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KHAOS: a Kinematic Human Aware Optimization-based System for
Reactive Planning of Flying-Coworker

Jérôme Truc1, Phani-Teja Singamaneni1, Daniel Sidobre1, Serena Ivaldi2 and Rachid Alami1

Abstract— The use of drones in human-populated areas is
increasing day by day. Such robots flying in close proximity
to humans and potentially interacting with them, as in object
handover or delivery, need to carefully plan their navigation
considering the presence of humans. We propose a human-
aware 3D reactive planner based on stochastic optimization
for drone navigation. Besides considering the kinematics con-
straints of the drone, we propose two criteria to produce
socially acceptable trajectories. The first, called discomfort,
considers the unease caused to the humans spatially close to
fast-moving drones. The second, called visibility, promotes the
drone’s visibility for humans. We demonstrate the planner’s
performance and adaptability in various simulated experiments.

I. INTRODUCTION

Drones are increasing in our society, finding applications
in human-populated areas that go beyond leisure and visual
inspection. With increased payload and interaction capabil-
ities, they are now considered for object delivery and col-
laboration with workers in civil and industrial applications.
Safety is paramount. However, navigation and interaction
in close proximity to humans call for the consideration of
some specific social skills, such as producing legible and
acceptable motions.

In this paper, we address navigation planning in the
scenario of the “Flying Co-Worker”3: a multi-rotor drone that
collaborates with workers to fetch small objects. The robot
must fly in a human-populated area, where only a handful
of human workers may be “aware” of the robot’s current
task and mission, and a fraction of them may be involved in
the physical interaction (e.g., object delivery): the robot must
assume that most humans are “observers”, i.e., they ignore
its current mission and are not involved with it. In such
conditions, the drone needs to carefully plan its 3D motion in
a reactive way to navigate and act safely in close proximity
to humans. Beyond safety, the drone should aim at exhibiting
navigation strategies that are, as much as possible, socially
aware: for example, it should avoid fast movements that
could scare the observers; it should maximize its visibility
for workers, especially when engaging in an interaction.

To address the navigation requirements mentioned above,
we propose a Kinematic Human-Aware Optimization System
(KHAOS) for reactive planning, which produces trajectories
in the 3D space satisfying the kinematic constraints of the
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Fig. 1: Conceptual representation of the Flying Coworker with the
3DoF arm in a handover operation with a human worker. Human-2
(H2) has the tool required by Human-1 (H1) and the drone (FCW
- Flying Coworker) carries the tool from H2 to H1. The picture on
top right corner is the 3D visualisation of this handover by H2.

drone and ensuring the visibility and ease of the humans
present in the environment. The human-aware behavior is
realized by proposing a visibility cost and a novel dis-
comfort cost and including these along with the kinematic
constraints into a stochastic optimization process inspired by
the STOMP algorithm [1]. These measures for the social
navigation of the drones, together with the new reactive
planning system, KHAOS, are the main contributions of this
paper. In this work, we consider only the multi-rotor drones,
and throughout this paper, the term drone always refers to a
multi-rotor drone.

The organization of the rest of the paper is as follows.
We briefly review related work in section II, and then we
describe in section III the different costs and constraints
used by the trajectory optimizer after giving some details
on its operation. We show in section IV the behavior of
the obtained reactive planner through several illustrative
examples. Finally, section V is dedicated to a discussion
about the planner’s performance and potential improvements,
followed by the conclusions in section VI.

