
Implementation and Analysis of Offset-Free Explicit Model Predictive

Controller on FPGA

Kiran Phalke1, Apeksha Nalawade1, Deepak Ingole2, Sayli Patil1, Saket Adhau1, and Dayaram Sonawane1

Abstract— It is well-known that the real-time implementation
of Model Predictive Control (MPC) is cumbersome because of
the huge burden of solving optimization problem on-line at each
sample time. Due to this, MPC has been mainly restricted to
processes with rather slow dynamics, such as the ones encoun-
tered in the oil and gas refineries. However, recent algorithmic
advances (such as the explicit MPC) allowed usage of MPC
to problems arising in the automotive or power electronics
industry where the time scales are in the milli- to microsecond
range. This paper focuses on the Field Programmable Gate
Array (FPGA) implementation of offset-free explicit MPC and
its detailed analysis for the position control of PMDC motor.
We show the analysis of controller computational complexity
in terms of memory, resource utilization, clock and power
consumption. Along that effects of various tuning parameters
on the number of regions is also presented with respect to the
changing prediction horizon length. Finally, the performance
of implemented offset-free explicit MPC is compared with the
standard explicit MPC and Proportional-Integral controller
for reference-tracking, constraints handling, and disturbance
rejection. Results indicate that the performance of offset-free
explicit MPC is superior but at the cost of increased memory
footprint.

I. INTRODUCTION

Model Predictive Control (MPC) is an advanced process

control strategy that achieves optimal control input satisfying

a set of constraints. Since 1980s oil and gas industries have

made considerable contributions to the MPC theory and

practices (see [1]). But, the primary reason, MPC flourished

in these specific industries was the slow dynamic processes

with sampling time in minutes to hours that used to be

controlled by MPC. Considering, the modern applications

of control theory like robotics, surgical instruments control,

automobiles, electric and autonomous vehicles, where the

processes are not static but the application changes as per the

conditions around them. Thus, sampling time requirement is

also high as compared to the traditional applications where

MPC originated. Thus, to meet the needs of these modern

day applications, researchers and engineers are taking efforts

to implement MPC on an embedded platform for the real-

time control [2], [3]. For implementing MPC on an embed-

ded platform there are multiple ways. The authors in [4] have

investigated the practical feasibility of MPC on 8 bit Arduino

board with second-order model and sampling time of 20ms.

1 Department of Instrumentation and Control Engineering, College of En-
gineering Pune, Shivajinagar 411005, India {phalkekp14.instru,
nalawadeas14.instru, patilsd17.instru,
adhauss17.instru, dns.instru}@coep.ac.in

2 University of Lyon, IFSTTAR, ENTPE, Lyon 69120, France
deepak.ingole@ifsttar.fr

MPC has been implemented on Field Programmable Gate

Array (FPGA) by [5].

Based on the required computational complexity, an op-

timization problem in MPC can be solved using two ways

namely on-line MPC and off-line or Explicit MPC (EMPC).

On-line MPC is computationally burdening on the processor

and require a longer time for solving quadratic problems.

Therefore, it requires processors working at higher clock

speeds. On the other hand, explicit MPC comprises of

controller’s data in the form of Look-Up Tables (LUTs) and

point location algorithm which efficiently searches through

LUTs to get an optimized solution for the control problem.

Hence, it is computationally less complex and therefore

less burdening on the processor [2], [6]. On the downside,

memory requirement for EMPC is high as compared to on-

line MPC as all the possible cases of control problem needs

to be identified and stored in the actual memory of embedded

platform. Despite the associated memory demand, its distin-

guish features have extended its application to several areas

of engineering, an overview of recent applications of EMPC

can be found in [7, Chapter 3].

Generally, disturbances enter in the system either through

states or inputs. To improve the performance of the system

affected by the disturbances and to achieve offset-free control

objective, the system model is augmented with a disturbance

model which is used to estimate and predict the mismatch

between measured and predicted outputs. The state and

disturbance estimates are used to initialize the MPC problem

(see [8, Chapter 12]).

