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Lipid bilayer adhesion on sparse DNA carpets:

theoretical analysis of membrane deformations

induced by single end-grafted polymers.

F. Thalmann∗, V. Billot, and C. M. Marques
Institut Charles Sadron, Université de Strasbourg, CNRS UPR 22,

23 rue du Loess, F-67037 Strasbourg Cedex, France

(Dated: April 20, 2011)

We consider a single end-grafted polymer chain covered by a membrane in contact with a flat and
rigid surface, in the context of supported membrane adhesion on surfaces carrying dilute polymer
brushes. The fluid membrane adheres to the surface due to attractive interactions, the presence of a
macromolecule locally hinders the membrane-surface contact and creates a protuberant membrane
bulge. We study both the size and elevation of such membrane deformations as a function of
curvature modulus, surface tension, adhesion energy and chain size. Scaling results are derived,
valid for both ideal and nonideal chain statistics, leading to complex diagrams of states depending
on curvature modulus, tension and adhesion values. We also compute quantitatively the membrane
deformation profile for shallow bulges, and make predictions for realistic systems involving DNA
grafted chains covered by lipid membranes.

PACS numbers: PACS. 87.16.D-; 82.35.Gh; 87.17.Rt

I. INTRODUCTION

Fluid bilayers self-assemble from phospholipid solu-
tions as molecularly thin membranes of roughly 5 nm,
building in the living realm the walls of cells and cellu-
lar organelles [1]. Phospholipid vesicles and liposomes
can also be assembled from aqueous solutions provid-
ing simple models to understand cell and cell membrane
behavior: adhesion and fusion, mechanical resistance or
transport properties. In this context Giant Unilamellar
Vesicles or GUV’s are of particular interest: they can
be conveniently prepared by electroformation, with sizes
up to one hundred micrometers and studied by several
optical microscopy and micromanipulation methods.

Fluid membranes are often exposed to interactions
with other macromolecular species [2–9]. In formula-
tions for detergency, pharmaceutics or cosmetics, poly-
mers are added for performance, processing, condition-
ing or delivery [10]. A number of formulations based
on advanced polymer decorated membranes have been
proposed in the emerging context of drug vectorization,
encapsulation and targeting [11, 12], interesting exam-
ples being for instance those made from a mixture of
PEG-lipids and phospholipids [13]. In living organisms
the walls of cells and cellular organelles host many large
proteins and other biopolymers responsible for the me-
chanical coupling of the membrane with the cytoskeleton,
providing coating protection or engaging in fusion or ad-
hesion events [14, 15]. The quantitative description of
these geometries involving membranes, polymers and in-
terfaces requires considering situations of strong polymer
confinement similar to the one that we discuss in this pa-
per.

Understanding the interactions between a polymer
chain and a fluid membrane, is thus not only of a clear
practical importance, it also poses fascinating questions
for the statistical physicist of the soft nanosciences. The

physics of simple fluid bilayers and of polymer chains
is now well understood. Following seminal work by Hel-
frich [16] who first recognized the importance of the mem-
brane bending elasticity, and by Edwards and de Gennes
who developed the statistical physics tools to deal with
chain connectivity, extensive theoretical and experimen-
tal studies in polymers and membranes contributed to
the writing of one of the finest chapters in modern sta-
tistical physics [17, 18]. But the entropic nature of the
interactions between these two classes of soft nanomate-
rials is still to be understood [19].
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FIG. 1. (Color online) The geometry of polymer-membrane
interactions discussed in this paper: a single polymer is end-
grafted to a solid substrate and confined between the wall
and a fluid membrane. The membrane is homogeneously ad-
hered to the substrate except for the bulge of lateral size L

and height D induced by the polymer repulsive forces. These
forces result in a deformation profile h(r) that can be exactly
computed from polymer theory and the mechanics of fluid
membranes.

In the quest of directly measuring the interactions be-
tween a fluid bilayer and a single polymer chain, Hisette
et. al. [20] recently studied the adhesion of Giant Unil-
amellar Vesicles on surfaces coated with a carpet of
sparsely end-grafted DNAs. The dimensions of the GUVs
and of the λ−phage DNA allowed optical imaging of both
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the membrane deformations and of the DNA average con-
figurations. In a number of cases, spreading of the vesi-
cle adhesion patch, which mostly scrapes and staples the
end-grafted DNA chains, also leads to a bulge config-
uration [21] whereby a DNA chain is confined between
the solid substrate and the deformed enveloping fluid bi-
layer, as sketched in Figure 1. The experiments allow to
measure the lateral DNA segment distribution by fluo-
rescence microscopy and the full membrane deformation
profile by Reflection Interference Contrast Microscopy, a
technique that provides values for the membrane profile
with lateral resolution of a fraction of a micrometer and
vertical resolution of the order of a few nanometers.

Inspired by the experimental results of Hisette et.

al. [20] we study theoretically the polymer confinement
and the membrane deformation corresponding to the ex-
perimental geometry depicted in Figure (1). The next
Section sets the theoretical frame were the polymer mem-
branes interactions will be described: relevant parame-
ters, assumptions and the different physical contributions
to the free energy of the system. In Section III we per-
form a scaling analysis of the different possible confine-
ment states of the polymer and deformation states of the
membrane. This allows us to identify the key parameter
combinations, expressed as dimensionless numbers, that
govern the system behavior and to pictorially describe
the relevant regimes as regions of “state-diagrams” built
from such numbers. Section IV outlines a self-consistent
determination of the membrane shape for confinement
under moderate adhesion, most relevant for experiments.
Predictions are given for grafted λ-phage DNAs covered
by phospholipid membranes. In the Conclusion we sum-
marize the results presented in this paper. Four tech-
nical appendices show respectively how non ideal chain
considerations enters into the picture, how to compute
the pressure applied by the polymer on the membrane,
how to compute the mechanical response and deforma-
tion of an adhered membrane to a localized or distributed
stress field and how the quantitative approach compares
with scaling arguments. A collection of predicted quan-
titative profiles and bulge sizes is provided as Auxiliary
Material [42].

II. PARAMETERIZATION AND MODEL

FREE-ENERGY

A. Statement of the problem

We consider a single polymer chain, grafted on a flat,
rigid surface and covered by a membrane, while at dis-
tance from the chain non-specific adhesive interactions
maintain a close contact between the membrane and the
surface. Figure 1 illustrates the situation.

Our goal is to predict and describe the relative con-
formations of the distorted membrane and the squeezed
chain underneath. Squeezed chain conformations are rel-
evant to a number of situations, such as dilute polymer

brushes under compression, or for the so-called escape

transition which predicts the conformational change of a
single chain confined by a rigid piston [22, 23]. In our
problem though there is no room for escape, we do not
anticipate any sharp conformational change of the chain,
but a progressive compaction under a bulge deformation
of the membrane, with size inversely related to the con-
fining forces.

For moderate confining forces, the chain remains in
a coiled, or mushroom conformation that preserves the
rotation invariance of the system. A local elevation of
the membrane right above the grafted chain must be ob-
served, that we call bulge, while the membrane remains
closely supported by the substrate at distance from the
grafting point. The geometric shape of the membrane de-
formation results from the competition between repulsive
forces pushing the membrane away from the substrate
and adhesion and mechanical forces keeping the mem-
brane close to the surface. Adhesion drives the maximum
possible amount of the membrane into close contact with
the substrate, anchoring the membrane and providing
a support for the action of membrane forces related to
the bending elastic energy and to the membrane tension.
The osmotic pressure associated to the confined polymer
is the main repulsive force pushing the membrane away
from the surface and thus stabilizing the bulge deforma-
tion as depicted in Figure 1.

A successful scaling description of bulge conformations
requires two characteristic lengths. The first one is the
height D measuring the spatial separation between the
top of the bulge and the surface. The second one cor-
responds to the radius L of the circular rim where the
membrane comes into contact with the substrate. In
addition, one is interested in the total energetic cost F
associated to both membrane deformation and polymer
confinement. We argue on general grounds that D can-
not exceed the range of the (only) repulsive force, i.e.

the gyration radius Rg of the end-grafted chain. Based
on the ratio D/L, we further distinguish shallow bulges

characterized by D/L ≪ 1, from balloon bulges for which
D ∼ L, as depicted in Figure (2b). Balloon bulges may
correspond to a combination of strong adhesion, weak
curvature modulus and surface tension.

In what follows, we treat the membrane as a non-
fluctuating, athermal, mechanical object. Our model
membrane has negligible thickness, finite bending and
compressibility moduli, and no elastic shear modulus.
Such a smectic liquid crystalline state is observed, for
instance, in self-assembled amphiphilic lamellar phases,
such as unilamellar giant phospholipid vesicles or sup-
ported membranes at room temperature. The polymer
is treated as a fluctuating chain, grafted by one end on
a perfectly flat substrate, with a suitable surface prepa-
ration preventing the polymer from adsorbing onto it.
The chain is assumed to be flexible and long enough to
adopt the so-called mushroom conformation, accurately
described by well-established polymer theory.
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FIG. 2. (Color online) Three possible geometries for a single
end-grafted polymer chain confined between a lipid bilayer
and the grafting substrate: shallow bulge (a), balloon bulge
(b) punctured membrane (c).

B. A configurational free-energy for membrane

polymer interactions

The equilibrium conformation is driven by free-energy
minimization. For the geometry described here the
free-energy is a sum of four contributions.

Curvature

The first one is a Helfrich curvature term character-
izing the membrane shape deformation. Taking a flat
membrane as reference state, the curvature term reads
Fcurv = κ

∫

dΣ C2/2, where dΣ is the surface integration
element and C denotes the mean curvature of the
surface. The topological term associated with gaussian
curvature does not contribute to energy variations since
we consider only membrane deformations with fixed
topology. The membrane is flat far from the chain, and
it is assumed that C remains small compared with the
inverse membrane thickness, legitimating the quadratic
approximation.