II. RELATED WORK

Human-aware robot navigation needs to add additional
constraints on the plan as well as the motion of the robot [2]
to navigate safely around the humans. Most of the human-
aware navigation planners mainly use only the proxemics
[2], [3] criteria to achieve safe motion of the robot around
humans. The works of Ferrer. et al [4] and, Repiso et. al
[5] uses the social force model (SFM) based controller to
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navigate the robot in the crowd and human accompaniment
respectively. Truong et. al [6] extended this to human-object
and human group interactions by proposing the proactive
social motion model. Inspired by these, Garell et. al [7]
proposes an Aerial Social Force Model (ASFM), a 3D
SFM, that allows the drones to safely accompany humans.
Some recent works in ground robot navigation uses Graph
Convolutional Networks [8] and reinforcement learning [9]
to learn acceptable navigation behaviors for the robot. A
more recent work uses optimization to produce more legible
robot trajectories along with modality shifting to address
multi context navigation [10]. In case of drone navigation,
the recent work of Garell et. al [11] focuses on using
neural networks to learn the non-linear ASFM to address
the problem of human accompaniment. Unlike the ASFM
which focuses on a reactive controller, we present a reactive
planning approach in this paper inspired by the STOMP
algorithm [1] which is highly flexible and can be adapted
to various situations.

When the robot needs to approach a human for interaction,
new motion criteria such as approach the user from the
front [12], [13] and at a reduced speed, [14] are introduced.
The noise and the wind generated by the propellers of
drones cause significant additional annoyance for people as
mentioned in [15]. A user study carried out by Duncan et
al. [16] evaluating the approach distance and height of the
drone towards a human concluded that the human-human
proxemics might not be directly transferable to human-aerial
robot interactions. Yeh et al. [17] also performed a user study
for evaluating proxemics in human-drone interaction and
showed that the personal space of the humans varied based
on social cues, like greeting and the design of the drone. A
more recent work by Jensen et al. [18] studied the drone’s
interaction distance with a human to signal its presence and
concluded that humans feel acknowledged between 2m to
4m. At this point, one could also wonder what is the best
angle of approach to interact with a human as studied for
a mobile robot by Koay et al. [13] who show a preference
of the users for a frontal approach, in the visual field of the
human. In our work, the field of view of humans, the effort
to get the drone visible, and the discomfort caused to the
humans by the drone’s motion are considered to propose
a plan that is less disturbing for the interacting humans
(professionals) while avoiding the observers in a safe and
friendly way.

Good communication of intentions by the robot can also
improve legibility [19] and safety. These intentions can be
communicated by a more readable trajectory of the robot as
discussed by Dragan et al. [19] and through some gestures
[20] or gaze [21], [22]. A recent work by Bevins and Duncan
[23] studies the human perception of different drone paths
and their responses to them. They generated several types of
paths and based on a 3 phase user study, they proposed some
guidelines on the design of robot paths for communication.
Works by Kruse et. al [24] and Sisbot et al. [25] studied the
effect of directional costs and visibility to produce more leg-
ible paths for robot navigation. The works presented in [26],

[27] proposed proactive trajectory planning for co-operative
human-robot navigation and introduced time to collision, a
cost predicting a future collision with a human and pushing
the robot to act earlier and show its intention to the human.
The discomfort cost proposed in this paper is inspired by
this. Similar behavior was applied to the case of the drone
in [28], showing this anticipation effect where the drone takes
into account the perception of the human. The results of the
study by Szafir et al. [29] show the importance of taking into
account the phases of acceleration and deceleration of the
drone and therefore, its kinematics to improve their social
integration in an environment where they collaborate with
humans.

III. HUMAN-AWARE REACTIVE TRAJECTORY PLANNER

We need a reactive planner which can perform well in a
3D environment that is not too sensitive to different local
minima. We propose an approach inspired by the STOMP
algorithm [1] which allows great flexibility due to its stochas-
tic nature. The optimization takes as input a list of points
forming an original path whose ends are the start position
and the desired goal. From this original path, it generates
K noisy trajectories exploring the surrounding space and
calculates the associated costs. These K trajectories are then
analyzed using different costs applied at each timestep or
waypoint to sort the most interesting configurations and
finally generate an optimized trajectory. Below, we define the
various costs that we use to help the optimizer generate safe
and comfortable trajectories for humans in the scene. Then,
we adapt the optimization algorithm to take into account
not only the kinematic constraints of the robot but also the
constraints imposed to respect human comfort.