In this paper, we developed an FPGA-based offset-free

EMPC solution for position control of a Permanent Magnet

Direct Current (PMDC) motor. Explicit MPC is first con-

structed in MATLAB using Multi-Parametric Toolbox (MPT)

and the low level C-code compatible for embedded platforms

is exported and deployed on FPGA. The first part of result

shows the analysis of explicit MPC with different settings of

sampling time, prediction horizon, and the penalty on input

and output. Considering the worst case scenario for memory

requirement, we selected Xilinx’s ZedBoard™ FPGA. It is

a low-cost development board for the Xilinx Zynq®−7000
SoC. The second part of the results, show the FPGA-

based controller performance and the detailed analysis of

its implementation. Further, the performance of designed

offset-free explicit MPC is compared with the standard

explicit MPC and Proportional-Integral (PI) controller for

reference tracking and disturbance rejection. Moreover, to

get an idea about memory usage with problem size and

prediction horizon, the FPGA implementation of offset-free

EMPC is compared with standard EMPC and PI controller.

II. DC MOTOR POSITION CONTROL

In this study, we show the analysis of embedded imple-

mentation of EMPC designed for the position control of a

PMDC motor. This section describes the dynamical model

of the PMDC motor.

A. DC Motor Modeling

For deriving a PMDC motor model, torque and electrical

equations described in [9, Chapter 2] have been considered.

The electrical circuit of the motor is shown in Fig. 1. It

can be represented by a voltage source (Va) across the coil

of the armature. The electrical equivalent of armature coil

can be denoted by an inductance (La) in series with a

resistance (Ra) in series with an induced voltage or back

electromotive force (emf) (Vm) which opposes the voltage

source. A differential equations for the electrical circuit

−
+

Va

Raia
La

−
+

ωm, θm

Tm
J, fm

MVm

Fig. 1. Electrical equivalent circuit of PMDC motor.

shown in Fig. 1 can be derived by applying Kirchoff’s

voltage law. Considering angular velocity, armature current

and the angular position as the states and armature voltage

as the input, above continuous-time equations can be written

in state space form as follows

ẋ(t) = Ax(t) +Bu(t), (1a)

y(t) = Cx(t) +Du(t), (1b)

when the problem is of position control, system matrices A,

B, C and D are given as

A =

− fm
J

km

J
0

−km

La

−Ra

La

0

1 0 0

 , B =

0
1
La

0

 ,

C =
[
0 0 1

]
, D = 0.

The nominal values and notations of system parameters

considered in the model development are taken from the [10,

Table I].

III. OFFSET-FREE EXPLICIT MPC

A. Plant Model

Consider a discrete-time version of the Linear-Time In-

variant (LTI) system in (2),

x(t + Ts) = Ax(t) +Bu(t), (2a)

y(t) = Cx(t) +Du(t), (2b)

where x(t) ∈ R
n is the system state vector, u(t) ∈ R

l is

the system input vector and y(t) ∈ R
m is the system output

vector, moreover, A ∈ R
n×n, B ∈ R

n×l, C ∈ R
m×n and

D ∈ R
m×l are system matrices with the assumption that pair

(A,B) is stabilizable and (C,A) is detectable.

B. Disturbance Modeling

The objective is to design an offset-free explicit model

predictive controller based on LTI model (2) in order to have

measured output y(t) track desired reference r(t) with zero

steady-state error in presence of plant-model mismatch and

unmeasured disturbances. To achieve this objective, the plant

model (2) is augmented with a disturbance vector d(t) ∈
R

p [8, Chapter 12] as shown below,

[
x(t+ Ts)
d(t+ Ts)

]

︸ ︷︷ ︸

xe(t+Ts)

=

[
A Bd

0 I

]

︸ ︷︷ ︸

Ae

[
x(t)
d(t)

]

︸ ︷︷ ︸

xe(t)

+

[
B

0

]

︸ ︷︷ ︸

Be

u(t), (3a)

ye(t) =
[
C Cd

]

︸ ︷︷ ︸

Ce

[
x(t)
d(t)

]

︸ ︷︷ ︸

xe(t)

+Deu(t), (3b)

where Bd ∈ R
n×p, Cd ∈ R

m×p are the disturbance model

matrices and dimensions of matrices 0 and I are m× l and

m×m respectively. The subscript ‘e’ denotes the extended

version of the combined state and disturbance.

