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Abstract

We study the Gross-Pitaevskii equation in dimension two with periodic conditions in
one direction, or equivalently on the product space R x Ty where L > 0 and Ty, = R/LZ.
We focus on the variational problem consisting in minimizing the Ginzburg-Landau energy
under a fixed momentum constraint. We prove that there exists a threshold value for L below
which minimizers are the one-dimensional dark solitons, and above which no minimizer can
be one-dimensional.

1 Introduction

We are interested in the Gross-Pitaevskii equation
00 = AV + U (1 - [T). (GP)

In Physics, this equation is a classical model for Bose-Einstein condensates, superfluidity or
supraconductivity [12} [14]. It also gives account of the propagation of dark solitons in nonlinear
optics [13].

Our attention in this paper is devoted to the case where the spatial domain is the product space
R x Ty, where L > 0 and Ty, = R/LZ, so that ¥ = ¥(z,y,t) : (R x Ty) x R — C. Solutions
of the 1D Gross-Pitaevskii equation can of course be considered as solutions in this 2D setting
with a trivial dependence on the y variable.

Dark solitons are special solutions of the 1D Gross-Pitaevskii equation. They are travelling waves
of the form
Uz, t) = uc(z — ct),

where ¢ is any subsonic speed, i.e. |c| < v/2. Their profile u.. is solution to the ordinary differential
equation

icu, +ul + (1— [uc[*)u. =0, (1)
and is explicitly given by the expression

92— 2
uc(z) = < tanh <

i< 2)
V2
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For ¢ = 0, the profile 1y vanishes and the corresponding soliton is called the black or kink soliton.
The other solitons are called grey solitons.

Variational characterizations of the dark solitons were proved in [I, [3]. These characterizations
are based on two conserved quantities. The first one is the 1D Ginzburg-Landau energy

Bw) =g [ WP+ [ (=P, Q0

which is the Hamiltonian of the Gross-Pitaevskii equation. Corresponding to this energy is the
energy set

X(R) = {6 € Hyo(R) : 0/ € L(R) and 1 - |y]* € L2(R)} 4
which provides the natural functional framework for analyzing the equation.

The second one is the momentum P, which is formally defined as
1 o
P(,l/}) = 5 <Z¢ 7¢>C7
R

where, here as in the sequel, the notation (z1, 22)c := Re(z122) stands for the canonical scalar
product on the two-dimensional real vector space C. The expression of P(1)) above certainly
makes sense if ¢/ is compactly supported, but it is generally ill-defined for arbitrary ¢ € X (R)
due to the possible lack of integrability of the momentum density (i7)’, )¢ at infinity. It was
shown in [3] (see also Appendix [Al below) that a notion of momentum can be rigorously defined
on the whole energy set X (R) provided its value is understood in the quotient space R /7Z. It was
called the untwisted momentum in [3], and denoted by [P]. Whenever )’ has compact support,

it holds
1

Pl() = 5

/<i¢',¢>c modulo 7.
R

The characterization of the dark solitons on the line can be phrased as follows:

Proposition 1 ([I, B]). Let p € R/7Z, p # 0. The minimizers of the variational problem
I(p) == inf{E(¥) : ¥ € X(R) st. [P](y)) =p} (5)

are exactly the dark soliton u., and the function obtained from u., by translation and constant
phase shift. The value ¢, € (—V/2,V/2) is characterized by [P](uc,) = p.

In the context of the Gross-Pitaevskii equation on the product space R x Tp, we consider the
vector space

HL (R x Tp) := {v e Hpo(R?) : ¢ is L-periodic with respect to its second variable y}. (6)

For our analysis, it is convenient to work on a fixed domain independently of L. For that purpose,
we write T instead of T;, when L = 1, and given a function ¢ € H (R xT) and a real parameter
A > 0, we introduce the rescaled version of the Ginzburg-Landau energy given by

1

Baw) =g [ (0l +X0R) + 5 [ (-1wp) (7)

Up to a multiplicative factor A, the rescaled energy FE)(v¢) is equal to the Ginzburg-Landau
energy of the function ¥y (z,y) = 1(z, A\y) on the product space R x T, where L = 1/\.

Corresponding to the rescaled Ginzburg-Landau energy F) is the energy set

XRxT)={¢pe Ho(RxT):Vip € L* R x T) and 1 — |9|* € L* (R x T)}. (8)



The untwisted momentum [P] along the direction x can be extended to X(R x T) (see Appen-
dices [Bl and [C]). When 0,1 has compact support, it satisfies the identity

[P](¥) = %/R T(iaﬂbﬂb}c modulo 7.

For p € R/7Z, we next consider the minimization problem under constraint
T(p) = inf { EA(¥) : ¥ € X(R x T) sit. [P]() = p}. (9)

Our main result is

Theorem 1. Let p € R/nZ. There exists A, > 0 such that the following statements hold.
(i) For any A > Ay, the minimal value Zy(p) is equal to

Zx(p) = 3(p).

The dark soliton u., is a minimizer of the corresponding minimization problem. When X > X,
it 1s the unique minimizer up to translation and phase shift.

1) For any 0 < A < A\p, the minimal value Zy(p) satisfies
P

Zx(p) < 3(p),

and there does not exist any minimizer depending only on the variable x.

Note that, when 0 < A < A,, Theorem [Il makes no claim about the existence of minimizers for
Zx(p), it only asserts that potential candidates must be truly two-dimensional. The fact that
minimizers do exist in such cases will be the object of a future work.

Note also that our arguments do not prevent the possible existence of a truly two-dimensional
minimizer for A = \,,.

We have stated Theorem [l in the case of the spatial domain R x T. With minor modifications,
the proofs carry over to the case of R x T?, and presumably also to R x M where M is any
compact Riemannian manifold of dimension d < 2.

Linear transverse instability of solitons for a number of dispersive models, including the Gross-
Pitaevskii equation, was proved by F. Rousset and N. Tzvetkov in [16] (see also [15] for the general
Hamiltonian framework concerning nonlinear transverse instability). In particular, although they
did not consider their variational characterization, it follows from [16, Theorem 3.3] that given
a dark soliton u,,, there exists A, > 0 such that 1., is not a minimizer for Z) when A = A, /k for
some k € N*.

In the next section we sketch the main arguments in the proof of Theorem I We follow a
strategy developed by S. Terracini, N. Tzvetkov and N. Visciglia [17] in the different context of
the nonlinear Schrodinger equations on product spaces. In Section Bl we provide the full details
of our proofs. A number of properties and ingredients related to the energy spaces X (R) and
X (R x T) as well as the untwisted momentum [P], which we found of independent interest, are
gathered in Appendices [Al [B] and

2 Sketch of the proof of Theorem [I]

The starting point is to check that the minimal energy Z,(p) tends to the 1D minimal energy
J(p) as A — +oo. In this limit, we show that suitable extractions of minimizing sequences



tend to the dark soliton u.,, up to possible translation and phase shift. The key ingredient of
the proof is then to check that these dark solitons are strict local minimizers of the variational
problem corresponding to the minimal energy Z,(p). In this case, the functions in the previous
minimizing sequences must be equal to a dark soliton for A\ large enough. This property is
sufficient to conclude that the minimal energy Z,(p) is exactly the energy J(p) of dark solitons.

We describe now this strategy with additional details. In a number of places in the sequel, it
is convenient to identify R/7Z with the interval (—m/2,7/2]. The first argument is to describe
the behaviour of the minimizing energy with respect to the constraint p € (—m/2,7/2]. In this
direction, we show

Lemma 2. Let A > 0 be fized. The function Iy is well-defined on (—m/2,7/2] and it satisfies
Ix(=p) = Ix(p); (10)

forany p € (—m/2,7/2). Moreover, this function is Lipschitz continuous, with Lipschitz constant
at most \/5, and it is bounded by

Za(p) < 3(p) < V2p, (11)
for any p € (0,7/2].

The identities and inequalities in Lemma Pl are based on the introduction of suitable test func-
tions. An important tool for exhibiting these special functions is the following approximation
result.

Lemma 3. Let A > 0 be fized. Given a function 1 € X(R x T), there exists a sequence (¢n)n>0
of smooth functions in X(R x T), which satisfies the following properties.

(i) Given any integer n > 0, there exist two positive numbers R and two numbers 0= for which

Ynla,y) = €7,
for any +x > +RE and any y € T.
(ii) We have

[P(¢n) = [P](¥),
for any n > 0.

(13i) We also have
Ex(¢n) = Ex(¥),

as n — o0.

With Lemma [3] at hand, we can describe more precisely the minimizing problems Zy(p) in the
limit A = +o0. Fix a number p € (—n/2,7/2], with p # 0, consider a sequence (&, ), >0 such that
en, — 0 and another sequence (\,),>0 such that A, — +o00. We can apply Lemma [3] to exhibit
a sequence (¢ )n>0 of smooth functions in X (R x T), satisfying statement (7) in Lemma [3] and
such that

[P](¢n,) =p modulo w, and  E), (¢n) < Iy, (p)+ cn, (12)

for any n > 0. This sequence allows us to obtain the following information on the limit A\, — 4o00.

Lemma 4. We have
I (p) = 3(p), (13)

and
2ol o, (14)
RxT

as n — o0.



Once we have established the convergence of the minimizing energies 7, (p) towards the 1D
energy J(p), it is natural to establish the convergence of the minimizing sequences (¢ )n>0
towards a minimizer of the limit energy. In order to achieve a strong convergence result, we show
that we can assume that the functions ), satisfy the Pohozaev identity

1 A2 1 2
s [ o= [ o [ (=) (15)
RxT RxT RxT

This identity is strongly related to the first variation of the Ginzburg-Landau energy under the
group of dilations along the x variable. More precisely, we prove:

Lemma 5. Let n > 0. There exists a positive number 7, such that the functions &, given by

fn(xay) - ¢n(7'n907y)a (16)

forany x € R and y € T satisfy

as well as the Pohozaev identity

1 A2 1 2
3 [ 1eel =2 [ ogleg [ -la)’
2 JrxT 2 JrxT 4 JrxT

In view of (), the functions &, remain smooth, belong to X(R x T) and satisfy statement
(1) in Lemma Bl It also follows from Lemma [0 that they still satisfy the conditions in (I2)).
In particular, the conclusions of Lemma Ml are available for these functions, and moreover, they
satisfy the Pohozaev identity in (IH]). Replacing the functions v, by the functions &, if necessary,
we will simply assume in the sequel that the functions v, satisfy the Pohozaev identity in (I5)).

With this identity at hand, we can establish that a subsequence of the functions 1, converges
towards a minimizer of the 1D problem J(p). More precisely, we introduce the distance d., given

by

de, (1,92)2 = || Vi1 — Vaa |5 + Hniwl — o) |3 + || (1= 1 [?) — (1 = [ea))| %,

for functions 1 and ¢ in X (R x T). In the second term, the weight 7., is given by the expression

2 — 2
ne(z) =1 —Ju(z)* = — 5 (17)
2 cosh ( 250 x)z

which is available for any |c| < v/2. We refer to Appendix [B] for more detail about the metric
structure corresponding to the distance d.,. Using this distance, we show

Proposition 6. There ezist a sequence of real numbers (an)n>0 and a number 6 € R such that
there exists an extraction ¢ : N — N for which

de, (€W p(m) (- = Ap(mys ) Ue,) = 0,
as n — oQ.

Given an arbitrary function ¢» € X (R x T), we can introduce its Fourier coefficients with respect
to the variable y,

~ 1 .
i(e) = /0 Bl y)e 2 dy,
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and decompose the function v as a Fourier series

Blay) = 3 )i,

keZ

We check that the Fourier coefficient 1&0 lies in X (R), while the difference wg = ¢ — 12)0 is in
H'(R x T). Due to the orthogonality of the functions 1)y and wp, the untwisted momentum [P]
can be extended from X (R) to X(R x T) by the expression

1

(PIw) = [P)tdo) + 5 [ (.w0,wn)e  modulo . a8)

Given any positive number «, we denote

Vp(a) := {¢ = 1o+ wo € X(R x T) s.t. " i@r)gRQ de, (€990 (- — a),u,) < a and |Jwo g < a},
(19)

where we have set as before iy(z) = Jpb(x,y)dy for any function ¥ € X(R x T). In view
of statement (i) in Lemma [B.4] we can rephrase Proposition [f] as the fact that there exists an
integer N, such that

Po(n) € Vpla), (20)

for any n > N,. Once this property is established, we show that the profile 1., minimizes the
energy F) at fixed momentum p in the open set V,(«), provided « is sufficiently small and X is
sufficiently large. More precisely, we prove

Proposition 7. Let p € (—n/2,7/2], with p # 0. There exist two positive numbers oy, and Xy
such that, given any function ¢ € Vy(ay,), with [P](¢) = p modulo m, we have

Ex(¥) > Ex(uc,) = J(p), VA > A, (21)
Moreover, equality holds in ZII) if and only if ¥(x) = e "u,, (z + a) for some a € R and 6 € R.

For Proposition [7] we use the stability properties of the solitons u., with respect to the 1D
Gross-Pitaevskii flow. In [4] 1], the orbital stability of the dark solitons was derived from the
coercivity of the functional £ — ¢,[P] in the neighbourhood of the profiles u.,. Extending this
coercivity property to the sets V,(a) for a small enough requires to control the dependence on
the variable y. For A large enough, this can be done by using the coercivity provided by the
term A? [, 0y1|* in the energy E(1). The functional E) — ¢,[P] is then coercive on the sets
Vp(a) and we obtain (2I]) when the untwisted momentum [P] is moreover fixed.

Combining (20)) and (21]), we are finally led to

Zx(p) = 3(p),
for A > X,. In view of (III), these two quantities are equal as we have claimed in statement (7)
of Theorem [I1

Before concluding the proof of Theorem [l we need to precise the behaviour of the minimal
energy Z,(p) with respect to the parameter \. In this direction, we establish

Lemma 8. Let p € (—7/2,7/2] be fized. The function A — Zx(p) is non-decreasing and contin-
uous on R, with
Ix(p) — 0, (22)

as A — 0.



With Lemma [§] at hand, we are in position to complete the proof Theorem [Il

End of the proof of Theorem [l Set A := {\ € (0,400) s.t. Z,(p) = J(p) for any u > A} and
Ap = inf A. We have just shown in Proposition [ that A is non-empty. Its infimum A, cannot
be equal to 0 due to (22). Hence, ), is positive and moreover, a minimum by continuity of the
map A — Zx(p).