A. Human-Aware Costs

1) Discomfort: To represent the discomfort caused to one
or more humans when a drone moves in the environment,
we consider a cost based on the relative speed and distance
between the drone and humans present. Indeed, we want to
translate the fact that a drone moving fast and close to a
human is much less comfortable than a distant slow drone.
In addition, if the drone is forced in one way or another to
pass close to a human, it must adapt its speed by reducing it
to limit the discomfort generated to this human, or even stop
if it has reached a certain threshold. The time to collision
cost presented in [26] is the first part of the answer, but we
want information on this cost even when the velocity vector
of the drone is not oriented towards the human. Therefore,
we formulate the discomfort cost as:

Cdis =
‖
−−→
Vrob −

−−−→
Vhum‖

Distrob−hum
+

αproximity
Dist2rob−hum

(1)

where ‖
−−→
Vrob−

−−−→
Vhum‖ and Distrob−hum are respectively the

relative speed and distance between the drone and the human.
The second term of Eq. (1) describes the cost associated with
the proximity of the drone to the human whose influence can
be adjusted using the scaling factor αproximity.



2) Visibility and effort to see: The visibility criterion
presented in [25] uses a 2D grid. Since a drone can move
in three dimensions, we need to extend the model to a 3D
grid. The 3D grid centered at the origin of the human visual
field gives the visibility cost, Cvis, for each cell which is
computed as follows:

• All cells contained in a cone of pan and tilt angles
respectively equal to 2 ∗ |α| and 2 ∗ |α′| (blue zone in
Fig. 2a and Fig. 2b) located in front of the human have
the same cost value. This value is relatively low (= 1)
representing a relatively free zone and corresponding to
the preferential approach zone according to [13].

• Angles increase clockwise as |β| = π − |α| and |φ| =
π−|α|. Cells in the zone starting at |αmax| (respectively
|α′max|) and ending at |βmax| (respectively |φmax|) have
a cost proportional to |α|+ |β| (respectively |α′|+ |φ|).
This makes it possible to reconcile the approach zones
in the visual field which are less comfortable than the
frontal zone and the zones which are not in the visual
field of the human that require an effort to turn around.

• Zones hidden by obstacles, out of the visual field and
beyond a threshold distance (4m) correspond to a zero
cost value.

As depicted in Fig. 2, we can see the orientation of the
human gaze represented by the red arrow. Directly in front of
human is represented in dark blue, the zone of low cost, and
then there is a gradual increase of the cost more and more
towards the rear corresponding to more and more reddish
colors.

Fig. 2: Visibility cost : a) (resp. b) Cutaway top (resp. side) view
showing the 3D simulation rendering of the change in visibility
cost as a function of the panoramic (resp. tilt) angle. c) 3D view
showing the consideration of obstacles. The human gaze direction
is represented by a red arrow. Red colored cells correspond to high
cost while blue colors correspond to low cost.

Algorithm 1: Constrained velocity computation

Given;
– Drone kinematics constraints: vmax, amax, decmax
– discomfort constraint: DCFmax

for each noisy smooth trajectory do
for each 3D position of the drone do

Compute kinematic velocity of the drone
vkin;
Compute discomfort cost Cdis with vkin;
if Cdis < DCFmax then

vchoice = vkin;
else

vchoice =
(DCFmax − αproximity

Dist2hum−rob
) ∗Disthum−rob;

end
vdrone = min(vmax, vchoice)

end
end

B. Kinematic constraints

The driving idea behind our approach is to take into
account the kinematics of the drone while respecting hu-
man comfort by taking as a reference the discomfort cost
defined above. The particularity of the STOMP algorithm
on which we based the optimization part of our approach
is the generation and comparison of K noisy trajectories
aiming to explore space in a stochastic manner. Starting
from this principle, we propose in Algorithm 1 to constrain
these K generated trajectories by considering the kinematic
constraints of the drone such as its maximum speed vmax,
acceleration amax and deceleration decmax. To this, we add
an additional constraint linked to the cost of discomfort by
setting a value DCFmax, which cannot be exceeded and
named as discomfort constraint in this paper. Thus for each
point of the trajectory generated randomly, we calculate the
maximum speed vkin that the drone can reach considering
its kinematics limits and, if for this position and speed,
the Cdis exceeds discomfort constraint limit DCFmax, then
the discomfort constraint predominates and limits the speed
below the maximum speed that it is possible to achieve.
Conversely, if for a given position, the drone can move at its
maximum speed and it is not inconvenient for humans, then
it will limit its speed to its maximum kinematic limits.

