
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Figure 2: The aspects in the workspace with different parameters for the 2UPS-1U mechanism from [12, 43]

2.2.2. Passive joints

The architecture of PKM is such that there are multiple passive joints in each leg. These
passive joints are of prime importance in deciding the nature of the degree of freedom as
well as the singular configuration. The joint positions as well as their limits are critical for
the analysis. The passive joints can be either prismatic, revolute or a higher pair of joints.
It is considerably easy to specify the limits in case of prismatic or revolute joint, but it may
not be easy when we use a universal joint or a spherical joint. Implementing passive joint
limits in the optimization process allows achieving a practical result for the design and gives
more clarity about the feasible workspace.

2.2.3. Link collisions

As PKM consists of multiple serial chains attached to the end effector from the base, in-
ternal collisions are an important aspect of workspace analysis and synthesis as they strongly
affect the workspace and other kinematic properties. The theoretical workspace is gener-
ally different from the practical realization, because of the mechanical joint limits and link
collisions in the mechanism [44]. Analysis of such self collisions is critical in parallel ma-
nipulators. The implementation of link collisions as a constraint is even more complicated
since it depends not only on the architecture of the serial legs but also on the design of the
links as well as their assembly. Different approaches have been used to calculate the collision
between the links. The work reported in [45, 46] uses a common normal to determine the
distances between two links, while a more modern approach is to use Computer Aided De-
sign (CAD) [47, 48]. The presented work only considers the collision between the actuators,
and thus the method suggested in [45, 46] suffices.

2.2.4. Feasible actuator range: constraint for mechanisms with prismatic actuators

Another important constraint while designing a PKM is the active joint ranges. This
constraint is specifically relevant to the mechanisms with prismatic joints as actuators. The
aim is to implement a constraint on the actuators to be chosen in order to maximize the
points in F

⋂
RDWd. Generally, a prismatic joint is expressed as a constraint with a certain

minimum and maximum range and with a constraint on the ratio between the length in
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completely actuated state and its default length:

ρmin ≤ ρ ≤ ρmax (3)

ρmax ≤ stroke · ρmin, stroke ∈ [1, 2] (4)

Figure 3: The industrial prismatic joints and the relation between ρmin and ρmax. Source: Hanpose linear
actuator HPV5 SFU1204, www.pngegg.com/en/png-mckkp.

Equation 4 comes from the physical structure of general prismatic joints. If the unex-
tended length of the actuator is ρmin, then it is not practical for common prismatic joints to
extend beyond their original length (ρmax < 2 ·ρmin) as explained in figure 3. The novelty in
expression of the actuator range in the present work is that we do not have a static value as
a limit as mentioned in Equation 3, i.e, we express the constraint only in terms of the stroke
ratio defined in Equation 4. This allows us to choose the best actuator ranges to maximize
the feasible workspace without putting any constraint on the minimum or maximum size of
the prismatic joint. This is illustrated in figures 4 and 5 which introduce an example for a
2 dof 2UPS-1U orientation mechanism from [12]. The points in the dotted space in figure
4 are pairs of values corresponding to the actuator lengths in a feasible configuration. The
aim is to search for an optimized bracket, [ρmin, ρmax], i.e, a bracket that includes as many
blue points as possible with the constraint that the side of the square does not exceed a
given proportion with respect to its minimum value.

The algorithm 1 explains the method used to get the optimized bracket for the actuators.
After discretizing the RDWd, we get the set of all valid points belonging to F . Upon
calculating the values for actuator length at each point, the minimum ρmin and maximum
ρmax value for the actuator is obtained. The input of the algorithm is a n x 3 matrix for the n
valid points, with columns corresponding to the actuator lengths and the evaluation at that
point. If the ratio of maximum value to minimum value of the actuator length respects the
stroke ratio, then the algorithm returns the actuator range without alteration. Otherwise,
a bracket of [ρmin, stroke.ρmin] is generated and the values of the actuator lengths for each
point in the set of valid points is checked against the bracket and the number of points
satisfying the bracket is stored. This process is repeated by incrementing the ρmin till the
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Figure 4: Different search brackets within the actuator space (input space). The dots correspond to the pair
of lengths of actuators for a configuration in RDW.