Since this map is also non-decreasing, the minimal value Z)(p) is strictly less than J(p) when
0 < X < A,. Moreover, if a function ¢ € X (R x T), with [P](¢) = p modulo , only depends on
the variable z, then it follows from Proposition [ that

Ex(¥) = E(¥) = 3(p) > Ii(p)-

Therefore, a possible minimizer cannot only depend on the variable x.

When A > )\, instead, we have Zy(p) = J(p) = Ex(u,,), so that the profile u., is a minimizer of
the minimization problem (@). For A > )\, assume for the sake of a contradiction the existence
of a minimizer ¢ € X(R x T) such that Ey)(¢) = Zx(p) = J(p), [P](¢») = p modulo 7 and

/ 18,012 # 0.
RxT

M2_>‘2

For A\, < p < A, we obtain

Tu(p) < Eu(¢) = Ex(¢) +

[ ot < Baw) = 30
RxT

which contradicts the definition of the minimum J\,. Therefore, a possible minimizer cannot
depend on the variable y, so that it minimizes the 1D Ginzburg-Landau energy at fixed un-
twisted momentum. In view of Proposition [I, the profile 1., is therefore the unique minimizer
of the minimization problem (@) up to translation and phase shift. This concludes the proof of
Theorem [l O

3 Details in the proof of Theorem [

In Appendix [Al we introduce the set of non-vanishing functions

NVX(R) := {¢ € X(R) s.t. 12£|¢(x)| >0},
and show that, for ¢ = pe? € NVX(R), the momentum
1
P =5 [0
R

is well-defined and satisfies P(¢)) = [P](¢) modulo 7. This set is used throughout for the proof
of Theorem [I1

3.1 Proof of Lemma [3

Adapting the argument in [2] Lemma 3.3] we have:

Lemma 9. Let A > 0, p € R and a € R be fizred. There exists a sequence ({n)nen of smooth
functions in NVX(R) such that the functions 1, — e'* are compactly supported, and with

P(Wy)=p and Ex\(¢n) = E(yn) — V21|,

as n — o0.



This lemma relies on constructing special test functions by a scaling argument. For the sake of
completeness, we provide the following details.

Proof. We argue as in the proof of [2 Lemma 3.3]. Assume first that p is positive. Consider a
function § € C2°(R) and two positive numbers p and ¢ such that jue|0:&|| e ®r) < 1. Set

pla.y) =1 - pedatlen), O(w,y) = a+VIug(ea) and h(z,y) = pla, ),

for any (z,y) € R x T. We compute

1 21 2 2 2\ _ pre’ 2, 2 2 9
E/RMTWZW = §/RxT((3xp) T07(0:6)°) = 5 | (Bua)*p e/R (1 e 0:6)°(9:6), (23)
and

1 2 u453
;%JkW%%#(%Lﬁﬂ<mhjﬁ$mé (24)

RxT RxT

Hence, the function 1) lies in NVX (R), so that, by definition (A.5) and Lemma[C.4] its momentum
is given by

382
PO =5 [ (-Row=vaee [ @or-t [ @

RxT

We now assume that the L?-norm of the derivative 0,¢ is equal to 1 and we choose u,, = n for
a given integer n. At least when n is large enough, we can find a positive number &, such that

P(1)) = p. Moreover, we have
p
En ~ ——=,

as n — oo. In particular, we check that
pnEn — 0,

as n — 00, so that the condition fi,,[|0z€]|Lo®) < 1 is indeed satisfied for n large enough. In
view of (23) and (24]), we also obtain

Ex(¥) — V2p.
n—oo
In conclusion, the functions ¢, = 1 satisfy all the statements in Lemma [J for p positive. When
p is negative, the functions 1), = e?**1),, also satisfy these conclusions, while for p = 0 it suffices
to take 1), = 1. This completes the proof of Lemma [0 O

Combining Lemma [ with Corollary [B.5] we are now in position to complete the proof of
Lemma [3]

End of the proof of Lemmald. Going to Corollary [B.5 and Lemma [C.3] we can find a sequence of
smooth functions ¢, in X (R x T), which satisfy statements (i) and (4ii) of Lemma[3 for numbers
RF and 6, as well as

[P](4) — [P](¥), (25)

in the limit n — oco. Hence we are reduced to check that we can modify the functions v, so
that their momentum is exactly equal to the momentum of ). When these two quantities are
actually equal, we simply set ¢, = 1,,. When they are not, we invoke Lemma [@ with a = 97{ and
pn € (—7/2,7/2] such that p, = [P](¢,) — [P](1)) modulo 7. This provides a smooth function



1y, such that the function 1), — et s compactly supported in an interval of the form [—R; , R;{ ],
with P(y,) = p, and Ex(¥y,) < V2|pn|. We next set

Un(z,y) if v < RF+1,

n\ T, Y) = - ~ = ~
Ynl2:) {wn(x—R;—Rn—Q,y) ite> RY 4 1.

By construction, the function 1, is smooth, belongs to X (R x T) and satisfies statement (i) of
Lemma [Bl Moreover, it follows from Lemmas and that

[P)(¢n) = [P)(¢n) + P(dn) = [P](¥),
modulo 7. Finally, we also derive from (25 that

Ek(wn) = EA(T/;n) + Ek(l/;n) - Ex(w),

as n — oo. This concludes the proof of Lemma [Bl O

3.2 Proof of Lemma

For an arbitrary p € (—n/2,7/2], there exists at least some function in X(R) (and hence in
X (R x T)) with untwisted momentum equal to p. Indeed, if p # 0 it suffices to consider u,,, and
for p = 0 one can take a constant function with unit modulus. As a consequence, the infimum of
the minimization problem () is finite and the corresponding minimal energy Z)(p) is well-defined
on (—m/2,m/2].

Observe next that the energy F) is non-negative, so that the minimal energy 7, is also non-
negative. Note similarly that when a function ¢ € X(R x T) is decomposed as ¢ = 12)0 + wg

according to Proposition[B.I], then its conjugate 1 is given by ¢ = 1[10 +wyg. In view of Lemma[A.T]
(BJ) and (CJJ), this gives

E\(¢) = Ex(¢) and [P](¢) = —[P](v),
so that by (@), the function Z) satisfies (I0).

In order to establish (Il), we consider the minimizer u., of Proposition [l as a test function for
the minimization problem Zy(p). Since [P](u.,) = p modulo 7, we infer from Proposition [A.G
that

N

I(p) = E(u,) = = (2—¢c})2, (26)

W =

and therefore
Ii(p) < Ex(ue,) = E(uc,) = 3(p).

At this stage, consider the function = given by

(c) = g — arctan (ﬁ) - gVQ — 2, (27)

for 0 < ¢ < +/2. This function is smooth on [0,/2), with

Zc)=—-V2—-c2#£0. (28)

Since Z(c) — 7/2 as ¢ — 0, and Z(c) — 0 as ¢ — /2, the function = is a smooth diffeomorphism
from [0,/2) to (0,7/2]. Recall that ¢, was defined by the identity [P](u,) = p modulo 7. By
Proposition [A.6] we have ¢, := sign(p)c, where ¢, is the unique number in [0, v/2) such that

(1]

7T ‘p ‘p 21/2 _
5 — arctan <W> — 5(2 — Cp) / = ’p‘ (29)

9



The function p — ¢, is therefore well-defined and smooth on (0,7 /2], with

dc, 1
=TT 30
dp (2 2)/? (30)
Moreover, we also have that ¢, — /2 as p — 0. Going back to (Z0), we deduce that the function
J is smooth on (0, 7/2], with
I(p) = 0=73(0),

as p — 0, and
13 (p)| = ¢, < V2, (31)

for p € (0,7/2]. Hence we obtain that J(p) < v/2p.

We finally turn to the Lipschitz continuity of the function Z). We argue as in the proof of [2
Lemma 3.4]. Fix two numbers p and ¢ in (0,7/2], with p # ¢. Since there exists a function
1 € X(R x T) such that [P](y)) = p modulo 7, we can invoke Lemma [3] to exhibit a minimizing
sequence of smooth functions 1, for the problem Zx(p), which moreover satisfy statement (7)
in Lemma [3] for numbers Rrjf and érjf Going back to Lemma [O there also exists a sequence of
smooth functions ¥, € NVX (R) such that the function Uy, — et is compactly supported in an
interval of the form [—R;, R}], with [P](¥,) = ¢ — p modulo 7 and Ej(¢,,) — v2|q — p|, as
n — 0o. Setting

&n(x’y) if z < R: +1,

Un(z — Rt —R> —2,y) ifz>RE+1,

we check that the function 1, is smooth and belongs to X (R x T), with

Ex(tn) = Ex(¥n) + Ex(¢n).

wn(xay) = {

Moreover, we can apply Lemmas and in order to compute

1 1
[Pl(¢n) = 5 /[M (10ptbn, ¥n) e + 5 (00 = 0r) = [Pl(Wn) + [P(¥n) = ¢,
modulo 7. Hence, we obtain

Ii(q) < Ex(¥n) < EA(T/;n) + EA(TZM),

so that, in the limit n — oo,
Tx(q) < Ta(p) + V2|g — p|-

Since the numbers p and ¢ are arbitrary chosen, we can permute them in the previous inequality
and conclude that the function Zy is v/2-Lipschitz on the interval (0,7 /2].

In the general case where —7w/2 < p,q < /2, we can combine (I0) and (II]) in order to write

1Zx(a) = Ta(p)| = |Zx(lal) — Zx(Ipl)| < V2]la| — Ipl| < V2|q — pl.

Hence, the function Z) is Lipschitz continuous on (—7/2,7/2], with Lipschitz constant at most
V2. This completes the proof of Lemma 2l U

10



3.3 Proof of Lemma (4

Our starting point is inequality (II]), which gives the upper bound

Ex, (n) <T(p) + €n, (32)

in view of the second assumption in ([I2)). We next rely on formula (C.1) to obtain an easy-to-
handle expression of the momentum [P](¥,). Going back to statement (i) in Lemma B there
exist positive numbers R and real numbers 6 for which

wn(-%ﬁ y) = ew%a

for any +2 > +RF and any y € T. According to Lemma [C5], the momentum [P](¢),,) is then
given by

[P)(t6n) = p(thn) = /T pa(y)dy modulo , (33)

1

pu(y) = ) A(iamwn(x,y),wn(%y)%c dx + %(9: - 9;) = [P] (¢n(ay)) modulo T, (34)

for almost any y € T. Since the functions ), are smooth and their derivatives are compactly
supported, the functions p,, in the previous definition are well-defined and smooth on T, with

pln(y) :/R@.aan('%y)aaywn(xay)>cdx7

by integration by parts. Hence, we infer from the Cauchy-Schwarz inequality and (B2]) that

so that the Poincaré-Wirtinger inequality in 7] provides

[ =900 ey < [ )]y =0 (33)

as n — oo. At this stage, we write

2

10,0l > / Han()) dy + 20 [ (002 (36)
T

2 RxT

2
B () = [ Bnl0) dy+ 32

RxT

For p # m/2, the number ¢,(y) is the unique number in the interval (—m/2,7/2] such that
an(y) = pn(y) modulo 7. Since p(¢y,) = p modulo 7w, we can invoke BI) and (B3] in order to

obtain
3 () = 3(p)| < V2]an(y) — p| = V2 |pn(y) — p())],

for n large enough.

(37)

For p = 7/2, the number ¢,(y) is the absolute value of the unique number ¢,(y) in the interval
(—m/2,7/2] such that ¢,(y) = pn(y) modulo 7. Using the fact that the minimal energy J is an
even function, formula (B0 remains available for this definition of the numbers ¢, (y). Moreover,
we can argue as in the case p # 7/2, so as to get again

(@) = 3(3)] < V2|auw) = 5| = V2Ipaly) — plin)]

11



In view of (36]), we conclude that

E)\n(wn) > J(p) - \/§Hpn - p(wn)HLoo(T) + 7/ ‘aywrzz’
RxT
Combining with (82]) and (35), we first deduce that
2 [ ol (33)
RxT

as n — 00. Moreover, it also follows from (II)) and (I2)) that

A
’J(p) > IAn(p) > j(p) —&n — \/§Hpn - p(¢n)HLoo(qy) + 7 / ‘angz’
RxT

In view of (35]) and (B8]), this is enough to obtain the convergence in (I3) and complete the proof
of Lemma [4 O

3.4 Proof of Lemma

It is classical that the Pohozaev identity in (IH) is based on applying the scaling (x,y) — (7z,y)
for positive numbers 7. For a fixed integer n > 0, we therefore introduce the functions

§T($, y) = ¢n(7'$, y)

Using the notation of the proof of Lemma [l we check that the functions & are smooth on R x T
and satisfy statement (i) in Lemma [3] for the same numbers 6 as the function 1),,. Arguing as
for (33)), their untwisted momentum [P](;) is given by the formula

1

[P](&r) = p(&r) == B /RXT@axfT(x,y),fT(x,y))(c dx dy + %(9: — 95) modulo 7.

By definition of the functions &, and by (33]), this quantity reduces to

p(f’r) - 1/]R T<iaan(x7y)awn(x7y)>c dxdy + %(0: - 07:) - P(%) - [P](%) modulo T,

2
(39)
for any positive number 7. Similarly, we compute
1 T
o L R R (10)
2 RxT 2 RxT
and
A

1 2 1 )\2 1 2 Bn
6572+—/ 1-|&? :—<—"/ 8wn2+—/ 1—[¢, [ )::—. 41
QM\y\ 4M( - [°) Tgmly\ 4M( [¥nl”) — (41

Observe here that A, # 0. Otherwise, the function 1, would not depend on the variable z, so
that the numbers 6, and 6, would also be equal. As a consequence, the quantity p(t,) in (33)
would be equal to 0, and not to p modulo 7. Since A,, # 0, we can combine [{0) and (I to
derive that the energies F({;) are minimal for 7 being chosen as

Bn
Tn = .

