
HAL Id: hal-03586196
https://hal.science/hal-03586196v1

Submitted on 23 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation and Analysis of Nonlinear Model
Predictive Controller on Embedded Systems for

Real-Time Applications
Saket Adhau, Sayli Patil, Deepak Ingole, Dayaram Sonawane

To cite this version:
Saket Adhau, Sayli Patil, Deepak Ingole, Dayaram Sonawane. Implementation and Analysis of Nonlin-
ear Model Predictive Controller on Embedded Systems for Real-Time Applications. ECC 2019, 18th
European Control Conference, Jun 2019, Naples, Italy. pp3359-3364, �10.23919/ECC.2019.8796118�.
�hal-03586196�

https://hal.science/hal-03586196v1
https://hal.archives-ouvertes.fr

Implementation and Analysis of Nonlinear Model Predictive Controller

on Embedded Systems for Real-Time Applications

Saket Adhau1, Sayli Patil1, Deepak Ingole2, and Dayaram Sonawane1

Abstract— Today, various nonlinear programming problem
(NLP) solvers and C/C++ code generation frameworks are avail-
able as open source for solving nonlinear model predictive
control (NMPC). Almost all the solvers are written in C/C++ code
which are more compatible for the PC-based simulation envi-
ronment. These codes are not directly compatible for embedded
implementation and real-time control. An attempt has been
made to address this shortcoming by creating a customized
framework on top of the C code generated from ACADO

Toolkit to make it directly compatible with ARM based
embedded platforms. The study also analyzes the embedded
implementation aspects using C code generated for qpOASES,
qpDUNES, and HPMPC solvers from ACADO Toolkit. We
show the results of hardware-in-loop (HIL) simulations with
detailed analysis and comparison of memory requirement
and achievable sampling time for three benchmark dynamical
systems on different embedded platforms viz ARM Cortex
M3, PYNQ FPGA and Raspberry Pi. The results show that
qpOASES outperforms as compared to the other two solvers
when the computational time is of prime importance for small
prediction horizon. Similarly, when there are limited on-chip
memory resources, qpDUNES can prove beneficial.

Index Terms— Nonlinear model predictive control, optimiza-
tion solvers, embedded systems.

I. INTRODUCTION

Model predictive control (MPC) has been consistently

used in both, industries and academic research [1]. MPC has

an inherent potential to handle multi-objective/multi-variable

problems, dealing explicitly with hard constraints as well

as economic and safety considerations. The prevalent use

of linear model predictive control in control tasks has been

well established and the nonlinear model predictive control

(NMPC) looks like an intriguing solution for highly nonlin-

ear control tasks. NMPC captures all the natural nonlinear

dynamics and constraints of the model and outperforms

as compared to linear MPC. This potential can only be

fully utilized when all the nonlinear process dynamics and

constraints are explicitly defined in the controller [2], [3],

[4].

The blooming development in the optimization area has

made room for many nonlinear solvers and C/C++ code

generation tools. These tools are highly efficient, reliable and

feasible for real-time online optimization with sampling time

in milliseconds and microseconds range [5].

However, computationally challenging applications like

autonomous vehicles, unmanned aerial vehicles, fast-

1 Department of Instrumentation and Control Engineering, College of
Engineering Pune, Shivajinagar 411005, India {adhauss17.instru,
patilsd17.instru, dns.instru}@coep.ac.in

2 University of Lyon, IFSTTAR, ENTPE, Lyon 69120, France
deepak.ingole@ifsttar.fr

changing dynamic systems, etc., require real-time implemen-

tations. The code generation tools such as Casadi [6], IPOPT

[7], PANOC NMPC [8], and AutoGenU for Mapple in [9]

are excellent for PC-based environment but not as suitable

and ready to port for embedded implementation. Tools such

as FORCES PRO [10] and ODYS [11] are commercially

available for embedded implementation of NMPC.

