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Domain-wall topology induced by spontaneous symmetry breaking in polariton
graphene
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We present a numerical study of exciton-polariton (polariton) condensation in a staggered po-
lariton graphene showing a gapped s-band. The condensation occurs at the kinetically-favorable
negative mass extrema (K and K’ valleys) of the valence band. Considering attractive polariton-
polariton interaction allows to generate a spatially extended condensate. The symmetry breaking
occurring during the condensate build-up leads to the formation of valley-polarized domains. This
process can either be spontaneous, following the Kibble-Zurek scenario, or triggered, leading to a
controlled spatial distribution of valley-polarized domains. The selection of a single valley breaks
time-reversal symmetry, and the walls separating domains exhibit a reconfigurable topologically-
protected chiral current. This current emerges as a result of the interplay between the non-trivial
valley topology and the condensation-induced symmetry breaking.

Topological physics is now a well-developed field
taught in the Universities. It has changed our under-
standing of physical systems and brought new approaches
to their description. Topologically nontrivial crystals ac-
tually represent a significant fraction [1], and not a rare
delicate case in solid state physics. Besides the fun-
damental change of the paradigm, topological physics
also brings new applications ranging from topologically-
protected qubits [2, 3] to topological lasers [4, 5] and
optical isolators [6, 7.

In particular, staggered honeycomb lattices with two
different atoms or sites in the unit cell are imple-
mented naturally in boron nitrides [8], transitional metal
dichalcogenides [9], but also in artificial optical lat-
tices [10]. Homeycomb lattices show two Dirac valleys
called K and K’ at the corners of the Brillouin zone.
The staggering opens a gap. Each valley can be ap-
proximately described by a 2D massive Dirac Hamil-
tonian. The corresponding states are characterized by
Berry curvature, which can further be linked with a val-
ley Chern number £1/2 in both valleys respectively. The
total Chern number including both valleys is zero and a
staggered honeycomb lattice is topologically trivial as a
whole, but it can still exhibit the quantum valley Hall
effect [11, 12]. Tt consists in the formation of two states
localized at the interface between regions with opposite
staggering. Their propagation directions, determined by
the difference between valley Chern numbers [10, 13, 14],
depend on the valley.

In band properties calculations, the interactions be-
tween the particles are usually neglected. An important
question that has no general answer is how the lattice
topology combines with the many-body properties of a
quantum fluid filling it [15]. For fermions, one gener-
ally studies the behavior of the Fermi surface, particu-
larly such effects as Fermi arcs in Weyl semi-metals [16].
In the simplest approximation, the Fermi surface is ob-
tained by filling the single-particle states with electrons,

neglecting their interactions, justified by the Pauli ex-
clusion principle [17]. Strongly interacting fermions in
topological flat bands are promising for fractional quan-
tum Hall effect [18-20]. Regarding bosons, the formation
of a Bose-Einstein condensate in a lattice leads to spec-
tacular topological effects [21]. A condensate can occupy
a single-particle state, allowing to calculate the topology
of its weak excitations (bogolons) [22-24] to probe the
interactions-driven topological transitions [25-27]. Other
situations include the formation of purely non-linear so-
lutions (e.g. solitons) [28-30], often bifurcating from lin-
ear topological states [31-33]. In these cases, the topol-
ogy of the lattice is inherited by the non-linear states
[23, 31, 34].

Beyond the inheritance of the lattice properties, the
quantum fluid can bring in its own topology, reinforcing
the protection [35]. The topology of the bosonic quan-
tum fluid is due to the phase of the wavefunction, whose
winding number is a topological invariant [36]. It plays
an important role in the Kibble-Zurek mechanism [37—
39] (KZM), which consists in the formation of domains
of the order parameter during second-order phase tran-
sitions, such as the Bose-Einstein condensation. These
domains then decay into topologically-protected defects,
whose density can be measured. The walls, separating
these domains, can also behave as topological defects [40],
lasting as long as the domains they surround.

In this work we show how the combination of lattice
topology with the properties of an interacting bosonic
quantum fluid leads to chiral currents in polariton con-
densates. We study polariton condensation in a uniform
staggered honeycomb lattice (without quantum valley
Hall interface). Condensation is kinetically favored in
the negative mass K and K’ states at the top of the va-
lence band. We consider attractive polariton-polariton
interactions allowing a spatially homogeneous conden-
sate. Spontaneous symmetry breaking by phase fluctua-
tions creates valley-polarized spatial domains for the con-



densate wavefunction. The domain size is correctly de-
scribed by a mean-field Kibble-Zurek scaling exponent.
The domain walls, appearing as stable topological de-
fects, separate valley-polarized domains characterized by
opposite valley Chern numbers. We also show that one
can locally trigger condensation in a given valley, thus
controlling the spatial distribution of valley-polarized do-
mains. Because of the valley polarization, the reconfig-
urable domain walls sustain a single unidirectional mode,
contrary to the quantum valley Hall interfaces. The non-
linear wavefunction of the domain wall and the corre-
sponding topological one-way currents are analytically
described by a solution similar to a Jackiw-Rebbi [41]
soliton. At longer times, the system evolves towards a
single valley-polarized domain.