Ap

12



It suffices then to set &, = ¢, in order to obtain

E(&) < E(Yn),

by minimality, as well as the Pohozaev identity

1 A2 1 2
_/ ’8$§n’2 =V Aan = _/ ‘aygn‘z + _/ (1 - ’571’2)
2 RxT 2 RxT 4 RxT

by (@0) and {I]). In view of ([39), this completes the proof of Lemma [5 O

3.5 Proof of Proposition

We go on with the notation of the proofs of Lemmas E] and Our first goal is to exhibit a
number y, € T such that, up to a possible subsequence, the functions v, (-, y.) form an almost
minimizing sequence for the 1D minimization problem J(p). In view of (34]), the untwisted
momentum [P](1,(-,y)) is equal to p,(y) modulo 7 for almost any y € T, so that our aim is to
find a number y, € T such that

pn(y«) = p  modulo m, and e, (ys«) := E(¥n(-,y«)) = I(p),

as n — oo. In this direction, we first recall that p = [P](¢,,) = p(¢b) modulo 7 by [B3). Going
back to the proof of Lemma [l and more precisely to ([BH), it follows that

pn(y) = p  modulo T, (42)

as n — oo, uniformly with respect to y € T. We similarly deduce from (37) that

/Ien(y)—ﬁ(p)ldyé/Ien(y)—ﬁ(qn(y))lder\/i/Ipn(y)—P(wn)ldy-
T T T

Since ey, (y) > J(gn(y)) by definition of the 1D minimal energy J, we infer again from (B7) that
[ len(s) =30 dy < Br,(60) = 30) + 293 [ Ipalo) = bl
Invoking (I2), (I3)) and (B5), we are led to

[ leats) = 30} dy — .
T

as n — oo. As a consequence, we can find a number y, € T such that, up to a possible
subsequence, we have

en(y) = I(p),

as n — oco. In view of ([@2), we conclude that the functions v, (-, y.) form a minimizing sequence
for J(p). In particular, we can apply the compactness results in [Il Theorem 3] and [3, Theorem
4] to this sequence. This provides a sequence of real numbers (ay,)n>0, as well as a number 6 € R,
such that, up to a further subsequence,

P Un (- — an, Ys) = e, in L (R),
1— e hn(- = an,ys)|* = 1= Jue,|* in L*(R), (43)

e Dpthn (- — anyys) — u'cp in L?(R),

13



as n — oQ.

We now extend the convergence to any number y € T. This follows from the smoothness of the
functions v,,, which guarantees that

4 . oy
et U (x — an,y) — et Un (T — apn,ys) = ew/ Oyt (z — an,y') dy'.

*

Invoking the Cauchy-Schwarz inequality, we are led to

R
it i 2
/ |e o %(w - anay) —e” wn(x - amy*)‘ dr < / laywn(x/7y/)’2 da’ dyla
-R RxT

for any positive number R. In view of (I4]) and the first convergence in ([43]), we deduce that

R
/ |ei€1/)n(x—an,y)—ucp(x)|2dx—>0,
-R

as n — oo, uniformly with respect to y € T. This is enough to guarantee that the functions
e 4, (- — ay, ) converge to the function u, in L (R x T).

At this stage, we rely on the second condition in (I2]) and the convergence in (I3]) in order to
claim that both the sequences (€ Vi, (- — an,-))n>0 and (1 — [0, (- — ap,-)|*)n>0 are bounded
in L2(R x T). Up to a further subsequence, we can find two functions = € L?(R x T) and

n € L*(R x T) such that
VY- —an,) ~Zin LR xT), and 1—|n(- —an,)> —=nin LR xT),  (44)

asn — oo. Since |z| < 1+ ‘1 - |z|2‘ for any complex number z, the sequence (€% 1y, (- — @y, ) )n>0
is also bounded in H! (R x T). Applying the Rellich theorem, we can find another function

loc
Voo € Hlloc(R x T') such that, up to a further subsequence,

€0 (- — an,-) = o in L (R x T), (45)

loc

as n — 0o, for any number 1 < ¢ < 400. Since this convergence holds for ¢ = 2, the function
Yoo is equal to u.,, and we deduce from (4] and (@5) that = = Vu., and n =1 — |u,, |*.

We now transform the weak convergences in (4] into strong convergences. We first observe that
e Oyt (- — an, ) — Oyuie, = 0 in L*(R x T), (46)

by ([I4). We next rely on the Pohozaev identity (5] in order to obtain

E)m(wn) = / |ei0 &vwn(x_anay)F dxdy
RxT

1
= )\%/ |0y |* + B / (1= [¢n(z — an,y)|2)2 dx dy.
RxT RxT

In view of (I2) and (I3)), we note that E) _(1,) — J(p) as n — co. Combining with (I4]), we are
led to

/ ‘629 8361/}71('%'_0%73/)’2 dx dy - J(p), and 5/ (1_ ’wn(x_anay)’2)2 dx dy — J(p), (47)
RxT RxT

as n — oo. We finally express the quantity J(p) in terms of the travelling-wave profile u,,.
Recall that this profile solves () with ¢ = ¢,. We multiply this equation by the derivative uép

14



and integrate it taking into account the exponential decay of the functions 1/, and 1 — [u,,|?.
P P

This gives
1 1 2
§|’~‘Icp|2 = 1(1 = Ju, )"

It is then enough to invoke Proposition [l in order to obtain

~ 1 2
I(p) = Eue,) = / [P = —/ (1 fue, ).
R 2 Jr
In view of (A7), we deduce that

Hew 8351/171( — Qnp, ')HLQ(RXT) - Hu/CPHL2(RXT)’

and
11 = [t (- — an, ')|2HL2(RxT) - Hl - |ucp|2HL2(R><’]T)’

as n — oo. Combining with (6], we conclude that the convergences in (@) are actually strong.

In order to complete the proof of Proposition [f] it only remains to establish that

i 2
/ Nep ‘ezﬁ %( — Qn, ) - uCp{ — 0, (48)
RxT

as n — 0o. Consider a positive number R and write the decomposition
; 2
/ 7701)‘629 V(- — an, ) _ucp‘ =Ir + Jg, (49)
RxT
with
‘2

Ip = / ncp‘ew Y (- = ap, ) —ue,|” =0, (50)
(=R,R)xT

as n — oo by (@3]), and

; 2
JRr = / ncp{eze wn( _ana') _ucp{
(=R,R)¢xT
Concerning this integral, we have
0 2 2
JRSQ/ ncp<2+‘e wn('_am')‘ —1+|ucp| —1). (51)
(=R,R)exT
Since 1., € L*(R x T), we infer from (d4) that
; 2 2 2
/ ey (24600 — P = 1 e [P = 1) 2 [ ey 1t 2
(=R,R)exT (—=R,R)exT

in the limit n — oo. The right-hand side of this limit can be made as small as necessary for R
large enough. Combining with (£9), (50) and (5I) is enough to complete the proof of (#8)). This
concludes the proof of Proposition O
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3.6 Proof of Proposition [7 for p # 7

The proof of Proposition [7 is based on a coercivity estimate related to the orbital stability of
the dark solitons in dimension one. The technical derivation of this estimate turns out to be
different for the grey solitons on the one hand, and the black soliton on the other hand. This
claim originates in the fact that we can use the hydrodynamical framework for handling the grey
solitons, which is no more possible for the black soliton. This is the reason why we split the
proof of Proposition [T into two parts dealing first with the case of the grey solitons for p # 7 /2.

Given a positive number «, consider a function 9 in V,(c). In view of Proposition [B.1] we can
decompose this function as ¥ = 1y + wp, with ¥y € X(R) and wy € H'(R x T). Moreover, it
follows from ([9) that ||wol||z1 < a and

: 6,7
B Ao () <

We first use this control on the function 1[10 in order to estimate the difference between the energies
E\(v) and E(1g). More precisely, we show the following inequality, which is still available for

p=m/2.

Lemma 10. Let p € (—7/2,7/2], with p # 0. There exists a positive number «, for which we
can find a positive number C, such that we have

BA(W) 2 B(o) +5 [ (10suol® + (O = Clo,unl + fuul?). (52)
for any function ¢ € V,(ayp).

Proof. The proof relies on the expansion of the energy F)(¢) in (B.)). Due to the identity

R . 1 ~ 1 2
(1ho, wo) & + wo|? (1o, wo)c + —|wol|* = ( (1o, wo)c + =|wo|?
4 2

we indeed deduce from (B.I) that

- 1

1 N
BAW) = o) 2 5 [ (0wl + ¥ioyu) — 5 [ -l (53)

Invoking Lemma [A2] we can find a positive number «,, such that, when ¢ is in V,(a,), we get
11 = 1edo(- = a)?) = (1 = fue, [*)[| o < 1.
for given numbers (a,f) € R%2. As a consequence, we obtain

1 - 1
3 [t o) < 5 (14 L=l Pl ) [l
2 JRxT 2 RxT

and we can invoke the Poincaré-Wirtinger inequality in order to find a positive number C), such

that ) ) o
o[ twoleg [ P @P <2 [ ol
2 RxT 2 RxT 2 RxT

Combining with (53]), we obtain (52]). This completes the proof of Lemma [I0l O
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Our next goal is to provide a similar control for the momentum. When p # 7/2, it follows
from (26) that the energy E(u,) is strictly less than 2/2/3. Combining ([J) and the continuity
of the Ginzburg-Landau energy E on X (R) (see Appendix [A]), we can decrease, if necessary, the
value of the number a, so that the energy E(vy) is strictly less than 2v/2/3 when 1 € V,(ay). In

view of Lemma [A.5] this guarantees that the function ¢0 lies in the non-vanishing set NVX (R)
defined in (A.Jl) below. As a consequence, the set V,(cy,) is a subset of Y(R x T) and the
momentum P in statement (4¢) of Lemma is well-defined on this set. Moreover, we can show

Lemma 11. Let p € (—7/2,7/2), with p # 0. There exist a positive number «,, such that

1 1
|P(y) — P(dho)| < 4/RXT|3xwo|2+%/RXT|3ywo|2, (54)

for any function ¢ € V(). Moreover, when [P)(v) = p modulo m, the momentum P(v) in this
inequality is equal to

P) =p. (55)

Proof. The proof is based on the definition of the momentum P(v) in (C1l), which gives

1 1
) = P <5 [ 1owwollunl <7 [ (owwl®+ [ ol
X X

Inequality (B4) then follows from the Poincaré inequality. Observe that the smallness of the
number «,, is only used here in order that the quantity P(¢)) and P(1y) make sense.

Concerning (53)), we recall that the energy E(4y) is strictly less than 2v/2/3 when a, is small
enough. Hence, it follows from Proposition [A.6] that

|P(1o)| < 5"
Moreover, we know that [P](¢)) = P(¢) modulo 7 on the one hand, and [P](1)) = p modulo =

on the other hand. As a consequence, there exists an integer k € Z such that P(¢)) = p+km. In
view of (B4]), we are led to

(56)

Oé2

A 1
p+km — P(ip)| < Z||w0||§11 < Zp-

Combining with (B6), we can decrease the value of the number «,, if necessary so that k = 0 and
P(v)) = p. This completes the proof of Lemma [I1] O

Collecting (52) and (B54]), we obtain

~ ~ 1 c c
Ex(¥)—cp P(1) > E(zpo)—cpp(wo)+§/ ((1—’_27")\axw0,2+<x2_cp_%>\aywoszr,wO,z).
RxT
(57)
Since |c,| < v/2, the last term in this inequality is non-negative for A > 1/C, + g Under this
condition, it vanishes if and only wy is identically equal to 0.

Our goal is now to control from below the term E(tg) — &P P()g). Since the function 4y is in

NVX(R), we can rely on the hydrodynamical formulation ¢0 = ppe’’ and analyze the quantities
E(1) and P(¢0) in terms of the variables no := 1— pj and vg := 6. In view of (A.2) and (A.T),
the energy F (¢0) and the momentum P(?/)O) are then given by

R /\2
E(v0) = E(no,vo) := %/ () +%/R(1—770)US+3/R773,

r1—"0
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and

P (o) = P(m0,v0) == %/Rnovo.

Recall also that the pair (19, vg) belongs to the non-vanishing set NV (R) defined in (A.3).

Similarly, we can lift the profile u., as u., = pcpewcp and introduce the corresponding variables
Nep = 1 — pgp and v, := @ , which are also in NV(R). With this notation at hand, we can

Cp?

consider the neighbourhoods of the pair (7c,,v.,) given by
o : 2 2 2
U (8) = {(n.0) € NV(R) st inf (ol — a) — e s + ool = @) = v I32) < 62}, (59)

for any positive number 5. We first show that the pair (19, v) lies in one of these neighbourhoods
when vy is in Vp(ay,). More precisely, we show

Lemma 12. Given any positive number 3, there exists a positive number o < v, such that

(0, v0) € Up(B),

for any function ¥ € V,(a).

Proof. Consider a positive number o such that o < ;. Under this condition, the function 1[10 is
in NVX(R) when 9 belongs to V,(«). In particular, the functions 7y and vy are well-defined. In
view of ([J), we can also find numbers (a,6) € R? such that d, (e (- — a),ue,) < a, so that

by (A.8),

[10(- = @) = e, || 12 < de, (40 (- = a),ug, ) < 20 (59)
We next write
m(—a) =, = =20 — a) —ul Po(- — a))c — 2(u, , Po(- — a) — ug,)c.
Invoking Lemma [A.2] we can decrease the value of the number « if necessary, so that

doll e < 1+ flucy |7 (60)

Moreover, it follows from (Il) and (I7) that

——L1e,, (61)

Hence, we are led to

L. 1 L .
6 =) =t Nl < 200+ ey [[7) 2 196 = @) =t [l + (2= ) [, (o (- — @) — e,

)

L2

and there exists a positive number C),, depending only on p, such that

[96¢ = a) = e, || 12 < Cpde, (¢Pdo(- = a),ue,) < 2Cpa. (62)
Similarly, we write

p = m <<i(ulcp — (- —a)), do(- — a))e + (iul,  ue, — Po(- — a))e

+ M(ncp —o(- — a)))-

‘uCpP

vo(- —a) — v
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Invoking again Lemma[A.2land using (2]), we can decrease the value of the number « if necessary,
so that

[\

2
C C
> inf 2o ==
2 inf fuc, ()]

° =
11

. f « _
inf [¢o(x —a)
Combining with (60) and (6I)), we deduce that
Hvo(- —a)— UCPHLQ < Cpd,, (ew?z)o(- - a),ucp) < 20,
for a further positive number Cj,. In view of (59) and (62), we conclude that
2 2
0 = @) = ey [ 12 + [[vo(- = @) = v, [ < (4+8C;)a”.