On the other hand, ACADO Toolkit [12], is a general-

ized framework for various automatic control and dynamic

optimization along-with built in NMPC. This is a self-

contained object-oriented C/C++ code, which comes with the

MATLAB user interface and is available as open source

under GNU lesser general public license1. The toolkit gen-

erates highly efficient C/C++ code but it is generally library

dependent. Several authors have validated the reliability of

the ACADO Toolkit C/C++ code in PC-based simulations

with sampling time in microsecond range [13]. The previous

works [14], [15], [16] shows the implementation of NMPC

with computational time results obtained from PC-based

simulations. The author [17] implemented C/C++ code from

ACADO Toolkit on RaspberryPi which is an OS-based

embedded platform.

Features like high-performance architecture, flexible pe-

ripheral connectivity, analog support, and low power con-

sumption makes ARM based processor a suitable choice in

various industrial applications. ARM based controllers are

restricted by the available memory and clock frequency.

FPGA is one of the possible solutions for high memory

and speed demanding applications. Due to features like

parallelism and optimal performance, FPGA is proven to be

the most probable choice for applications like image pro-

cessing, telecommunication, military & aerospace, medical

electronics, automotive etc.

In this paper, NMPC for real-time control is implemented

on Atmel ARM Cortex M3 micro-controller which has

limited resources in terms of clock and memory. ACADO

Toolkit generates a s-function which is compatible with

MATLAB simulations but not with embedded devices. For

HIL co-simulations on Atmel ARM, we have modified the

s-function so as it can be easily ported on embedded devices.

Similarly, we have validated the results on RaspberryPi

and Xilinx PYNQ FPGA for models with large memory

requirements. Extending the work, we have also performed

detailed analysis of memory utilization and sampling time for

different solvers available in ACADO Toolkit for different

problem size.

1http://acado.github.io/

mailto:adhauss17.instru@coep.ac.in
mailto:patilsd17.instru@coep.ac.in
dns.instru@coep.ac.in
mailto:deepak.ingole@ifsttar.fr
http://acado.github.io/

II. NONLINEAR MODEL PREDICTIVE CONTROL

MPC as a constrained finite-time optimal control (CFTOC)

problem for reference tracking is represented as,

min
x(.),u(.)

∫ t0+T

t0

1

2

(

||x(t)− xref(t)||2Q + ||u(t)− uref(t)||2R

)

dt

+ ||x(t0 +T)− xref(t0 +T)||2P, (1a)

subjected to following constraints for all t ∈ [t0, t0 +T]

x(t0) = x̂0, (1b)

ẋ(t) = f (x(t),u(t)), (1c)

umin ≤ u(t)≤ umax, (1d)

xmin ≤ x(t)≤ xmax. (1e)

with initial condition x(t0) ∈ R
n. The term (1a), is the

cost function and T > 0 is the prediction horizon. The cost

function is weighted by Q� 0,P� 0, and R≻ 0. The function

f in (1c) describes the nonlinear dynamics of the system in

ordinary differential equations (ODE) form which depends

on the input signal u(t) ∈ R
m. The x̂0 is the current state

estimate in (1b) and t0 is the current time. The input is

bounded by umin and umax. The time varying states and

control references are xref and uref, respectively, see [18], [19,

Chapter 2].

III. ACADO FOR NMPC PROBLEM FORMULATION AND

CODE GENERATION

This section briefly describes the low level C/C++ based

numerical methods employed to solve the NLP at each real-

time iteration.

The ACADO Toolkit includes a variety of algorithms

for dynamic optimization, state and parameter estimation,

and automatic control. The toolkit exports highly efficient

C/C++ code for NMPC. There are numerous user accessible

settings for defining the NMPC problem and achieving

the desired performance. The ACADO Toolkit-MATLAB

interface is used to generate customized C code which can

be readily ported onto the embedded devices. Some of the

basic steps while problem formulation and code generation

are discussed below:

A. Real-Time Iteration Scheme

Nonlinear model predictive control algorithm is compu-

tationally expensive task because it needs to solve CFTOC

problem (1a) at each sampling instant. In recent years, many

algorithms have been proposed which reduce computational

complexity [13], [18], [20]. Real-time iteration (RTI) scheme

is one of the most efficient approaches among the available

algorithms. RTI scheme for fast NMPC implementation was

first introduced [21]. For a quick feedback of the NMPC to

the process, RTI executes merely one sequential quadratic

programming (SQP) iteration per time step.