Surface tension and adhesion energy

We group together two closely related terms: a surface
free-energy term proportional to the total area A =

∫

dΣ
of the membrane, and a non specific adhesion contribu-
tion proportional to the area of substrate free from any
membrane close contact. If one considers a patch of mem-
brane with total area A0, a general expression of the sur-
face related free-energy contributions is given by:

Fsurf = γ∆A+ wA′, (1)

with ∆A the area difference between the actual confor-
mation and the reference state, and A′ the projected area
of the non-adhered part of the membrane onto the sub-
strate, or equivalently the amount of substrate area free
from membrane adhesion. This expression can be defined
on a more rigorous mathematical footing by defining a
typical adhesion length scale threshold ζw and introduc-
ing an elevation z between membrane and substrate. The
surface terms then read:

Fsurf = γ

∫

[dΣ− dΣ′] + w

∫

dΣ′ H(z − ζw), (2)

with dΣ the true surface integration element, dΣ′ the
corresponding projected area onto the substrate, and H
the Heaviside function. γ describes the cost of increasing
the total area, either by tapping into a surface reservoir,
or by stretching the membrane and reducing its surface
mass while w is related to the non specific short range
interactions of the membrane with the substrate, e.g. ac-
counting for van der Waals attraction, hydration forces,
or electrostatic interactions with the supporting mate-
rial [24]. The parameters γ, κ and w describe entirely
the physical properties of the membrane-surface pair [25].

Chain confinement

A last term Fchain accounts for the repulsive force ex-
erted by a confined polymer chain. For ideal chains, its
expression is obtained by solving the diffusion (Edwards)
equation first, prior to the calculation of the partition
function and the related free-energy [18, 26, 27]. Ap-
proximated expressions can be obtained, based on scal-
ing arguments, for both ideal and self-avoiding chains,
and both cases involve the ratio of a typical confine-
ment length scale D over the gyration radius Rg of
the chain: Fchain = Tfchain(D/Rg). Scaling forms are
Fchain ∼ T (D/Rg)

−2 for ideal chains (theta solvent), and

Fchain ∼ T (D/Rg)
−1/ν , with Flory exponent ν ≃ 3/5, for

isotropically confined chains in the presence of excluded
volume (good solvent).

The resulting total free-energy reduces to a sum of
four integrals running only on the parts of the membrane
which are not in close contact with the substrate:

F = γ

∫

′

[dΣ− dΣ′] + w

∫

′

dΣ′ +
κ

2

∫

′

dΣ C2 +

Tfchain

(

Rd

D

)

, (3)



4

where
∫

′

runs over the un-adhered part of the mem-
brane, dΣ is the real membrane surface area and dΣ′

the horizontally projected area. Eq. (3) is the starting
point of the present study.

A model with three independent parameters

and two natural length scales

To sum up, the above free energy model depends on
four explicit parameters. Two of them, the bending mod-
ulus κ and the tension γ are associated with the mem-
brane. The adhesion parameter w characterizes mem-
brane surface interactions and the effect of the polymer
chain is entirely described by the gyration radius Rg. The
relative importance of curvature elasticity with respect
to membrane tension is determined by the characteris-
tic length ξ =

√

κ/γ: at length scales smaller than ξ
curvature elasticity phenomena dominates while tension
rules deformations at length scales larger than ξ. The
membrane shape close to the adhesive surface needs to
obey the balance of elastic and adhesive torques, and
is therefore governed by the characteristic length scale
ξw =

√

κ/w [28]. If one chooses T as the natural en-
ergy scale, with Boltzmann constant kB = 1, and Rg as
the natural length scale, the three remaining indepen-
dent parameters κ, γ and w can be rendered dimension-
less by combinations of T and Rg: κ = κ/T , γ = γR2

g/T

and w = wR2
g/T . The most general solution of such

a polymer-membrane-substrate system depends thus on
three independent dimensionless parameters κ, γ and w
and on the two length scales ξ and ξw that emerge from
them.

III. SCALING RESULTS

A. Scaling approach to shallow bulges

In establishing the scaling results, it is convenient to
pick up T and Rg as respectively the energy and length
scales. As explained above, all the physical quantities can
be expressed with prefactors T or Rg and combinations
of the three other dimensionless parameters κ = κ/T ,
w = wR2

g/T , γ = γR2
g/T . We search for the scaling

behaviors of the shallow bulge – see Figure (2a) – eleva-
tion D, radius L and free energy F . Using the Monge
approximation that holds for small gradient deforma-
tions of the membrane and assuming ideal chain scaling
for the polymer, estimates of the free-energy contribu-
tions are γ

∫

′

[dΣ − dΣ′] = γD2, κ
∫

′

dΣ C2 = κD2/L2,

w
∫

′

dΣ′ = wL2 and Fchain = TR2
g/D

2. The total energy
can thus be described as

F = κ

(

D

L

)2

+ wL2 + γD2 + T

(

Rg

D

)2

or in a dimensionless form as

F

T
= κ

(

D

L

)2

+ w

(

L

Rg

)2

+ γ

(

D

Rg

)2

+

(

Rg

D

)2

, (4)

valid within the two geometric restrictions: D/L ≤ 1
(shallowness) and D ≤ Rg (finite range of the repulsive
force). Minimizing this expression with respect to D and
L gives:

(

κ

L2
+ γ

)

D −
TR2

g

D3
= 0 ;

κ
D2

L3
− wL = 0 . (5)

Weak surface tension

In a regime of weak surface tension (γ ≃ 0) this shape
is dominated by the curvature term, and we obtain the
following scaling laws:

L ≃ Rgκ
1/6w−1/3,

D ≃ Rg(κw)
−1/6,

D/L ≃ κ−1/3w1/6,

F ≃ T (κw)1/3, (6)

valid while the surface tension γ remains lower than a
typical value:

γ ≤ κ2/3w2/3, (7)

and consistent with the requirement γ ≤ κ/L2.

Strong surface tension

In the opposite limit γ ≥ κ/L2, it is appropriate to
neglect curvature in front of surface tension. The scaling
form of the surface tension contribution must incorporate
a logarithmic correction factor. This can be checked, for
instance, in the exact case of a membrane pulled from its
center, corresponding to a logarithmic elevation profile
h(r) ∼ ln(L/r). As a result:

F

T
=

[

w

(

L

Rg

)2

+ γ
D2

R2
g ln(L/r0)

+

(

Rg

D

)2]

, (8)

where r0 is a characteristic length, that in most cases
may be identified to ξ =

√

κ/γ.
The scaling properties of the bubble are modified:

D ≃ Rgγ
−1/4,

L ≃ Rgγ
1/4w−1/2,

D/L ≃ γ−1/2w1/2,

F ≃ Tγ1/2, (9)

where logarithmic terms have been omitted. It is possi-
ble to improve upon these scaling results by introducing
a realistic pressure profile around the grafting point of
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the chain, and by computing self-consistently the shape
of the deformation; our Section IV presents the details
of such a procedure. This allows us to go beyond the
scaling arguments, to challenge them and to describe the
geometric shape of these bubbles.

Our predictions (6) and (9) were successfully compared
with numerical profiles, supporting our scaling assump-
tions in both curvature and tension dominated regimes
(Appendix D). We recall that these results hold for con-
fining shallow bulges i.e. when the bulge thickness is
smaller than the chain size D ≤ Rg and for bulge lateral
sizes larger than bulge thickness D/L ≤ 1.

B. Scaling of balloon bulges

In the opposite situation where D ∼ L, we may spec-
ulate on the existence of a balloon shaped configura-
tion, with an isotropically confined chain surrounded by
a vesicle-like membrane, as depicted in Figure 2(b). The
length L is now associated to the “pore” in the confining
membrane while a bubble of lateral size D surrounds the
chain. In the making of the mushroom conformation, the
quadratic curvature energy plays only a role at the con-
tact point between the membrane and the surface where
the local curvature is given by ξw. The determination of
the final shape is left entirely to the adhesive and surface
tension energies, which must balance the osmotic pres-
sure of the chain. In this situation, the surface tension is
dominated by the area of the spherical bubble and scales
like γD2, while the adhesive energy, controlled by the
membrane-free surface patch scales like wL2. This leads
to

F

T
= κ+ w

L2

R2
g

+ γ
D2

R2
g

+
R2

g

D2
. (10)

The lateral size D results primarily from the competition
between osmotic pressure and surface tension, leading to

D ≃ Rgγ
−1/4,

L = 0 . (11)

The patch size L has to accommodate for the effect of the
adhesive energy and for a geometric matching condition
with the large bubble. It is undetermined by the present
scaling argument, but can be estimated as L ≃ ξw by
recognizing that: i) small length scales are dominated by
the curvature modulus rather than by the surface tension
and ii) curvature and adhesive torques must balance at
the membrane-surface contact point [28]. Assuming such
a value for L leads to a total free energy

F

T
= κ+ γ1/2 , (12)

where curvature and adhesion terms give κT and surface
tension and chain confinement give γT .

At the scaling level, mushroom shaped bubbles are
dominated by surface tension if γ1/2 ≫ κ, leading to

D ≃ Rgγ
−1/4,

L ≃ Rgκ
1/2w−1/2,

D/L ≃ γ−1/4κ−1/2w1/2,

F ≃ Tγ1/2, (13)

or are dominated by curvature if γ1/2 ≪ κ, leading to

D ≃ Rg,

L ≃ Rgκ
1/2w−1/2,

D/L ≃ κ−1/2w1/2,

F ≃ Tκ, (14)

while the above analysis is restricted to D/L ≥ 1, i.e. to
balloon bulges.

In the absence of surface tension, curvature alone can-
not fix the lateral size D and is unable to compete with
the osmotic pressure of the chain. However, the curva-
ture term imposes a continuity condition on the shape of
the membrane. Acting together, the geometric matching
condition and the adhesive energy control the extension
of L. If the adhesion energy is strong, one expects the
patch size L to get close to its smallest possible value,
e.g. the width of the membrane, a few nanometers in the
case of phospholipid bilayers.

In order to have a synthetic perspective of the different
configurations adopted by our membrane-polymer sys-
tem as a function of the relative importance of the ten-
sion, adhesion and curvature reduced parameters, it is
convenient to draw a state-diagram, that we discuss in
the following paragraph.

C. State diagram for end-grafted gaussian

polymers confined under a supported bilayer

We recall that the membrane tension γ, curvature
modulus κ and adhesion energy w can be conveniently
renormalized by introducing the associated dimension-
less quantities κ = κ/T , w = wR2

g/T , γ = γR2
g/T . As

we have seen above, for a given set of parameters, there
is a preferred conformation minimizing the free-energy,
with equilibrium values for the patch radius L and the
height D. Comparison of the relative values of D and L,
comparison of D to the chain radius of gyration Rg and
comparison of the relative importance of tension and cur-
vature energy terms leads to the state diagram presented
in Figure (3). We draw the diagram by assuming that
the tension is high γ > 1, with little loss of generality as
we will see below.