(a) Feasible workspace (white) when
bracket 1 in figure 4 is implemented

(b) Feasible workspace (white) when
bracket 2 in figure 4 is implemented

(c) Feasible workspace (white),
bracket 3 in figure4 is implemented

Figure 5: Comparison of feasible workspace (white space) within the RDWd for different search brackets
and a specific mechanism (2UPS-1U). The striped and dotted part represent the violation due to actuator
lengths of first and second leg, respectively.

value of stroke.ρmin is lower than ρmax. The algorithm returns the optimized actuator lengths
along with the corresponding evaluation of the objective function for given parameters.
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Algorithm 1: Implementation for choosing the best actuator range

Result: evaluation, e, and corresponding range of actuators, ρrange
1 input → valid points that satisfy all the constraints;
2 ρrange = [min(ρvec), max(ρvec)] = [ρmin, ρmax];
3 stroke : The maximum allowable stroke ratio, see Eq. (4);
4 steps : number of brackets used (see figure 4);
5

6 Checking for feasible set of the actuators;
7 if ρmax ≥ stroke · ρmin then

8 for ρlower from ρmin to
ρmax
stroke

by steps do

9 e = 0;
10 for n from 1 to length(valid points) do
11 if ρ1, ρ2 ≥ ρlower and ρ1, ρ2 ≤ stroke·ρlower then
12 j = j+1 . Incrementing the number of feasible points;
13 e = e + valid points[n, 3];

14 end

15 end
16 eval vector[k]= [e, ρmin, j];
17 k = k + 1;

18 end
19 [e1, ρmin, i1] = max(eval vector, 1);
20 e = eval vector[i1][1];
21 ρmin = eval vector[i1][2];
22 ρrange = [ρmin, stroke.ρmin];
23

24 else
25 e = max(valid points[3]);
26 ρrange = [min(ρvec), max(ρvec)]

27 end
28 return e, ρrange

2.2.5. Implementation of constraints and evaluation function

Algorithm 2 illustrates the methodology used to evaluate a given set of parameters.
The optimization space is discretized, and each point is evaluated for the constraints. Some
constraints are implemented strictly, in the sense that if even one point in the RDWd violates
the constraint, then we discard the given set of parameters as an invalid solution. The
singularity constraint is a strict constraint in the present algorithm, in the sense that if
the singularity curve intersects with even one point of RDWd, the evaluation for given
parameters is negative. In cases where the RDWd is singularity free, if all other constraints
(e.g: passive joint limits, collision constraints) are satisfied at a particular point in the
RDWd then it is rewarded by the corresponding κ−1 value or if there is a violation of these
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constraints (except singularity) the point in RDWd is given 0 value. As we examine each
point in the discretized workspace, the final evaluation is the cumulative value of κ−1 over
the workspace where all the constraints are satisfied. The rewarding strategy can be changed
as per the designer’s needs, and desirable weightage can be assigned to the constraints to
achieve an optimized design for a specific requirement.
The modularity of the algorithm with the constraints can also be observed in Algorithm 2.
It can be seen that the constraints are completely independent of each other, allowing to
activate, deactivate any constraint or add other constraints without requiring any change
to the algorithm. This is especially useful for mechanism design, as it provides flexibility
to experiment the effect of different constraints on the final feasible workspace. As each
constraint can be designed individually to reward or penalize a particular set of parameters,
the designer can have a blend of strict and non-strict constraints in the optimization. The
designer can also identify which constraint stops the optimization and needs to be modified.
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Algorithm 2: Method to calculate the evaluation and ρrange for a set of parameters

Result: evaluation at a given point in optimization space and the corresponding
actuator lengths

1 input → v . It is a n-dimension point in given n-dimension optimization space;
2 xi, i ∈ 1, .., n, . ith variable of the n-dimension optimization space;
3 ρ1 and ρ2 . actuator lengths at a given configuration;
4 e = 0 . Initialising the evaluation;
5 for x1 from x1min to x1max by intervali do
6 ... . Add loops as a function of the dimension of the space
7 for xn from xnmin to xnmax by intervaln do
8 f(v) . function that solves IGS, collision distance and κ−1;
9 [det(J),qp, ρ1, ρ2, κ−1, dc] = f(v);

10 f(v) returns the value of the determinant of Jacobian, the passive joint angle
vector, qp, actuator lengths, [ρ1, ρ2], the inverse of the conditioning number,
κ−1 and the collision distance, dc, between the actuators;

11 . 1. Checking for singularity constraints;

12 if det(J) is 0 then
13 e = -∞;
14 break;

15 else
16 reward = κ−1

17 end
18 . 2. Checking the passive joint limits;

19 for i from 1 to length of qp do
20 if qpi ≥ qpmax or qpi ≤ qpmin then
21 reward = 0
22 else
23 reward = κ−1

24 end

25 end
26 . 3. Checking for collision constraints;

27 if dc ≥ threshold then
28 reward = 0
29 end
30 e = e + reward;
31 valid points[i] = [ρ1, ρ2, reward];

32 end
33 ...