RTI divides the computation task into two phases, prepa-

ration and feedback phase. Preparation phase includes lin-

earization and generation of feedback approximation func-

tion and is the most expensive step. Feedback phase rapidly

solves the sub-problem to obtain an approximate solution.

The time required to feed control inputs to the real process

depends on how fast quadratic problem (QP) is solved.

B. Restrictions to use RTI Scheme

While using the RTI scheme in real-time applications,

some factors might lead to failure of the algorithm [13]:

1) Infeasibility: The cost function in (1a), subjected to

state and inequality constraints is vulnerable to two types

of infeasibilities. The nonlinear optimization problem might

itself be infeasible or the underlying SQP-type algorithm can

become infeasible.

2) Instability: Assuming the QP is feasible for all prob-

lems, the closed-loop system might still become unstable.

As we have finite prediction horizon, closed-loop system is

susceptible to instability. Adding weights on the cost function

and/or zero terminal constraints removes this instability.

C. Nonlinear Model and OCP Formulation

Using the MATLAB interface, nonlinear dynamics of the

model were added in the form of f . All the case studies

have been studied with prediction horizon, T = 5 and same

control horizon.

D. Solvers Used

Solvers require to solve the parameterized dynamic opti-

mization problems simultaneously for obtaining an optimal

control law at each sampling time. Convex QP solvers

are used in ACADO Toolkit for solving optimal control

problems. In this study, solvers have been selected in con-

sideration with the realization of embedded NMPC to run

in a real-time scenario. The following factors were the main

criteria for selection of the solvers.

• Performance and numerical stability considering the

safety aspects so as to run with limited resources and

the ability to use single precision arithmetic for the

microcontroller,

• Structure of the C-code, minimum library dependence,

and code portability,

• Ability to terminate the solver early in order to obtain

a feasible but suboptimal solution for the real-time

applications,

• Ability to hotstart the QP for fast receding horizon

control.

The listed embedded solvers are used in this study

and are also supported by ACADO Toolkit code gen-

eration. The solver option can be set by using the com-

mand mpc.set(’QP_SOLVER’).

• qpOASES: This is an open source C++ -based implemen-

tation of online active set strategy proposed in [22] for

solving QP problems.

• qpDUNES: This is a plain C-code compiling to C90

standards making it feasible to port the code on various

embedded platforms, see [23].

• HPMPC: Defined as the high-performance implemen-

tation of solvers for NMPC, currently interior-point

method (IPM) and alternating direction method of mul-

tipliers (ADMM) solvers are supported in this with the

ability to select the target architecture in configuration

file [24].

E. Code Export

As discussed above, ACADO Toolkit can

generate highly efficient C-code for solving nonlinear

MPC using Real-time iteration (RTI) and Gauss-

Newton Hessian approximation. For code export,

mpc.exportCode(’export_NMPC’) is used. The

generated code is exported in export_NMPC folder

consisting of solver, integrator code and a test file.

MAKEFILE is also provided to facilitate the compilation

process. ACADO Toolkit also gives liberty to set compiler

flag options for target specific code generation. Also, the

solvers allow to set their own compiler flags to cater the

user needs. In all the cases we use single precision (32-bit),

which is done using ’USE SINGLE PRECISION’.

Printing of all the NLP solver information is disabled by

’PRINTLEVEL’,’NONE’.

IV. EMBEDDED IMPLEMENTATION OF NMPC

In the following sections we describe the NMPC working

scheme, used embedded hardware, and case studies which

have been implemented and the methodology to implement

on embedded hardware.

A. NMPC Framework

The Fig. 1 shows the basic closed-loop control strategy

for obtaining the optimal control value by using nonlinear

optimization solver or NLP [25].

Integrator
NMPC

NLP Solver Plant

State

Estimator

Nonlinear

Plant Model

Discrete

Model

Newton’s

Method

exref

Constraints

Cost Function

yu⋆

−
+

Fig. 1. Closed-loop NMPC scheme.

B. Embedded Hardware Used

We have used three different hardware for NMPC im-

plementation and HIL simulation purpose. Each device has

it’s own significance for its selection and usage. We have

experimented from basic 32-bit ARM microcontroller to

high functioning PYNQ FPGA board. The study aims to

implement NMPC in real-time on true embedded devices as

otherwise shown in previous works on PC [16].