The first important feature in the state diagram is
the curve of equation wκ = γ3/2, a line of slope −1
in logarithmic coordinates, cutting the lnκ = 0 axis at
lnw = 3/2 ln γ. This line, shown as line number I in
Figure (3), divides the parameter space into two regions,
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L=D

L
=
D

=
ξ w

L=Rg
L=Rg

I

IIIII
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B
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w=γ3/2
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wκ=γ3/2

w=γ

w=γ1/2

Log w

w=κ2

w=κ1/2

Log κ

IV

κ = γ1/2

L=ξ 

ξ=ξ
w

FIG. 3. (Color online) State diagram of the different bulge
regimes for an ideal chain – see main text – in logarithmic
axes. Horizontal axis is the dimensionless curvature κ, vertical
axis is the adhesion parameter w.

for adhesion strengths w < γ. Above the line, the elas-
tic curvature energy dominates, L < ξ, while below the
line, curvature elasticity is irrelevant and the energy is
dominated by membrane tension, L > ξ. On the line
L = ξ.

The second important feature is the curve w = κ2 de-
fined by the ratio D/L separating shallow bulges (D ≤
L,w ≪ κ2) and balloon bubbles (L ≤ D, w ≫ κ2) in
the domain above line I where curvature energy domi-
nates. In the state diagram of Figure (3), this line of
slope 2, shown as line number II where L = D = ξw,
intersects the line lnw = 3/2 ln γ − lnκ at the point
(lnκ = 1/2 ln γ, lnw = ln γ). This is also the point of
intersection of the third important curve in the diagram,
separating the balloon and the shallow bulge regimes in
the domain below line I where membrane tension domi-
nates. This feature is defined by w = γ or equivalently
by the horizontal line (lnw = ln γ), number IV in the
diagram.

One can thus identify four regions in the state diagram.
For all the four regions, under the assumption that the
membrane tension is large enough, γ > 1, the polymer
chain is always confined, i.e. D ≤ Rg. Region A cor-
responds thus to confined chains (D ≤ Rg) in shallow
bulges (D ≤ L). Here, the thickness and patch size de-
pend both on curvature elasticity and adhesion strength,
but are independent of tension, D ≃ Rg(κw)

−1/6 and

L ≃ Rgκ
1/6w−1/3. Region B hosts confined chains

(D ≤ Rg) in balloon bulges (L ≪ D). In this region,
membrane tension is also negligible, the equilibrium D
and L values are independent of γ, D ≃ Rgκ

−1/2 and

L = Rgκ
1/2w−1/2 = ξw. By crossing line III into re-

gion C, the size of the balloon bulges becomes dependent
of membrane tension, D ≃ Rgγ

−1/4, but the size of the
patch L is still governed by the usual boundary condition
balancing adhesion forces and curvature torque that de-
fines the bulge neck size as L = ξw. This neck starts to
open up at w = 2γ close to line IV defined by w = γ that
one crosses into region D, a shallow bulge region con-
trolled by membrane tension, where D ≃ Rgγ

−1/4 and

the bulge size is given by L ≃ Rgγ
1/4w−1/2.

Also shown in Figure (3), the dashed lines indicate the
crossover from laterally unconfined states of the chain
below the lines to laterally confined chains. Note that
for the gaussian chain considered here, these lines do not
imply any changes in the relative importance of the differ-
ent terms contributing to the energy. Note also that the
minimum value γ that line IV can assume corresponds
to γ = 1. For smaller values of γ the line vanishes from
the diagram, with line I fixed for γ < 1 at the value
lnw = − lnκ. The conclusions discussed above still hold,
with the exception that in regions C and D, that now
merge into a single one, the value of the height D is kept
at the constant value D ≃ Rg: the membrane tension in
this case γ < 1 is not large enough to confine the polymer
chain.

For a given value of the membrane tension, the varia-
tion of the bulge height D and size L can be displayed
either at constant adhesion strength w as a function of
the elastic modulus κ or at constant κ as a function of
w. We chose this last possibility in Figure (4). Given the
structure of the state diagram in Figure (3), two cases
need to be considered. The first corresponds to weak
elastic constants κ < γ1/2, displayed in Figure (4a). The
figure shows that the bulge height D is independent of
the adhesion strength, and that the patch size L decreases
continuously except at w ∼ γ where the so called kissing
transition [29, 30] occurs. There, the neck size decreases
from a finite value to L ∼ ξw within a narrow range
γ < w < 2γ. For the stronger elastic constants κ > γ1/2,
bothD and L shown in Figure (4b) decrease continuously
as the adhesion strength increases.

D. Excluded volume and semiflexible chains

Excluded volume

The scaling treatment of non-ideal chains, and es-
pecially chains swollen by excluded volume leads to a
different balance between the several terms contributing
to the equilibrium state of the deformed membrane
and of the confined polymer chain. This results in a
somewhat richer state diagram that the one presented
in the previous paragraph for the gaussian chain. We
describe these differences in Appendix A where we also
present a modified state diagram valid for end-grafted
polymer chains in good solvent conditions.



7

Log w

Log L/Rg 
Log D/Rg 

ξ
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b)

κ > γ1/2

κ < γ1/2

w=γ1/2 w=γ

w=κ−1γ3/2 w=κ1/2 w=κ2
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L=Rg 

ξ
w

=Rg κ
1/2w-1/2
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FIG. 4. (Color online) Variation of the bulge heightD and size
L as a function of the adhesion strength w in a logarithmic
representation. a) Weak bending rigidities, κ < γ1/2. b)

Strong bending rigidities, κ > γ1/2, see also Figure (3)

.

Semiflexible chains

Polymers and biopolymers with persistence length ℓp
much larger than the monomer size are common. With-
out interactions between monomers, they behave as gaus-
sian chains on length scales larger than ℓp. In three di-
mensions, excluded volume interactions leading to self-
avoiding walk (SAW) behavior only become important
for long enough chains. The length scale where chain
behavior crosses-over from gaussian to SAW can be esti-
mated from a mean field Flory approach [31–33]. Given

a monomer size a that serves as an estimate of the
Van der Waals exclusion diameter for the chain, ex-
cluded volume interactions become relevant when the di-
mensionless combination z = N(a/ℓp)

3 becomes larger
than unity [31]. Therefore, excluded volume corrections
in a chain of length Na, with n = Na/ℓp persistence
lengths, become relevant only for n ≫ (ℓp/a)

2, and poly-

mer chains of radius R(3d) is expected to follow gaus-
sian statistics R(3d) ∼ N1/2a(ℓp/a)

1/2 for ℓp ≪ R(3d) ≪

ℓp(ℓp/a) and SAW statistics R(3d) ∼ N3/5a(ℓp/a)
1/5 for

R(3d) ≫ ℓp(ℓp/a).

In two dimensions the effect of excluded volume is
much stronger, resulting in full swollen chains for all flexi-
ble polymer lengths, the two dimensional chain size being
given by R(2d) ∼ N3/4a(ℓp/a)

1/4 for any flexible chain

R(2d) ≫ ℓp.

A full swollen chain in three dimensions will cross over,
as a function of confinement distance D between its three
dimensional and its two dimensional radii according to
the scaling law R(D) = R(3d)(R(3d)/D)1/4. Confinement
will increase the effect of excluded volume, reducing thus
the range over which the chain displays gaussian statistics
by a D-dependent factor, ℓp ≪ R(3d) ≪ ℓp(D/a)1/2, a
range that vanishes as stated above for full confinement
D ∼ a.

The full analysis of the confinement of a semiflexible
chain under an adhered membrane would thus require a
combination of the results obtained for gaussian chains
with the results presented in the Appendix A, accounting
for the possible changes from gaussian to SAW statistics
as confinement increases. Such refinements are beyond
the scope of this paper where we rather develop in Sec-
tion IV a self-consistent approach for quantitatively de-
termining the shape of the confining membrane in shallow
bulges.

E. Other conformations

Fully confined polymer conformations

Purely two-dimensional polymer conformation may re-
sult from strong membrane adhesion condition. The
chain confinement term Fchain, either reduced to a scaling
estimate, or derived in the more formal way of Section IV,
cannot account for confinement sizes D,L smaller than
a characteristic length ℓp, of the size of the persistence
length of the chain. In such strong confinement cases, one
cannot accurately describe the state of the chain without
extra knowledge of its microscopic structure. We adopt
here the pragmatic view that situations with D ≤ ℓp
should be considered as fully confined polymer conforma-

tions, without presuming of any actual significant change
in the chain behavior.

In the curvature dominated regime, full confinement is
achieved by κw ≥ (Rg/ℓp)

6. In the tension dominated
regime, it is defined by γ ≥ (Rg/ℓp)

4



8

Similar considerations apply to the membrane thick-
ness ℓm that limit the use of the Helfrich elasticity
contribution to deformations obeying D,L ≫ ℓm.

Anisotropic conformations

We found no evidence that anisotropic bulge conforma-
tions could be thermodynamically favored. Membrane
deformations that do not preserve rotational invariance
seem disfavored in terms of contact area and confining
volume.

However, anisotropic, stretched chain conformations
are experimentally observed in the presence of strong,
irreversible membrane pinning [20]. Such states can be
seen as metastable, dynamically trapped conformations.

Pore formation

As a last possibility, the chain might punch a pore and
diffuse across the membrane, resulting in a flat mem-
brane, and a freely fluctuating grafted chain, see Fig-
ure (2c). This case is certainly the most thermody-
namically favorable from the point of view of the en-
ergy contributions considered so far, as both polymer and
membrane maximize their respective free-energy. How-
ever, such configuration requires a finite free-energy up
to accounting for the opening of the membrane pore that
might easily offset the energy gain of releasing both the
chain confinement and membrane deformation. Estima-
tions for the pore energy give Ep = 2πΛr, where r is the
pore size and Λ = πκ/(2ℓm) a line tension that depends
on the membrane elasticity κ and membrane thickness
ℓm [34]. For typical values of fluid bilayers the pore en-
ergy for small pores spans the range 5−20 KBT , compa-
rable to polymer confinement energies. It might be thus
possible, by finely controlling the system parameters to
prevent or to promote pore formation.