34 end
35 Implement the algorithm 1;
36 return valid points, e, ρ1, ρ2
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3. Proposed Algorithm for Mechanism Optimization

In this section, the complete optimization methodology is illustrated. Recalling from
the previous sections, the aim is to implement an algorithm that is capable of handling
the non-smooth objective functions as well as the constraints related to PKM design. This
section is divided in three subsections detailing the local search, the global search and the
strategy used to couple them both for faster and more efficient solutions, respectively.

3.1. Local search algorithm: The Nelder-Mead (NM) algorithm

The Nelder-Mead algorithm is a derivative-free optimization algorithm proposed by John
Nelder and Roger Mead [49]. It is also called the downhill-simplex algorithm, as it uses sim-
plexes to search the space locally. In this section, we present the algorithm for a single start,
which searches for the optimum solution in the local vicinity of the initial simplex. Later,
we discuss the implementation of the algorithm in mechanism optimization and detail the
method for extracting the best actuator ranges from the solution. The section is concluded
with a summary of the algorithm and its implementation, highlighting few strengths and
weaknesses of the same.

For a n-dimensional optimisation space (O), we require a simplex of at least n+1 points
in O to avoid premature convergence. This can be explained with a simple graphics for
2-dimensional, O as show in figure 6.

The algorithm is initiated with a sorted simplex of n+1 points (v0,v1, ...vn) such that
the objective function evaluated of the ith vertex has a value better than or equal to that of
the (i+ 1)th vertex. A mean point (vm) is calculated by excluding the worst point (vn):

vm :=

n−1∑
i=0

vi

n
(5)

The optimization algorithm then compares the mean point and searches for better points
by geometrical operations termed as (i) reflection, (ii) expansion, (iii) inside contraction,
(iv) outside contraction and (v) shrinkage. These operations are defined as follows:

1. Reflection (vr) :

vr = vm + r (vm − vn), r = reflection coefficient (r > 0) (6)

2. Expansion (ve) :

ve = vm + e (vr − vm), e = expansion coefficient (e > 1) (7)

3. Outside contraction (voc) :

voc = vm + k (vm − vn), k = contraction coefficient (0 < k < r) (8)
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(a) Example mapping with 2 optimization variables.

(b) The traversing in O-space with 2 point simplex, we
can explore the points on the line only

(c) The traversing in O-space with 3 point simplex, al-
lowing to explore the complete space

Figure 6: Premature convergence when using a simplex of less than (n+1) points in n-dimensional O-space.
The example is taken from Matlab function [X, Y, Z] = peaks(25), MATLAB 2021
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4. Inside contraction (vic):

vic = vm − k (vm − vn), k = contraction coefficient (9)

5. Shrinkage:

∀ i ∈ [1, n] vi = s .vi, s := shrinkage factor (0 < s < 1) (10)

The new point (vn) introduced in the simplex depends on the evaluation of the vr, ve, voc

and vic (see Algorithm 4). The operation is continued until the stopping criteria are reached.
The simplex stops if it shrinks below a certain value, ε1 and the evaluations of every vertex
of the shrunk simplex vary by a maximum threshold ε2. The algorithm can be stopped by
limiting the number of iterations, too. The stopping criteria was presented in Algorithm
3 and the complete procedure for one start of the Nelder-Mead (NM)-algorithm is given
in Algorithm 4. An example of the operations in a 2-dimension optimization space, O, is
illustrated in figure 7a to present the geometric nature of search of the O in NM-algorithm.
In figure 7b, an example of the points explored during an optimization process is graphically
represented.

