On Cayley graphs over generalized dicyclic groups - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

On Cayley graphs over generalized dicyclic groups

Résumé

Recently, several works by a number of authors have studied integrality, distance integrality, and distance powers of Cayley graphs over some finite groups, such as dicyclic groups and (generalized) dihedral groups. Our aim is to generalize and/or to give analogues of these results for generalized dicyclic groups. For example, we give a necessary and sufficient condition for a Cayley graph over a generalized dicyclic group to be integral (i.e., all eigenvalues of its adjacency matrix are in Z). We also obtain sufficient conditions for the integrality of all distance powers of a Cayley graph over a given generalized dicyclic group. These results extend works on dicyclic groups by Cheng-Feng-Huang and Cheng-Feng-Liu-Lu-Stevanovic, respectively.
Fichier principal
Vignette du fichier
Version_acceptée.pdf (374.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03585581 , version 1 (23-02-2022)

Identifiants

  • HAL Id : hal-03585581 , version 1

Citer

Angelot Behajaina, François Legrand. On Cayley graphs over generalized dicyclic groups. 2022. ⟨hal-03585581⟩
33 Consultations
62 Téléchargements

Partager

More