F. Membrane adhesion on decorated substrates

Studies of lipid bilayers adhesion on substrates serve
as model for real biological cell adhesion. An important
issue is to understand the adhesion properties of mem-
branes when polymer chains are grafted on the substrate,
with the purpose of mimicking real cell environment,
such as glycocalix of Gram positive bacteria [15]. Our
approach indicates clearly that the global membrane
adhesion properties should change significantly when
the mutual distance between grafted chains approaches
the patch radius L. At grafting densities approaching
σc ∼ 1/(πL2), one expects the membrane adhesion to
be suppressed, or at least strongly reduced. A related
discussion can be found in [35] for the formation of
surface micelles under confinement membranes.

IV. SELF-CONSISTENT DETERMINATION

AND PREDICTION OF SHALLOW BULGES

A. Prediction of quantitative profiles

We present in this section a self-consistent numerical
determination of the membrane shape. A solution of this
kind provides a quantitative prediction of the polymer in-
duced membrane deformation, including numerical pref-
actors.

Existing quantitative shape determination approaches,
based on a Lagrangian mechanics reformulation of the
free-energy minimization, have been extensively used for
predicting vesicle shapes under constant pressure condi-
tion [36] or homogeneous adhesion [37, 38]. The exten-
sion of this calculation to the self-consistent, inhomoge-
neous polymer induced pressure profiles requires match-
ing polymer repulsion and membrane deformation. We
present in this section an original and independent nu-
merical scheme that addresses this question, on the basis
of the elastic response function of the membrane.

The membrane shape of shallow bulges, characterized
by D ≪ L, deviates gently from the horizontal plane, jus-
tifying a Monge approximated estimate of the area incre-
ment and the mean curvature. This, in combination with
a Derjaguin approximated treatment [39] of the pressure
exerted by a confined gaussian chain, enables the quanti-
tative prediction of the shallow bulge deformations. Our
results, though restricted to the case of shallow bulges,
agree with the scaling results of Section III and may be
directly compared with experimental data (Appendix D).

We illustrate our method with the estimation of the
deformation of a phospholipid membrane induced by a
DNA chain, using some realistic adhesion values sug-
gested by Swain and Andelman [24].

B. Principles of the calculation

A shallow bulge can be parameterized by a height func-
tion h(r) measuring the elevation of the membrane rel-
ative to the substrate, at a distance r from the grafting
point. Polar coordinates (r, θ) are used, but for symme-
try reasons, the angle θ does not intervene. Both curva-
ture and surface tension free-energies can be expressed
in terms of h(r), especially when gradients of h(r) are
small, a necessary condition for shallowness. Taking into
account the inhomogeneous pressure term p(r) exerted
by the chain, one finds:

F = 2π
κ

2

∫ L

0

rdr

(

∆h(r)

)2

+ 2π
γ

2

∫

rdr

(

∇h(r)

)2

+wπL2 − 2π

∫ L

0

rdr p(r; [h(r)])h(r). (15)

The pressure term depends on the global shape of the
bulge, and, in principle, shows a functional dependence
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on the height profile: p(r; [h(r)]). For a gaussian (ideal)
chain, its determination amounts to solving a diffusion
problem, with absorbing boundary conditions (the bub-
ble shape) and an initial condition (the grafting point).
We use and present in Appendix B an approximated but
simpler expression of the pressure field p(r;D), valid for
a constant elevation D = h(0).

Our approach aims at predicting the shape h(r), given
the radius L of the bulge, the gyration radius Rg, the
curvature modulus κ and the tension γ. In principle,
the numerical value of L should be a prediction and not
an input parameter of the model. However, as far as
experiments are concerned (say e.g. optical microscopy),
the radius L of the bulge can be directly measured, while
it is certainly not the case of the adhesion energy w,
which is “conjugated” to the area πL2.

The determination of the profile is the outcome of an
iterative process. Assuming a numerical input value Din

for the height of the bulge, we compute the pressure term
p(r;Din) exerted by a grafted polymer confined between
two plates separated byDin. The mechanical equilibrium
associated to the above free energy turns out to be:

κ∆∆h(r)− γ∆h(r) = p(r;Din). (16)

This relation is then inverted, to get h(r) in terms of
p(r;Din), with the help of associated Green functions
Gγ,κ,L(r, r

′) obeying:

κ∆∆Gγ,κ,L(r, r
′)− γ∆Gγ,κ,L(r, r

′) =
δ(r − r′)

r
; (17)

with boundary conditions and analytical expressions that
are extensively described in Appendix C, leading to a
profile:

h(r) =

∫ L

0

r′dr′ Gγ,κ,L(r, r
′) p(r′;Din). (18)

The continuity equation h(r = 0) = Dout gives us a
fresh estimate of the height of the profile. The numerical
scheme . . . Di → p(Di, r) → h(r) → Di+1 . . . is then
repeated until self-consistence is achieved.

Finally, the validity of the assumption h(r) ≃ D de-
pends on how much h(r) varies in the region where some
pressure is exerted. As the range of the pressure field is
about Rg, one must check on our self-consistent solution,
that the Derjaguin criterion |h(0)− h(Rg)| ≪ D holds.

C. Minimization of the free-energy

In our numerical approach, we decided to work with
the radius L, rather than with the adhesion parameter w.
The free-energy F(T, κ, γ, L,Rg) to consider is:

F = γπ

∫ L

0

rdr

(

∇h(r)

)2

+ κπ

∫ L

0

rdr

(

∆h(r)

)2

+wπL2 + Fchain. (19)

Due to the non-vanishing curvature modulus κ, a sec-
ond derivative of the height function h(r) exists. As
h(r) is continued in the domain r > L by a flat pro-
file h(r) = 0, we must have for continuity reasons both
h(L) = 0 and h′(L) = 0. A subsequent variation of the
functional F(T, κ, γ, L,Rg) with respect to L and h(r)
and compatible with these boundary conditions gives:

δh(L) = 0

δh′(L) = −h′′(L)δL = −∆h(L)δL

δF = 2π

∫ L

0

rdr δh(r)

[

− p(r;h(r))− γ∆h(r) +

κ∆∆h(r)

]

+ 2πLδL

[

w −
κ

2
(∆h(L))2

]

. (20)

We also notice that Laplacian and second derivative at
L coincide: ∆h(L) = h′′(L). The free-energy variation
gives on the one hand the mechanical equilibrium of the
membrane κ∆∆h−γ∆h = p, and a mechanical boundary
condition w = κ[∆h(L)]2/2 on the other hand, expressing
a balance between the torque associated to the membrane
bending and the (non specific) adhesive force.

As a result, this validates our procedure of fixing first L
to determine the profile, and then associate an adhesion
coefficient parameter w to this profile. In the opposite
case of a known w, we checked that solving for L the
relation w − κ[∆h(L)]2/2 = 0 always led to a unique
solution, the value of w being rather sensitive to L.

Note that advanced concepts of differential geometry
and tensor calculus have been recently proposed [40, 41]
that enable the precise determination of torques and
stresses distributions exerted by membranes of arbitrary
conformations. This general formulation reduce to ours
in the peculiar quasi-unidimensional model discussed
above.

D. Example of profiles with fixed patch radius L or

adhesion w.

If the adhesion parameter w is fixed, and not the patch
radius L, the numerical value of L itself has to be de-
termined self-consistently. This results in a functional
relation L(w) that depends in practice on the other pa-
rameters of the problem (see Appendix D). Examples of
L(w) and w(L) correspondence are provided (Tables) as
Auxiliary Material [42].

We also provide as supplemental material a sample of
self-consistent profiles, corresponding to a wide range of
values of the curvature modulus κ, the surface tension γ
and gyration radius Rg [42].

Finally, we show in Appendix D a comparison be-
tween our scaling predictions and the outcome of our
self-consistent numerical approach.
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E. DNA chains under supported lipid bilayers

We illustrate the scaling predictions with the case of a
single DNA chain grafted on a rigid substrate. Grafting
DNA chains on surface is a routine operation, though
this may lead to surfaces possessing non trivial adhe-
sion properties. The 48502 base pairs double stranded
DNA from λ phage virus corresponds to a gyration ra-
dius Rg ≃ 0.52 µm under standard buffer conditions [20].
This values follows from the commonly accepted values
of the persistence length λp = 0.05 µm and the DNA
contour length L = 16 µm [43–45] related to the gyra-
tion radius as Rg = (λpL/3)

1/2. Taking a = 2 nm as an
estimate of a DNA chain diameter, the extension of the
gaussian scaling regime ranges between D = 0.05 µm
and D = 0.3 µm (see discussion above), for which
Fchain = T (Rg/D)2 is justified. A typical phospho-
lipid membrane curvature modulus in the liquid state
is κ = 20 kBT . Swain and Andelman suggest a value
of w = 5.1 × 10−6 J.m−2 for a supported membrane in
close contact with a smooth surface [24]. The curvature
dominated scaling regime predicts:

L = 2.8× 10−7 m

D = 1.9× 10−7 m

D/L = 0.7

F = 9 kBT (21)

It is indeed difficult to estimate the value of the sur-
face tension γ in such an adhesion experiment. The
surface tension of giant phospholipid vesicles is usually
considered as low, but may increase due to the interac-
tion with the surface. Considering the plausible estimate
γ ∼ w, the surface tension dominated regime lead to
L = D = 2.3× 10−7 m and a ratio D/L = 1. Moreover,
the criterion γL2 ≥ κ is not satisfied, as γL2/κ = 0.3.
The scaling approach suggests that the curvature domi-
nated regime is more appropriate to this case.

Observing some membrane deformation with the help
of an optical microscope, using for instance a reflection
interference contact (RICM) setup [46], ideally requires
a spatial extension of order L ∼ 1.5 µm. This would
correspond to an adhesion energy of 3. × 10−9 J.m−2,
close to the value reported in [24] for the Helfrich regime
of supported membrane adhesion.

The scaling predictions for κ = 20 kBT , γ = w =
1.9× 10−9 J.m−2 and Rg = 0.56 µm are:

L = 1.8× 10−6 m

D = 4.7× 10−7 m

D/L = 0.3

F = 1.4 kBT (22)

The ratio γL2/κ ≃ 0.07 is consistent with a curvature
dominated regime.

