
HAL Id: hal-03585767
https://hal.science/hal-03585767v1

Submitted on 23 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe Dynamic Reconfiguration of Concurrent
Component-based Applications

Salman Farhat, Simon Bliudze, Laurence Duchien

To cite this version:
Salman Farhat, Simon Bliudze, Laurence Duchien. Safe Dynamic Reconfiguration of Concurrent
Component-based Applications. ICSA 2022 - 19th IEEE International Conference on Software Archi-
tecture, Mar 2022, Honolulu, United States. �hal-03585767�

https://hal.science/hal-03585767v1
https://hal.archives-ouvertes.fr


Safe Dynamic Reconfiguration of Concurrent
Component-based Applications

Salman Farhat
Univ. Lille

Inria
CNRS

Centrale Lille
UMR 9189 CRIStAL
F-59000 Lille, France
salman.farhat@inria.fr

Simon Bliudze
Univ. Lille

Inria
CNRS

Centrale Lille
UMR 9189 CRIStAL
F-59000 Lille, France
simon.bliudze@inria.fr

Laurence Duchien
Univ. Lille

CNRS
Inria

Centrale Lille
UMR 9189 CRIStAL
F-59000 Lille, France

laurence.duchien@inria.fr

Abstract—Cloud computing and cyber-physical systems involve
software capable of adapting at run time to remain compliant
with user demands and environmental constraints. This calls for
extending the life cycle of software systems with a reconfiguration
step to go beyond analysis, design, development and deployment.
Existing approaches compute a new valid configuration at design
time, at run time, or both, inducing computational or validation
overheads for each reconfiguration step. We propose an approach
that relies on variability models to acquire a representation of the
set of valid configurations of a system. We use feature models to
automatically generate a JavaBIP run-time variability model. The
generated model monitors and controls the application behaviour
by intercepting reconfiguration requests and executing them in
such a manner as to ensure that all reachable configurations are
valid without the need of pre-computing the possible configura-
tions neither at design time nor at run-time while only inducing
a minimal run-time computational overhead.

Index Terms—Distributed Systems, Concurrent Component-
based Systems, Variability Models, Self-Configuration, Dynamic
Reconfiguration

I. INTRODUCTION

In order to cope with new user requirements, most run-
time environments such as cloud computing or cyber-physical
systems must adapt in response to a change in the requirements
or the operating context [1].

In the context of cloud applications, we consider the system
configuration to be sets of resources that host an application.
These are constrained by the set of rules that define the
coordination and dependencies among the components of
the system. A reconfiguration [2] is a process that enables
adapting the system configuration in response to a change in
the platform or user needs.

There are several approaches for analyzing and planning
reconfiguration. These approaches rely on different tools to
calculate or validate the appropriate adaptation plans for ap-
plying the reconfiguration step. Existing approaches compute
a new valid configuration at design time, at run time, or
both, inducing computational or validation overheads for each
reconfiguration step.

Feature modeling (FM) is a widely used approach to capture
commonalities and variability across software systems that are

part of a product line or system family [3], [4]. A feature model
is usually depicted as a tree diagram whose nodes represent
features that can be selected to build a product.

In this paper, we present an approach that leverages the
feature model for acquiring a representation of a set of valid
configurations of a system which will be used to generate
a component-based run-time variability model. This model
will be used to monitor and control the application at run-
time. It will intercept reconfiguration requests and execute
them while ensuring by construction that all intermediate
configurations reached are valid without the need of computing
the configurations neither at design time nor at run time.

By exploiting feature models and component-based run-time
formal models such as JavaBIP model [5], we work on the
means of enforcing safe behavior of concurrent component-
based systems by construction through automatic derivation
of executable models from feature models. A system is safe
if any state reached is valid.

II. MOTIVATION

Our main objective is to define a component-based run-
time variability model encoding the semantics of a feature
model to control reconfiguration operations while ensuring the
following safety property: only valid configurations can be
selected as a result of any reconfiguration request.

Several approaches [6]–[15] exist for analyzing and plan-
ning reconfiguration. These approaches either compute the set
of all possible configurations in advance at the design time
or a new valid configuration at run time. This induces com-
putational or validation overheads for each new configuration,
whenever reconfiguration is needed. Indeed, when all valid
configurations are precomputed at design time, they must be
stored explicitly in the runtime. This is problematic, since the
set of configurations is exponential in the number of features,
but particularly so for distributed systems, where a copy of
the list has to be stored at every node. Alternatively, the new
configuration must be computed and validated at run time,
inducing a computational overhead.



Fig. 1: Mobile feature model

The solution presented in this paper leverages feature mod-
els to generate a component-based run-time variability model
encoding all valid configurations to drive the reconfiguration
process. Furthermore, our solution removes from the user the
burden of ensuring that the reconfiguration steps are carried
out in the correct order.