(a) An example of an operation on a simplex (defined by
v0, v1, v2) in 2-dimensional O

(b) An example of the travel path of optimization in Nelder-
Mead algorithm on the contour plot of peaks(25) function

Figure 7: The single start of the Nelder-Mead local search
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Algorithm 3: Stopping criteria for the NM algorithm

Result: Boolean for stopping condition
1 sorted simplex {v0,v1,v2, ...,vn−1,vn};
2 evaluations {e0, e1, e2, ..., en−1, en};
3 maximum iteration = max iter... from algorithm 4;
4 iteration count = iter;
5 lij = ‖vj − vi‖... length of the side of simplex;
6 eij = |ei - ej|;
7 if max(lij) ≤ ε1 && max(eij) ≤ ε2 then
8 stop = 1
9 break

10 end
11 if iter ≥ max iter then
12 stop = 1
13 else
14 stop = 0
15 end

3.1.1. Pros and cons of the NM-algorithm

The Nelder-Mead algorithm is quite straightforward to model the optimization problem
for mechanism design. This allows us to design a general methodology for optimizing any
parallel mechanism. As it is a derivative-free algorithm, we can introduce complex objec-
tive functions that are hard to formalize. An example is the quality index, κ−1

g , defined
in Section 2.2. Also, as NM-algorithm is a local search algorithm, it returns a stationary
point in a considerably low time compared to the currently implemented global optimization
methodologies. This makes it possible for the designer to structure an objective function
that is computationally expensive. Also, the constraints can be constructed in modular
way, allowing to experiment with different constraints at any stage of the development.
Another important advantage of the Nelder-Mead algorithm relevant to the mechanism de-
sign is its geometric search method. The basis of optimization space in NM-algorithm is
the optimization variables themselves. It is logical to use this method because the next
best design parameters are chosen as a result of the combination of parameters of previous
simplex, rather than using complex methods to represent a mechanism in the optimization
space which may not have geometrical explanation for choosing the next best proposal (e.g:
chromosomes in Genetic Algorithm). We can also tune the exploring parameters, i.e., the
reflection, expansion, contraction and shrinkage coefficients, with human intuition and some
prior knowledge about the importance of different parameters.

Though suitable for our application, there are certain disadvantages of using the NM
algorithm, too. Under some hypotheses, the algorithm has proof of convergence up to di-
mension 2 [50] and has no proof for convergence beyond 2-dimensional optimization. If
not implemented correctly, it gets into a collapsing simplex patterns, thus converging to a
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Algorithm 4: Single start of the Nelder-Mead optimization algorithm

Result: Local minimum evaluation and the optimized parameters
1 initial sorted simplex {v0,v1,v2, ...,vn−1,vn};
2 evaluations {e0, e1, e2, ..., en−1, en};
3 while stop = 0 do
4 calculate vm,vr and er;
5 if (en < er < e0) then
6 vn = vr;
7 else if (e0 < er) then
8 if (er < ee) then
9 vn = ve;

10 else
11 vn = vr;
12 end

13 else if (en < er < en−1) then
14 if (eoc > er) then
15 vn = voc;
16 else
17 ∀ i ∈ [1, n] vi = s.vi;
18 end

19 else if (er > en) then
20 if (eic > er) then
21 vn = vic;
22 else
23 ∀ i ∈ [1, n] vi = s.vi;
24 end

25 sort the simplex;
26 if v0new > v0 then
27 iter = 0
28 else
29 iter = iter + 1
30 end
31 Update ’stop’ from Algorithm 3

32 end
33 return v0, e0
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non-stationary solution [51]. The convergence highly depends on the initial size of the sim-
plex and the choice of the coefficients, as discussed in [52]. Despite these shortcomings, the
NM-algorithm is useful in our case as the aim is not finding the absolute optimized design
parameter but to satisfy all constraints and then get an acceptable quality of performance.
Indeed, it has been implemented in various applications with great success [38, 39]. Different
convergent variants have also been proposed to get around the premature convergence [53],
allowing the algorithm to explore extra points in case of near collapse.

To get better results, local search of the NM algorithm is complemented with a multi-start
technique for a global search in the optimization space, as discussed in the next section.

3.2. Global search algorithm

The NM algorithm combined with other global search methods such as low-discrepancy
points [54], genetic algorithm [36] and Powell optimization [37] have been proposed in the
past. We implement a multi-start Nelder Mead algorithm with low discrepancy points
[55, 56, 57] for exploring a global optimization space. In this method, we execute the
NM algorithm with different initial simplexes. It is very important to have a uniformly
distributed initial simplexes over the optimization space, in order to explore the maximum
area of the optimization space.