1) Atmel ARM Cortex-M3: Atmel’s ARM Cortex-M3 is a

true 32-bit microcontroller running at 84MHz is a preferred

microcontroller in embedded automotive applications. It has

512kB of program memory and 96kB of SRAM. Fig. 2 illus-

trates HIL implementation flow on ARM using S-Function

in MATLAB and Simulink.

ACADO

Toolkit

MATLAB

Simulink

ARM

Board

NMPC

problem formulation

Auto-generation

of NMPC algorithm

in C/C++

Create Simulink

S-Function

Software-in-the-loop

testing/verification

Compile NMPC

algorithm on

ARM board

Hardware-in-the-loop

testing/verification

Fig. 2. HIL design flow of NMPC algorithm on ARM.

2) Xilinx PYNQ FPGA: PYNQ is abbreviated as Python

productivity for ZYNQ. Talking about the hardware, the

core of PYNQ is Xilinx ZYNQ system on chip (SOC)

XC7Z020−1CLG400C with dual-core ARM Cortex-A9 pro-

cessor running at 450MHz and 630kB. The Artix-7 family

programmable logic contains 13300 logic slices, each with

four 6-input lookup tables (LUTs) and 8 flip-flops (FFs). In

addition, it also provides 220 DSP blocks and 630kB of fast

block RAM [26]. We are using the dual-core ARM on this

device.

3) RaspberryPi: RaspberryPi is SoC featuring 64-bit

quad-core ARM Cortex-A7 processor which runs at 1.2GHz

with 1GB RAM. This is mostly preferred by hobby enthu-

siasts and is easy to use.

C. Case Study I: Position Control of Hovercraft

As the case studies, we have considered three nonlinear

models having different number of states and control inputs.

One of the models is position control of hovercraft which

is a six state model having two control inputs with bounds

on input. We applied NMPC to this model for state tracking

and obtained closed-loop HIL simulation results on PYNQ

board. The mathematical model and the values of physical

parameter of this model are taken from [27]. The hovercraft

has two propellers which are fed with DC Motor. The center

of mass is denoted by (x,y) and θ denotes the attitude angle

of the hovercraft as shown in Fig. 3. The generated thrust

by the propellers are u1 and u2, r is the length between the

center line of the hovercraft and the thrusters, M is the mass

while I is the inertia of the model.

The differential state equation dx
dt
= ẋ= f (x,u), is obtained

from equations of motion in x direction,
dy
dt

= ẏ = f (y,u) is

the equations of motion in y direction and dθ

dt
= θ̇ = f (θ ,u)

denotes as attitude angle. Neglecting the aerodynamic forces

for simplicity, the continuous time equations governing the

nonlinear dynamics of the model having the states X =
[x,y,θ , ẋ, ẏ, θ̇]T and input vectors U = [u1,u2]

T are given as

follows:

dẍ

dt
=

cosθ (u1+ u2)

M
, (2a)

dÿ

dt
=

sinθ (u1+ u2)

M
, (2b)

dθ̈

dt
=

(u1− u2)r

I
. (2c)

θ

y′

xh

yh

x′(x,y)

u1r

P

u2

x

y

0

Fig. 3. A schematic of the hovercraft.

TABLE I

VALUES OF PARAMETERS USED IN HOVERCRAFT MODEL.

Parameter Value Unit

Mass (M) 0.974 kg

Inertia (I) 0.0125 kgm2

Length (r) 0.0485 m

The objective function for the hovercraft model is formu-

lated as follows:

min
x(.),u(.)

∫ t0+T

t0

1

2

(

||x(t)||2Q + ||u(t)||2R
)

dt + ||x(t0 +T)||2P (3a)

subject to,

− 0.121 ≤ u1(t)≤ 0.342, (3b)

− 0.121 ≤ u2(t)≤ 0.342, (3c)

where xref =
[

0 0 0 0 0 0
]

.

D. Case Study II and III: Motor and Quadrotor Model

For further analysis, we have chosen two more models for

implementation and comparison purpose.

1) Motor Model: Speed control of the DC motor has been

done using NMPC. The nonlinear DC motor model has been

taken from [28] [29, Chapter 2]. The DC motor model is of

two states with bounds on input and state variables.