It is then enough to fix the choice of a < B/(4 + 8C,)Y/? in order to complete the proof of
Lemma [T2 O

The sets U,(5) were already introduced in [4] in order to prove the orbital stability of chains of
N solitons. All the results in [4] are stated for an arbitrary integer N > 1, and in particular,
hold for a single soliton. We now explicit the results in [4] on which we rely for completing the
proof of Proposition [7.

We begin by [4, Proposition 2|, which provides a decomposition of each pair (19, vo) in U,(3) as
the sum of a modulated soliton plus a remainder term satisfying suitable orthogonality conditions.
More precisely, we can rephrase this proposition as

Lemma 13 ([4]). There exist two positive numbers $1 and Cy, depending only on c,, and two
functions a € C*Uy,(41),R) and ¢ € C'(Uy(B1),(—v/2,0) U (0,4/2)) such that, for any pair
(nm0,v0) € Up(B1), the function

€= (g, 80) = (770(- —a) —Ne,vo(- —a) — vc), (63)
with a := a(no,vo) and ¢ := ¢(no,vy), satisfies the orthogonality conditions
<(5n,5v)a (Uéavé»pxy = dP(ne,vc)(en, €0) = 0. (64)

Moreover, if there exist numbers a, € R and B < 1 such that

1m0 (- = ax), v0(- = ax)) = (eys Ve, x> < B,

then
HEHHle""‘C_Cp""‘a_a*‘ < Cip. (65)

We use the decomposition in Lemma [I3 to expand the quantities E(ng,vg) and P(ng,vg) at
second order. Using the invariance by translation of the energy E(ng,vo), we first obtain

E(n0,v0) = E((ne,ve) +€) = E(ne,ve) + dE(ne,ve) (€) + %dQE(nc, ve)(g,€) + Re(e),  (66)

with ¢ = ¢(n0,v0). In this identity, we have set

1 (né)25n 7726;7 2
AE (e, ve) (€) = 5 R <4(1 TE TR gy et T AL T meues ’708’7)’

/1\2 / / N2 .2
0 o (6,7) NeEntn (nc) €n 2 1 2
d°E(ne,ve) (e, €) = /R <4(1 —) + 201 = )2 + ERE — 20cEpey + (1 —ne)ey + 5&;),
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1 e 26 /626/ ! 263
R.(e) == —/ < ( ") iU + 7726 Ll + (ZC) 1 —anag).
2 A =n )L —ne—ep) 21 =) (L —me —ey) 41 —ne)3 (1 —ne —&p)
Similarly, the invariance by translation of the momentum P(ng,vg) provides
1
P(T]O, UO) = P((7767 UC) + E) = P(n67 UC) + dp(nca UC) (E) + §d2p(77a UC) (57 5)7 (67)
with 1
dP(ne, ve) (€) == 3 / (negw + veey), and  d*P(ne,ve)(e,€) = / Eno- (68)
R R

The previous identities give an expansion at second order of the quantity E(ng, vo) — ¢, P (10, vo).
We now estimate each term in this expansion in order to bound from below this quantity.

Lemma 14. Consider a function (ny,vo) € U,(B1), where By is the positive number in LemmalL3,
and set € = (no(- — a) — ne, vo(- — a) — ve), with a = a(ny,vo) and ¢ = c(ny,vo). There exist two
positive numbers B < B1 and Ko, depending only on c,, such that

E(nc, vc) - cpP(nc, vc) > E(ucp) - cpP(ucp) - Kg‘c - cp]2, (69)
dE (ne,ve)(€) — ¢p dP (1, ve) (€) = 0, (70)
d2E(nc,vc)(e,e) - d2P(nc,vc) (e,e) > Kg(!’stleQ — !c - cp|2>, (71)
and
Re(e) 2 ~Kallel[ 1 12 (72)

when (ny,vo) € Up(B2).

Proof. Concerning (6J), recall that the modulated speed ¢ lies in (—+/2,0)U(0, v/2) by Lemma T3l
Hence, it follows from [I Proposition 1| that the energy E(7.,v.) and the momentum P(n,,v.)
are given by

E(1e,ve) =

(2— 02)%, and  P(nv.) = Sign(c)<g — arctan <\/%> - %\/2 - 02).
(73)

In view of (65]), we can decrease if necessary the value of the number (5 such that all the
modulated speeds ¢ corresponding to pairs in U,(f1) are in a compact subset of the interval,
either (—n/2,0), or (0,7/2), containing the speed ¢,. In this case, we can use the smoothness
of the maps ¢ — E(n.,v.) and ¢ — P(n.,v.) on both these intervals in order to find a positive
number K, depending only on ¢,, such that

W=

E(Tlc, UC) - CPP(UC’ UC) - <E(77€P’ UCP) - CPP(UCP’ vCP))
d d 2
> (Blewe)) _ —eg (Poew)  ~Kle-a)
Since E(ne,,Ve,) — cpP(Ne,,ve,) = E(uc,) — ¢pP(uc,) by definition, the estimate in (69) follows
from the property that

% (E(nc, vc)> e, = —cp(2 — c}%)% = cp% (P(nc, vc)) ,

le=cp

le=cp

which results from (28]).
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For the proof of (7)), we first use the second orthogonality condition in (64)) in order to write

dE(nc, vc) () —¢p dP(nc, vc) (e) = dE(nc, vc) (e) = dE(nc, vc) (e) — ch(nc, vc) ().

We next rephrase the equation satisfied by the profile u, in terms of the hydrodynamic pair
(Me, ve). In view of (), we are led to the system

i /\2
2({],0,70) + 4(517—07)7&2 + cv. + Ug —ne =0,

(1 =ne)ve = %770-

It is then enough to multiply the first equation in this system by ¢, the second one by &,, and
to integrate by parts in order to obtain

dE(nc, Uc) (e) — CdP(nc, vc) () =0,
and therefore, ([70]).

We now turn to ([{I]). We rewrite the second order term as

dZE(nC, vc) (e,6) — ¢ dZP(nC, vc) (e,€) :dQE(nc, vc) (e,e) — chP(nc, vc) (g,¢)

74
+(C—cp)d2P(nc,vc)(s,s). 74)
In view of (G8]), we have
1 o
(C— cp)d2P(nc,vC) (E,E) > —‘C— CpH‘&'H?{lXLz > —%(C— Cp)2 _ 5”£H%’—ﬂxL27 (75)

for any positive number §. Recall that the function e satisfies the two orthogonal conditions
in (©4), whereas by (65]), the modulated speeds c lie in a compact subset of the interval (—m/2,0)
or (0,7/2), containing the speed ¢,. As a consequence, we can apply [4, Proposition 1] in order
to find a positive number K, depending only on ¢,, such that

dQE(WCaUc) (5,5) - CdQP(nC’UC) (6’6) > KH‘gH%{leQ‘
Combining with (74]) and (75), we obtain

1 )
dzE(nc,vc)(f-:,s) — ¢ dZP(nc,vc) (e,e) > KHEquleg — %(C — cp)2 — 5“8“%1ng.

At this stage, we can decrease if necessary the value of the number Sz so that ||e||giyr2 < 1
by (63)). It is then enough to choose § = K/2 in order to obtain ([TT]).

Finally, the estimate in (72 essentially results from the Sobolev embedding theorem. In view
of (I7), there indeed exists a positive number x < 1, depending only on ¢,, such that

1_7702’@

for any modulated speed ¢ in a compact subset of either (—7/2,0), or (0,7/2), containing
¢p. Decreasing if necessary the value of the number f;, we deduce from (63]) and the Sobolev
embedding theorem that .

3

In view of (7)), the derivative 7., is also uniformly bounded by a positive number depending only
on ¢,. Using once again the Sobolev embedding theorem, we are led to

1_77c_5772

K
Re©) 2 ~ 2 el o

where, as before, K only depends on ¢,. This completes the proof of (Z2), as well as of Lemma [T4]
O
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We are now in position to conclude the proof of Proposition [[l when p # 7/2.

End of the proof of Proposition[l. Going back to (66) and (67)) and invoking Lemma [[4] we can
write

A~ ~

E (o) — P (o) =E(no,v0) — ¢ P (10, v0)

(76)
ZE(uCP) B Cpp(ucp) + KQ(H6H§{1><L2 - Hg“:;{lXLQ - 2{6 - Cp|2)'

In order to estimate the difference ¢ — ¢,, we rely on the formula in (73) for the momentum
P(ne,ve). Since the modulated speed c lies in a compact subset containing ¢, by (63]), we infer
from (28) and (73)) the existence of a positive number K, depending only on ¢,, such that

‘C_Cp‘ < K‘P(%ﬂﬁc) —P(chwcp)‘- (77)

Combining (67) with (64) and (G8]), we check that

1
|P(77t:avc) - P(nO’U0)| < §H6H§{IXL2'

On the other hand, it follows from (54]) and (55) that

A 1
|P(1ey ve,) = o, vo)| = |p = P(ado)| < 4[| Vo[-
Hence, we obtain
K
o=l < X (el + Vel 2):
Introducing this inequality into ([Gl), we are led to
E(to)—cpP (1) > B(ue,) =P (ue,) +Kalle 3 oKl o =B el o= K[ e | .
At this stage, we can again decrease the value of the number [, so that (G3) provides the
inequality
2 3 4 K. 2
Kollell 5112 = Kallel e = B2l e = TQH‘?HHleQ'

As a consequence, we obtain

B(b) — pP(ih) > Blue,) - e Plu,) + 2 el — K[V

We next invoke Lemma [I2 in order to find a number « such that (19, vo) € Upy(B2) when ¢ €
Vp(a). In this case, we derive from (I9) and (57) that

K 1
BV(8) — epP(6) 2E(u) — e,Plue) + 2 el o 5 (1 12— 2070 o2

1 |cp] L
5 (2= 0= T 2k?) o] s + 5 ol

We finally fix the choice of the number a, so that 1 —+/2/2 — 2K 204]2, > 0, and the choice of the
number A\, so that )\12, - Cp—V2/m — 2K 204]2, > (. The previous choices guarantee that

Ex(¢¥) — P (¥) = E(uc,) — P (uc,),

when ¢ € V,(ap) and X > A,. This inequality is exactly (2I)) due to the facts that P(y) =
P(u.,) = p and E(u,) = Ex(uc,). Moreover, equality holds if and only if

H8HH1><L2 = Hwoqu =0.
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In this case, we observe that (19, v9) = (n.(- + a), ve(- + a)), so that there exists a number 6 € R
for which 1) = e ®u.(- + a). As a consequence, we have

¢ = 1&0 + wo = eiwuc(' + a) +0= eiieuc(' + a)'

Since p = P(¢) by Lemma [[I] we deduce that P(u.) = p, and we conclude that ¢ = ¢,. This
completes the proof of Proposition [ for p # /2. O

3.7 Proof of Proposition [7 for p = 7

For p = 7/2, Proposition [1 also relies on a coercivity estimate, but for the black soliton .
This estimate was derived in [I1I, Proposition 1] for revisiting the orbital stability of uy. We can
rephrase it as

Lemma 15 ([11]). For v = ug +¢ € X(R), set n. := —2(ug, e)c — |e|>. There exists a universal
positive number Ay such that

1
E(4) = E(uo) > Ao (IlellZ, + I7el1Z2) — o lellZr, (78)

as soon as

/R(e,u6><c _ /[R(e,iu{))(c _ /R@,z'umu ~Juol?) = 0. (79)

The orthogonality conditions in ([79]) are necessary to control one negative and two null directions
of the energy E in the neighbourhood of the black soliton uy. As in Lemma [[3] they can be
imposed by introducing suitable modulation parameters related to the speed of the solitons
and their invariance by translation and phase shift. These properties were already invoked for
constructing modulation parameters in [I1], Proposition 2|. Setting

Uo(B) = {v € XR) st inf_ do(e"(- — a),u0) < B},

(a,0)€R?
for any positive number £, we can summarize this construction as follows.

Lemma 16 ([11]). There exist two positive numbers 3y and Agy, and three continuously differen-
tiable functions a € C*(Uy(Bo),R), ¥ € CH(Uo(Bo), R/27Z) and ¢ € C*(Uo(Bo), (—v/2,V/2)) such
that for any ¥ € Uo(Bo), the function

€= ei@,l/}(. - a’) — Ug,

with a = a(y), 0 = ¥(¢) and c = ¢(v), satisfies the orthogonality conditions

/R(e,uf)(c _ /R(e,iuf)(c _ /R<6,iRe(uc)><c(1 ~u?) = 0. (80)

Moreover, if '
e v (- —a.) —uolly, < 8

for numbers a, € R, 0, € R and 8 < By, then,

lellz, + lel +a = ac| + [ = e[ < Ao (81)

Remark 17. Here, the smoothness of the maps a, ¥ and ¢ must be understood with respect to
the differential structure provided by the vector space H(R).
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The orthogonality conditions in (80) differ from the ones in ([79). However, a coercivity esti-
mate similar to (78) remains available under these latest conditions. Corollary 1 in [11] indeed
guarantees that

Lemma 18 ([I1]). For|c| < V2 and ¢ = u. +¢ € X(R), set 0. := —2(u,e)c — |¢|?. Given any
number 0 < o < \/2, there exists a positive number A, depending only on o, such that

1
E(y) = E(uw) > Ay (lellir, + Imel72) = 5= (¢* + llelin, ) (82)

as soon as |c| < o, and € satisfies the orthogonality conditions in (80).

At this stage, consider a function ¢ € V; 5(a) for a number 0 < o < fBy. By definition, the
function ) lies in the subset Uo(a) of tUp(Bp). Applying Lemma [I0 we can find numbers
ap € R, 8y € R and ¢y € (—v/2,1/2) such that the function gy := ewO?/A)O(- — ap) — U, satisfies
the orthogonality conditions in (80). Combining (&I]) and (82]), and decreasing if necessary the
value of the number «, we find a positive number A,, depending only on «, such that

2
. ¢
B(fo) ~ B(wo) > Ao (ol + Ineol2) — <2
(6%
with 7., = —2(ue,, €0)c — |e0|? as before. Assuming that o < /2, Where the number oy /o is
given by Lemma [I0, we infer from this lemma that
1 c2
BA() 2 Ba(wo) +3 [ (1ol + (02 = G0yl + o) + A (leolfs, + IalF) = 52
X a
(83)

As a consequence, we are essentially reduced to control the modulated speed ¢y with respect to
the various norms of the functions wy, €9 and 7.,. As in the previous case p # 7/2, we derive
this control from the property that [P](¢)) = m/2 modulo 7. In this direction, our main tool is
the following consequence of Propositions 4 and 5 in [11].