Our self-consistent quantitative prediction treats on
the same footing the curvature and tension dominated
regimes. Figure 5 shows the predicted bulge deformation

associated with κ = 20 kBT , γ = w = 1.9× 10−9 J.m−2

and Rg = 0.56 µm. As the numerical procedure is origi-
nally stated in terms of fixed radius L, we had to deter-
mine first the self-consistent radius L corresponding to
an adhesion parameter w equal to 3.0× 109 J.m−2, also
used in our scaling estimate. In the figure, the pressure
is represented in arbitrary units and h(r) in microme-
ters. The maximal elevation D = h(0) reaches 0.5 µm,
while the radius L is about 3 µm. The ratio D/L justifies
the Monge approximation used throughout the numerical
procedure while the condition L ≫ Rg is consistent with
our Derjaguin approximation. Such an bulge deformation
should fall within reach of optical surface interferometric
measurements such as the RICM technique.

r
0.0

0.2

0.4

0.6

0.8

1.0

h (μm)

p (a.u.)

0.0 1.0 2.0 3.0 4.0

FIG. 5. Membrane deformation profile predicted for κ =
20 kBT , γ = w = 1.9 × 10−9 J.m−2 and Rg = 0.56 µm, fol-
lowing values suggested in [24]. The pressure is in arbitrary
units.

V. CONCLUSION

We considered in this work the case of a single grafted
polymer chain surrounded by a membrane adhering onto
a flat surface. This situation is relevant for single
molecule experiments that are nowadays feasible. This
situation is also related to more general problems of mem-
brane non specific adhesion onto decorated substrates.

A scaling description of the interacting membrane,
polymer and surface system gave us estimates of the lo-
cal chain induced deformation, expressed in terms of two
characteristic lengths L (size) and D (elevation). Dif-
ferent regimes have been identified and located in a pa-
rameter space involving three dimensionless quantities,
standing for curvature, tension and adhesion energy. Be-
cause we treated the membrane as a classical, non fluc-
tuating object, we did not have to distinguish between
local and global surface tension parameters, and dealt
with a single quantity γ [47]. The different regimes that
were found are: unconfined chains, confined chains with
balloon shapes and confined chains with bulge shape.

Bulge shapes, characterized by a small ratioD/L, were
further investigated by means of a quantitative and self-
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consistent determination of the elevation profile. As-
sumptions lying behind this quantitative approach in-
clude that the chain must be gaussian (ideal) and that
its gyration radius Rg must be smaller than L (Derjaguin
approximation for the pressure field). A full set of bulge
shapes were obtained that depend on three independent
dimensionless parameters. We provided a large sample
of such bulge shapes and numerical values of L and D.

Our approach predicts that a λ-phage DNA squeezed
between a supported membrane and a smooth flat sur-
face should be associated with a suboptical wavelength
deformation L ∼ 0.2 µm, D ∼ 0.05 µm, therefore corre-
sponding to a strongly confined chain with bulge defor-
mation. Other adhesion mechanisms, involving specific
ligand-receptor bond formation could, however, be asso-
ciated with larger deformations that could be detected
using interference optical microscopy.

An interesting direction for the extension of the present
work is to investigate the relaxation dynamics of the con-
densed membrane-polymer system. For instance, one
could envision that a cigar like shape prepared from mem-
brane adhesion spreading could under the appropriate
conditions, relax back to a symmetric shape, or that a
confined bulge could diffuse laterally if the polymer end
attachment was cut.
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Appendix A: Non-ideal chains

1. Confinement of swollen chains

One considers a swollen chain in good solvent condi-
tions scaling with Flory exponent ν ≃ 3/5, its size being
given by the Flory radius RF = N3/5a. In order to
properly account for the confinement of the chain under
the different membrane bulges, we first review the chain
behavior under confinement inside a disk of radius L and
thickness D and then the confinement inside a sphere of
radius D.

Flory chains confined inside a disk of thickness

D and radius L

• For 0 < D < RF and L > R′

F = RF (RF /D)1/4,
the chain is confined vertically but not laterally,
it can be viewed as a 2d self-avoiding walk with
blobs of size D. The scaling form of the confine-
ment energy is similar to the ideal case, albeit with
a different exponent:

Fchain = T

(

RF

D

)1/ν

= T

(

RF

D

)5/3

. (A1)

• For 0 < D < RF and L0 < L < R′

F , with L0 =

RF (D/RF )
1/6, the chain is confined both vertically

and laterally, it can be viewed as a 2d SAW with
blobs of size D, laterally confined in the disk of size
L. The lower limit L0 denotes a crossover towards
a 3d, space-filling conformation of the confinement
volume. A scaling expression of the confinement
free-energy reads

Fchain = T

(

RF

D

)5/3[

1 +

(

L0

L

)4]

. (A2)

This energy has an extra dependence in L, and re-
duces to a form Tf(RF /D) when the lateral con-
finement contribution is neglected. The magni-
tude of the L dependent corrective term is small
unless L approaches the cross-over characteristic
length L0. This legitimates the approximation
Fchain ≃ T (RF /D)5/3 for L ≫ L0.

• For 0 < D < RF and L < L0, the scaling pic-
ture corresponds to a 3d space-filling packing with
blobs of intermediate size ξp < D, in the confine-
ment volume L2D. In other words, the confined
chain behave as a semi-dilute solution of screening
length ξp and energy density T/ξ3p. Integrating the
energy density over the volume of the chain pro-
vides a measure for the energy of confinement of
the chain Fchain:

ξp = D

(

L

L0

)3/2

(A3)

Fchain = T

(

R3
F

L2D

)5/4

= T

(

RF

D

)5/3(
L0

L

)5/2

(A4)

As a summary, for a chain confined inside a disk of
radius L and thickness D, there are three confinement
regimes as a function of the disk size L. At large L the
chain is only confined vertically and behaves as a two
dimensional SAW with N(a/D)5/3 blobs and blob size
D. When the disk size reaches the lateral size of the
chain R′

F = RF (RF /D)1/4 the chain becomes laterally
confined, but the lateral confinement energy is negligible
compared to the vertical confinement energy until the
chain of blobs has been fully compacted at L = L0. For
disk radii smaller than L0, the disk is homogeneously
filled with a semi-dilute solution with a screening length
ξp smaller that the confinement thickness D.

Swollen chains confined inside a sphere of

radius D

Confining isotropically a swollen chain, as it occurs in
a balloon shape membrane deformation, brings in blobs
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of intermediate size 0 < ξp < D.

ξp = RF

(

D

RF

)9/4

(A5)

Fchain = T

(

RF

D

)15/4

(A6)

The latter expression can be viewed as a special instance
of eq. (A4), with L = D.

2. Bulges with excluded volume

Restricting ourselves first to bulges with L > L0 =
RF (D/RF )

1/6 enables us to reiterate the scaling argu-
ments of eq. (6) and eq. (9) by taking instead the ex-
pression (A4) for the confinement energy of one chain
Fchain = T (RF/D)1/ν ≃ T (RF /D)5/3. This gives:

• for shallow bulges in the regime where curvature
dominates,

D ≃ RFw
−3/16κ−3/16,

L ≃ RFw
−11/32κ5/32,

F = T (wκ)5/16. (A7)

• As L decreases and becomes smaller than L0, one
gets for D < L < L0 = RF (D/RF )

1/6 and by using
eq. (A4) instead of eq. (A1)

D ≃ RFw
1/28κ−9/28,

L ≃ RFw
−13/56κ5/56,

F = Tw5/28κ15/28. (A8)

• For shallow bulges dominated by tension, up to log-
arithmic terms,

D ≃ RFγ
−3/11;

L ≃ RFγ
5/22w−1/2;

F = Tγ5/11. (A9)

• for balloon bulges dominated by surface tension,

D ≃ RF γ
−3/11;

L ≃ RFκ
1/2w−1/2;

F ≃ Tγ5/11. (A10)

with ratio D/L = γ−3/11κ−1/2w1/2.

As for the case of gaussian chains, we draw in the fol-
lowing paragraph a state-diagram to summarize the dif-
ferent configurations adopted by our membrane-polymer
system as a function of the relative importance of the
tension, adhesion and curvature reduced parameters.

3. State diagram for end-grafted swollen polymers

confined under a supported bilayer
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FIG. 6. (Color online) State diagram of the different bulge
regimes for swollen chain – see main text – in logarithmic axes.
Horizontal axis is the dimensionless curvature κ, vertical axis
is the adhesion parameter w.

The membrane tension γ, curvature modulus κ and ad-
hesion energy w, and the associated dimensionless quan-
tities κ = κ/T , w = wR2

F /T , γ = γR2
F/T constitute, as

we have seen above, the set of parameters determining
the equilibrium patch radius L and the height D that
minimize the free-energy. We adopt a method similar
to that of the gaussian chain, and compare the relative
values of D and L and the values of D and chain size
RF to draw the state diagram presented in Figure (6).
We assume as before without loss of generality, that the
tension is high γ > 1.

The first important feature in the state diagram is
the curve of equation wκ = γ16/11, a line of slope −1
in logarithmic coordinates, cutting the lnκ = 0 axis at
lnw = 16/11 ln γ. This line, shown as line number I
in Figure (6), divides the parameter space into two re-

gions, for adhesion strengths w < κ−1γ16/11. Above the
line, the elastic curvature energy dominates, L < ξ, while
below the line, curvature elasticity is irrelevant and the
energy is dominated by membrane tension, L > ξ. On
the line L = ξ.

The second important feature is the curve w = κ3/5

defined by L = L0, shown as line II in the diagram. Be-
low the line, the confined chain, can be seen as a two
dimensional chain of blobs of size D, laterally confined
within a disk of size L. Above the line, the chain of
blobs becomes compact, and the bulge is, from the scal-
ing perspective, better described by a an homogeneous
polymer solution confined in a disk of size L and thick-
ness D. A third line III defined by wκ23/13 = γ28/13

in the logarithmic representation, separates also tension
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FIG. 7. (Color online) Variation of the bulge height D and
size L as a function of the adhesion strength w in a logarith-
mic representation. a) Weak bending rigidities, κ < γ15/23.

b) Intermediate bending rigidities, γ10/11 > κ > γ15/23. c)

Strong bending rigidities, κ > γ10/11, see also Figure (3)

dominated and curvature dominated regions, on the line
one has L = ξ. The fourth line IV defined by w ≪ κ23/15

separates shallow bulges D ≤ L and balloon bubbles
L ≤ D in the domain above κ = γ15/23 where cur-
vature energy dominates. In the state diagram of Fig-
ure (6), line IV of slope 23/15 where L = D = ξw, inter-

sects the line lnw = 28/13 ln γ − 23/13 ln κ at the point
(lnκ = 15/23 ln γ, lnw = ln γ). This is also the point of
intersection of line VI, another important curve in the
diagram, separating the balloon and the shallow bulge
regimes in the domain where membrane tension domi-
nates.

