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We consider the following decision problem DMAX#SAT, and generaliza-
tions thereof: given a quantifier-free propositional formula F (x,y), where x,y

are tuples of variables, and a bound B, determine if there is x such that
#{y | F (x,y)} ≥ B. This is the decision version of the problem of MAX#SAT:
finding x and B for maximal B.

Theorem 1. DMAX#SAT is ∃PP-complete.

Proof. It is in ∃PP: it is well-known that taking (F,B) as input and checking
if #SAT(F ) ≥ B is in PP.

Take a problem in ∃PP. It can be reformulated as: take input x, choose
nondeterministic bits y, construct a formula F (x, y) with N(x, y) variables,
and check that #{z ∈ {0, 1}N(x,y) | F (x, y)(z)} ≥ 2N(x,y)−1. The condition
F (x, y)(z) can also be reformulated as ∃z′ G(x, y, z, z′) where G simulates the
action of the Turing machine that produces F (if necessary by using temporary
values in z′) then the semantics of the formula over z. The result follows.

Torán [1, theorem 4.1 (ii)] showed that ∃PP = NP
#P; actually, a generaliza-

tion of this. However, prior to becoming aware of that result, we had worked
out another proof, which we present here.

The following gadgets enables us to transform multiple equality tests over
model counts #SAT(F1) = C1 ∧ . . . ∧#SAT(Fm) = Cm into a single equality
test over model counts.

Definition 1. Let F and G be two quantifier-free propositional formulas with
m and n variables respectively. Without loss of generality, we assume these
variables to be x1, . . . , xm and x1, . . . , xn. Let φm,n

2 (F,G) be the following
formula over m+ n+ 2 variables:

(F (x1, . . . , xm) ∧ ¬xm+1 ∧ . . . ∧ ¬xm+n+2) ∨ (G(x1, . . . , xm) ∧ xm+1) (1)

By |F | we denote the size of a formula as the number of its Boolean operators,
and by #SAT(F ) we denote the number of its models.

Lemma 1. |φm,n
2 (F,G)| = |F | + |G| + n + 3. Furthermore, #SAT(F ) and

#SAT(G) are respectively the remainder and quotient of #SAT(φm,n
2 (F,G)) by

2n+1.
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Definition 2. Let F0, . . . be propositional formulas with n variables. Let

φn1 (F0) = F0, φ
n
k+1(F0, . . . , Fk) = φ

kn+2(k−1),n
2 (φk(F0, . . . , Fk−1), Fk).

Lemma 2. |φnk (F0, . . . , Fk−1)| =
∑

i |Fi|+(k−1)(n+3). Furthermore, #SAT(Fi)
is the digit of order i (starting with i = 0) of the decomposition of #SAT(φm,n

2 (F,G))
in base 2n+1.

The following gadget will be used to add a number of models to an existing
formula:

Definition 3. Let Mn
c (x0, . . . , xn−1), where 0 ≤ c ≤ 2n, be the formula that

specifies that
∑

i 2
ixi ≤ c.

Lemma 3. |Mn
c | is linear in n, and #SAT(Mn

c ) = c.

The following gadget will be used to turn an equality test on the number
of models of a formula into a “greater than or equality” inequality test on the
number of models of another formula:

Definition 4. Let F be a propositional formula over n variables, and 0 ≤ ∆ ≤
2n− 1. Let ψn(F ) be the formula over 2n+ 1 variables

F (x1, . . . , xn)∧((¬F (xn+1, . . . , x2n) ∧ ¬x2n+1) ∨ (Mn
2∆(xn+1, . . . , x2n) ∧ x2n+1))

(2)
Let Kn

∆ be the polynomial Kn
∆(X) = X(2n −X + 2∆).

Lemma 4. |ψn(F )| has size linear in |F |, and #SAT(ψn(F )) = Kn
∆(#SAT(F )).

Furthermore, Kn
∆(#SAT(F )) ≥ Kn

∆(2
n−1 + ∆) if and only if #SAT(F ) =

2n−1 +∆.

Theorem 2. ∃PP = NP
PP[1] = NP

PP = NP
#P.

Proof. Inclusions from left to right are trivial. We shall now prove that NP#P is
included in ∃PP by transforming a nondeterministic Turing machineM deciding
a problem D(x) in time P (|x|) with a #SAT oracle into an equivalent decision
procedure in ∃PP.

We proceed in steps:

1. M calls the oracle at most P (|x|) times, over formulas of P (|x|) variables,
and the outputs of each oracle call may be used for computing the inputs to
further oracle calls. Instead, we transform the machine to nondeterminis-
tically choose all inputs F1, . . . , FP (|x|) and candidate outputs to the oracle
calls (#SAT), and then only at the end we verify that the candidate out-
puts C1, . . . , CP (|x|) match the real outputs #SAT(F1), . . . ,#SAT(FP (|x|))
(we reject otherwise).

2. We replace these calls by a single call to #SAT(φ
P (|x|)
P (|x|)(F1, . . . , FP (|x|))),

and a single verification that the output V of this call matches the candi-
date outputs C1, . . . , CP (|x|) according to the decomposition in Lemma 2.

3. We replace this call and equality test #SAT(φ
P (|x|)
P (|x|)(F1, . . . , FP (|x|))) = Y

by a single call to #SAT and an inequality test as follows. Let n be the

number of variables of φ
P (|x|)
P (|x|)(F1, . . . , FP (|x|)). Two cases:
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• Y ≥ 2n−1, then write Y = 2n−1 +∆. Then we replace the equality

test by an inequality test #SAT(ψn(φ
P (|x|)
P (|x|)(F1, . . . , FP (|x|)))) ≥ Kn

∆,

according to Lemma 4.

• Y < 2n−1, then write Y = 2n−1 − ∆. Then we replace the equal-

ity test by an inequality test #SAT(ψn(¬φ
P (|x|)
P (|x|)(F1, . . . , FP (|x|)))) ≥

Kn
∆, according to Lemma 4.

4. We have thus reduced the procedure to the nondeterministic (possiblyfail-
ing) construction of a pair (G,B) followed by a test #SAT(G) ≥ B. This
test is well-known to be complete for PP.

Corollary 1. DMAX#SAT is hard for the polynomial hierarchy.

Proof. Obviously, P#P ⊆ NP
#P, and the former class is hard for the polynomial

hierarchy by Toda’s theorem.

Remark 1. The above lemmas and theorems consider quantifier-free proposi-
tional formulas over a number of free variables. In fact, we can use arbitrary
predicates with a certain number of free variables: for instance, take inputs
x1, . . . , xn, and return true or false depending on whether a certain polynomial-
time nondeterministic Turing machine parameterized by x1, . . . , xn has an ac-
cepting run or not. Equivalently, we could consider predicates of the form
∃z1, . . . , zp F (x1, . . . , xn, z1, . . . , zp). We then obtain the result ∃PNP = NP

#NP.
By going with classes of predicates arbitrarily high in the counting hierarchy,

we obtain the general theorem [1, theorem 4.1 (ii)]: for any class K is the

counting hierarchy, ∃PK = NP
PK[1] = NP

PK = NP
#K .

This result is not limited to the counting hierarchy, it is appropriate for
classes of predicates stable by certain operations (conjunction, disjunction, con-
junction with extra propositional inputs. . . ).
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