Lemma 19 ([I1]). There exist two positive numbers 1 < Py and Ay such that any function
Y € to(B1) satisfies

[P](¢)) = [P](uc) — /R(z'u'c,a><c + Rc.(e)  modulo , (84)

with
[Re(e)] < Ar (e, + el )- (85)

In the previous formulae, we have set, as before, € = e1)(- — a) — u., with a = a(y), 0 = I(¢)
and ¢ = ¢(v), as well as n. == —2(u., &)c — ||

With Lemma [I9 at hand, we are in position to conclude the proof of Proposition [1 for p = 7/2.

End of the proof of Proposition[q for p = w/2. Decreasing if necessary the value of «, we can
apply Lemma [[9] to the function . In view of the second orthogonality condition in (80, this
provides the identity

[P](¢0) = [P](uc,) + Rey(20)  modulo ,
with R, (go) satisfying (8H) for e = ¢ and 7. = 1,. Going to (C.I), we deduce that
1
2

[P] (7/’) — [P] (uco) = /Rx11‘<i8$w0’w0>c + R, (80) modulo 7. (86)
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Recall now that [P](v)) = /2 = Z(0) modulo 7, while the value modulo 7 of [P](u,,) is equal
to sign(cg) Z(|co|) by [, Proposition 1]. Here, = refers to the function in (27)). Moreover, for «
small enough, the right-hand side of (86]) is small by (85, so as the modulated speed ¢y by (&I)).
As a consequence, we derive from the identity modulo 7 in (86]) that

=0) - =] = |5 [ _t0cun, wnfe + Ry o)

Using (28), we can argue as for (77) in order to derive from (8I]) and (85) the existence of a
positive number A, depending only on «, such that

1
jcol = 10— leol| < A (llolBy, + e I3 + BllwollF + 5 NOwtcol32)-

for any positive number §. It then remains to introduce this inequality into (83]) and to choose
the number § large enough in order to deduce from the Poincaré inequality that

Bx(¥) = Ex(uo) + A(lleollf, + lneol 122 + il ) > Ex(wo),
for o small enough, A large enough, and a further positive number A, depending only on « and
A. This concludes the proof of (21]).

Moreover, this inequality is an equality if and only if eg = 0 and wo = 0, that is if and only
if p = e %u, (- + ag). In view of (2J), the only possibility for the untwisted momentum
[P](%) to be equal to m/2 modulo 7 is that ¢ = 0. In conclusion, equality can only hold if
Y = e7"%uy(- + ag). This completes the proof of Proposition [ for p = /2. O

3.8 Proof of Lemma [

Consider a function » € X (R x T) such that [P](¢)) = p modulo 7. Given two positive numbers
A1 and Ag, with A\ < A9, we have

By ) < By (@) < (32) Ba (@)

In view of (@), we obtain
2
) < Tu() < () Zn o),

which is enough to guarantee that the map A — Z,(p) is non-decreasing and continuous on R* .

Concerning the proof of (22), we rely on the scaling

¢L(9C7y) - 1/1(907)\11)7 (87)

which transforms a function ¢ € X(R x T) in a function ¢y, € X(R x T). Here, we have set
L = 1/X. The notation Ty, refers to the torus of size L and the energy set X (R x Tp) is defined
according to (&), with T replaced by Ty. In the limit A — 0, the length L tends to +o0o0 and the
minimization problem Zy(p) can be related to the problem of minimizing the Ginzburg-Landau
energy in the whole plane R? for a fixed large momentum.

Indeed, we can compute

1 1
B)=g [ IVePrg [ (- lwP) = LEA) (58)
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Going to Lemma [C.1] we also check that the definition of the untwisted momentum on the set
X (R x T) extends literally to the set X (R x T ), up to the fact that this quantity is now valued
into R/wLZ. Moreover, we can derive from Lemma [C.1] that the untwisted momentum [P]r, (1)
is equal to

[P]r(¢r) = L[P](¢)) modulo L. (89)

As a consequence, we obtain

Iy(p) = %inf {E(?/)L) s € X(Rx Ty) s.t. [P]r(vr) = pL modulo 7TL}.

At least formally, the previous infimum is related to the limit ¢ — 400 of the minimal value of
the Ginzburg-Landau energy in R? with fixed momentum equal to ¢. This latter minimization
problem was solved in [2]. It follows from [6] that the limit ¢ — 400 of this problem is divergent
as 2mIn(q). This asymptotics is based on the property that the corresponding minimizer is a
pair of vortices in uniform translation. We are now going to use this special configuration as a
test function in order to show (22]).

In order to clarify the construction, we now identify the space R? to the complex plane C by
setting z = x + iy in the sequel. We introduce the complex-valued function £ defined on the disc
D(0,2) :={z € Cs.t. 2] <2} by

_ Z—1 zZ4+1
|z —i| |z + 1

£(2) e, (90)

In this expression, ¢ refers to a real-valued harmonic function on D(0,2) such that £ =1 on the
circle 0D(0,2). We can check that the value of ¢ can be fixed so that

2Re(z
1 |(z|)2)’ (91)

¢(z) = arctan <

for any z € 9D(0,2). Observe that ¢ is even with respect to the variable Im(z). Observe also
that f has exactly two vortices with opposite degrees at the points +i. Given a number R > 1,
we next introduce the rescaled and regularized version g of £ given by

1if |z] > 2R,
Er(2) = { |z £iR[E(%) if |z £iR| < 1, (92)
19 (%) otherwise.

The function &g is well-defined and continuous on R%. Given a number L > 4R, we can consider
its restriction to the set {z € C : |Im(z)| < L/2} and extend it as a L-periodic function with
respect to the variable y. Denote by 7 the corresponding extension and define a function
1 : R x T — C according to the scaling in (87).

The extension v, belongs to Hl (R x Tp), where this set is defined as in (@), with 1-periodic
functions replaced by L-periodic functions. It is even with respect to the variable y and identically
equal to 1 outside the disc D(0,2R). We now estimate the value of its energy F(ir). A direct
computation first provides

1 1 ) ™
—/ (1—]1/1L]2)2:—/ (1—\z—2R\2)2dmdy:—. (93)
4 JrxTy 2 Jjz—ir|<1 6
Concerning the gradient Vir, we next check that
4R? 1 z\ |2 2 z |z —iR|?
\Y Pl — —‘V —‘ —iR]?> - Z0,0(=) (R - R)————
VL =1+ s + (%) 1= =B = Sowe(5) (R—v+(+ >,Z+Z.R,2)

_ iR
- 702(5) (o= = i)
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for any |z —iR| < 1. Using the inequality 2ab < a? + b% and the fact that |z +iR| > R > 1 for
y > 0, we can bound this quantity by

Vi < 13+ |V (5|

when |z —iR| < 1. Hence, we obtain

1 137w
s s e (99)
|z—iR|<1 |z—i|<1/R

By symmetry with respect to the axis x, the same inequality is true replacing |z —iR| < 1 by
|z +iR| < 1 in the left-hand side, and |z —i|] < 1/R by |z +i| < 1/R in the right-hand side.
Similarly, we compute

1 1 R? — |22 1 Z\ |2
2
VoGl = T R \z—zRP]z—i—zRP TV R

Raw(z)Qf igP N ]zy—:_zg]?) 3@!@(2)(@ +sz\2 E —xmy?)’

for any z € wg := {z € D(0,2R) s.t. |z —iR| > 1 and |z +iR| > 1}. As a consequence, we can
write

1

1
3| Wo@P<neg [ Vet n, (95)
WR w1

with wy := {z € D(0,2) s.t. |z —i| > 1/R and |z + 4| > 1/R}. In this inequality, we have set

1 1 1 R? — |22
I = = dr d
! 2/WR<|z—iR|2+|z+iR|2+ 2 — iRz + R|2) v

and

I = %/w <8“"(Z><\Zy z‘}};\Q B \zy++£y2> +ove () (e 1 —iRP)) e

We first estimate the integral I; using the fact that its integrand is symmetric with respect to
the variable y. Setting w} := {2 € wg s.t. y > 0}, we combine the inequality |z +iR| > R > 1
for y > 0 and the identity R? — |z|?> = 2R(R —y) — |z — iR|? in order to get

1 1 AR(R —y)
I = — dz d
L /w;{ (|Z—ZR|2 =z iR? |z—z’R|2|z+iR|2> vy

1 4
< dz dy.
—/w;(yz—iRPJrR\z—z‘R\) v

When 2z € w}; and |z — iR| > R, we have

1 4 5)
|z —iRJ? R|Z—ZR| RQ’
so that
I <5n +/ ( 1o ) dz dy < 2 In(R) + 131 (96)
©0.R\D(O,1) \2[*  Rlz|

We next integrate by parts the integral Is in order to obtain

2= /awR (””E(Z)<\zy—_£!2 B !zy:ig!Q) +0) (e 7 —ZR@)*”(%) dy(2),
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where v(z) = (v5(2),vy(2)) is the outward unit normal vector to Owpr and dv is the infinitesimal
length element of the curve dwg. Recall at this stage that the function ¢ is harmonic on the disc
D(0,2). In view of (@I)), it follows from the maximum principle that
™
lellzee(p.2)) = 5 (97)

so that

I < g(/ %d’y(z) + 2/ 4d’y(z)> < 1672,
dD(0,2R) aD(0,1)

Combining with ([@4)), ([@5) and (@6)), we finally get

1
5/ |Vipr |2 < 2rIn(R) + 1672 + 267 +/ |Vl|?. (98)
RxTL, D(0,2)

In view of ([@3]), we deduce the existence of a universal positive constant C' such that
E(¢r) <2r7In(R) + C. (99)

Note in particular that the function ¢y, lies in X (R x Tp), so that we are allowed to define its
untwisted momentum [P, (¢,) according to Lemma

In order to compute this quantity, we first rely on (02) from which we derive that the function
[¢¥r]o is identically equal to 1 for |x| > R. As a consequence, the function 6y = 0 is one of its
phase functions on the intervals I5. In view of (A.f) and (C.IJ), we obtain

Pay(wr) = 5 [ bl fhule +5 [ (0o, wohe,

with wg = ¥, — [TZJL]O as before. Due to the orthogonality of the functions WL]O and wg, and the
compactly supported nature of their derivatives, the previous formula can be simplified as

Po(on) =3 [ lidsinvie.

Going back to (@2)), we derive from the local integrability of the map z ~ y/|z|? that
Py, (Yr) =Jr+ Jp +J, (100)

where we have set

1 y—R y+ R 1 z
Jr =3 - — =00 =) | dzdy,
B9 /D(O,QR) < |z — iR|? * |z+iR|> R (P(R)> Y

and

) y—R y+ R 1 z
Jy == 1- RJ? — —dpo( =) ) da dy. 101
* Q/D(iiR,l)( =% i )<!Z—1RP |z + iR|? +R QP(R>> Y (101)

Integrating by parts, we check that

z

1 ) _ z
2R /D(:I:iR,l) (1 ~|=FiR| ) aﬂp(ﬁ) dedy = /D(:I:iR,l) xgp(R) dx dy,

so that by (O7), we obtain

1 dedy © w2 3n o«
Jol <= @y T LT 102
|jE|—2/D()|z|+2+2—2+2 (102
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On the other hand, a direct scaling provides

R y—1 y+1
Jr = RJ; 5 /D(0,2) ( P + PENTE 0, go(z)) x dy (103)

Applying the Fubini theorem, we can write the integral J; as

1 2
n=3 [ .
-2

with
\/ 4—y?
o . y-1 y+1

for y # £1. In view of ([@I]), the integrals ji(y) are equal to
‘ 4 —y? 4 —y? 24/4 — y?
— et (V2 4 sanctan (VT 4 retan (V)
Ji(y) arctan = + 2arctan | + 2arctan 3
At this stage, we can check that

when y # +1, so that

limy 2 j1(y) =0 for 1 <y <2,
Jiy) = § limy ;- j1(y) =27 for —1<y<1,
limy,, 2j1(y) =0 for —2<y< -1

By the Fubini theorem, the integral Jj is then equal to J; = 27, so that Jgp = 27 R. In view

of (I00) and (I02), we obtain
| Pp, (1) — 2mR| < 3m + 7°. (104)

On the other hand, we can derive from (I00), (I0I) and (I03)) that the map R — Py, (¢r) is
continuous on [1,4L]. In view of (I04), the range of this function covers the interval [5m +
72, mL/2 — 37 — w%]. In particular, given a fixed number in (0,7/2), we can find, for L large
enough, a positive number Ry, such that [P]r(vr) = Py, (¥r) = pL modulo Lz, and

pL 347

R; — 22| < .
‘L owml= 9

In this case, we deduce from (98] that
E(r) <2mln(L) 4 27 In(p) + C,

where C' is a further universal constant. As a consequence, the function 1 corresponding to vy,
by the scaling in (§7) lies in X (R x T), with [P](¢) = p modulo 7 by (89). Using (8]), we are
led to

I(p) < E\(v) < %(277 In(L) 4 27 In(p) + C),

so that Zy(p) tends to 0 when A = 1/L — 0. Since the minimal value Z) is an even function of p
by (I0), the same property holds for p € (—m/2,0). This completes the proof of Lemma [8 when

p#m/2.
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For p = /2, it follows from the non-negativity and the Lipschitz continuity of the function Zy
that - .
0<7(5) <T) + V2(5 - p),

for any 0 < p < w/2. In the limit A — 0, this gives

T v v
0 < li 'fZ<—><1’ I(_)< 2(—— )
<liminfZ,(5 ) <lmsupZy (g _f2 p

Letting p — /2, we conclude that the quantity Z,(7/2) also tends to 0 as A — 0. This completes
the proof of Lemma [8 O

A Energy set and momentum in dimension one

In this section, we collect useful results concerning the energy set X (R) and the momentum P
in dimension one. In particular, we recall several statements established in [T}, 10, [5] [11].

In dimension one, the energy set is defined as
XR)={y e HL (R): ¢/ € L*(R) and 1 — [¢|* € L*(R)}.

As a consequence of the Sobolev embedding theorem, a function ¢ in this set is actually 1/2-
Holder continuous on R. Moreover, this function is bounded (see [I0]), so that the energy set is
a subset of the Zhidkov space

Z'(R) = {v € GY(R) : ' € L*(R)}.