2) Quadrotor Model: Attitude and position control of

the quadrotor has been done using NMPC. The nonlinear

quadrotor model is taken from [30], [31]. The model is highly

nonlinear consisting of nine states and four control input with

bounds on inputs and state variables.

V. NMPC PERFORMANCE COMPARISON

NMPC closed-loop HIL simulation have been performed

in three case studies. The results of case studies are analyzed

using different solvers on various embedded platforms. It is

significant to note that in the literature, the performance of

controllers on considered case studies have been presented

for PC based simulation environment. But, in this work

we are presenting the results of NMPC implemented on

embedded systems. The work intends to show effect of the

change in number of states and the resource utilization of

embedded optimization solvers.

NMPC closed-loop simulation performed on PYNQ as

shown in Fig. 5. The figure shows the simulation results

for the hovercraft model with horizon length, T = 5 and

sampling time, T s = 500ms and the initial conditions as

x0 =
[

−0.25 0.35 0 0 0 0
]

. Considering the above

settings optimization problem was solved using qpDUNES

embedded optimization solver. We observed minimum and

maximum RTI execution time to be 902 µs and 940 µs,

respectively with the size of executable file as 97 kB. This

shows real-time implementation of NMPC scheme is feasible

on embedded devices for varying problem size.

Table. II and III, shows the detailed analysis of compu-

tational time and memory requirements NMPC implementa-

tion. It can be clearly seen that, increasing the problem size

results in increased memory requirements and computational

time. Due to memory restrictions, large problem size could

not be implemented on Atmel ARM where it throws the error

of memory overflow and due to that we are not able to record

the RTI time. It can also be inferred, computational time is

typically low for condensing solver (qpOASES) compared to

the sparse solver such as qpDUNES and HPMPC.

However when the prediction horizon increases, qp-

DUNES and HPMPC perform better than qpOASES as

stated earlier. Also, code memory does not seem to change

noticeably with increase in prediction horizon. These results

motivates to select appropriate solver and embedded platform

to meet the requirements. For result validation, we analyzed

NMPC performance for randomly generated NLP problems

and implemented them on PYNQ FPGA. Every NLP prob-

lem was built with a random model while increasing the

state variables which resulted in typical sizes for the intended

NMPC applications. The generated NMPC were tested on

above NLP solvers. Fig. 4 illustrates the results of variation in

TABLE II

NMPC C/C++ PROGRAM MEMORY REQUIREMENT IN (kB) WITH T = 5.

Embedded Platforms Atmel ARM PYNQ FPGA Raspberry Pi

Solver
No. of States

2 6 9 2 6 9 2 6 9

qpOASES 352
Memory

overflow

146 163 180 164 184 198

qpDUNES 298 81 97 115 100 120 140

HPMPC 389 252 277 300 300 332 284

TABLE III

NMPC RTI AVERAGE TIME IN (µs) WITH T = 5.

Embedded Platforms Atmel ARM PYNQ FPGA Raspberry Pi

Solver
No. of States

2 6 9 2 6 9 2 6 9

qpOASES 242

Not available

139 721 2770 150 769 3330

qpDUNES 305 233 928 3090 237 1190 3580

HPMPC 350 189 789 2860 255 832 3370

TABLE IV

VARIATION IN AVERAGE RTI TIME IN (µs) WITH CHANGE IN PREDICTION HORIZON(T) FOR HOVERCRAFT MODEL (2)

Embedded Platforms PYNQ FPGA Raspberry Pi

Solver
Prediction Horizon (T)

3 5 10 3 5 10

qpOASES 473 721 1545 530 769 1670

qpDUNES 542 928 1152 680 1190 1229

HPMPC 559 789 1356 702 832 1310

NMPC memory requirements with an increase in the number

of states.

VI. CONCLUSIONS

The work shows the real-time implementation of NMPC

on embedded systems and its performance evaluation using

ACADO Toolkit code generation. The work shows de-

tailed investigation of various NLP solvers implemented for

different problem size in terms of memory and time profiling

for one real-time iteration of NMPC. We also presented

the closed-loop simulation results for the hovercraft model

on PYNQ FPGA board. The work aims at contributing

towards feasible real-time implementation of NMPC in com-

plex control tasks and proves to be a promising solution.