We consider a patterned microcavity under non-
resonant pumping. The pattern forms a staggered honey-
comb lattice with different energies on the A and B sites
and a trivial gap at the Dirac point. The patterning
of honeycomb and other lattices is now well-established
[42-45]. The Dirac cones have been observed in polari-
ton graphene [42; 46], and the topological edge states
were evidenced experimentally [47]. Condensation has
already been observed in polariton graphene at various
points of the dispersion [42, 47, 48]. In particular, con-
densation at the Dirac point, with a gap opened by an
applied magnetic field, was observed in Ref. [47]. This is
also supported by recent theoretical studies [49].

We simulate polariton relaxation and condensation
under non-resonant pumping using the Gross-Pitaevskii
equation with lifetime, energy relaxation, and saturated
gain [42, 50]:

0 h?
O = (1= i) At gl Y

ot
+ (Uo+Ur+iv(wlf) =) w+x (O

Here, m is the polariton mass, g is the polariton-polariton
interaction constant, Uy is the potential forming the stag-
gered honeycomb lattice of polariton graphene with dif-
ferent site radii, Ug is the repulsive potential of the reser-
voir. (]1|?) is the saturated gain term [51]. T is the
polariton decay time, x is the noise describing the spon-
taneous scattering from the excitonic reservoir, and A
characterizes the efficiency of the energy relaxation [52].
We solve Eq. 1 numerically, choosing the parameters of a
typical polariton graphene lattice [42, 53]. This equation
was successfully used to describe polariton condensation
at the I'" point at the top of the s-band [42] (negative
mass states) and to study the KZM at the bottom of
the band [54]. The state where the condensate forms
depends on the condensation parameters such as the life-
time of the states and on the energy relaxation efficiency
[55-57]. The latter can be controlled via the detuning
(determining the excitonic fraction) and via the spot size
[58, 59].
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FIG. 1: (a) Contour plot of the lattice potential showing a
honeycomb unit cell (black dots) with sites A (magenta cir-
cles) and B (blue circles). (b) Dispersion of the polariton
graphene showing a gap at the K point. (c) Spatial distri-
bution of intensity corresponding to a single valley K. d)
Condensed state in the reciprocal space exhibiting high in-
tensity at the K points of the Brillouin zone.

We begin by examining the properties of the linear
states of the lattice. We take A = g = v = 0 in (1).
We consider a narrow Gaussian wavepacket as an initial
condition and Fourier-transform the solution ¥ (r,t) to
obtain the dispersion |¢(k, E)|?. Fig. 1(a) shows the real
space image of the confinement potential (black lines)
with the sites A and B (magenta and blue) forming the
unit cell (black dots). Fig. 1(b) shows a cut of the disper-
sion centered at the M point, with a gap at the K points.
Its size is controlled by the difference of the radius of the
sites A and B. Panel (c), similar to panel (a), shows
the particle density | x (z,y)|? of the eigenstate at the
K point at the top of the lowest energy band. The two
sites A and B are marked with white lines. For the valley
extrema at the top of the valence band, [¢4]? > |[¢p|?
because of the staggering. The specific microcavity plat-
form [60] allows a full experimental access (both in de-
tection and excitation) to eigenstates both in real and
reciprocal space through angular, spatially, energy- and
time-resolved spectroscopy [42, 61].

We now study the polariton relaxation and condensa-
tion in this lattice. To simulate condensation, we consider
a stationary spatially homogeneous pumping and exci-
ton distribution providing the gain .. We then solve
Eq. (1) versus time. We consider attractive polariton-
polariton interactions (¢ < 0). Because of the negative



mass mesy < 0, these attractive interactions become ef-
fectively repulsive. An attractive polariton-polariton in-
teraction can show up as a result of the interplay between
the reservoir and condensate dynamics [62] or from the
polariton Feshbach resonance [63, 64] related to the bi-
excitons, which can be accessed by changing the exciton-
photon detuning. (See [65] for the more usual case of re-
pulsive interactions.) For a particular set of parameters
[53], it is possible to obtain condensation at the Dirac
points, as confirmed by the momentum space distribu-
tion of the condensate immediately after its formation
(t ~ t.) shown in Fig. 1(d).