C. State and Disturbance Estimation

Extended state xe is estimated from the plant measure-

ment by designing a Luenberger observer for augmented

system (3) as follows,

x̂e(t+ Ts) = Aex̂e(t) +Beu(t) + Le(y(t)− ŷe(t)), (4a)

ŷe(t) = Cex̂e(t) +Deu(t), (4b)

where Le = [Lx Ld]
T

is the filter gain matrices for the state

(of dimension n × m) and the disturbance (of dimension

p×m), respectively and can be obtain by pole placement.

D. MPC Formulation

Model predictive control is the form of control algorithm

which uses a model describing the system and where the

control action is obtained by solving a Constrained Finite

Time Optimal Control (CFTOC) problem for the current

state (x̂e(t)) of the plant at each sampling time (t). The

sequence of optimal control inputs (U⋆ = {u⋆
0, . . . , u

⋆
N−1})

is computed for a predicted evolution of the system model

over a finite horizon (or prediction horizon (N)). However,

only the first element of the control sequence (u⋆
0) is applied

and the current state (x̂e(t)) of the system is then measured

again at the next sampling time (t+ 1).

Using LTI system model in (2) and disturbance observer

in (4) the MPC problem is designed as follows:

min
U

N−1∑

k=0

(yk − rk)
T
Q (yk − rk) + ∆uT

kR∆uk (5a)

s.t. xk+1 = Axk +Buk +Bddk, (5b)

dk+1 = dk, (5c)

yk = Cxk +Duk + Cddk, (5d)

∆uk = uk − uk−1, (5e)

umin ≤ uk ≤ umax, (5f)

u−1 = 0, (5g)

x0 = x̂(t), (5h)

d0 = d̂(t), (5i)

∀k ∈ {k = 0, . . . , N − 1}, (5j)

where Q ∈ R
n×n and R ∈ R

l×l are the weighting matrices,

with condition Q � 0 to be positive semi-definite, and R ≻
0 to be positive definite. We denote N as the prediction

horizon, xk+1 as the vector of predicted states at sample time

k, U = {u0, . . . , uN−1} as the sequence of control actions,

rk is the output reference trajectory to be tracked, and x0, d0,

and u−1 are the given initial conditions. By solving (5) with

a given initial conditions, the optimization yields open loop

optimal input sequence U⋆ = {u⋆
0, . . . , u

⋆
N−1} from which

only the first control action, i.e., u⋆
0 is applied to the plant

and again a CFTOC problem (5) is solved at next sample

time k + 1.

E. Explicit MPC

In MPC, an optimization problem (5) needs to be solved

at each sample time. Such an optimization problem can be

formulated as a multi-parametric Quadratic Programming

(mp-QP) problem as

min
U

{

UTHU + x̃T
0 FU

}

+ x̃T
0 Y x̃0, (6a)

s.t. GU ≤ w +Wx̃0, (6b)

where x̃0 = [x̂T
e (t) uT (t − 1) rT (t)]T is the vector of

initial conditions and by denoting q as a number of in-

equalities, matrices H ∈ R
l.N×l.N , F ∈ R

(n+p)×(l.N), Y ∈
R

(n+p)×(n+p), G ∈ R
q×l.N , w ∈ R

q,W ∈ R
q×n can

be obtain by weighting matrices Q and R. For the de-

tailed description about the computation of the matrices

H,F, Y,G,w,W see [6].

The optimal solution U⋆ is a Piecewise Affine (PWA)

function of the initial condition, which can be calculated

off-line by solving mp-QP problem [6]. This problem can

be solved by using the freely available MATLAB based

Multi-Parametric Toolbox (MPT) [11]. Once the mp-QP

problem (6) is solved off-line and stored in the form of LUTs,

in the on-line phase, explicit MPC uses the obtained optimal

solution in a receding horizon fashion in which U⋆ = κ(x̃0)
is a continuous PWA function mapped over a polyhedral

regions:

κ(x̃0) =

F1x̃0 + g1 if x̃0 ∈ R1

...