This property guarantees that the function 7 := 1 — ||> belongs to the Sobolev space H'(R),
so that it owns a vanishing limit at +oo. In particular, we can find a positive number R such
that p(x) := [1p(x)] > 1/2 for |z| > R. We can therefore lift the function 9 as ¥ = pe® on
both the intervals I, = (—oo,—R] and I}; = [R,+00). The phase function 6 is continuous on
these intervals, with a derivative 6’ in L? (If.%). Note that this phase function is defined up to two
factors in 277, one on each interval I;%.

This double indeterminacy is removed when the function 1 does not vanish on the whole line,
that is belongs to the non vanishing energy set

NVX(R) := {¢ € X(R) s.t. ig£|w(x)| >0} (A1)

In this case, the phase function 6 is defined up to only one phase factor in 2wZ. Moreover, the
energy F(v) is given by the hydrodynamical expression

N2
) =g [ 5 [a-meeg [ (A.2)

in which we have set v := @’. In particular, there is a natural correspondence between the fact
that the function v is in NVX(R) and the property that the pair (n,v) lies in

NV(R) := {(n,v) € H'(R) x L*(R) st. inf () < 1}. (A.3)
TE
Concerning the definition of the momentum P, it is formally given by the integral
1 .
5 <Zazv¢a ¢>(C
R
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Due to a possible lack of integrability at infinity, this quantity is not necessarily well-defined
when ¢ € X(R). In order to give it a rigorous meaning, we assume first that the function 1 can
be lifted as 1 = pe’? and write the hydrodynamical expression

0, Ve =~ = ol — 50 (A1)
When the pair (n,6) lies in NV (R), the function nf’ is integrable on R, but in general, the
derivative 6’ is not. We refer to [I} 3] for a discussion about several ways to by-pass this difficulty.
A convenient way to define the momentum, in the sense that the quantity defined in this way
will satisfy the natural properties of the momentum, is simply to drop the term containing the
derivative 6’ and to set

P(y) = %/Rn@’- (A.5)

Once the decision is made to choose this definition, it is necessary to extend it to functions which
can vanish. A natural way to perform this extension is to rely on the property that the functions
1 € X(R) can be lifted at least on intervals of the form I}% for R large enough. Hence, we can
expect that the previous formula for the momentum will be available on these intervals.

In order to check this claim, we introduce a smooth cut-off function x : R — [0, 1] with x(z) =0
for || < 1 and x(x) = 1 for |x| > 2, and we set x,(x) = x(x/r) for any positive number r.
When the function ¢ does not vanish on R, the expression for its momentum in (A.5) can be
rephrased as

P() = Pow) = 5 [ (@0 e + (0 0)), (4.6)

in view of (A4). This identity is true for any choice of the positive number r. Given an
arbitrary function ¢ € X (R), we can fix this choice so that the right-hand side Py(t) of the
previous formula makes sense. Note however that this quantity possibly depends on the choice
of the phase function 8. This leads to the following definition of the momentum.

Lemma A.1. Given a function ¢ € X(R), consider a positive number R such that |¢(z)| > 1/2
for |z| > R and a phase function § € CO(IE) such that o = [¢]e? on If. Choose a smooth
cut-off function x : R — [0,1] such that x(z) =0 for |z| <1 and x(x) =1 for |z| > 2, and set
xr(z) = x(z/r) for a number r > R.

(i) The quantity Py(1)) given by formula (A.6)) is well-defined and does not depend on the choice
of meither the function x, nor the number r.

(1) When the function v is in NVX(R), the momentum Py(1) does not depend on the choice of
the phase function 0.

(13i) Given an arbitrary function ¥ € X(R), the value modulo 7 of the quantity Py() does
not depend on the choice of the phase function 0, and it is possible to fix this choice such that
Py(v) € (—m/2,7/2]. In particular, the untwisted momentum [P] : X(R) — R/7Z defined by
[P](v) = Py(vp) modulo 7 is well-defined.

In the sequel, we drop the dependence on the phase function 6 of the momentum Fpy(1) when
the function v is in NVX(R). This quantity is only defined on NVX(R). Since it is the only
one to be defined without ambiguity, this is also the only one which we will call momentum.

Proof. The fact that the quantity Py(v)) is well-defined follows from the property that ¢ belongs
to H. (R) and from the identity

loc

(i, ¥)c + (xr 0) =t (A7)
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which holds on the intervals I3. In view of (A.2), the derivative 6 indeed lies in L?(I3:), while
the function 7 is in L?(R). This is enough to guarantee that the function in (A7) is integrable
on I;f", so that the quantity Py(¢) is well-defined. Moreover, its value does not depend on the
choice of either the function y, or the number r, since

%/]R ((Xr - )2?) 9), =0,

when the function y and the number 7 satisfy the assumptions of Lemma [A. 1l

Note finally that

% / (27‘(’]{_)(7»)/ + % / (27Tk+Xr)/ =7(ky — k-),
_ Ry
for (k_,ky) € Z*. Statement (ii) then follows from the fact that the phase function 6 is defined
up to a single phase factor 2km = 2k_m = 2k 7, when 1 does not vanish. In the general case,
we can add any phase factors 2wky to the value of the phase 6 on the intervals I;%. The previous
computation then guarantees that we can fix this choice such that the quantity Py(¢)) lies in the
interval (—m/2,7/2], but also that this quantity is only known modulo 7. This completes the
proof of Lemma [ATl O

We now turn to the regularity properties of the momentum P and untwisted momentum [P].
In order to establish their continuity, we endow the energy set X(R) with a suitable metric
structure. For a fixed number 0 < ¢ < /2, we introduce the weighted Sobolev space

H.(R) := { € C°(R) s.t. ¢/ € LA(R) and 1}/%p € L*(R)}.

This space is a Hilbert space for the norm given by the formula

W%g§4WW+mM%

where 7, is given, as before, by (I7). Using the exponential decay of the functions 7. and the
1/2-Holder continuity of the functions ¢ in H.(R), we can check that all the norms || - ||z, are
equivalent. As a consequence, the space H.(R) does not depend on ¢, and we set H(R) := H.(R)
for simplicity. The energy set X (R) then appears as the subset of H(R) given by

XR)={yp e HR)st. n=1-[¢|* € L*(R)},

and we can endow it with the metric structure corresponding to the distances

e vz) = (o1 = vallfy, + I = mel2) (A8)

This metric structure guarantees the continuity of the Ginzburg-Landau energy FE, and it is
also very convenient for dealing with the continuity of the momentum and the stability of the
dark solitons (see e.g. [I, 10, B} 11]). On the other hand, it is badly taylored to deal with
the differentiability properties of the momentum (see [I0]). This is the reason why we use an
alternative approach to establish the differentiability of this quantity. This approach is based
on the observation that the energy set X (R) is stable by addition of functions in H*(R) (see [9,
Lemma 1]). In particular, given a function ¢y € X (R), the affine space 1 + H(R) provides a
natural framework for tackling the differentiability of the momentum around the function 1.

Before going into more details, we observe that the metric structure corresponding to the dis-
tances d. guarantees a uniform control on the modulus of the functions ¢ € X (R).
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Lemma A.2. Let 0 < ¢ < /2 and consider a function 1o € X (R). Given any positive number
g, there exists a positive number & such that, if d.(1, o) < 8, then

[1%1% = [¥o]?|| oo < e (A.9)

Proof. We aim at establishing an H!-control on the difference between the functions n = 1— [¢)|?
and 19 = 1 — |1g|2. An L?-control on this difference is directly provided by (A8), so that we
focus on the differences

n' —nh = 2((, o — ¥ )e + (o — ¥, y)c). (A.10)
Observe first that
11— 11| 2 < nllez < llmollzz +6 and  ||[[¢f]| 2 < 9]z < ol + 6,

when d.(1,10) < . Hence, by the Sobolev embedding theorem, there exists a positive number
C such that

11 =l oo < Cll%0llz2 + llnollzz + 6)- (A.11)
Note in particular that the function 1— |1)| satisfies this inequality. With these bounds at hand,

we estimate (A.10) as

1" = nol > <2l 10" = ¥hllr2 + 2% — ol oo (- rm) 1%0] 22

A2
2l + ollie) (106l + 10 lgry).

We next fix the choice of the positive number R in this inequality such that
”¢6”L2(1§) + ”¢6”L2(I§) <9

We then derive from (I7), (A.8) and the Sobolev embedding theorem the existence of a positive
number C', depending only on ¢ and R, such that

[ = ol Lo ((=r,R)) < CllY — Yollu, < Cde(¥, o).
In view of (A.11) and (A.12), we are led to
I = ol g2 < C L+ l1pllz2 + lmoll 2 + 8) de(®, o).
Since [|n —nollz2 < de(1,100) < 6 by (A.8), we infer from the Sobolev embedding theorem that

11912 = [o*[| oo = |1 = 10| oo < C L+ [1W5]l22 + lIm0]| 2 + 8) de (), 30).-

for a further positive number C. In order to obtain ([A.9)), we finally fix the choice of the positive
number ¢ such that C(1+||¢4 |2 +||nollz2+0)d < €. This completes the proof of Lemmal[A.2l O

We deduce from Lemma [A.2] that NVX (R) is an open subset of X(R). We also infer from this
lemma that the momentum P is continuous on this set. We additionally show that its natural
differential at a function ¢y € NVX(R) is given by the function v’

Lemma A.3. The momentum P is continuous on the non-vanishing energy set NVX(R).
Moreover, given a function ¥ € NVX(R), there exists a positive number & such that the ball
B(,08) :={¢+h:h € HY(R) s.t. |h||gr < &} is a subset of NVX(R) on which

P+ 1) = P(y) + /Rw, e + % /R@'h', he. (A.13)
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In particular, the restriction of the momentum P to the ball B(1),9) is contmuously differen-
tiable, with

aP@)) = [ @' he,
for any function h € H'(R).

Proof. Recall that the momentum P is well-defined on NVX(R) by the formula
1 /
R

in which we have set, as before, 1 = pe’ and n = 1 — p?. In particular, the continuity of this
quantity will follow from the continuity from NVX (R) to L?(R) of the maps ¢ + 1 and ¢ + 6.
Since the continuity of the first one is a direct consequence of ([A.g]), we focus on the continuity
of the latter one.

Given a fixed function ¢y = ppe’®® € NVX(R), we compute

0~ 2
Po

Extending this formula to an arbitrary function ¢ of NVX(R), we are led to the expression

SV Y 2 _ 2 A —
o — (i pfo)ﬂ/f%c B <i1/167¢><cp(;)2p§) B <21/10,1/1p(2) Yo)c

For a positive number § small enough, we deduce from Lemma [A.2] that

. mo 1 .
nf > — = — inf
1 p(.%') 1 po(.%'),

when d.(1,19) < 0. Hence, we obtain
1
HW—%M;S;%@mﬂw_¢wp+mwwﬁwﬁ_£Mm+”MWM¢_%WB>

Invoking ([A-8)) for estimating the first norm in the right-hand side of this inequality, Lemma [A.2]
for the second one, and arguing as in the proof of Lemma [A.2] for the last one, we infer that the
map 1 — @' is continuous from NVX(R) to L?(R).

Concerning differentiability, we deduce from the Sobolev embedding theorem the existence of a
positive number C' such that

. . . 1.
inf [¢(z) + h(z)| = inf [¢(z)| — [|h]|Lee = inf [(z)] — C|[h]lg1 > 5 inf [Y(2)] >0, (A.14)
r€R zeR z€R 2 zeR

when ||h||g1 < 6 = infzer [¢(2)]/(2C). In this case, the function ¥ + h belongs to NVX(R), so
that the ball B(1,9) is a subset of NVX(R).

We next consider a function h € C°(R) such that ¢ + h € B(1,0). Combining the inequality

v+h P 3 N |h|?
[ +hl I [ +hl [+ R[(JY] 4 [+ h])

With respect to the metric structure induced by the H'-norm.
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with (A.14) and the Sobolev embedding theorem, we can find a further positive number C,
depending only on 1, such that

Y +h H
1 + |l g1 ) |B]| g1 .
Decreasing the value of § if necessary, we can assume that

H |7/’+h (A.15)

on il <1

In another direction, it follows from the fact that A has compact support that the phase functions
0, and @ of the functions v + h, respectively v, are equal at 0o up to constants 2kim, with
ky € Z. We can choose the integer k_ = 0 and also deduce from (AJH) and a continuation
argument that |, — 0] < 2w on R. In this case, we necessarily have ky = 0, so that 6, = 0 at
infinity.

Going back to ([AL6]), we can choose a cut-off function x and a number r in this definition such
that the support of the functions h and yx, are disjoint. Since the values of the phase functions
05, and 0 are equal at o0, we have

P+ =5 [ (G0 +1)6+ e+ 0 0)) = PO)+5 [ (0 + ). B + Gt v)c)

which yields (A.I3]) by integrating by parts the last term in the right-hand side of the previous
formula.

Given an arbitrary function h € H'(R), with ¢ + h € B(¢, ), we next introduce a sequence of
functions h,, € C>°(R) such that h,, — h in H(R) as n — oco. At least for n large enough, we
have

P+ ha) = P3)+ [ ')+ 5 [ (i hade. (A1)

In the limit n — oo, the right-hand side of this identity tends to the right-hand side of (A.13)).
Concerning the left-hand side, we show that ¢¥)+h,, — ¥+h in X(R) as n — oo. This convergence
holds in H(R) due to the property that h,, — h in H!(R) as n — oo. Moreover, we compute

(1 - |¢ + h|2) - (1 - |¢ + hn|2) = 2<71Z),hn - h><C + |hn|2 - |h|2
Since the function ¢ is bounded on R, it follows from the Sobolev embedding theorem that
1= 1+ A7) = (1= [+ ha*) | 2 = O,

in the limit n — co. Now that the convergence in X (R) is proved, we infer from the continuity of
the momentum P that the left-hand side of (A.16]) tends to P(¢) + h) as n — oo. This concludes
the proof of (A13]). The continuous differentiability of the restriction of P to the ball B(1, )
is then a direct consequence of the quadratic expansion in (A.I3)). This completes the proof of
Lemma [A.3] O

At this stage, it is tempting to extend by continuity the momentum P to the whole set X (R),
but this is not possible. Consider indeed two smooth cut-off functions y : R — [0,1] and

0 :R — [0,1], with x(z) = 1 for |z| < 1 and x(x) = 0 for |z| > 2, respectively 0(x) = 0 for
x < —2and f(x) =1 for x > 2. Given a fixed integer k € Z, set

i kO (nx
Uh(@) = (uo(@) + Zx(nz) ) Xm0,
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for any n > 1. The functions ¥ belong to NVX(R) and they satisfy
1
(1= [n(@)?) = (1 = Juo(2)*) = —ﬁx(nﬂf)Q,

[5(2) — wole)| < hao(a) | %0 — 1] 4~ x(ma),

and
| (05) () = up(@)| < Jup(@)] | ™00 — 1| + X/ (n)| + 2m|k| (n]uo ()]0 (nz)| + x(nz) |6/ (n)]).