3.2.1. Initial simplexes for multi-start

An easily implementable way to obtain a sampling set OM ⊂ O is Monte Carlo sam-
pling with a uniform distribution (see, e.g., [58]), i.e., random sampling. Unfortunately, it is
known [56] that the resulting points have the tendency to form clusters, particularly in high-
dimensional contexts, which undermine the uniformity of the discretization. A better choice
consists in having the M points of the discretization OM of O spread “well-uniformly”. In
particular, it is desirable that the points be close enough to one another, without leaving
space regions under sampled. To this end, as done in [57, 59], one can use certain deter-
ministic sampling techniques. The properties of such techniques are detailed in [57]. The
work in [57] suggests that an efficient way of generating uniformly scattered deterministic
sets of points consists in taking finite portions of so-called low-discrepancy sequences such
as the Halton sequence, the Hammersley sequence and the Sobol sequence. The reported
work utilizes initial simplexes chosen from the Sobol sequences, as they prove to be more
uniformly distributed.

Figure 8 from [59] shows the comparison between a sampling of the 2-dimensional unit
cube by a sequence of 500 points i.i.d. according to the uniform distribution and by a
sampling of the same cube obtained via a low-discrepancy sequence (in this case, the Sobol
sequence [60]). It can be clearly seen how the space is better covered by the second sequence,
as well as how the largest empty spaces among the points appear in the first sampling scheme.
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Figure 8: Comparison between random and low-discrepancy sampling of the unit square [59]

3.3. Cascade optimization

In a normal execution of the Nelder-Mead algorithm, the iteration stops either when
the simplex has shrunk to a desirable size with near the same evaluations or if we have
encountered the same best point for preset allowable maximum iterations, refer to Algorithm
3. In an attempt to decrease the time for local convergence, allowing us to explore more
initial simplexes, we adapt a methodology inspired from the practice of rough and fine
turning in lathe machines. In general, when we want to remove the excess stock from the
workpiece as rapidly as possible, we increase the feed rate and do not focus on the finish of
the work. Later, when we are close to desired dimensions, the feed is decreased and now the
focus is shifted on the finishing of the work. Figure 9 illustrates the complete flow of the
algorithm. In the beginning, the simplexes taken from the Sobol sequence are initialized in
multi-start NM-algorithm and a coarse search is performed for the local optima. Later, the
local optima from some chosen initialized simplexes are used to implement stricter stopping
criteria, allowing them to converge to a stationary point with finer quality. Fundamentally,
we are discarding the local optima that do not promise a good evaluation even after a
longer search, decreasing the computational time considerably. Also, as we already have an
optimized vertex as an initial simplex, we can build the rest of the vertices as per our choice,
thus controlling the size of the initial simplex.

3.3.1. Coarse search

In the coarse search, we want to accelerate the local convergence, allowing us to maxi-
mize the number of starts in our optimization methodology. This is done by using a coarser
search space and relaxing the stopping criteria. In the coarse search, the output space is
discretized with an interval 10 times larger than in the finer search. This drastically brings
down computational time. The aim of the coarse search is to find the simplexes that lie
on relatively steeper slopes in the optimization space. By relaxing the stopping criteria,
the maximum iterations allowed to repeat with the same evaluation is capped at 10 which
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helps in terminating the local search faster. One of such coarse implementation is detailed
in Algorithm 5, where the condition of incrementing the iteration is changed. We implement
a condition that the new evaluation found is better than the previous only if it exceeds the
previous evaluation by 5% and the algorithm stops as soon as we have 90% of the maximum
expected value.

Unlike other optimization problems, in the PKM design the maximum optimized eval-
uation is known. For example, if we are discretizing the output space in 1000 points and
are rewarding a value of 1 for a feasible point and 0 for infeasible points, then the maxi-
mum evaluation of such rewarding strategy is 1000. This fact is so useful that we can now
have criteria related to the maximum expectation and the current evaluation. In the coarse
search, we implement a constraint such that if an evaluation is greater than 80% of the
maximum evaluation, then terminate the iterations. This particular methodology lowers
the optimization time drastically when the constraints are not too strict, and we have many
parameters satisfying the constraints. It is interesting to note that this methodology can be
used irrespective of the rewarding strategy.