III. RUNNING EXAMPLE

We use the example of a software system used to control
the hardware for a line of mobile phones. The structure of the
software system reflects that of the mobile phones. All mobile
phones in the product line must provide the basic functionality:
the capability of making and receiving phone calls and a screen
allowing the users to interact with the phone. In addition, the
users can request additional optional features, namely, the GPS
and Media modules. Naturally, the users can choose between
cheaper, low-end models, equipped with a basic screen, mid-
range models with a color screen, and more expensive models
equipped with a high-resolution screen. The media capabilities
of the phone can include a camera and an MP3 component to
play music. The use of the camera requires the phone to be
equipped with a high-resolution screen. Furthermore, low-end
models do not have a GPS module.

IV. FOUNDATIONS

A. Feature Models

Feature Models (FMs) [3] are regarded as the de-facto
standard for managing variability and are commonly used
for modeling the variability of software product lines. The
possible configurations of a mobile phone are defined by the
feature model shown in Figure 1. A FM defines variability
in terms of features and their relationships. Features are
arranged in a tree-like structure, where every node represents
a mandatory or an optional feature. Furthermore, sub-features
of a feature can form an Alternative-group or an OR-group. In
addition to such structural constraints, FMs define two types of
integrity constraints among features: a feature X can exclude
or require another feature Y . As an example, the mobile phone
variability model is shown in Figure 1.

A valid configuration is a set of features that satisfies all
the constraints of a feature model. The 14 valid and complete
configurations of the FM in Figure 1 are shown in Table I.

TABLE I: Valid configurations for the FM of Figure 1

C1: {Mobile phone, Calls, Screen, Basic}
C2: {Mobile phone, Calls, Screen, Color}
... {...}
C14: {Mobile phone, Calls, Screen, High Resolution,

Media, Camera, Media, MP3, GPS}

B. JavaBIP

JavaBIP [5] is an open-source Java implementation of
the BIP (Behaviour-Interaction-Priority) [16] mechanism for
the coordination of concurrent components. The behaviour
of components is defined as Finite State Machines (FSMs).
Transitions of these FSMs are labeled by ports, which are used
to specify the possible interactions with other components: an
interaction is a set of component ports that can be synchro-
nised, i.e. executed together atomically. Graphically, allowed
interactions are defined by connectors. The behaviour speci-
fication of each component along with the set of connectors
are provided to the BIP engine. The engine orchestrates the
overall execution of the system by deciding which component
transitions must be executed at each cycle.

In JavaBIP, transitions of FSMs defining component be-
haviour specifications can be of three types: enforceable,
spontaneous and internal. Only enforceable transitions are
controlled by the engine. Spontaneous transitions are used to
take into account changes in the environment and, therefore,
they are not announced to the engine but executed upon
notification from the environment of the component. Finally,
internal transitions allow behaviour specifications to update
their state based on internal information—when enabled, they
are executed immediately. Spontaneous and internal transitions
cannot be used for synchronisation with other components.

Figure 2 shows a JavaBIP model with three components:
GPS, Screen, and Camera. Enforceable, spontaneous, and
internal transitions are shown by solid black, dashed green
and solid red lines, respectively. Ports are shown as grey
boxes on the sides of the components. Two connectors—black
lines connecting the ports—define the possible interactions.
We do not show connectors for singleton interactions. Thus,
unconnected ports, e.g. High_Resolution_reset, can
fire alone, whereas the port GPS can only be fired together
with the port not_Basic. Since there is no transition from
the state Basic labeled not_Basic, this prevents the GPS
component from entering the state GPS when the Screen
component is in state Basic.

V. DESIGN AND TRANSFORMATION

The creation of the component-based variability model
elements will be based on the feature model. A feature will be
analyzed and transformed into a component depending on its
nature. As an example, in Alternative-group only one feature
can be selected at a time. Thus, if the feature X is parent of
an Alternative-group (e.g. Screen) then a component with
name X is created and all sub-features are states in the FSM
of the component X. To this end, a FSM with sub-features
for component X is created which allows only one state to



Fig. 2: Component-based runtime variability integration

be active, thus, an alternative choice is enforced (FSM has
only one active state at a time). In addition, two intermediate
states for each sub-feature are created that are used to sup-
port requesting the selection (e.g. SBasic)/deselection (e.g.
SRBasic) of feature Y and avoid direct selection/deselection
of feature Y.