C. Local cost and Trajectory cost

Similar to the STOMP algorithm [1], we calculate the
cost for each timestep or waypoint at the local level and an
overall trajectory cost. The local cost function is defined as
the sum of the visibility cost, Cvis, discomfort cost, Cdis and
obstacle cost, Cobstacles, which pushes the waypoints away
from the obstacles whenever possible without violating the
social constraints. For the calculation of the trajectory cost,
we define a time cost, Ctime, which is the combination of
the path length and sum of the velocities at each timestep.



Finally, the total cost of trajectory is defined as follows:

Ctotal =

N∑
i=1

Cvis + Ctime (2)

where, N is the number of waypoints, Ctime = αtime ∗ LV , L
is the length of the trajectory, V is the sum of the magnitude
of the velocity at each waypoint and αtime is a constant. The
optimization converges when the change in the total cost of
the trajectory is below the chosen threshold.

IV. EVALUATION IN SIMULATED EXPERIMENTS

In this section, we first give more details about the
implementation of KHAOS. Then, we present the results and
analysis of the proposed trajectory planner in five different
scenarios that show the robustness of our system. By default,
the results presented in this section correspond to a maximum
speed of the drone of 1m s−1. Likewise, the maximum
acceleration and deceleration are fixed at around 1m s−2.
The study of the influence of the orientation of the drone is
not taken into account as a social constraint here, and the
orientation of the drone is the same as its velocity vector.

Fig. 3: Drone frontal approach with a discomfort constraint of
0.5: a) Top view b) Side view c) Side view with a zoom at the
top showing the drone’s size represented by a sphere of 0.9m
e) Drone speed and discomfort cost as a function of time. Drone
frontal approach with a discomfort constraint of 0.25: d) Side view
f) Drone speed and discomfort cost as a function of time.

A. Setup

The simulation results presented here use the MoveIt [30]
collision scene in which the model of a human is imported.

This model is composed of simple primitives such as spheres,
cylinders and boxes. The drone is considered as a 0.9m
diameter sphere that can be configurable and is not shown
in the images to improve readability (except in Fig 3b),
showing only its trajectories. Obstacles present in some
results are added in the same way. We can thus manage the
numerous collision tests necessary for the optimizer and the
computation of 3D grids directly with MoveIt [30] or else
externally using FCL [31].

B. Frontal approach

In this scenario, as shown in Fig. 3, the drone starts at
a distance of 9m from the human and approaches him at a
very close distance of 0.5m and at a height of 1.5m. This
interaction distance is very small and close to the human’s
head, which can be considered a very uncomfortable situation
for him. A discomfort constraint equal to 0.5 is chosen and
it can be imagined as the maximum speed of 1m s−1 for the
drone at a distance of 2m from the human. We represent
the trajectory by drawing each of its segments with an arrow
whose color depends on the average speed. The more the
color tends towards red, the higher the speed and the more
the color tends towards green, the slower the speed. From this
representation, we can visually see the phases of acceleration
and deceleration of the drone. As the approach is frontal,
the cost of the human visual field does not influence and
does not distort the trajectory. In our implementation, we
favor positions far from obstacles, and that explains the slight
deformation of the trajectory towards the opposite direction
of the ground, which is considered as an obstacle.