3.3.2. Fine search

In the fine search, we filter the different local optima obtained from the coarse search.
The evaluations of the local optima are arranged in increasing order, and the top 10% of
the collected optima are chosen for further evaluation. In the fine search, we implement
stricter stopping criteria, change the constraint of maximum expected evaluation to 100%
and discretize the output space with a 10 times finer interval. The margin that is considered
as an improvement is lowered to 1%. These changes directly affect the computational time
and take much longer time with increasing dimension of the output space. All the optimized
parameter sets from the NM-algorithm with finer constraints are compared, and the best
point is proposed as an optimized parameter of the PKM.
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Algorithm 5: Implementation of coarse and fine local search criteria

Result: Optimised parameter set v0

1 input : Initial set of simplexes;
2 e0 : the best evaluation from the previous iteration;
3 emax : Maximum expected evaluation;
4 limit : The percentage of maximum evaluation that is considered best;
5 For coarse search;
6 max iter = 3 n;
7 margin = 1.05 ... (suggesting ≥5% increment is considered improvement);
8 limit = 0.8 ... (suggesting that 80% of maximum evaluation is a criterion to stop);
9 For fine search;

10 max iter = 10 n;
11 margin = 1.01 ... (suggesting ≥1% increment is considered improvement);
12 limit = 1;
13 stop = 0;
14 while stop = 0 do
15 Perform algorithm 4 except for last step of checking stop from algorithm 3;
16 Perform algorithm 2 with finer intervals;
17 if enew ≥ margin×e0 then
18 iter = 0
19 else
20 iter = iter + 1
21 end
22 if iter ≥ max iter then
23 return stop = 1;
24 end
25 if enew ≥ limit×emax then
26 return stop = 1;
27 end

28 end
29 return v0 from the algorithm 4
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Figure 9: The flowchart for the complete implemented optimization methodology

Algorithm 6: An example of implemented multi-start optimization

Result: Optimized parameter set of the mechanism and its evaluation
1 Assuming we have ‘m’ starts for a ‘n’ dimensional optimization problem;
2 Choose m.(n+1) valid n-dimensional points from the Sobol set generated;
3 Choose ‘k’ local optima for further fine search, generally, k ≤ 0.1 m;
4 for start = 1:m do
5 Initial simplex = {v(m−1).(n+1)...vmn+m−1};
6 Implement Single start from Algorithm 4 with coarse search from Algorithm 5;
7 vchosen(start, 1 : n+ 1) = [v0, e0];

8 end
9 sort vchosen by evaluation of the corresponding parameter set;

10 for fine start = 1:k do
11 Generate n more parameter sets around vchosen(fine start);
12 Implement Single start from Algorithm 4 with fine search from Algorithm 5;
13 vfine(fine start, 1:n+1) = [v0, e0];

14 end
15 sort vfine by evaluation of the corresponding parameter set;
16 return vfine[1, 1 : n], vfine[n+ 1]
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4. Results and discussion

The optimization algorithm detailed in the work was used to optimize two different par-
allel mechanisms to validate the general implementation. The mechanisms chosen for opti-
mization are widely used in the industry, and the relevance of the objective function chosen
is also detailed in this section. An open source implementation of the proposed algorithm
and the examples are available at: https://github.com/salunkhedurgesh/ParaOpt.

4.1. 1 dof lambda mechanism

The lambda mechanism is a single closed loop (1-RRPR) mechanism and is used in the
legged robots as an abstraction of revolute joint [7, 61, 62] as shown in figure 10. This mech-
anism is used for a stiffer actuation where a compact, but powerful force is required, and
non-linear transmission characteristics are desirable. The constraint equations are straight-
forward in this case and have been extensively discussed in [63]. The mechanism was op-
timized by using the value of the determinant of the Jacobian matrix which is a scalar for
the given case, j, as the GCI and a modified VAF. For the lengths and variables shown in
figure 10, the calculations these measures are:

ρ2 = l21 + l22 − 2l1l2 cos(θ)

j = l1l2
sin(θ)

ρ

GCIi = j

VAFi
=

1

1 +
√

2(j− 1)2

= 0

 VAFmin < j < VAFmax
otherwise

GCI =

n∑
i=1

GCIi

n

VAF =

n∑
i=1

VAFi

n

Parameters Value Parameters Value
optimization dimension 1 Range of parameter [1, 4]

Number of starts 100 Number of iterations 10
Objective choice Workspace, GCI, VAF Velocity amplification range [0.3, 3]

Workspace (θ1 range) 450 to 1350 stroke ratio 1.5

Table 1: The parameters set for the optimization of 1-dof lambda mechanism
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Figure 10: 1-dof lambda mechanism with real life implementation
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Figure 11: Evaluation function plot and the schematics of the lambda mechanism for optimized length