FM x̃0 + gM if x̃0 ∈ RM

(7)

where Ri = {x̃ ∈ R
(n+p) | Zix̃ ≤ zi} ∀ i = 1, . . . ,M

are the polyhedral regions and Fi ∈ R
l×(n+p), gi ∈ R

l are

the linear gains. where the ith gain is selected according

to the set of linear inequalities Zix̃ ≤ zi that the state

vector satisfies. Moreover, M denotes the total number of

regions, hi is a number of half-spaces in a polyhedral set and

Zi ∈ R
hi×(n+p), zi ∈ R

hi are the matrices which forms a

polyhedral set. The advantage of explicit form of optimizer

as shown in (7) is, computation of optimal control inputs

reduces to a mere function evaluation. This task is division-

free since, only addition and multiplication operations are

required to evaluate κ(x̃0) for a specific value of x̃0. In the

on-line phase of explicit MPC, the task is to identify an index

of the polyhedral region in which the current state x̃0 lies.

This problem is called point location problem which can be

solved in sequential search algorithm (see [12, Algorithm

1]). In the next section, steps followed in the implement of

the EMPC on a FPGA are described.

IV. FPGA IMPLEMENTATION OF EXPLICIT MPC:

METHODOLOGY

A. Controller Design and SIL Verification

There are several state-of-the-art software tools available

for the constriction and code generation of explicit MPC

control laws, such as Multi-Parametric Toolbox (MPT),

Parametric Optimization (POP) toolbox [13], and hybrid

toolbox [14]. In this work, the explicit MPC controller in (5)

is constructed using the MPT. Then, we did several closed-

loop simulation to verify the performance of controller

in terms of reference tracking, constraints and disturbance

handling. In this step, we analyzed computational complexity

of the offset-free EMPC with varying sampling time and

penalty on the output and input, and the length of prediction

horizon. This step is also called Software-In-the-Loop (SIL)

verification where we can priori know the worst case run-

time and the memory required to store control laws.

B. Code Generation and SIL Verification

The Zedboard support low-level C/C++ programming lan-

guages. Considering this, after SIL verification we exported

a low-level C code of the sequential search algorithm. Along

with the sequential search algorithm, this code generated vec-

tors/matrices of controller i.e., Zi, zi, Fi, gi which will stored

on the on-chip memory of Zedboard. These vectors/matrices

are exported with the single precision floating-point data

format (32-bit).

C. FPGA Implementation Flow

In this step, we used Protoip (IP prototyping in FPGA

hardware) [15] software tool which provides Tool Command

Language (Tcl)-based functions accessible by both Xilinx

Vivado Design Suite and MATLAB. The main steps of the

design flow can be performed via MATLABcommand line

interfacing. First, a design template is built using design pa-

rameters like inputs and outputs for the algorithm and a clock

frequency etc. Then exported sequential search algorithm

is deployed into the FPGA. After successful compilation,

we can obtain the FPGA resource utilization in terms of

BRAM, DSP blocks, FF, and LUTs. Estimated clock cycle

achieved and the FPGA power utilization is also obtained at

this stage. After, this the bitstream file is generated with for

the Zedboard configuration.

D. HIL Verification

Once the FPGA is programmed with the EMPC algorithm,

next step is to verify the controller performance with respect

to various parameters like settling time, peak overshoot etc.

The Hardware-In-the-Loop (HIL) co-simulation is performed

using Protoip tool. First, the FPGA is turned on and the

data packets consisting of initial condition, reference and

previous control input are sent to the FPGA. For the first

iteration, the logic written into FPGA calculates only first

control action which then feed to the PMDC motor model

present in the MATLAB.

For all these operations, MATLAB uses

FPGAclientMATLAB function, which handles data

reading and writing to the FPGA for a specified number of

iterations. Finally, plotting the data points obtained from all

the iterations, controller performance can be analyzed. At

this stage, time required for the simulation for a specified

number of iterations is also obtained, which is used to

determine the sampling time achieved by the controller.

E. Resource Utilization and Memory Calculation

This section gives details about how the resource utiliza-

tion of FPGA is combined in a single value so as to use

it for further implementation analysis purpose. Generally,

FPGA resources are given separately in terms of BRAM,

DSP, FF and LUTs. In this paper, we are combining the

data available from FPGA manufacturer’s data-sheet about

the actual memory occupied by the these 4 blocks to obtain

a single number, that is memory required in kilobytes kB

to store and perform a particular controller algorithm. A

BRAM is characterized by a block of RAM each of width 18
kilobits kb, whereas each DSP slice is considered to have a

48-bits wide accumulator register for storage purpose, each

FF is considered to store 1-bit information and each LUT

is also characterized by a static RAM block each of size

64-bits (see [16]). All the four building blocks of FPGA,

their total number of units available on the Zedboard and

their unit memory occupation are represented in the Table I.