The swollen state diagram has thus six distinct re-
gions, compare with the gaussian chain state diagram
that displays four regions. For all the six regions, un-
der the assumption that the membrane tension is large
enough, γ > 1, the polymer chain is always confined, i.e.
D ≤ RF . Region A corresponds thus to confined chains
(D ≤ RF ) in shallow bulges (D ≤ L). Here, the thick-
ness and patch size depend both on curvature elasticity
and adhesion strength, but are independent of tension,
D ≃ RF (κw)

−3/16 and L ≃ RFκ
5/32w−11/32. Region B

hosts vertically and laterally confined chains (D ≤ RF ,
L ≤ L0) in shallow bulges (D ≪ L). In this region,
the equilibrium D and L values are independent of γ,
L ≃ RFw

−13/56κ5/56 and D = RFw
1/28κ−9/28. Above

line VI, as for gaussian chain bulges, the neck size L is
fixed at L = ξw and the bulge size at D = RFκ

−4/15.
By crossing line V into region D, the size of the bal-
loon bulges becomes dependent of membrane tension,
D ≃ RFγ

−4/23, but the size of the patch L is still gov-
erned by the usual boundary condition balancing adhe-
sion forces and curvature torque that defines the bulge
neck size as L = ξw. This neck starts to open up at
w = 2γ close to line VI defined by w = γ that one crosses
into region E, a shallow bulge region of laterally confined
two dimensional chains, controlled by membrane tension,
where L ≃ RFγ

−5/46w−13/46 and D = RFw
1/28κ−9/28.

Below line VI the energy of lateral confinement of the
chains is negligible and one recovers the shallow bulge
height D ≃ RFγ

−3/11 and bulge size L ≃ RFγ
5/22w−1/2.

Also shown in Figure (6), the dashed lines indicate the
crossover from laterally unconfined states of the chain
below the lines to laterally confined chains. Note how-
ever that until one reaches lines II or VII, the energies
of lateral confinement remain negligible. Note also that
the minimum value γ that lines VII and VI can assume
corresponds to γ = 1. For smaller values of γ the lines
vanish from the diagram, with line I fixed for γ < 1 at
the value lnw = − lnκ. The conclusions discussed above
still hold, with the exception that in regions D, E and
F, that now merge into a single one, where the value of
the height D is kept at the constant value D ≃ RF : the
membrane tension in this case γ < 1 is not large enough
to confine the polymer chain.

As for the gaussian chains we choose to display in Fig-
ure (7) the variation of the bulge height D and size L
at constant elastic constant κ as a function of adhesion
strength w. Given the structure of the state diagram in
Figure (6), three cases need to be considered. The first

corresponds to weak elastic constants κ < γ15/23, dis-
played in Figure (7a). The figure shows that the bulge
height D is first independent of the adhesion strength,
then increases with adhesion reaching a second plateau.
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The patch size L decreases continuously except at w ∼ γ
where the so called kissing transition [29, 30] occurs.
There, the size decreases from a finite value to L ∼ ξw
within a narrow range γ < w < 2γ. The second case cor-
responds to intermediate κ values γ10/11 > κ > γ15/23,
displayed in Figure (7b), with similar variation trends
for D and L as those of Figure (7a). For stronger elastic

constants κ > γ10/11, Figure (7c) shows that although L
decrease continuously as the adhesion strength increases,
D follows a non-monotonous variation in the regime of
strong lateral confinement.

Appendix B: Determination of the pressure profile

We consider a polymer confined between two parallel
planes, located respectively at z = 0 and z = D, and
attached near the lower plane at (x = 0, y = 0, z ≃ b),
with b = 2ℓp the statistical segment length (or Kuhn
length), small compared with the separation D.

By considering an arbitrarily small deformation of the
opposite surface h(x, y) = D + ζ(x, y), one can deduce
the pressure field p(x, y) by considering the isothermal
work δW associated to this deformation, and equal to
the functional derivative of the free-energy F of the chain
with respect to the distance h(x, y):

δW = −

∫

dxdy p(x, y) ζ(x, y) =

∫

dxdy
δF

δh(x, y)
ζ(x, y).

(B1)
The calculation of the free energy F of a gaussian chain
enclosed in a finite domain proceeds from solving the
Edwards equation (or free diffusion) [18, 27],

ab

6
(∂2

x + ∂2
y + ∂2

z )G(x, y, z;N |0, 0, b; 0) =

∂NG(x, y, z;N |0, 0, b; 0), (B2)

while imposing absorbing boundary conditions
G(x, y, z;N |0, 0, b; 0) = 0 on both surfaces:

∀(x, y,N),

G(x, y, 0;N |0, 0, b; 0) = 0 and

G(x, y,D + ζ(x, y);N |0, 0, b; 0) = 0, (B3)

and with an initial condition localized on the grafting
point at N = 0:

G(x, y, z; 0|0, 0, b; 0) = δ(x)δ(y)δ(z − b). (B4)

The diffusion coefficient of the Edwards equation is
such that the gyration radius Rg of a free chain of N
monomers equals precisely Nab/6, with bond length a
and persistence b. Integration of G over the space vari-
ables (x, y, z) gives the ratio between the number of con-
figurations of a confined chain of length N and the total
number of configurations that the chain could adopt in

the absence of any boundaries. Up to a constant inde-
pendent of ζ(x, y), F reads:

F = −kBT ln

[
∫ D+ζ(x,y)

0

dz

∫

dxdy

G(x, y, z;N |0, 0, b; 0)

]

. (B5)

Following ref [48, 49], we expand G in powers of ζ, G =
G0 + G1 . . ., with G0 ∼ ζ0 ∼ 1 and G1 ∼ ζ1. G0 and G1

both obey the Edwards equation, with initial condition:

G0(x, y, z; 0|0, 0, b; 0) = δ(x)δ(y)δ(z − b)

G1(x, y, z; 0|0, 0, b; 0) = 0 (B6)

Inserting the expansion G = G0 +G1 . . . at the vicinity of
the upper boundary, one gets:

G(x, y,D + ζ(x, y);N |0, 0, b; 0) =

G(x, y,D;N |0, 0, b; 0) +

ζ(x, y)∂zG(x, y, z = D;N |0, 0, b; 0) + . . . = 0 (B7)

leading to a set of boundary conditions:

G0(x, y, 0;N |0, 0, b; 0) = 0;

G1(x, y, 0;N |0, 0, b; 0) = 0;

G0(x, y,D;N |0, 0, b; 0) = 0;

G1(x, y,D;N |0, 0, b; 0) =

−ζ(x, y)∂zG0(x, y, z = D;N |0, 0, b; 0). (B8)

The leading term G0 corresponds to an ideal chain be-
tween two parallel plates. Separating variables, G0 reads:

G0(x, y, z;n | x′, y′, z′;n′) =

G(x)(x− x′;n− n′)×

G(y)(y − y′;n− n′)×

G(z)(z, z′;n− n′), (B9)

G(x)(x− x′;n) =

√

3

2πabn
×

exp

(

−
3(x− x′)2

2nab

)

; (B10)

G(y)(y − y′;n) =

√

3

2πabn
×

exp

(

−
3(y − y′)2

2nab

)

; (B11)

G(z)(z, z′;n) =
2

D

∞
∑

j=1

sin

(

jπz

D

)

×

sin

(

jπz′

D

)

×

exp

(

−
j2π2ab

6D2
n

)

. (B12)
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The perturbative term G1 originates entirely from the
contribution of the boundaries, where G1 is explicitly
known (Dirichlet boundary condition). G1 is:

G1(x, y, z;N |0, 0, b; 0) =

−
ab

6

∫

dx′dy′
∫ N

0

dn

∂z′G0(x, y, z;N − n|x′, y′, z′ = D; 0)×

G1(x
′, y′,D;n|0, 0, b; 0) = (B13)

ab

6

∫

dx′dy′
∫ N

0

dn

∂z′G0(x, y, z;N − n|x′, y′,D; 0)×

ζ(y′, z′)∂z′G0(x
′, y′, z′ = D;n|0, 0, b; 0) (B14)

The above expression shows that the determination of the
pressure profile is subordinated to the entire knowledge
of the solution G0 of the unperturbed case. At the order
ζ, the free energy is:

F = −kBT ln

{
∫

dxdy

∫ D

0

dz G0(x, y, z;N |0, 0, b; 0) +

G1(x, y, z;N |0, 0, b; 0)

}

(B15)

≃ −kBT ln

{
∫

dxdy

∫ D

0

dz G0(x, y, z;N |0, 0, b; 0)

}

−kBT

∫

dxdy
∫ D

0
dz G1(x, y, z;N |0, 0, b; 0)

∫

dxdy
∫ D

0
dz G0(x, y, z;N |0, 0, b; 0)

(B16)

The first term can be easily calculated and leads to the
expected scaling result F ∼ kBTR

2
g/D

2 for an ideal chain
confined in the z-direction. We deduce the pressure field
p(x, y) from the second term, identifying it with eq. (B1),
to get:

p(x′, y′) = kBT
ab

6

{
∫ N

0

dn

∫∫∫

dxdydz

[

∂z′G0(x, y, z;N |x′, y′, z′ = D;N − n)

∂z′G0(x
′, y′, z′ = D;n|0, 0, b; 0)

]}

×

[
∫∫∫

dxdydz G0(x, y, z;N |0, 0, b; 0)

]

−1

(B17)

Eq. (B17) has a simple interpretation, illustrated on
Fig. 8. The pressure at an arbitrary point M’ of the
confining domain is given by the sum over all the paths
between the origin M0 of the chain and M’, and leaving
M’ for the endpoint M of the chain. This sum of paths is
weighted by a product of gradients of the Green function
associated to the domain, and normalized by a sum over
all paths between the origin M0 and M.