In this mechanism, the length of l1(OA) is optimized with respect to l2(OB) and 3
different objective functions were used with parameters given in Table 1. In the first attempt,
the workspace was maximized in order to find a good length such as to cover the revolute
joint’s travel from 450 to 1350. Later, the GCI and VAF were used as objective functions.
The acceptable velocity amplification range for the mechanism was from 0.3 to 3. The stroke
ratio, i.e. the ratio of length in full extension by length in no extension of the prismatic
actuator, was 3

2
. 100 different single starts of local Nelder Mead optimization were used

to tend towards a better global optimum, and the number of operations to be continued
for the same evaluation in a single start were limited to 10 iterations. For all the objective
functions, there are multiple solutions with equal evaluation. It was observed that l1 = 4 was
suggested as the global optimum while optimizing for all the different objective functions.
As the optimization dimension was only 1, this operation was very fast and performed
100 coarse single starts and 10 refined starts in 21 seconds. Figure 11a shows the plot for
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evaluation with different parameters. It can be observed that the evaluation increases till a
certain value(=3.39) and then stays constant. This value is in fact the maximum possible
evaluation in an ideal case, too. The results for the optimization of 1-dof lambda mechanism
are summarized in Table 2.

Parameters GCI VAF
Time for 1 coarse evaluation 1 second 1 second
Time for single coarse start 0.01 seconds 0.01 seconds
Time for one fine evaluation 5 seconds 3.1 seconds
Time for single fine start 0.04 seconds 0.02 seconds
Best point(l2) 4 3.4
Best actuator range [3.37 4.76] [2.78, 4.17]

Table 2: The results for the optimization of 1-dof lambda mechanism

4.2. 2 dof RCM mechanism

To extend the optimization algorithm in its application, we decided to optimize a widely
used 2-dof parallel mechanism, 2UPS-1U. The mechanism can be assembled with double
parallelogram to become a remote center of motion in order to facilitate tool mounting away
from the actuators. This class of mechanisms have been used for medical applications [12] as
well as in implementing joint modules in humanoids (see [24, 64] for application as ankle joint
and [62, 65] for application as torso joint). This mechanism has three legs: the two first legs
have 6 lower pair joints and include actuators. The third leg is a motion constraint generator,
and the nature of the degree of freedom of the whole mechanism depends on the joint and its
location. In the 2UPS-1U, the universal joint in the third leg defines the two axes of rotation
as well as the center of rotation, which can be suitably displaced by using a parallelogram
joint as shown in figure 12. The main advantage of such a manipulator is that it is free of
constraint singularities and provides a rigid center of rotation. These advantages are very
useful in surgeries and applications requiring precise motion in an intricate environment.
The first joints in leg 1 and leg 2 with respect to the base can be given as:

A1 =

a1 cosφ1

a1 sinφ1

h1

 , A2 =

a2 cosφ2

a2 sinφ2

h2


where, ai is the distance of the first joint of ith leg from the origin of the base frame and
φ1 is the angle between the xy-projection of vector from the origin of the base frame to the
joint and the x-axis. Similarly, φ2 is the angle between the xy-projection of vector from the
origin of the base frame to the joint and the y-axis. The joints of each leg are at height h1

and h2 respectively. The universal joint (U) in the motion constraint generator leg is given
as [0, 0, t]T with respect to the base frame. The spherical joints in each leg are represented
with respect to a frame with U as its origin and are given as:

B1 =

b1 cosψ1

b1 sinψ1

h3 + t

 , B2 =

b2 cosψ2

b2 sinψ2

h4 + t
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Figure 12: The parameters to be optimized in 2UPS-1U

where, bi and ψi are used to express the spherical joints in the legs and have similar interpre-
tation as that of ai and φi. The joints of each leg are at height h3 + t and h4 + t respectively.
Thus, the mechanism can be parameterized by 13 parameters after assuming that the motion
constraint generator lies on the z-axis of the base. The 13 mechanism parameters to be opti-
mized, as shown in figure 12 and detailed above are: [a1, φ1, h1, b1, ψ1, h2, a2, φ2, h3, b2, ψ2, h4, t].
The optimization parameters and the constraints along with their range are shown in Table
3.