Using the inequality |up(z)| < |z|/v/2 and applying the dominated convergence theorem, we
deduce from the three previous formulae the convergence in X (R) of the functions ¥* towards
the function ug as n — oo for any fixed integer k € Z. On the other hand, we infer from the
formula Ykt (z) = ¥ (x) e2™0("%) that

n2

P~ P(yk) = nm /

R

1— vk (2)[2) 0 (na) do = - uo (DY -2 vw? o) d

(1=l (@)|")0' (n2) dz = 7 uo (= X()* )0'(y) dy — ,
R

as n — oo. As a consequence, the momentum P cannot be extended by continuity for the

function uyg.

However, the previous counter-example fails to contradict the possible continuity of a momentum
that would only be defined modulo 7, and we can indeed show the continuity of the untwisted
momentum [P] on X (R).

Lemma A.4. The untwisted momentum [P] is continuous on X (R). Moreover, it satisfies
1
(PIw+0) =PI + [ 0'sc+ 5 [ Gl he moduto =, (A17)
R R
for any functions ¢ € X(R) and h € H(R).

Proof. The proof of continuity is based on Lemma [A.2l Consider a function g € X(R) and
choose a positive number R such that |1)g| > 1/4 on Ij%. Applying Lemma [A.2] we can find
a positive number ¢ such that any function ¢ satisfies the condition |¢)| > 1/2 on IE, as soon
as d(1,10) < & for a fixed number 0 < ¢ < /2. Setting as before ¢ = pe? and ¢y = poe'®
on [ }%, the quantities Py(1)) and Py, (1)0) are then given by formula (A.G]) for a suitable cut-off
function y and a number r > R, which is independent of the function 1 satisfying the condition
de(1,19) < d. In particular, we obtain

Py(v) — Poy(t0) :% / - <<i1//,1/1><c - <wg,¢0>@> + %(e(m«) — Bo(2r) — 6(—2r) + 60(—2r))

+ % /ngr (770’ — 7709()),

with 7 = 1 — [¢|? and 9 = 1 — |¢g|2. When d.(1),v0) — 0, the first term in the right-hand side
of (AI8) tends to 0 by definition of the || - ||g,-norm. Arguing as in the proof of Lemma [A.3]
we check that the third term also tends to 0. Concerning the second one, we derive from the
Sobolev embedding theorem that the convergence in H (R) implies the local uniform convergence.
In particular, we have (£2r) — ¥ (£2r) as d.(v, ¥o) — 0. Since [1o(£2r)| > 1/4, this in turn
implies that e@(F2r) — i00(£21) g5 that

(A.18)

0(£2r) — 09(£2r) modulo 27.
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In view of (A.18]), we conclude that
Py(vp) — Py,(1o) modulo T,

which is enough to guarantee the continuity of the untwisted momentum [P] on X (R).

Concerning (A7), we argue as for (AI3). Assume first that h is smooth and compactly sup-
ported. With the notation of Lemma [A.T] we can choose the number R in the definition of the
quantity Py(1) such that the support of h is a subset of [— R, R|. In this case, the function ¢+ h
owns the same phase 6 as the function v on the intervals I }%. Hence the quantity Py(¢ + h) is
well-defined by

1 ’
Py(yp + h) = 3 /R (<i(1// + 1), 9 + k) + (x:0)
which is equal to

Rolw +1) = Po(w) + [ @' he+ 5 [ G he,

by integration by parts. In view of Lemma [A]] this is exactly (AIT). For an arbitrary h €
H'(R), we argue by density, as in the proof of Lemma [A.3] using the continuity of the untwisted
momentum and the property that the right-hand side of (A7) is continuous with respect to the
convergence in H'(R). This completes the proof of Lemma A4l O

Due to the previous dual definition of the momentum, two strategies are at hand when we aim
at minimizing a quantity under a fixed momentum p. The first one is to minimize under a fixed
untwisted momentum [P], but in this case, the constraint p must be assumed to be in R/7Z.
The second one is to restrict the minimization set to the non-vanishing energy set NVX(R)
in case it is possible to define the corresponding minimization problem for any number p € R.
However, this minimization problem does not necessarily own a minimizer due to the fact that a
minimizing sequence could converge to a function, which vanishes on R, and so does not remain
in NVX(R).

When the goal is to minimize the Ginzburg-Landau energy FE, this second strategy leads to the
minimization problem

Z(p) :=inf {E@W) : ¢ € NVX(R) s.t. P(¢)) = p}, (A.19)

where the number p can take any arbitrary value in R. Note that this problem is well-defined.
Consider indeed a function 1) = pe’® € NVX(R), with P()) # 0 (for instance a dark soliton ..
for ¢ # 0) and set ¢, = pe? for any number 1 € R. The functions 1, remain in NVX(R) and
their momentum

P(u) = pP¥),

take any arbitrary value in R. Hence, the minimization problems Z(p) do make sense. An
important tool in order to solve them is the following lemma.

Lemma A.5 ([I]). Let
£ := inf {E(w) ¥ € X(R) st. inf [u(a)] = o}.

The black soliton ug is the unique minimizer of the minimization problem Ey up to the invariances
by translation and phase shift. In particular, when

2v2
3 )
the function v does not vanish on R, so that it belongs to NVX(R).

E()) <& = E(w) =
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Given a fixed number p € R, and provided that there exists a function ¢¥» € X (R) such that
E(¢) < 2v/2/3 and P(¢)) = p, Lemma [A.5 guarantees that the possible limits of a minimizing
sequence for the problem Z(p) still belong to NVX(R). This property was invoked in [I] to
address the resolution of the minimization problem Z(p) for |p| < /2. For an arbitrary choice
of p, we have

Proposition A.6. (i) For |p| < 7/2, denote by ¢, the unique number in (0,/2), which solves

T arctan [ —2— ) — c_p1 /2 —¢2 =|p| (A.20)
2 2 2 P
2—c

and set ¢, = sign(p) ¢p. The dark soliton profile u., is the unique minimizer of the variational
problem (AJ9) up to translation and phase shift. Moreover, the corresponding minimal value is
given by

N

J(p) = E(u,,) = %(2 —c)2. (A.21)

(1) For |p| > m/2, the variational problem (AJ9) does not own any minimizer, and its minimal
value is equal to
2v/2
==

Z(p)

Remark A.7. We can use Proposition [A.6] to complement the proof of Proposition [ with
respect to [I]. Observe indeed that

J(p) < inf Z(p + km),
keZ

for any number p € (—m/2,7/2]. Combining Lemma [A.F] and Proposition [A.6 we deduce
that J(p) = Z(p) for |p| < w/2. In particular, the conclusion in Proposition [ follows from
Proposition [AL] for this range of values of p.

Proof of Proposition[A.8. In view of Lemma [AJ0] statement (i) is exactly [I, Theorem 2|. We
turn now to statement (i7). First, it was proved in [8, Theorem 2| that the minimal energy Z is
a non-negative, even, continuous function on R, whose restriction to Ry is concave. Moreover,
it was computed in [I, Theorem 2| that

for 0 < p < m/2. Since
dc, 1

- (A.22)
dp (2—¢2)

7 is continuously differentiable on (0,7/2) and
T'(p) = ¢, = 0,

as p — m/2. Since Z is also concave on R, we deduce that

2v/2

: (A.23)

I(p) <I(n/2) =

for any p > 7/2.

Assume next the existence of a number p > 7/2 such that Z(p) < 2v/2/3. Since Z(7/2) = 2v/2/3,
we again infer from the concavity of the function Z the existence of a number ¢ > p such that
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Z(q) < 0. This inequality contradicts the non-negativity of the function Z, so that Z(p) > 2v/2/3
for any number p > /2. In view of ([A23)), this inequality is an equality, and since Z is an even
function, it also holds for p < —7/2.

In order to complete the proof of statement (ii), we next assume the existence of a minimizer 1,
for the variational problem Z(p) with p € R\ (—7/2,7/2) being fixed. In view of Lemma[A.3] this
minimizer is characterized by the equation dE(t,) = odP(1,) for a suitable Lagrange multiplier
o € R. The differentials dE and dP in this identity are chosen acting on the space H'(R).
Again by Lemma [A.3] the minimizer 1, is then a solution to (I) in X(R). Since P(1,) # 0,
this solution is not constant. As a consequence, the minimizer v, is equal to the dark soliton
U, up to the invariances by translation and phase shift. In particular, the number o lies in
(—v/2,4/2), with o # 0 since the black soliton vanishes. However, it follows from [II, Proposition
1| that the momentum P(u,) belongs to the interval (—m/2,7/2). This contradicts the fact that
|P(1p)| > m/2, so that there is no minimizer for |p| > 7 /2. O

B Properties of the energy set X(R x T)

In this section, we gather some properties of the energy set
;mem:{¢emQ®xTvaeLMRxmaMi—wfeL%Rxm}

which are required for defining properly the momentum and providing a suitable functional
framework to solve the minimization problems Z)(p). The derivation of these properties heavily
relies on the following links between the energy sets X (R) and X (R x T).

Proposition B.1. Let A be a fixed positive number.

(1) Given a function b € X (R), set V(x,y) = ¥(x) for any (xz,y) € Rx T. The function ¥ is in
X(R x T), with
EX(¥) = E(¥).

(17) Given a function ¥ € X(R x T), set 1/)0 fo (z,y)dy and wo(z,y) = P(z,y) — Q/A)O(x)
for almost any (x,y) € RxT. The functions 1/10 and wq belong to X (R), respectively H' (R x T),
with

BW) =BG + 5 [ (el + ¥ 0,u0f)
ARX']I‘ . A A 1 (B.l)
+ /RXT <<¢0,wo><2c - §!wo!2(1 — |1bo|?) + |wo|? (o, wo)c + Z‘w0‘4>'

Remark B.2. In view of statement (i), we have made the choice to use the same notation for
all the objects and quantities that are defined identically on R and R x T. With a slight abuse
of notation, we have also identified any function in X (R) with the corresponding function in
X(R x T).

Proof. Statement (7) is a direct consequence of the property that the torus T has a finite measure
equal to 1 and that the derivative dy1) of a function ¢» € X (R x T) depending only on the variable
x is equal to 0.

Concerning statement (i), we first infer from the Plancherel formula that the gradients V4o and
Vuwg belong to L2(R x T), with moreover Oyto = 0 and Oywg = Oyvp. Invoking the Poincaré-
Wirtinger inequality, we obtain

[,

HwOHL2 RxT) — 27T wHL?(RxT)’
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so that the function wy is indeed in H'(R x T).

By definition, we also compute
1= [ol® =1 = |9 + 2(h, wo)c — Jwol*.

Using the inequality

W] < V21 + 2V I = 11005

we deduce from the Sobolev embedding theorem that the functions (1, wo)c, and then 1 — |42
are in L2(R x T). Since v only depends on the variable z, we conclude that this function lies in
X(R). Formula (B.J)) finally follows from the fact that the functions wg and Vwy are orthogonal
in L2(R x T) to all the functions depending only on the variable x. O

Remark B.3. Arguing as for the proof that the function 1 — |¢|2 is in L2(R x T), we can
show that a function of the form v + w belongs to X(R x T) when ¢ and w are in X(R x T),
respectively H'(R x T).

Statement (ii) in Proposition [B] provides a uniquely determined decomposition of an arbitrary
function ¢ € X (R x T) as a function in X (R) plus a function in H'(R x T). It is natural to
take into account this decomposition in order to endow the energy set X (R x T) with a metric
structure. In this direction, we first set

HR xT) = {¢ = 1o +wo € HL (R x T) s.t. 1 € H(R) and wy € H (R x T)}.

The set H(R x T) is then a Hilbert space for the norms given by the formula

ol = [ (V0P +nloP), (B2
RxT

for 0 < ¢ < v/2. This definition is exactly the same as the one of the norm || - ||z, in H(R), so
that we have kept the same notation. Observe in particular that the norm ||¢| g, in H(R x T)
of a function ¢ € H(R) is exactly equal to its norm ||¢| g, in H(R).

Note also that the previous norm is equivalent to the norm given by
1117 = llboll3i, + llwoll 7 (B.3)

Due to the orthogonality of the functions Vi and Vwg in L2(R x T), the norm |||z, indeed
controls the norms || V)y||z2 and ||Vwg|| 72, and then the norm |[wgl| 72 by the Poincaré inequality.
The reverse inequality follows from the property that the norm ||wg|| g1 controls the norm |[wo|| g, -

At this stage, it is natural to endow the energy set X (R x T) with the metric structure corre-
sponding to the distances

1

Aol z) = (Il = bl + I — mel32)”,

with 91 = 1 — |¢1]? and 72 = 1 — [1)2]?, as before. This definition is again exactly the same as in
X (R), and the distance d.(¢1,12) in X(R x T) between functions 1; and 1y in X (R) remains
equal to their distance in X (R). This is the reason why we have again kept the same notation
for the two quantities. A useful property of this metric structure is
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Lemma B.4. (i) Let ¢ = thg+wo € X(RxT). Consider a sequence of functions " € X (Rx T)
such that Y™ — 1 in X(R x T) as n — oo and denote "™ = i + w{ the decomposition given by
Proposition [B . In the limit n — oo, we have

T,ZA)g—Mﬁo € X(R) and wi — wp in Hl(RXT).

(ii) Let g € X(R), h € HY(RxT), and set ) = g+h. Consider sequences of functions g, € X (R)
and h, € H' (R x T) such that g, — g in X(R), and h,, = h in H'(R x T), as n — co. Then,
the functions vy, = g, + hy, satisfy

P — ¥ in X(R x T), (B.4)
as n — oQ.