This is explained by the decay rates (Fig. 2(a)), aver-
aging the linear eigenstates over k at each energy. The
radiative decay in Eq. (1) reads I' = T'g + ' where
Ty related to the losses through the cavity mirrors is
energy-independent. I'g (black points), proportional to
the intensity of the field at the surfaces of the pillars, is
energy-dependent. The related losses are due to disorder
[42, 66] and to the suppression of radiative emission by
destructive interference [67]. The anti-symmetric states
at the top of bands have a smaller decay via these surface
losses. The other sources of decay are scattering thermal-
ization processes, taken into account by the A coefficient
in Eq. (1), which scale linearly with the energy of the
states [52, 54] (red points). The sum of both rates is
plotted in green: it exhibits a minimum at the top of
the first band, favoring condensation at the degenerate
K and K’ points.

Condensation occurs in the K and K’ states at the top
of the valence band, because these states show the longest
lifetime (see Fig. 2(a)). Phase fluctuations present during
the dynamical condensation process provoke local sym-
metry breaking. This leads to the formation of valley-
polarized domains separated by domain walls (Fig. 2(b))
at t = t.. At longer times t > t., the valley-polarized do-
mains change size, to finally form a single valley-polarized
domain. The valley selectivity is driven by the net gain
efficiency: a single valley provides a higher gain and
smaller losses than a superposition of valleys [65].

This dynamics can be studied in single-shot experi-
ments. Moreover, using a Hanbury Brown-Twiss con-
figuration [65], it is possible to measure valley correla-
tion degree V(r — 1/,t) as a function of time in periodic
pulsed experiments with a long pulse duration [56]. The
simulated V (r — 1/, t), averaged over 20 periods and over
250 x 250 detection regions r and 7’ is shown in Fig. 2(c).
At t = t., valley correlation drops to 0.5 (no correlation)
at the scale of 30 wm, while at ¢ = ¢, + 1.5 ns only a
slight decrease is seen at 50 pm. This increase of the
valley coherence indicates the growth of the average do-
main size, accompanied by the decrease of their number.
Figure 2(d) shows the time evolution of the mean con-
densate density and of the number of domains. The final
valley polarization achieved (K or K') is randomly cho-
sen for each experiment. This long-time result is similar
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FIG. 2: a) Decay rates in polariton graphene (black - ra-
diative, red - relaxation, green - total); b) Valley-polarized
domains in real space; c¢) Valley correlation degree for ¢ =
te,te + 1 ns,te + 1.5 ns (black, red, blue); d) Number of do-
mains and total particle density as functions of time; e) The
domain size scaling with quench parameter (black dots with
error bars) with a power law fit (red line); f) Scaling of the
decay rate at the band edge (black dots) with a power law fit
(red line).

Ref. [49].

The formation of domains in second-order phase transi-
tions is described by the Kibble-Zurek mechanism, where
the quench time is controlled by the normalized pumping
density 7, Y~ (%0 = Yerf)/Vers, Where g is the reser-
voir gain controlled by the pumping and ~.sy is its crit-
ical value, below which the condensation does not occur
[54, 68]. The dependence of the size of valley-polarized
domains versus the quenching parameter [39] is shown in
Fig. 2(e). It follows a power law decay with a scaling ex-
ponent n = —0.34 £ 0.03. Each point is averaged over 7
simulations, with error bars representing the standard
deviation. In the mean-field approximation the KZM
scaling exponent for the domain size reads:

v
1+ zv

n=—(D—d) (2)
where D = 2 and d = 1 are the space and domain wall
dimensionalities. zv is the dynamical scaling exponent,
given by the energy dependence of the total decay rate at
the band edge (Fig. 2(a)). Figure 2(f) shows the decay
rate as a function of energy [69]. Its scaling is 2.1 4+ 0.3,
consistent with a dynamical scaling exponent zv = 2.
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FIG. 3: (a) Two valley-polarized domains (false color shows
the valley polarization) with a boundary (white dashed line)
exhibiting a localized one-way current (black arrows). The
effective fields of the two occupied valleys with opposite wind-
ings are shown with black arrows in the white rectangle. (b)
The wavefunction components across the interface: numerics
(dots) and analytical ansatz (lines); (¢) Seeded condensation
scheme; (d) Seeded domain stability.

