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Microcanonical conditioning of Markov processes on time-additive observables

Cécile Monthus
Université Paris Saclay, CNRS, CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette, France

The recent study by B. De Bruyne, S. N. Majumdar, H. Orland and G. Schehr [J. Stat. Mech.
(2021) 123204], concerning the conditioning of the Brownian motion and of random walks on global
dynamical constraints over a finite time-window T , is reformulated as a general framework for the
’microcanonical conditioning’ of Markov processes on time-additive observables. This formalism is
applied to various types of Markov processes, namely discrete-time Markov chains, continuous-time
Markov jump processes and diffusion processes in arbitrary dimension. In each setting, the time-
additive observable is also fully general, i.e. it can involve both the time spent in each configuration
and the elementary increments of the Markov process. The various cases are illustrated via simple
explicit examples. Finally, we describe the link with the ’canonical conditioning’ based on the
generating function of the time-additive observable for finite time T , while the regime of large
time T allows to recover the standard large deviation analysis of time-additive observables via the
deformed Markov operator approach.

I. INTRODUCTION

Time-additive observables of Markov processes have attracted a lot of interest recently, in particular in the field
of non equilibrium steady states in order to characterize their dynamical fluctuations over a large time-window T .
From the point of view of the large deviation theory (see the reviews [1–3] and references therein), time-additive
observables belong to the Level 1 and can be thus analyzed via the contraction from higher Levels. For instance, the
large deviations at Level 2 for the empirical density allows to analyze the time-additive observables that only depend
on the time spent in each configuration, but the Level 2 is usually not closed for non-equilibrium processes with steady
currents. By contrast, the Level 2.5 concerning the joint distribution of the empirical density and of the empirical flows
can be written in closed form for general Markov processes, including discrete-time Markov chains [3–8], continuous-
time Markov jump processes [4, 7–28] and Diffusion processes [7, 8, 12, 13, 16, 26, 29–31]. In addition, this Level 2.5
is necessary to analyze via contraction the general case of time-additive observables that involve not only the time
spent in each configuration but also the elementary increments of the Markov process. Another standard method to
characterize the statistics of a time-additive observables is to study its generating function via the appropriate deformed
Markov operator that does not conserve the probability [16, 31–74], while the probability-conserving Markov process
corresponding to this ’canonical conditioning’ can be written from the generalization of Doob’s h-transform.

On the other hand, the ’microcanonical conditioning’ of one-dimensional stochastic processes on time-additive
observables has been considered recently in order to have efficient methods to generate stochastic trajectories satisfying
global dynamical constraints over a finite time window T . The conditioning on the area has been studied via various
methods for Brownian processes or bridges [75] and for Ornstein-Uhlenbeck bridges [76] (see also [77–79] for the
discussion of other types of conditioning). The conditioning on the area and on other time-additive observables has
been then analyzed for the Brownian motion and for discrete-time random walks [80], building on previous works
[81–86] concerning the standard Doob conditioning, where the goal was to generate stochastic trajectories ending in
a specific configuration at time T .

In the present paper, the approach of the recent study [80] is reformulated as a general framework for the ’micro-
canonical conditioning’ of Markov processes on time-additive observables, where the Markov process can be either
a discrete-time Markov chain, a continuous-time Markov jump process or a diffusion process in arbitrary dimen-
sion, while the time-additive observable can involve both the time spent in each configuration and the increments of
the Markov process. This general formulation allows to make the link with the ’canonical conditioning’ framework
mentioned above.

The paper is organized as follows. In section II, we summarize the general ideas that allow to analyze the micro-
canonical conditioning of a Markov process on a time-additive observable. The specific applications to discrete-time
Markov chains, to continuous-time Markov jump processes and to diffusion processes are then described in the sections
III, IV and V respectively. Our conclusions are summarized in section VI. The links with the canonical conditioning
on a time-additive observable are discussed for finite time T in Appendix A and for large T in the large deviation
regime for the time-additive observable in Appendix B.
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II. MICROCANONICAL CONDITIONING ON A TIME-ADDITIVE OBSERVABLE

In this section, we summarize the general ideas and notations that will be useful in the whole paper. The equations
will be written for discrete variables (x,A), but the adaptation to continuous variables (x,A) is of course straightfor-
ward : one just needs to replace sums by integrals, and discrete delta functions by continuous delta functions.