Proof. Concerning statement (i), we deduce from the equivalence between the H.-norms and the
norms in (B3) that 4§ — ¢ in H(R) and wf — wp in H'(R x T). The fact that 1 — |¢f]* —
1 — |1pg|? in L?(R) then follows from the identity

(1= 1*) = (1=12ho|*) = ([W[*=12"|*)+ (Jwp|*—wo *) +2(ebf =10, wo) e +2(ebf, wh —wo)c. (B.5)

The first term in the right-hand side of this expression tends to 0 in L?(R x T) due to the
convergence 1, — 1 in X(R x T). The second one also tends to 0 in L%(R x T) due to the
convergence w; — wo in H (R x T) and the Sobolev embedding theorem. For the third one, we
recall that the convergence in H(R) implies the convergence in LS (R) by the Sobolev embedding
theorem. Since the energy set X (R) is a subset of Z!(R), the function 1y is also bounded on R.
In particular, it follows from the dominated convergence theorem that the third term in (B.5)
also converges to 0 in L?(R x T). In view of Lemma [A2] the functions 1&8 are then uniformly
bounded on R. Similarly, the fourth term in (B.5) also tends to 0 in L*(R x T) due to the
convergence wf — wo in H'(R x T). In conclusion, the left-hand side of (B.F) converges to 0 in
L?(R x T), and then in L?(R) since it only depends on the variable z.

The proof of statement (i7) is very similar. Observe first that the functions ¢ and v, are in
X (R x T) by Proposition [B.I] and Remark [B.3l The convergence 1, — 1 in H(R x T) then
follows from the fact that the H'-norm controls the H.-norms. Moreover, we compute

(1= Tul?) = (1 = 1) = (91 = lgal*) + (12 = |hal*) +2(g = gn, h)c + 2{gn, h — hu)c.

The convergence 1 — |1, +wp|* — 1 — 1 +w|? in L2(R x T) follows as for (B.5)). This completes
the proofs of (B.4]) and of Lemma [B.4 O

Note also that the energies F\ are continuous with respect to the distances d.. Moreover, we
can show the following density result, which is useful for describing the minimal energy 7).

Corolla}‘y B.5. Let A be a positive number. Consider a function ¢ € X(RxT) and decompose it
as V¥ = 1 + wo according to Proposition [Bl. There exist two sequences of functions g, € X (R)
and hy, € HY(R x T), which satisfy the following properties.

(i) The functions g, are smooth on R and there exist numbers RE > 0 and 6 € R for which
gn(x) = el for any +x > +R*F.
(ii) The functions hy, are smooth on R x T and compactly supported in [—R;, , R;'] x T.

(13i) We have the convergences

gn = Vo in X(R) and  hy, — wo in H'(R x T), (B.6)
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as n — o0.

(tv) The functions 1, = gn + hy, are in X(R x T), with
Vo= in X(RXxT) and Ex\(¢n) — Ex(¥),

as n — 0.

Proof. The proof is based on a decomposition of the functions in X (R), which was established by
P. Gérard in [10] Theorem~1.8]. Given an arbitrary function ¢ € X (R), there exist a real-valued
function ¢ € C°(R), with ¢/ € L?(R), and a complex-valued function & € H'(R) such that

b= e + . (B.7)
Moreover, the phase function ¢ is determined up to adding a real-valued function ¢ € COR),
with ¢’ € L?(R), and such that there exist k+ € Z with ¢ — 27ky € L?(Ry). Since 1 belongs
to X(R) by Proposition [B.1] we can decompose it as 1)y = ¢ + @, with ¢ and w satisfying the
previous conditions.
We next invoke the density of smooth, compactly supported functions in L?(R) and H*(R) so
as to find two sequences of functions ¢, and w, in C°(R) such that ¢, — ¢’ in L?(R), and

w, — @ in H(R), as n — oco. Since the function ¢ is continuous, we are then allowed to define
functions ¢, by the formula

bul) = $(0) + /O "t dt,

for any x € R. By the inequality

|60 () — $(z)] < ' /0 " (onlt) — (1) dt' < VR|len = ¢l 2 rry

which holds for any positive number R, we obtain that ¢, — ¢ in LS (R), while in addition
¢, — ¢’ in L*(R), when n — oo.

At this stage, we set g, = €"*" + w,. The functions g, satisfy statement (i) in Corollary
Given a number 0 < ¢ < \/5, we moreover have

1 ~ 1 . . 1
12 (gn — o) = 0 (€ — ) + 12 (w,, — w),
gy — Vb = i(Bh, — ¢') e +ig) (e — &) + wl, —
as well as
(1—1ga*) — (1 - Iz?)olz) = 2(e"® — e, @) + 2(e"",w — wn)c + [w]? — |wal?.

Invoking the Sobolev embedding theorem, and applying the dominated convergence theorem
when necessary, we are led to

de(gns o) = 0,
as n — oo. Note also that g, — 12)0 in L (R) by the Sobolev embedding theorem.

loc
We finally complete the proof of statement (iii), and provide the one of statement (i), by
introducing a further sequence of functions h,, € C3°(R x T) such that h,, — wg in H*(R x T),
as n — oo.

The convergence of the functions ,, = g,, + h,, towards the function ¢ in X(R x T) is then a
direct consequence of statement (i74) and Lemma [B.4l The convergence of the energies F) (1)
towards the energy F) (1) follows by continuity of the energy F) on X (R x T). This completes
the proof of Corollary [B.5l O
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C Definition and properties of the momentum

In this section, we provide the definition of the momentum in the energy set X (R x T) and
describe its main properties. Our starting point is the decomposition ¢ = 12)0 + wp of a function
1 € X(R x T), which is given by Proposition [B.1l Using this decomposition, the formal density
of momentum writes as

(i0:10, ) c = (103100, 1b0)c + (1010, wo)c + (iBzwo, o) c + (iDpwo, wo)c-

The first term in the right-hand side of this identity is the formal density of the momentum of a
function 1[10 € X(R), so that we can define it rigorously by invoking Lemma[A.Tl The second and
third terms are scalar products of functions, which are at least formally orthogonal in L?(R x T).
Hence, their integral is at least formally equal to 0. Finally, the last term is integrable on R x T
since wg € HY(R x T). As a conclusion, it is natural to define the momentum of the function v

as
- 1

P() = QU +3 [ (idsun,woe.

In this expression, the quantity Q(zﬁo) refers to a 1D momentum of the function 1[10, which can
be either equal to the quantity Py, (1) in (A.G]), the momentum P(t)g) when 1y € NVX(R), or
the untwisted momentum [P](ty). More precisely, we have

Lemma C.1. Given a function ¢ in X(R x T), decompose it as ¢ = Yo + wo, with o and wy
as in Proposition[B. Consider a positive number Ry such that |tho(x)| > 1/2 for |x| > Ry and
a phase function 0y € CO(IEO) such that ¥y = |1/A)0|ei90 on Ilj%[o, Choose a smooth cut-off function
X : R — [0,1] such that x(z) =0 for |z| <1 and x(x) =1 for |z| > 2, and set x,(x) = x(x/7)
for a number r > Ry.

(1) The quantity

Pay (1) = Pay(th0) + %/R T<i5acwo,wo><c, (C.1)

1s well-defined and does not depend on the choice of neither the function x, nor the number r.

(ii) When the function Yo does not vanish on R, the quantity Py, (v)) does not depend on the
choice of the phase function 0y. In the sequel, this quantity is called momentum and simply
denoted by P(v).

(73i) In the general case, the value modulo m of the quantity Py,(1) does not depend on the choice
of the phase function 6y, and it is possible to fix this choice such that Py, () € (—m/2,7/2]. In
particular, the untwisted momentum [P] : X (R x T) — R/7Z defined by [P](y)) = Py, (v) modulo
15 well-defined.

Remark C.2. In view of Remark [B:2] a function ¢ € X(R) is also a function in X(R x T), so
that we can define its momentum as a function in X (R) or in X (R x T). Lemma guarantees
that these definitions are identical whatever is the definition of the momentum (Py(v), P(¢) or
[P])(%)) under consideration. In this case, the functions t and 1)y are indeed equal, so that the
function wq identically vanishes.

Proof. Lemma is a direct consequence of Lemma [A ] since the term depending on the
function wg in (CI)) is well-defined for wo € H'(R x T). O

At this stage, it is natural to introduce the set

Y(RxT) := {zp = 4o+ wo € X(R x T) s.t. o € NVX(R)}.
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Though this open set plays the role of the set NVX(R) in the context of the product space R x T,
it is not the subset NVX (R x T) of non-vanishing functions in X (R x T). With the definition of
Y (R x T) at hand, we can extend Lemmas [A.3] and [A.4] as

Lemma C.3. (i) The momentum P is continuous on the subset Y (R x T). Moreover, given a
function p € Y (R x T), there exists a positive number 6 such that the ball B(¢,0) := {tp + h :
he HY R x T) s.t. |||z <3} is a subset of Y (R x T) on which

P( + 1) = P(¢) + /R o e+ - /R _{i0eh. e, (C2)

In particular, the restriction of the momentum P to the ball B(1),9) is contmuously differen-
tiable, with

AP () (h) = /R {idu. e,

for any function h € H'(R x T).

(1) The untwisted momentum [P] is continuous on X (R x T).

Proof. The continuity of the momentum P and untwisted momentum [P] is a direct consequence
of Lemmas [A.3] and [A.4] applying statement (i) of Lemma [B.4l

Concerning the proof of (C.2)), we consider a function 1) = 1&0 +wy € Y(R x T) and invoke
Lemma [A3]in order to exhibit a positive number § such that the functions 1&0 +g lie in NVX(R)
when g € H'(R) with [|lg]|gn < 6. Assume here that h € HY(R x T) with ||h||z < 6. We can
decompose h as h = ho + w, with ho fT x,y) dy as before, and use the orthogonality
of this decomposition in order to check that ||hollzn < 0. As a consequence, the function
Y+ h = ¥y + ho + wo + w lies in V(R x T), which amounts to say that the ball B(¢),6) is a
subset of Y (R x T). Moreover, we can combine (A.13]) and (C.1]) in order to develop the quantity
P+ h) as

P+ h) =P (4o + ho) +%/ (10 (w + wo), w + wo)c
RxT
- 1 . a3 .
_P(¢0) + 5 /RXT <18xw0,wo>c + /RXT <<Zam¢0, hO><C + <Zaxw0,w>(c)
v /]R ((0eho. R + (000, ).)

Formula (C2]) then follows from the orthogonality conditions between the functions 1&0 and hg
on the one hand, and w and wy on the other hand. The value of the differential dP(¢) and its
continuity are then a direct consequence of this formula. This ends the proof of Lemma O

We next relate the momentum of a function ¢ € X (R x T) with the untwisted momenta of its
slices 9(-,y) for y ranging in T.

Lemma C.4. Let 1) = g+ wo € X(R x T). Consider a positive number Ry such that [{o(z)] >
1/2 for |x| > Ry and a phase function 6y € CO(I;%O) such, that g = || €% on I;fo. For almost
every y € T, the functions wo(-,y) and (-, y) are well-defined in H*(R), respectively in X (R).
In particular, the quantities

Do, (¢(7y)) = Peo(lﬁo) +A<Z¢67w0(7y)>c + %/R<Z‘8$w0('7y)7w0('7y)>(ca (03)

2With respect to the metric structure induced by the H'-norm.
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are well-defined for almost any y € T, and they satisfy

Po, (¢) = /T o, (Y (- v)) dy, (C.4)

as well as

Poo (V(y)) = [P)(¥(,y))  modulo . (C.5)

Proof. Recall first that wg is in HY(R x T), so that the slices wq(-,y) belong to H'(R) for
almost any y € T. Since the energy set X (R) remains stable by addition of functions in H*(R),
the slices ¥(-,y) are in X(R) for almost any y € T. The quantity pg,(¢(-,y)) is also well-
defined and depends only on the function ¥(-,y) due to the uniqueness of the decomposition

TIZ)(', y) = 1&0 + wO(" y)
Going back to the definition of the quantity Py,(¢)) in Lemma [C.1] and using the fact that wo
and wy are orthogonal in L?(R x T), we next invoke the Fubini theorem in order to write

Poo() =Pyl +5 [ (s, wo)c

/T<P90 o) / (il ) + 5 /R <i5mw0('7y)awo('ay»@)dy.

This is exactly (C4), so that it only remains to establish (C.5). This latter inequality is a
direct consequence of ([AIT) since Py,(10) = [P](¢)o) modulo 7 by definition of the untwisted
momentum. This completes the proof of Lemma O

Going back to the density result in Corollary [B.5 we finally derive the following useful formula
for the momentum of smooth functions with compactly supported gradients.

Lemma C.5. Let g be a smooth function in X(R) such that there exist numbers RT > 0 and
6* € R for which g(x) = €® for any £x > R*. Consider a function h € CX(R x T) with
support in [~R™, R x T and set 1) = g+ h. Then, the function U writes as () = @) for
+x > R, with Oy(x) = 07 if £ > RY and Op(x) = 0~ for x < —R~. Moreover, the quantities

po, (W(+,y)) in Lemma[C]] are given by

o (0.) = 5 [ 000, + 567 —67), (o)

for almost any y € T. As a consequence, we have

Py (1) = /T pao (1)) dy. )

with Ppy(v) = [P)(¢) modulo 7, and pe, (¢ (-,y)) = [P](¢(-,y)) modulo 7, for almost any y € T.
When the function 1y does not vanish on R, the momentum P(v) is also given by (C).

Proof. Observe first that ¢ (x,y) = g(x) when +2 > R*, so that

x) = /Tw(m,y) dy = g(z) = " = P00,

For almost every y € T, we therefore deduce from (C.3) that
1 Ay " .
Doy (1/}(7 y)) = 5 /I\{ (<Z¢/O7 T]Z)0>(C + (XT‘ 00), + 2<“;Z)67 ’LUO(', y)>(c + <Zaxw0('7 y)7 ’LU()(', y)>(c)7 (08)
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with wy = ¢ — 9 and r > max{R~, R*}. We next have

/(Xr bo) = 0 — 0.
R

Since wo(z,y) = 0 for £ > R*, we also deduce from an integration by parts that

[ e =5 [ (G0 wlm)e + (0t 0). o))

Formula (C.6) then follows from (C.8). Formula (C.7)), as well as the other statements in
Lemma [CH then result from the definitions in Lemma and the properties in Lemma
This concludes the proof of Lemma O
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