We now proceed with the explicit expressions provided
in eq. (B9). It is customary to retain only the first term

u

M

M'
M

0

n

N−n

Pressure at M'Normalization

M

M

0

N

FIG. 8. Schematic representation of the sum of paths leading
the inhomogeneous pressure field.

j = 1 of the Fourier sum in G(z)(z, z′;N), whenever
the ratio D/Rg is much smaller than 1, meaning that
the chain is strongly confined (lowest level, or ground
state dominance approximation). With shallow bulges
in mind, we make this approximation. The integration
over x and y of the normalized gaussian integrals is trivial
and we obtain, noting r′2 = x′2 + y′2:

∫∫∫

dxdy dz G0(x, y, z;N |0, 0, b; 0) =

4

π
sin

(

πb

D

)

exp

(

−
π2R2

g

D2

)

; (B18)

∫∫∫

dxdy dz G1(x, y, z;N |0, 0, b; 0) =

12

abD3
sin

(

πb

N

)

exp

(

−
π2R2

g

D2

)

×

∫ N

0

dn

n
exp

(

−
3r′2

2nab

)

. (B19)

The integral over n reduces to a standard expression:
∫

∞

r′2/(4R2
g
)

dy
e−y

y
= E1

(

r′2

4R2
g

)

= Γ

(

0,
r′2

4R2
g

)

, (B20)

where E1(x) and Γ(0, x) designates respectively the
integral exponential and the incomplete Gamma func-
tion [50].

Altogether, the final expression for the pressure field
associated with a bulge of height D is:

p(x, y) =
πkBT

2D3
Γ

(

0,
r2

4R2
g

)

(B21)

At the vertical of the grafting point, the pressure diverges
logarithmically with r′. This singularity, which can be
easily integrated over, and has only mild consequences
for the determination of the bulge profile. We can al-
ternatively cut-off the singularity at Γ(0, b), as the ideal
chain model breaks down on length scales smaller than
b. This regularization does not lead to any observable
numerical difference. In the opposite limit, the pressure
decays rapidly with r′, to become negligible on distances
larger than the gyration radius. Provided the height h(r)
remains close toD on such distances, we expect the paral-
lel plane approximation to be quantitatively satisfactory.
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Appendix C: Determination of the membrane

mechanical response

A rotationally invariant profile is described by a height
function h(r). In the Monge approximation, gradients of
h(r) are weak and the mechanical equilibrium requires

κ∆∆h− γ∆h = p(r) (C1)

with boundary conditions at r = L. This linear equation
can be solved by means of a Green function Gγ,κ,L(r, r

′)
such that

(κ∆r∆r − γ∆r)Gγ,κ,L(r, r
′) =

δ(r − r′)

r
. (C2)

The resulting Green function Gγ,κ,L makes it possible
to express the profile h(r) as a convolution of the pressure
field

h(r) =

∫ L

0

dr′ r′ Gγ,κ,L(r, r
′)p(r′) (C3)

but it also gives convenient expressions for its derivatives

h′(r) =

∫ L

0

dr′ r′ ∂rGγ,κ,L(r, r
′)p(r′)

∆h(r) =

∫ L

0

dr′ r′ ∆rGγ,κ,L(r, r
′)p(r′) (C4)

found in the expressions defining the free-energy.
The functionsGγ,κ,L(r, r

′) describe the elastic response
of a circular patch of membrane to a uniform force ex-
erted at a distance r′ from its center. The membrane
mechanical response results from both membrane proper-
ties and from the value of the membrane-surface adhesion
parameter. The membrane mechanical response is thus
described by the energy scale T , a characteristic length
L and two internal, dimensionless parameters κ = κ/T

and ν =
√

γL2/κ = L/ξ. The adhesion properties of the
surface-membrane interaction manifests themselves only
through L. The scaling function fulfills the following re-
quirements:

κ∆∆Gγ,κ,L(r, r
′)− γ∆Gγ,κ,L(r, r

′) =
δ(r − r′)

r
; (C5)

with two boundary conditions at r = 0:

lim
r→0

∂Gγ,κ,L(r, r
′)

∂r
= 0;

lim
r→0

∂3Gγ,κ,L(r, r
′)

∂r3
= 0, (C6)

and two boundary conditions at r = L:

Gγ,κ,L(L, r
′) = 0;

∂Gγ,κ,L(r, r
′)

∂r

∣

∣

∣

∣

r=L

= 0. (C7)

Two particular cases of interest are the opposite situ-
ations of vanishing bending modulus κ = 0 and surface
tension γ = 0. If κ = 0, we have:

Gγ,0,L(r, r
′) = γ−1 ln

(

L

r′

)

, if r < r′

Gγ,0,L(r, r
′) = γ−1 ln

(

L

r

)

, if r > r′

(C8)

we observe that the boundary conditions are less de-
manding as the second derivative at r = L does not need
to be continuous.

If γ = 0, G becomes

G0,κ,L(r, r
′) =

L2

8

((

1 +
r2

L2

)(

1−
r′2

L2

)

+

(

r2

L2
+

r′2

L2

)

ln

(

r′2

L2

))

if r < r′

G0,κ,L(r, r
′) =

L2

8

((

1−
r2

L2

)(

1 +
r′2

L2

)

+

(

r2

L2
+

r′2

L2

)

ln

(

r2

L2

))

if r > r′

(C9)
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FIG. 9. Green function Gγ=1,κ=0,L=1(r, r
′) as a function of r,

for values of r′ equal to 0.05,0.15,0.25, 0.35, 0.45, 0.55, 0.65,
0.75 and 0.85.

Figure (9) shows a set of Gγ,0,L(r, r
′) for evenly spaced

values of r′, L = 1, κ = 0 and γ = 1. The profiles are flat
for r < r′ and logarithmic for r > r′. As expected, the
membrane profile can stand a non vanishing slope near
the rim r = L of the bubble, in a situation closely related
to the well known wetting profiles. Figure (10) shows a
set of G0,κ,L(r, r

′) for evenly spaced values of r′, L = 1,
γ = 0 and κ = 1.

Whenever curvature is present the second derivative
(or Laplacian) of G with respect to r must exist. This
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FIG. 10. Green function Gγ=0,κ=1,L=1(r, r
′) as a function of

r, for values of r′ equal to 0.05,0.15,0.25, 0.35, 0.45, 0.55, 0.65,
0.75 and 0.85.

implies that both G(r, r′) and ∂rG(r, r′) vanish at r = L.

Introducing the characteristic length scale ξ =
√

κ/γ,
and dimensionless space variables x = r/ξ and x′ = r′/ξ,
the Green equation becomes

(∆2
x −∆x)Gγ,κ,L(xξ, x

′ξ) =
1

γ

δ(x− x′)

x
, (C10)

This suggest the following scaling expression for
Gγ,κ,L(r, r

′):

Gγ,κ,L(r, r
′) =

1

γ
GL/ξ

(

r

ξ
,
r′

ξ

)

=
L2

ν2Tκ
Gν(

rν

L
,
r′ν

L

)

(C11)

with ν = L/ξ =
√

γL2/κ,

∆x(∆x − 1)Gν=L/ξ(x, x
′) =

δ(x− x′)

x
, (C12)

defining a family of ν-dependent Green functions. The
factorized form of the differential operator gives a hint
for finding the four linearly independent solutions of the
fourth order linear differential equation; the two first
one are the constant and ln(x), the two others are the
modified Bessel functions K0(x) and I0(x). G(x, x′) =
α(x′)+β(x′) ln(x)+γ(x′)K0(x)+δ(x′)I0(x) if x < x′ and
G(x, x′) = α′(x′)+β′(x′) ln(x)+γ′(x′)K0(x)+δ′(x′)I0(x)
if x > x′.

The boundary x = L provides two conditions
Gν(ν, x

′) = 0 and ∂xGν(x, x
′)|x=ν = 0, from where the

ν dependence explicitly originates. The boundary x = 0
is more subtle as 0 is a singular point of the differen-
tial equation. It is not possible to enforce independently
Gν(0, x

′) and ∂xGν(0, x
′). However, because Gν is the

radial part of a rotationally invariant solution, we must
have ∂xGν(x, x

′) = ∂3
xxxGν(x, x

′)|x=0 = 0, giving an-
other two conditions.

The continuity relation at x = x′ implies Gν(x, x
′),

∂xGν(x, x
′), ∂2

xxGν(x, x
′) continuous at x = x′ and

limx→(x′+) ∂
3
xxxGν(x, x

′) − limx→(x′−) ∂
3
xxxGν(x, x

′) =
1/x′. Altogether, these eight conditions suffice for de-
termining unambiguously Gν . The result is:

Gν(x, x
′) = ln

[

ν

x′

]

+
I0(x

′)− I0(ν)

νI1(ν)
+

I0(x)

I1(ν)

[

1

ν
− (I1(ν)K0(x

′) +

K1(ν)I0(x
′))

]

if x < x′;

Gν(x, x
′) = ln

[

ν

x

]

+
I0(x)− I0(ν)

νI1(ν)
+

I0(x
′)

I1(ν)

[

1

ν
− (I1(ν)K0(x) +

K1(ν)I0(x))

]

if x > x′;

We observe that Gν(x, x
′) = Gν(x

′, x). In checking
that this Green function fulfills all the desired prop-
erties, it is useful to remember that I′0(x) = I1(x),
K′

0(x) = −K1(x), that I0 and K0 solve the modified
Bessel equation x2f ′′(x)+xf ′(x)−x2f(x) = 0 and obey
the Wronskian relation I0(x)K1(x) + I1(x)K0(x) = 1/x.