Adding individual values will return a single representing

total memory available for programmable logic implementa-

tion on Zedboard. Thus, it can be seen that the total memory

available on the FPGA board including the memory to store

data and also the one to perform computations is 1057 kB,

which is approximately equal to 1 MB.

TABLE I

AVAILABLE RESOURCES ON A ZEDBOARD.

Resource Available Size (bits) Total memory (kB)

BRAM 280 18000 627.2

DSP 220 48 1.3

FF 106400 1 13

LUT 53200 64 415.6

V. EXPLICIT MPC ANALYSIS: MATLAB RESULTS

This section presents the analysis of computational com-

plexity (in terms of number of regions) of offset-free EMPC

and compared with the standard EMPC for different settings

as shown below:

• Sampling time, Ts; bounds: 0.001 ≤ Ts ≤ 0.1.

• Horizon length, N ; bounds: 2 ≤ N ≤ 8.

• Output penalty matrix, Q; bounds: 1 ≤ Q ≤ 100.

• Input penalty matrix, R; bounds: 0.01 ≤ R ≤ 1.

• Number states, x; bounds: 3 ≤ R ≤ 6.

The above parameters are tightly coupled with each other

and shows an impact on the generation of number of regions

in PWA controller, κ(x̃0). In the following, we show the

effects of sampling time and penalty matrices with varying

prediction horizon on the number of regions.

A. Case I: Effect of Sampling Time

First, the effect of changing sampling is presented for 0.1,

0.01 and 0.001 s, whereas the Q and R values for this result

are kept as 1 and 1 respectively. Fig 2 shows the evaluation

of number of regions for different prediction horizons for

above settings. It can be seen that Ts = 0.01 s generates

more number of regions in both controller.

2 3 4 5 6 7
0

500

1000

1500

2000

Length of Prediction Horizon (N) [-]

#
o

f
R

eg
io

n
s

[-
]

Ts=0.1 (Offset-free EMPC)

Ts=0.01 (Offset-free EMPC)

Ts=0.001 (Offset-free EMPC)

Ts=0.1 (Standard EMPC)

Ts=0.01 (Standard EMPC)

Ts=0.001 (Standard EMPC)

Fig. 2. Effect of sampling time on the number of regions for standard and
offset-free EMPC.

B. Case II: Effect of Output Penalty

In this case, we show the effect of output penalty matrix

with values of 1, 10 and 100 and sampling time was 0.1 s

and R value was fixed at 1. Fig 3 shows the evaluation of

number of regions for different prediction horizons. It can

be seen that Q = 10 in standard EMPC and Q = 100 in

offset-free EMPC generates more number of regions.

2 3 4 5 6 7
0

200

400

600

800

1000

Length of Prediction Horizon (N) [-]

#
o

f
R

eg
io

n
s

[-
]

Q=1 (Offset-free EMPC)

Q=10 (Offset-free EMPC)

Q=100 (Offset-free EMPC)

Q=1 (Standard EMPC)

Q=10 (Standard EMPC)

Q=100 (Standard EMPC)

Fig. 3. Effect of output penalty on the number of regions for standard and
offset-free EMPC.

C. Case III: Effect of Input Penalty

Finally, for the effect of input penalty on the number of

regions is observed for the values 0.1, 0.01 and 0.001, and

Q is set at 1 and the sampling time is again 0.1 s. All the

effects are observed for EMPC generated for position control

i.e., for 3 state model and then for 6 state model which is

offset-free EMPC. Fig 4 shows the evaluation of number of

regions for different prediction horizons. It can be seen that

R = 0.1 in standard EMPC (for horizon up to 6) and R = 1
in offset-free EMPC (for horizon above 5) generates more

number of regions.

2 3 4 5 6 7
0

500

1000

Length of Prediction Horizon (N) [-]

#
o

f
R

eg
io

n
s

[-
]

R=1 (Offset-free EMPC)

R=0.1 (Offset-free EMPC)

R=0.01 (Offset-free EMPC)

R=1 (Standard EMPC)

R=0.1 (Standard EMPC)

R=0.01 (Standard EMPC)

Fig. 4. Effect of input penalty on the number of regions for standard and
offset-free EMPC.