The internal specification of the component generated cor-
responding to feature X will be generated based on the nature
of the feature X. After then, the transitions between states will
be established. Finally, after the creation of the components
and their internal behaviour, the generation of the coordination
layer will be based on the integrity constraints and structural
constraints that exist in the feature model. Constraints will be
translated into connectors to set up the coordination layer in
between the components so that the component-based runtime
variability model proceeds in a safe manner while applying
reconfigurations at runtime. As an example for integrity con-
straints such as exclude constraint, Basic feature excludes
GPS feature this means that only one feature in between these
two features can be in a valid configuration. Thus, component
Screen, should be synchronized with component GPS so
that Basic feature can be selected only if GPS component is

Fig. 3: JavaBIP overhead over the application

not in state GPS which means that GPS feature is not active.
Thus, constraints in the feature model will be encoded in the
generated component-based runtime variability model.

As shown in the bottom and top parts of Figure 2, the
generated model intercepts reconfiguration requests using the
UI and executes them by calling the APIs associated with
the transitions in the components. Due to space constraints
in the short paper, Figure 2 is a sub-part of the generated
model for the feature model presented in Figure 1 and we did
not present the design decisions underlying the transformation
model. Check out 1 for additional details on the design.

VI. IMPLEMENTATION AND VALIDATION

We implemented our model transformation tool using AT-
LAS Transformation Language (ATL). ATL is a domain-
specific language for specifying model-to-model transforma-
tions, it provides ways to produce a target model that conforms
to a target metamodel from a source model conforms to a
source metamodel [13]. The generated model specification will
be conforming to the JavaBIP metamodel [17]. The generated
XML file will be parsed using the DOM library in Java to
generate the JavaBIP specification and the glue coordination.
Our implementation can be found on zenodo platform [18].

For the experiments, we generate random feature models
with 100, 200, 300, 400, and 500 features using BeTTy tool
[19]. Then we measure the overhead of the component-based
runtime variability model generated on the application. Fig-
ure 3 shows the overhead of the generated model in terms of
time in milliseconds where R represents the number of features
in the randomly generated feature model and C represents the
number of components created for the random feature model.

Compared to approaches listed in section II, the overhead
produced by the generated component-based run-time variabil-
ity model on the application is proven to be minimal.

VII. RELATED WORK

In this section, we present different engineering approaches
that deal with reconfiguration and self-adaptation of systems.

a) Model-based approaches: The model describes sys-
tem specifications that include information about system archi-
tecture, environment, and reasoning on the adaptation. These
models are used to extract and calculate a reconfiguration

1salmanfarhat1.github.io/salman-farhat/#research



plan/self-adaptation plan to keep the system compliant to the
user expectation and context constraints. Cetina et al. [6], [7]
propose a model-based approach that is based on SPL. A
feature model (FAMA [20]) is used to specify commonalities
and variabilities of system functionality. A set of conditions
and resolutions are defined at the design time.

b) Component-based approaches: Component-based
techniques are a subset of model-based approaches in
which the system description is made up of components.
Connectors control the relationships between the components
and establish interaction and dependencies between them.
Concerto [21] is a component-based reconfiguration model
focusing on modelling and coordinating the life-cycle of
interacting parts of a system. Typically, each module of
the system is modeled with a component type. A control
component type is developed by the component developers
and this component contains information about the life-cycle
of the component and its dependencies. Internal parallelism is
expressed inside a component in which multiple places may be
active, and multiple transitions may be fired simultaneously.
Concerto is equipped with a reconfiguration language that is
used by system administrator to modify the architecture.

c) Service-oriented approach: Services are lightweight,
encapsulated, and autonomous software units that execute a
particular function. Services are used to support the creation
of rapid, low-cost, and large distributed systems [22]. Cloud
Integrator [23] is a service-based approach for managing
services in multi-cloud environments. Cloud Integrator works
as a mediator between the service providers and the clients,
it is used for composing, executing, and managing services
provided by different cloud computing platforms.

Our approach differs from the existing approaches by min-
imizing the computational overhead in-terms time at runtime.
The generated model will ensure by construction that only
valid configurations can be reached.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we worked on the means of enforcing the safe
behaviour of concurrent component-based systems by con-
struction through automatic derivation of executable models
from a variability model. The generated model will drive the
reconfiguration process without the need of pre-computing the
configurations neither at run time nor at design.

To go further, the feature models that are currently supported
in our work cannot fully represent cloud-like platforms. These
require taking into account complex attributes and constraints,
such as time constraints and temporal constraints [24].

REFERENCES

[1] M. Aksit and Z. Choukair, “Dynamic, adaptive and reconfigurable
systems overview and prospective vision,” in 23rd International Confer-
ence on Distributed Computing Systems Workshops, 2003. Proceedings.
IEEE, 2003, pp. 84–89.

[2] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
and Mobile Computing, vol. 17, pp. 184–206, 2015.