We can find these phases in Fig. 3e representing the
speed of the drone as well as the discomfort cost along the
trajectory. First of all, the drone accelerates in accordance
with its kinematic limits until it reaches its maximum speed
of 1m s−1. Gradually approaching the human, the discom-
fort cost increases until it reaches the discomfort constraint
of 0.5 that we have set. Once this maximum value is reached,
the optimizer will regulate the speed and start to decelerate so
as not to violate either the discomfort constraint or the kine-
matic constraints of the drone. Let us now consider the same
trajectory but this time we fixed the discomfort constraint
at 0.25. In Fig. 3f, we find the same acceleration phase
as before. On the other hand, the discomfort constraint is
reached more quickly which pushes the drone to slow down
approximately 2 s earlier, allowing the drone to signal to the
human its intention to slow down in his/her presence. In
addition, the deceleration phase is much longer by around
3 s, which gives time to the human to adapt better to the
presence of the drone.

C. Two Humans

Until now, the trajectories generated by KHAOS are not
subject to constraints linked to the environment except the
human himself. Now let’s study Fig. 4, a situation where
the drone firstly navigates in a corridor and crosses a human
represented in blue on its way, then continues by approaching
a second human in green from the back to finish at a position



where it can exchange an object with him. For this, we
added 2 walls 3m high, positioned so that there is sufficient
space for the drone to navigate to the human’s right in the
corridor. A ceiling is added to the corridor to force the
drone through it instead of going around it. Each human
has his own visibility grid computed. For a given position
in the optimization process, we consider the maximum value
of the visibility cost and discomfort constraint between the
different humans in the scene.

(a) (b)

(c)

(d)
Fig. 4: Trajectory execution in two-humans scenario for a dis-
comfort constraint of 0.5. a) First iteration, the robot starts by
navigating in the corridor b) A few iterations later after passed
the blue human in the corridor c) (resp. d) speed magnitude, dis-
comfort cost and visibility cost as a function of time corresponding
to the trajectory from (a) (resp b: Time origin is beginning of re-
planned trajectory).

In this situation, the corridor walls do not allow the
optimizer to generate trajectories that deviate greatly from
the human in blue. Despite the constraints induced by the
walls, the speed is close to the maximum speed along the
trajectory except for the points closest to the blue human.
Here, the points of the trajectory are spatially blocked by the
wall, and therefore the discomfort cost takes over by limiting
the speed. This is what we observe in Fig. 4c between 4 and
13 s when the speed is limited by the discomfort constraint.
At the same time, we can observe that the visibility cost
greatly increases because the drone goes more and more
towards the back of the blue human and can’t pass far from
him until it comes out of the grid at approximately 14.5 s
and visibility cost drop to 0.

Once the drone has passed the human in blue, it finds itself

behind the back of another human represented in green. Here,
the influence of his visibility cost becomes predominant
compared to that of the human in blue. The trajectory greatly
deviates as shown in Fig. 4b and this shows how our planner
ensures to limit the effort necessary for the human to turn
his head, and thus have the drone in his field of view while
respecting the discomfort constraint. Fig. 4d shows that the
drone moves away from the human by adapting its speed
and reduces the effort required to see it specifically at the
end when it is in close proximity to the human.

In the situation where the drone disengages from the
human after handover (Fig. 5a), the shape of the trajectory is
similar to the approach from the back. It first prioritizes the
positions in front of the human to move away and go around
the human. It accelerates smoothly, as shown in Fig. 5b until
the first 2 s, limited by the discomfort cost, and then adapts
its speed in agreement with other constraints.

(a)

(b)

Fig. 5: Drone disengage from the human and going into the
corridor for a discomfort constraint of 0.5. a) Shape of the trajectory
b) speed magnitude, discomfort constraint and visibility cost as a
function of time. Blue arrow indicates the direction of the trajectory.

D. Planner reactivity

To show the reactivity of our planner, we take the corridor
scenario like the one above. Fig. 6a shows the trajectory
deformation with the discomfort constraint fixed at 0.25. We
then move the human to his right towards the wall and reduce
the drone’s initial passage space, as shown in Fig. 6b. We
observe in Fig. 6b that our planner reacts immediately by
deviating the path and reducing the speed (Fig. 6d) when
close to the human.