VI. EXPLICIT MPC ANALYSIS: FPGA RESULTS

After performing detailed analysis of controller complex-

ity in MATLAB, we selected sampling time of 0.1 s, length

of prediction horizon as 5, output penalty as 1, and input

penalty as 0.01 for the FPGA implementation of offset-free

EMPC and compared the results with standard EMPC and PI

controller. In the following, we present the memory demand

for standard EMCP with 3 states, and offset-free EMPC with

6 states with varying length of prediction horizon. The Ta-

ble II summarize the total memory utilization for prediction

horizon of 2 to 5. It can be seen that fewer the states or

prediction horizon length, lesser is the memory footprint of

the controller in the FPGA memory. Also, it shows how the

power consumption of FPGA and the achieved clock cycle

period varies for these implemented controllers.

TABLE II

COMPARISON OF FPGA-BASED STANDARD AND OFFSET-FREE EMPC

FOR POSITION CONTROL.

EMPC # of # of # of # of Memory Clock Power

Controller States N Regions BRAM (kB) (ns) (W)

Standard 3 2 13 2 36 0.597 1.772

Standard 3 3 45 17 62 0.684 1.761

Standard 3 4 91 34 100 0.668 1.775

Standard 3 5 173 66 172 0.356 1.787

Offset-free 6 2 17 17 62 0.532 1.760

Offset-free 6 3 72 66 172 0.454 1.805

Offset-free 6 4 181 130 316 0.658 1.857

Offset-free 6 5 325 258 603 0.612 1.967

VII. FPGA HIL CO-SIMULATION RESULTS

In this section, the results obtained by performing HIL

co-simulation of standard EMPC, offset-free EMPC, and PI

controller are presented. The comparison is carried out on

the basis of controller performance parameters and then with

respect to their memory and resource utilization.

A. Controller Performance Comparison

The performance of FPGA-based offset-free EMPC is

compared with the standard EMPC and PI controller. The

objective of all controllers is to track desired reference of

angular position. Both explicit controllers are designed with

input constraints of −18 ≤ u ≤ 18, where as PI controller is

designed with saturation limits on obtained control action.

HIL co-simulation is carried out for 30 s with varying

reference. Also, to test the performance of controller for

disturbance rejection, we applied a disturbance in the output

for the time 25 to 28 s. Fig. 5 shows the output response of all

three controllers and corresponding control inputs. It can be

seen that the performance of standard and offset-free explicit

MPC is same when there is no disturbances. PI controller

shows oscillations and takes more time to settle to reference.

But, at the same time PI controller took less control input.

Now, when we applied disturbance from time 25 to 28 s

offset-free explicit MPC performance better and tries to

reduce the effect of disturbances through control action.

However, standard EMPC shows no effect of disturbance on

the control action. PI controller gives worst performance for

disturbance handling.

B. Controller Complexity and FPGA Analysis

Here we show the resource utilization of different con-

trollers is shown. The main bottleneck in the implementation

0 5 10 15 20 25 30
0

1

2

3

4
P

o
si

ti
o

n
[r

ad
]

Refrence PI Standard EMPC Offset-free EMPC

0 5 10 15 20 25 30
−2

0

2

Time [s]

V
o

lt
ag

e
[V

]

Fig. 5. Comparison of PI, standard EMPC and offset-free EMPC HIL
co-simulation for position control of PMDC motor.

of offset-free EMPC is its on-chip memory demand. To

store 325 regions (for N = 5) on a FPGA with single

precision floating-point, i.e., float in C/C++ we used one

of the features of FPGA that is memory ALLOCATION

pragma [17] with horizontally store data in the BRAMs.

Table III summarized the resource utilization of all three

controllers designed for position control of DC motor. It can

be seen that the memory demand of PI controller is least

among all and it remain same for the control of any system.

However, it is sub-optimal controller and lags in the overall

performance. On the other hand standard EMPC took 82 kB

of memory which means that we can still implement large

prediction horizon controller as it has scope to store more

data. But, the downside of this controller is that it will not be

able to handle disturbance and will need sensors to measure

all the states. The offset-free MPC took highest memory i.e.,

603 kB. However, it is able to handle disturbances arising

due to model mismatch or sensor faults.