Future work will attempt to write a customized wrappers

on top of generated C/C++ codes of NMPC to improve

its memory requirements and sampling time for real-time

control applications.

ACKNOWLEDGMENT

We gratefully acknowledge the support from R & D center

of the COEP. Deepak Ingole would like to thank for a

financial contribution from the ERC under the European

Unions Horizon 2020 research and innovation program (grant

agreement no. 646592 MAGnUM project).

REFERENCES

[1] X. Yang, D. W. Griffith, and L. T. Biegler, “Nonlinear programming
properties for stable and robust NMPC,” IFAC-PapersOnLine, pp. 388–
397, 2015.

[2] D. Kouzoupis, R. Quirynen, J. Frasch, and M. Diehl, “Block con-
densing for fast nonlinear MPC with the dual newton strategy,” IFAC-

PapersOnLine, pp. 26 – 31, 2015.

[3] F. Xu, H. Chen, W. Jin, and Y. Xu, “FPGA implementation of
nonlinear model predictive control,” in The 26th Chinese Control and

Decision Conference (2014 CCDC), 2014, pp. 108–113.

0 10 20 31 41 51 61 72 82 92
41

333

625

917

1210

1502

1794

2087

2379

2671

qpOASES qpDUNES HPMPC

Fig. 4. Effect of change in problem size for various solvers.

0 10 20 30 40

-0.1

0

0.1

0.2

0.3

0 10 20 30 40

-0.1

0

0.1

0.2

0.3

0 10 20 30 40

-0.5

0

0.5

0 10 20 30 40

-0.2

-0.1

0

0 10 20 30 40

-0.1

0

0.1

0.2

0.3

0 10 20 30 40

0

0.5

1

0 10 20 30 40

0

0.1

0.2

0.3

0 10 20 30 40

-0.2

-0.1

0

0.1

Reference States Inputs

Fig. 5. HIL simulation results of NMPC implemented on PYNQ FPGA
board.

[4] R. Findeisen and F. Allgöwer, “An introduction to nonlinear model
predictive control,” in 21st Benelux Meeting On Systems And Control,

Veidhoven, 2002, pp. 1–23.

[5] J. Mattingley and S. Boyd, CVXGEN: A code generator for embedded

convex optimization, 1st ed. Springer, 2012.

[6] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi - A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, 2018.

[7] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, pp. 25–57, 2006.

[8] L. Stella, A. Themelis, P. Sopasakis, and P. Patrinos, “A simple and
efficient algorithm for nonlinear model predictive control,” in Decision

and Control (CDC), 2017 IEEE 56th Annual Conference on. IEEE,
2017, pp. 1939–1944.

[9] T. Ohtsuka, “A tutorial on C/GMRES and automatic code generation

for nonlinear model predictive control,” in 2015 European Control

Conference (ECC), 2015, pp. 73–86.
[10] A. Domahidi and J. Perez, “FORCES PRO ACADEMIC,” 2014.
[11] G. Cimini, A. Bemporad, and D. Bernardini, “ODYS QP Solver,”

ODYS (https://odys.it/qp), 2017.
[12] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit - An Open

Source Framework for Automatic Control and Dynamic Optimization,”
Optimal Control Applications and Methods, pp. 298–312, 2011.

[13] B. Houska, H. J. Ferreau, and M. Diehl, “An auto-generated real-
time iteration algorithm for nonlinear MPC in the microsecond range,”
Automatica, pp. 2279 – 2285, 2011.

[14] N. Duijkeren, T. Keviczky, P. Nilsson, and L. Laine, “Real-time
nmpc for semi-automated highway driving of long heavy vehicle
combinations,” 5th IFAC Conference on Nonlinear Model Predictive

Control NMPC 2015, pp. 39 – 46, 2015.
[15] R. Verschueren, S. D. Bruyne, M. Zanon, J. V. Frasch, and M. Diehl,

“Towards time-optimal race car driving using nonlinear MPC in real-
time,” in 53rd IEEE Conference on Decision and Control, 2014, pp.
2505–2510.