[3] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” Carnegie-
Mellon Univ Pittsburgh Pa Software Engineering Inst, Tech. Rep., 1990.

[4] I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botter-
weck, A. Pathak, S. Trujillo, and K. Villela, “Software diversity: state
of the art and perspectives,” 2012.

[5] S. Bliudze, A. Mavridou, R. Szymanek, and A. Zolotukhina, “Exoge-
nous coordination of concurrent software components with JavaBIP,”
Software: Practice and Experience, vol. 47, no. 11, pp. 1801–1836,
2017.

[6] C. Cetina, J. Fons, and V. Pelechano, “Applying software product lines to
build autonomic pervasive systems,” in 2008 12th International Software
Product Line Conference. IEEE, 2008, pp. 117–126.

[7] C. Cetina, P. Giner, J. Fons, and V. Pelechano, “Autonomic computing
through reuse of variability models at runtime: The case of smart
homes,” Computer, vol. 42, no. 10, pp. 37–43, 2009.

[8] R. Abid, G. Salaün, and N. De Palma, “Formal design of dynamic
reconfiguration protocol for cloud applications,” Science of Computer
Programming, vol. 117, pp. 1–16, 2016.

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[10] T. A. Lascu, J. Mauro, and G. Zavattaro, “A planning tool supporting
the deployment of cloud applications,” in 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence. IEEE, 2013, pp. 213–
220.

[11] J. Zhang and B. H. Cheng, “Model-based development of dynamically
adaptive software,” in Proceedings of the 28th international conference
on Software engineering, 2006, pp. 371–380.

[12] M. Chardet, H. Coullon, D. Pertin, and C. Pérez, “Madeus: A formal
deployment model,” in 2018 International Conference on High Perfor-
mance Computing & Simulation (HPCS). IEEE, 2018, pp. 724–731.

[13] C. Quinton, D. Romero, and L. Duchien, “Saloon: a platform for
selecting and configuring cloud environments,” Software: Practice and
Experience, vol. 46, no. 1, pp. 55–78, 2016.

[14] R. Di Cosmo, J. Mauro, S. Zacchiroli, and G. Zavattaro, “Aeolus: A
component model for the cloud,” Information and Computation, vol.
239, pp. 100–121, 2014.

[15] C. Quinton, M. Vierhauser, R. Rabiser, L. Baresi, P. Grünbacher, and
C. Schuhmayer, “Evolution in dynamic software product lines,” Journal
of Software: Evolution and Process, vol. 33, no. 2, p. e2293, 2021.

[16] A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,
and J. Sifakis, “Rigorous component-based system design using the BIP
framework,” IEEE software, vol. 28, no. 3, pp. 41–48, 2011.

[17] A. Mavridou, J. Sifakis, and J. Sztipanovits, “DesignBIP: A design
studio for modeling and generating systems with BIP,” arXiv preprint
arXiv:1805.09919, 2018.

[18] Zenodo, “Component-based Runtime Variability Model for Safe
Dynamic Reconfiguration,” Nov. 2021. [Online]. Available: https:
//doi.org/10.5281/zenodo.5680389

[19] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-
Cortés, “BeTTy: benchmarking and testing on the automated analysis
of feature models,” in Proceedings of the Sixth International Workshop
on Variability Modeling of Software-Intensive Systems, 2012, pp. 63–71.

[20] D. Benavides, P. Trinidad, A. Ruiz-Cortés, and S. Segura, “Fama,” in
Systems and software variability management. Springer, 2013, pp.
163–171.

[21] M. Chardet, H. Coullon, and S. Robillard, “Toward safe and efficient
reconfiguration with concerto,” Science of Computer Programming, vol.
203, p. 102582, 2021.

[22] M. Zhou, R. Zhang, D. Zeng, and W. Qian, “Services in the cloud
computing era: A survey,” in 2010 4th International Universal Commu-
nication Symposium. IEEE, 2010, pp. 40–46.

[23] E. Cavalcante, T. Batista, F. Lopes, A. Almeida, A. L. de Moura, N. Ro-
driguez, G. Alves, F. Delicato, and P. Pires, “Autonomous adaptation of
cloud applications,” in IFIP International Conference on Distributed
Applications and Interoperable Systems. Springer, 2013, pp. 175–180.

[24] G. Sousa, W. Rudametkin, and L. Duchien, “Extending dynamic soft-
ware product lines with temporal constraints,” in 2017 IEEE/ACM 12th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). IEEE, 2017, pp. 129–139.

https://doi.org/10.5281/zenodo.5680389
https://doi.org/10.5281/zenodo.5680389

	Introduction
	Motivation
	Running example
	Foundations
	Feature Models
	JavaBIP

	Design and Transformation
	Implementation and Validation
	Related Work
	Conclusion and Future work
	References