Parameters Value Parameters Value
optimization dimension 13 Range of ai [0.25, 1.5]

Range of bi [0.25, 2] Range of φi and ψi [-1.745, 1.745]
Range of hi [-0.1, 0.1] Range of t [1, 4]

Number of starts 200 Number of iterations 10 and 20
Objective choice Workspace, GCI, VAF Velocity amplification range [0.3, 3]

Range of bi [0.25, 2] Range of φi and ψi [-1.745, 1.745]
Workspace (in roll and pitch) circle of radius 1 stroke ratio 1.5

limits on spherical joints ±π/6radians Collision constraint considered

Table 3: The parameters set for the optimization of 2-dof RCM mechanism

The optimization of this mechanism was much longer than the previous example because
of the increase in the optimization space, number of dof and the workspace considered. The
regular dextrous workspace for the given mechanism is discussed in details in [43]. The results
vary depending upon the objective choice as well as the rewarding strategy. We present the
results obtained (Table 3) while optimizing for the GCI and rewarding a valid point in the
workspace as 1 and 0 otherwise. The time required to evaluate one instance, i.e. one given
set of parameters, was recorded along with the mean time for a single start, i.e. the complete
operation till the algorithm stops to return the locally optimized parameters in 4. It was
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further analyzed to note the impact of different objective choices on the total optimization
time. It was also noted that the fine search took a very long time compared to coarse searches,
thus emphasizing the efficiency of the algorithm. The results are presented in Table 4 and
computational time is recorded on the same system and is to be used for comparison only.
Figure 13 presents the schematic plot for the mechanism optimized for maximum GCI along
with the heatmap for the evaluation of GCI with the optimized parameters. Similarly, figure
14 illustrates the schematic as well as the heatmap of the quality related to the VAF for the
corresponding optimized parameters. It is interesting to note from the schematics presented
in both figures that the optimized parameters tend towards an architecture such that the
actuated legs are π

2
radians apart and align along the axes of the universal joint present

in the motion constraint generator. This observation also suggests that we can use human
intuition and experience to reduce the dimension of the optimization space, resulting in
faster optimization and designs that are easy to manufacture.

Parameters GCI VAF
Time for 1 coarse evaluation 14 seconds 18.3 seconds
Time for single coarse start 291 seconds 347.5 seconds
Time for one fine evaluation 50.5 seconds 51 seconds
Time for single fine start 1072 seconds 1077 seconds
Best point
[a1, φ1, h1, b1, ψ1, h2, a2, φ2,
h3, b2, ψ2, h4, t] (refer figure
12)

[1.13, -1.02, -0.06, 1.47, -
1.01, -0.05, 0.72, 0.44, -0.02,
1.52, 0.54, 0.02, 3.04]

[0.68, -0.25, 0.08, 1.03, 0.1,
0.04, 0.25, -1, 0.01, 1.1, -1.45,
0.17, 2.4]

Best actuator range [2.54, 3.8] [2, 3]
evaluation
mean
standard deviation

GCI
0.79
0.18

VAF
0.48
0.29

maximum evaluation
configuration ([α, β])

1
[0.39, 0.13]

0.99
[0, 0.43]

minimum evaluation
configuration ([α, β])

0.318
[0.86, 0.51]

-1.2
[-0.99, 0.14]

Table 4: The results for the optimization of 2-dof RCM mechanism
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concerned workspaceconcerned workspace

Figure 13: The schematic plot for the mechanism optimized for GCI and the heatmap for the evaluation.
Calculation of GCI for this mechanism is discussed in [43]. The subfigure at the bottom is the heatmap for
the VAF quality corresponding to the same parameters.

28



Concerned workspaceConcerned workspace

Figure 14: The schematic plot for the mechanism optimized for VAF and the heatmap for the evaluation.
The subfigure at the bottom is the heatmap for the GCI corresponding to the same parameters.
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5. Conclusions

In this paper, we present a novel optimization algorithm for parallel manipulators that
is able to implement the joint limits and the collision of prismatic joints as constraints.
The optimization methodology is also able to optimize the length of the actuator stroke,
which enables the designer greater flexibility and clarity in the choice of the actuators. The
algorithm uses geometrical traversing for optimization, which is very relevant for mechanism
optimization. The algorithm implements a two-step search by combining a faster local search
Nelder-Mead algorithm with initial simplexes spread over all the parameter space and then
uses a finer search by using the locally optimized points in the step 1. The algorithm is
general and can adapt to any non-redundant parallel mechanisms with prismatic as well as
revolute joint. The paper presents two different mechanism optimization as an example to
present the flexibility of the algorithm. The algorithm can be used in the systems that can
propose different models based upon the requirements. In future works, the algorithm will be
extended to multi-objective optimization to select the best architecture and corresponding
design parameters of a robot for a given task.
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