Together with the critical exponent v = 1 appearing due
to the linear dispersion of the Dirac cone [54], this gives a
mean-field KZM scaling exponent n = —1/3, in excellent

J

agreement with numerical simulations (Fig. 2(e)).

We now study the domain walls, where the continuity
of the condensate wavefunction needs to be ensured. Fig-
ure 3(a) shows the quantum-mechanical current (arrows)
together with valley polarization (false color), plotted for
a particular realization of the condensate. No net current
is flowing through the sites within the domains, while the
domain wall (white dashed line) clearly carries a net up-
ward current.

This one-way interface current with deep topological
roots is qualitatively similar to the well-known chiral
Jackiw-Rebbi [41, 70] interface state. In the classical
Jackiw-Rebbi case, the topology of each region is deter-
mined by the mass sign, and its change guarantees the
existence of the interface state. In our case, the Hamilto-
nian on both sides of the domain wall is the same (and de-
scribes both valleys), it is the wavefunction, which is the
solution of the non-linear Dirac equation, which changes
its valley polarization across the domain wall. The do-
mains and the domain walls are therefore dynamical ob-
jects capable of evolution. However, the origin of chirality
is the same in both cases, as shown below.

The spatial image in Fig. 3(a) shows the interface and
the distribution of the effective field in the two valleys
with opposite windings (the arrows inside the white rect-
angle). This system can be described with a 4 x 4 block-
diagonal Hamiltonian composed of two 2D Dirac Hamil-
tonians with opposite winding. Including the on-site in-
teractions (valley-isotropic, but site-dependent), the ex-
plicit stationary non-linear Dirac equation reads:

At gl +ofw [ he(-2 i) 0 B B
hc(+a%—i(%) A+ glE| +g wg’f 0 % e %
0 0 A+g|w§}2+g\w§’\2 he(+2 - i) ﬁ\; N ;ﬁj
0 0 hc(—a—ia%) —A+ g|vE [ + gluk i ’ l
3)

where A is the mass term due to the graphene stagger-
ing, identical for both valleys, and ¢ is the on-site in-
teraction constant. Far from the interface, the valley-
polarized condensate wavefunctions are given by 9., =
(1,0,0,0)7 and 9¢_o = (0,0,1,0)7. These boundary
conditions are induced by the spontaneous symmetry
breaking during the condensation. Exactly at the in-
terface, all 4 components have to be non-zero in order to
satisfy Eq. (3).

We find that the solution of the non-linear Dirac equa-
tion (3) with two valley-polarized regions and a domain
wall between them can be written as |[¢) =~ (1/2 +

(

azr,1/2,1/2 — ax,1/2)" exp(ik,y). This solution is valid
to the first order in = and k, near x = 0 (see [65] for de-
tails), with a = A/hc (the inverse Compton wavelength,
recently associated with the quantum metric [71]) and
E = A+g/2+ hcky (with A < 0 and g < 0). It is
shown in Fig. 3(b) with lines (color corresponds to the
wavefunction components), together with the points, ex-
tracted from the wavefunction of the numerical experi-
ment shown in Fig. 3(a). Their good agreement confirms
the validity of the analytics.

From E(k,), we obtain the group velocity +c along
the y axis. Its well-defined sign indicates a one-way state.



The opposite direction is forbidden [65]. The opposite be-
havior of ¢§ and " across the domain wall is possible
thanks to the opposite valleys winding (+0/0z in (3)).
The constant sign of 9/dy provides a single direction for
the current along the interface. We thus conclude that
the chiral localized current along the domain wall solu-
tion of the non-linear Dirac equation has the same origin
as the chiral interface state in linear Dirac equation with
inverted mass (Jackiw-Rebbi): the opposite topology on
both sides of the interface. Its localization length is de-
termined by the gap size [ = 1/a = hc/A.

These valley-polarized domains can be created in a
controlled way, by seeding the condensation with probes
specifically exciting K and K’ points in adjacent regions,
as shown in Fig. 3(c). The resulting regions are stable
over hundreds of picoseconds, as confirmed by Fig. 3(d),
showing the valley polarization degree at t. + 200 ps.
This is long enough to allow one-way information trans-
fer along the interface (thanks to the high group veloc-
ity), after which the system can be reconfigured [65]. In-
terestingly, valley condensation can be observed even in
non-patterned cavities [72].

To conclude, we have shown that condensation can oc-
cur at the Dirac points in staggered polariton graphene.
Under homogeneous pumping with repulsive effective in-
teractions, valley-polarized domains form via the Kibble-
Zurek mechanism. Stable domain walls between such do-
mains are carrying topological one-way currents. They
can be created in a controlled way for applied purposes.
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