When both curvature and tension are present, the
curves depend continuously on ν and interpolate
smoothly between the two aforementioned cases ν = 0
and ν = ∞ respectively. For instance Figure (11)
presents the case ν = 1.
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FIG. 11. Green function Gγ=1,κ=1,L=1(r, r
′) as a function of

r, for values of r′ equal to 0.05,0.15,0.25, 0.35, 0.45, 0.55, 0.65,
0.75 and 0.85.
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Appendix D: Profile with fixed patch radius L and

comparison with scaling results

1. Profiles with fixed patch radius

In our presentation of the mechanical response of the
membrane, we introduced the ratio ν = L/ξ, related to
the competition between curvature and tension. Because
in our numerical determination of the profile, L plays a
prominent role at the expense of the surface energy w,
we use L as our main length scale instead of Rg. As
discussed, in the first section, the precise shape of the
bubble actually depends on three dimensionless parame-
ters. Two of them were already introduced in the course
of defining the Green functions: ν and κ. The third one
is provided by the ratio µ = Rg/L. The free-energy then
reads:

F = πκT

∫ 1

0

y dy

[

ν2(∇H(y))2 + (∆yH(y))2
]

+Fchain +
κT

2

[

∆yH(1)

]2

(D1)

Fchain = −2π

∫ 1

0

y dy
πT

2H(0)3
Γ

(

0,
y2

4µ2

)

(D2)

and the profile Hν,µ,κ(x) resulting from the minimization
is related to the true profile hγ,κ,L,Rg

(r) by

hγ,κ,L,Rg
(r) = LHν,µ,κ

(

r

L

)

(D3)

The height D of the bubble, the adhesion parameter w
and the pressure field p(r;D) all follow:

D = LHν,µ,κ(0) (D4)

w =
κT

2L2

[

∆xHµ,ν,κ(y)|y=1

]2

(D5)

p(r;D) =
πT

2L3Hµ,ν,κ(0)3
Γ

(

0,
r2

4L2µ2

)

(D6)

2. Comparison with scaling results

We compare the output of our self-consistent calcu-
lations with the scaling predictions. In the curvature
dominated regime, one has:

H(0) ≃ µ1/2κ−1/4 = D/L; (D7)

F ≃ Tκ1/2µ; (D8)

w ≃ µ3κ1/2. (D9)

In the tension dominated regime, the scaling behaviors
are

H(0) ≃ µγ−1/4; (D10)

F ≃ Tκ1/2µν = Tγ1/2; (D11)

w ≃ µ2γ1/2. (D12)

A test of these scaling relations is shown in Figure (12)
and (13).
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FIG. 12. Test of the scaling relations at large γ. The ratios
H(0)µ−1γ1/4 (labeled “h”), 0.1FT−1γ−1/2 (labeled “0.1F”)

and wµ−2γ−1/2 (labeled “w”) must tend towards a constant
at large γ, which happens for γ ≥ 100.

κ
4.0

4.5

5.0

5.5

6.0

6.5

7.0

1 10 1000.1

10 h

0.1 F
w

FIG. 13. Test of the scaling relations at large κ. The ra-
tios 10H(0)µ−1/2κ1/4 (labeled “10h”), 0.1FT−1µ−1κ−1/2 (la-

beled “0.1F”) and wµ−3κ−1/2 (labeled “w”) should go to a
constant value, as seen for κ comprised between 1 and 50.
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We provide as Auxiliary Material a selection of deformation profiles obtained with the numerical
procedure introduced in the Section IV of the main article. We also provide correspondance Tables
relating the fixed adhesion w situation and the fixed radius L situation.

I. SELECTION OF SELF-CONSISTENT

QUANTITATIVE PROFILES
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FIG. 1. Self-consistent solution for ν = 0.1, L = 1.0, T = 1.0:
from top to bottom and from left to right, κ = 0.1, γ = 10−3,
Rg = 0.1, 0.2, 0.5, 1.0; κ = 1, γ = 10−2, Rg = 0.1, 0.2, 0.5, 1.0;
κ = 10, γ = 0.1, Rg = 0.1, 0.2, 0.5, 1.0. The pressure is shown
in the same arbitrary units for all plots, as dashed lines.

The deformation profiles depend on three independant
dimensionless combination of parameters. These param-
eters, introduced in Appendix C and D, are ν = L/ξ,

µ = Rg/ξ and κ = βκ, where ξ =
√

κ/γ is the length
scale where tension and curvature contribution match.
L serves as the unit of length and kBT as the unit of
energy. Due to the large number of possible cases, we
provide only a sample of the possible self-consistent pro-
files.

Figures (1),(2) and (3) present mosaic-like sets of pro-
files obtained for ν = 0.1 (curvature dominated case),
ν = 1 (curvature and tension of same order of magni-
tude) and ν = 10 (tension dominated case, see caption

for precise values). This total of 36 pictures correspond
to a sampling of the three-dimensional parameter space
(ν, µ, κ) associated to the present problem.
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FIG. 2. Self-consistent solution for ν = 1.0, L = 1.0, T = 1.0:
from top to bottom and from left to right, κ = 0.1, γ = 0.1,
Rg = 0.1, 0.2, 0.5, 1.0; κ = 1.0, γ = 1.0, Rg = 0.1, 0.2, 0.5, 1.0;
κ = 10, γ = 10, Rg = 0.1, 0.2, 0.5, 1.0. The pressure is shown
in the same arbitrary units for all plots, as dashed lines.

II. PROFILES WITH FIXED ADHESION w

When the adhesion parameter w is fixed, one must de-
termine the corresponding patch radius L. This amounts
to solving a non-linear relation w(L) for L. Table I pro-
vides a correspondence between the dimensionless pa-
rameters κ = κ/T , γ = γR2

g/T and w = wR2

g and the a
priori unknown ratio L/Rg. Parameters µ and ν are also
provided for completeness. Once the correspondence be-
tween w and L has been established, it is possible to refer
to Figs (1), (2) and (3) in order to find out the actual
profile. Table II gives the aspect ratio and D/L and the
adhesion parameter wL2/T in units L, T corresponding
to each triplet of parameters (κ, ν, µ).



2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

μ=0.1 ; κ=0.1

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

μ=0.2 ; κ=0.1

h

μ=0.5 ; κ=0.1

μ=1.0 ; κ=0.1

x

h

h

h

0.0 0.2 0.4 0.6 0.8 1.0

x x

μ=0.1 ; κ=1.0

μ=0.2 ; κ=1.0

μ=0.5 ; κ=1.0

μ=1.0 ; κ=1.0

0.0 0.2 0.4 0.6 0.8 1.0

μ=0.1 ; κ=10

μ=0.2 ; κ=10

μ=0.5 ; κ=10

μ=1.0 ; κ=10

h

h

h

h

h

h

h

h

FIG. 3. Self-consistent solution for ν = 10., L = 1.0, T =
1.0: from top to bottom and from left to right, κ = 0.1,
γ = 10., Rg = 0.1, 0.2, 0.5, 1.0; κ = 1.0, γ = 100., Rg =
0.1, 0.2, 0.5, 1.0; κ = 10, γ = 1000, Rg = 0.1, 0.2, 0.5, 1.0. The
pressure is shown in the same arbitrary units for all plots, as
dashed lines.

b

κ γ w L/Rg D/Rg µ = Rg/L ν

0.10 0.10 10.02 0.50 0.498 2.00 0.50

0.10 0.10 0.997 1.27 1.082 0.79 1.27

0.10 0.10 0.100 2.80 1.82 0.36 2.80

0.10 1.00 10.09 0.505 0.484 1.98 1.60

0.10 1.00 0.999 1.337 0.948 0.75 4.22

0.10 1.00 0.101 3.030 1.313 0.33 9.58

0.10 10.0 9.999 0.587 0.425 1.70 5.87

0.10 10.0 0.9996 1.79 0.673 0.56 17.9

0.10 10.0 0.1004 4.03 0.818 0.25 40.3

1.00 0.10 9.91 0.807 0.429 1.24 0.255

1.00 0.10 0.996 1.93 0.863 0.52 0.610

1.00 0.10 0.1007 4.02 1.410 0.25 0.271

1.00 1.00 10.02 0.813 0.425 1.23 0.813

1.00 1.00 1.007 1.93 0.820 0.518 1.93

1.00 1.00 0.1006 3.96 1.199 0.253 3.96

1.00 10.0 10.02 0.837 0.400 1.20 2.65

1.00 10.0 1.003 2.078 0.653 0.48 6.57

1.00 10.0 0.1006 4.37 0.805 0.23 13.8

10.0 0.10 − − −

10.0 0.10 0.998 2.825 0.635 0.35 0.28

10.0 0.10 0.1004 5.76 1.006 0.18 1.80

10.0 1.00 10.03 1.272 0.351 0.786 0.402

10.0 1.00 0.9980 2.825 0.635 0.354 0.893

10.0 1.00 0.1003 5.68 0.956 0.176 1.796

10.0 10.0 10.01 1.278 0.344 0.78 1.28

10.0 10.0 0.9999 2.818 0.577 0.36 2.82

10.0 10.0 0.1003 5.51 0.752 0.18 5.51

TABLE I. This table lists the values of L associated with
prescribed values of adhesion w.
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κ ν µ D/L wL2/T

0.10 0.10 0.10 0.3807 2.419× 10−3

0.10 0.10 0.20 0.5255 2.654× 10−2

0.10 0.10 0.50 0.6657 0.7703

0.10 0.10 1.00 0.7122 8.057

1.00 0.10 0.10 0.2646 2.190× 10−3

1.00 0.10 0.20 0.3791 1.924× 10−2

1.00 0.10 0.50 0.5515 0.2434

1.00 0.10 1.00 0.6609 1.2865

10.0 0.10 0.10 0.1585 4.734× 10−3

10.0 0.10 0.20 0.2285 4.025× 10−2

10.0 0.10 0.50 0.3371 0.4658

10.0 0.10 1.00 0.4071 2.364

0.10 1.00 0.10 0.4039 1.507× 10−3

0.10 1.00 0.20 0.5672 1.504× 10−2

0.10 1.00 0.50 0.7759 0.2791

0.10 1.00 1.00 0.8965 1.8534

1.00 1.00 0.10 0.2272 4.856× 10−3

1.00 1.00 0.20 0.3190 4.843× 10−2

1.00 1.00 0.50 0.4365 0.8987

1.00 1.00 1.00 0.5043 5.9678

10.0 1.00 0.10 0.1277 1.537× 10−2

10.0 1.00 0.20 0.1794 0.1535

10.0 1.00 0.50 0.2455 2.8484

10.0 1.00 1.00 0.2836 18.913

0.10 10.0 0.10 0.2543 1.264× 10−3

0.10 10.0 0.20 0.3511 1.573× 10−2

0.10 10.0 0.50 0.4739 0.4481

0.10 10.0 1.00 0.5459 3.5954

1.00 10.0 0.10 0.1430 4.071× 10−3

1.00 10.0 0.20 0.1975 5.066× 10−2

1.00 10.0 0.50 0.2664 1.442

1.00 10.0 1.00 0.3070 11.58

10.0 10.0 0.10 0.0804 1.290× 10−2

10.0 10.0 0.20 0.1111 0.1605

10.0 10.0 0.50 0.1498 4.5675

10.0 10.0 1.00 0.1726 36.651

TABLE II. This table lists the values of w associated with
prescribed values of adhesion L.