TABLE III

FPGA RESOURCE UTILIZATION OF STANDARD EMPC, OFFSET-FREE

EMPC AND PI CONTROLLER.

Controller BRAM DSP FF LUT Total Memory (kB)

PI 2 24 4166 3543 33

Standard EMPC 21 14 3722 4388 82

Offset-free EMPC 258 14 3453 3157 603

VIII. CONCLUSIONS

This paper focuses on the FPGA implementation of dis-

turbance modeling-based offset-free explicit MPC for the

position control of DC motor. Further, we presented the

detailed analysis of memory footprints required to implement

standard and offset-free explicit MPC with different settings,

which helped us in the selection of FPGA device. After

that, we compared the HIL co-simulation results of three

controllers i.e., PI controller, standard and offset-free explicit

MPC with respect to settling time, overshoot and disturbance

rejection ability. Moreover, the analysis of the resource

utilization, clock time, and power consumption of each con-

troller is presented. From the results, it is clearly seen that the

offset-free explicit MPC gives the best performance among

the compared controllers. However, the memory demand of

offset-free explicit MPC is more and that is due to a the

increased number of states. Memory reduction techniques

could bring down the memory footprints, but not as-low-

as PI controller, which is still a better choice for memory

constrained embedded platforms.

ACKNOWLEDGMENT

We gratefully acknowledge the support from R & D center

of the COEP. Deepak Ingole would like to thank for a

financial contribution from the ERC under the European

Unions Horizon 2020 research and innovation program (grant

agreement no. 646592 MAGnUM project).

REFERENCES

[1] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[2] T. A. Johansen, “Toward dependable embedded model predictive
control,” IEEE Systems Journal”. DOI, vol. 10, 2015.

[3] H. J. Ferreau, S. Almér, R. Verschueren, M. Diehl, D. Frick, A. Dom-
ahidi, J. L. Jerez, G. Stathopoulos, and C. Jones, “Embedded optimiza-
tion methods for industrial automatic control,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 13 194–13 209, 2017.

[4] G. Takács, P. Zometa, and R. Findeisen, “Embedded model predictive
vibration control on low-end 8-bit microcontrollers via automatic code
generation,” in 23rd International Congress on Sound & Vibration.
IIAV, 2016, pp. 1–8.

[5] A. Gersnoviez, M. Brox, and I. Baturone, “High-speed and low-
cost implementation of explicit model predictive controllers,” IEEE
Transactions on Control Systems Technology, 2017.

[6] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[7] D. Ingole, “Embedded implementation of explicit model predictive
control,” Ph.D. dissertation, IAM FCHPT STU in Bratislava, 2017.

[8] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear

and hybrid systems. Cambridge University Press, 2017.
[9] R. Krishnan, Electric motor drives: modeling, analysis, and control.

Prentice Hall, 2001.
[10] V. Sankardoss and P. Geethanjali, “Parameter estimation and speed

control of a PMDC motor used in wheelchair,” Energy Procedia, vol.
117, pp. 345–352, 2017.

[11] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-parametric
toolbox 3.0,” in Proceedings of the European control conference, no.
EPFL-CONF-186265, 2013.

[12] D. Ingole, J. Holaza, B. Takács, and M. Kvasnica, “FPGA-based
explicit model predictive control for closed-loop control of intravenous
anesthesia,” in Proceedings of the 20th International Conference on

Process Control. IEEE, 2015, pp. 42–47.
[13] R. Oberdieck, N. A. Diangelakis, M. M. Papathanasiou, I. Nascu, and

E. N. Pistikopoulos, “Pop–parametric optimization toolbox,” Industrial
& Engineering Chemistry Research, vol. 55, no. 33, pp. 8979–8991,
2016.

[14] A. Bemporad, “Hybrid toolbox–user’s guide,” 2003.
[15] B. Khusainov, E. C. Kerrigan, A. Suardi, and G. A. Constantinides,

“Nonlinear predictive control on a heterogeneous computing platform,”
in IFAC World Congress 2017, July 2017.

[16] Zynq-7000 All Programmable SoC Data Sheet: Overview, Zynq,
Xilinx, June 2017.

[17] X. Inc., SDx Pragma Reference Guide, UG1253 (v2017.1) ed., June
2017.

View publication statsView publication stats

https://www.researchgate.net/publication/327861184