[16] M. Vukov, W. V. Loock, B. Houska, H. Ferreau, J. Swevers, and
M. Diehl, “Experimental Validation of Nonlinear MPC on an Overhead
Crane using Automatic Code Generation,” in The 2012 American

Control Conference, Montreal, Canada., 2012.
[17] R. Quirynen, K. Berntorp, and S. Di Cairano, “Embedded optimization

algorithms for steering in autonomous vehicles based on nonlinear
model predictive control,” in 2018 Annual American Control Confer-

ence (ACC). IEEE, 2018, pp. 3251–3256.
[18] M. Vukov, A. Domahidi, H. J. Ferreau, M. Morari, and M. Diehl,

“Auto-generated algorithms for nonlinear model predictive control on
long and on short horizons,” in 52nd IEEE Conference on Decision

and Control, 2013, pp. 5113–5118.
[19] A. Grancharova and T. A. Johansen, Explicit nonlinear model pre-

dictive control: Theory and applications, 1st ed., ser. Lecture Notes
in Control and Information Sciences 429. Springer-Verlag Berlin
Heidelberg, 2012.

[20] B. Khusainov, E. C. Kerrigan, A. Suardi, and G. A. Constantinides,
“Nonlinear predictive control on a heterogeneous computing platform,”
in IFAC-PapersOnLine, 2017, pp. 11 877 – 11 882.

[21] M. Diehl, H. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and
F. Allgöwer, “Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations,” in
Journal of Process Control, 2002, pp. 0959–1524.

[22] H. Ferreau, H. Bock, and M. Diehl, “An online active set strategy to
overcome the limitations of explicit MPC,” International Journal of

Robust and Nonlinear Control, pp. 816–830, 2008.
[23] J. V. Frasch, S. Sager, and M. Diehl, “A parallel quadratic pro-

gramming method for dynamic optimization problems,” Mathematical

Programming Computation, 2013.
[24] G. Frison, H. H. B. S⊘rensen, B. Dammann, and J. B. J⊘rgensen,

“High-performance small-scale solvers for linear model predictive
control,” in 2014 European Control Conference (ECC), 2014, pp. 128–
133.

[25] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient numerical
methods for nonlinear MPC and moving horizon estimation,” in
Nonlinear model predictive control. Springer, 2009, pp. 391–417.

[26] “PYNQ,” http://www.pynq.io/home.html.
[27] Y. Shimizu, T. Ohtsuka, and M. Diehl, “Nonlinear receding horizon

control of an underactuated hovercraft with a multiple-shooting-based
algorithm,” 2006 IEEE Conference on Computer Aided Control System

Design, 2006 IEEE International Conference on Control Applications,

2006 IEEE International Symposium on Intelligent Control, pp. 603–
607, 2006.

[28] V. Sankardoss and P. Geethanjali, “Parameter estimation and speed
control of a PMDC motor used in wheelchair,” Energy Procedia, vol.
117, pp. 345–352, 2017.

[29] R. Krishnan, Electric motor drives: modeling, analysis, and control.
Prentice Hall, 2001.

[30] M. Hehn and R. D’Andrea, “A flying inverted pendulum,” in 2011

IEEE International Conference on Robotics and Automation, 2011,
pp. 763–770.

[31] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and
control,” in IFAC Proceedings Volumes, 2011, pp. 1485 – 1491.

View publication statsView publication stats

https://odys.it/qp
http://www.pynq.io/home.html
https://www.researchgate.net/publication/332510781

	INTRODUCTION
	Nonlinear Model Predictive Control
	ACADO for NMPC Problem Formulation and Code Generation
	Real-Time Iteration Scheme
	Restrictions to use RTI Scheme
	Infeasibility
	Instability

	Nonlinear Model and OCP Formulation
	Solvers Used
	Code Export

	Embedded Implementation of NMPC
	NMPC Framework
	Embedded Hardware Used
	Atmel ARM Cortex-M3
	Xilinx PYNQ FPGA
	RaspberryPi

	Case Study I: Position Control of Hovercraft
	Case Study II and III: Motor and Quadrotor Model
	Motor Model
	Quadrotor Model

	NMPC Performance Comparison
	CONCLUSIONS
	References