E. Highly constrained environment

We want to show the KHAOS’s ability to adapt and find
solutions even in very constrained environments. For that,
we take the previous corridor scene and add an obstacle
that can be compared to a counter in order to restrict the



(a) (b)

(c) (d)
Fig. 6: Planner reactivity after moving the human to his right for
a discomfort constraint of 0.25. On the left: First iteration (a) with
corresponding drone’s speed magnitude and discomfort cost as a
function of time (c). On the right: Next iteration just after moving
the human on his right reducing the passage to the drone (b) with its
corresponding speed magnitude and discomfort cost as a function
of time (d).

possibilities of the passage of the drone through the place
where the human is located. It is placed on the ground and
prevents access to the drone from the area below the human’s
right arm. The space between the ceiling and the human’s
head is sufficient for the drone to pass, but in this case,
the trajectory would be very uncomfortable for the human
or even dangerous. We deliberately challenge KHAOS by
choosing an original path passing through the area below the
human’s left arm represented by the red line in Fig. 7. Flying

Fig. 7: Drone’s trajectory along the constrained corridor with a
discomfort constraint of 0.5.

in this area would push it to pass very close to the human
body, which would be very uncomfortable. If the drone had
no other choice, the optimizer would be able to generate a
trajectory where the drone would go at a very slow speed
as it passes close to the human body. In the case presented
here, the optimizer chooses a trajectory far from the human
and on the opposite side by changing the homotopy class.
We, therefore, can say that the trajectories generated by the
optimizer are not deformed just locally but by exploring
the surrounding space to find more suitable solutions. This

trajectory is not only more comfortable for the human but
also allows the drone to reach its goal more quickly.

V. DISCUSSION

The trajectory is generated and refreshed at a frequency
between 5-10Hz on a standard computer (1.9 GHz Intel i7
CPU, 32 GB of memory): with such a performance, our
reactive planner can be used in real-time in real robot exper-
iments. Trajectories used in our experiments are generated
from an original path corresponding to a straight line to
simplify reading except for the two humans scenario. Indeed,
in our case, we must be attentive not only to the shape of
the trajectories but also to the adaptation of the speed. The
noise generated by a multi-rotor drone is a function of its
speed and/or acceleration. Moreover, the acoustic intensity
decreases proportionally to the inverse of the square of the
distance. We can therefore consider the discomfort constraint
described in this paper provides to reducing this nuisance
as well. The physical model used for the calculation of the
speeds of the drone by considering the discomfort constraint
can be improved. At some parts of the trajectory the speed
is not derivable, but most of the time, the system produces
a smooth motion compatible with human interaction. To
improve it, we can combine it with the bounded jerk model
techniques [32] that could produce smoother and better
velocity profiles.

VI. CONCLUSION

We have presented an algorithm called KHAOS for the
generation of reactive human-aware trajectories in 3D and
taking into account the kinematic constraints of a drone, the
potential discomfort caused by the robot’s fast motion close
to the human as well as its visibility, and the consideration
of human effort to see it. We proposed a discomfort cost
considering the relative distances and speeds between a
drone and a human. We have shown how the drone adapts
its behavior in several situations and have discussed the
capabilities of the proposed planner. The reactivity of this
planner in these different scenarios is highlighted in the
attached video. In our future work, we plan to improve the
planner by adding the management of drone orientation and
effectively use it on a real drone. We also plan to improve
the behavior of the drone by working on the smoothing of
speeds and accelerations. On the human-aware level, we
want to go more in-depth by studying how to adapt the
trajectories by integrating the handover phase [33] as well
as the control of the manipulator’s arm [34], which requires
being very close to the human. We aim at a coordinated
arm movement which can, for example, start reaching to
exchange an object while the navigation phase is not yet
over, which requires testing deformable configuration spaces
for the drone. Finally, we will carry out a user study to tune
the parameters of the social constraints and to assess whether
the trajectories generated by KHAOS are socially acceptable
and to which extent they can be improved based on the user
feedback from experiments with the real robot.
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