A. Notion of time-additive observable A(t) for the Markov process x(t)

For the Markov process x(t), the observable A(t) is called time-additive if the difference
(
A(t2) − A(t1)

)
between

the value A(t2) at time t2 and the value A(t1) at time t1 is a deterministic function A[.] of the Markov trajectory
x(t1 ≤ s ≤ t2) between s = t1 and s = t2

A(t2)−A(t1) = A[x(t1 ≤ s ≤ t2)] (1)

B. Notion of microcanonical conditioning for the Markov process x(t) and its time-additive observable A(t)

In the main text, we will focus on the ’microcanonical conditioning’ where both the initial values (x0, A0) at
time t = 0 and the final values (xT , AT ) at time t = T are fixed for the Markov process x(t) and its time-additive
observable A(t). In order to analyze what happens at intermediate times t ∈ [0, T ], the approach described in [80]
can be decomposed in the three steps described in the following three subsections.

C. Joint propagator Pt,t0(x,A|x0, A0) for the Markov process and its time-additive observable

The first step concerns the joint propagator Pt,t0(x,A|x0, A0) of the Markov process x(t) and of its time-additive
observable A(t)

Pt,t0(x,A|x0, A0) ≡ 〈δx(t),xδA(t),A δx(t0),x0
δA(t0),A0

〉 (2)

Since the time-additive observable is a deterministic function A[.] of the Markov trajectory x(t0 ≤ s ≤ t) (see Eq. 1),
the joint propagator Pt,t0(x,A|x0, A0) satisfies :

(i) some Markov forward dynamics with respect to its final variables (x,A) at time t
(ii) some Markov backward dynamics with respect to its initial variables (x0, A0) at time t0.

D. Conditional probability PCond
t (x,A) if starting at (x0, A0) at time t = 0 and ending at (xT , AT ) at time t = T

The second step concerns the conditional probability PCondt (x,A) to be at the values (x,A) at some intermediate
time t ∈]0, T [ if starting at the values (x0, A0) at time t = 0 and ending at the values (xT , AT ) at time t = T . The
probability PT,0(xT , AT |x0, A0) to end at (xT , AT ) at time t = T when starting at (x0, A0) at time t = 0 satisfies the
Chapman-Kolmogorov equation with respect to any internal time t ∈]0, T [

PT,0(xT , AT |x0, A0) =
∑
x

∑
A

PT,t(xT , AT |x,A)Pt,0(x,A|x0, A0) (3)

So the conditional probability PCondt (x,A) to see the values (x,A) at the internal time t ∈]0, T [ is simply given by
the ratio

PCondt (x,A) =
PT,t(xT , AT |x,A)Pt,0(x,A|x0, A0)

PT,0(xT , AT |x0, A0)
(4)

It is normalized as a consequence of Eq. 3 ∑
x

∑
A

PCondt (x,A) = 1 (5)
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and it satisfies the fixed boundary conditions at time t = 0 and at time t = T

PCond0 (x,A) =
PT,0(xT , AT |x,A)P0,0(x,A|x0, A0)

PT,0(xT , AT |x0, A0)
= δx,x0

δA,A0

PCondT (x,A) =
PT,T (xT , AT |x,A)PT,0(x,A|x0, A0)

PT,0(xT , AT |x0, A0)
= δx,xT δA,AT (6)

E. Markov dynamics for the conditional probability PCond
t (x,A)

The third step consists in deriving the Markov dynamics of the conditional probability PCondt (x,A) from the Markov
dynamics satisfied by the two joints propagators in the numerator of Eq. 4, namely :

(i) the Markov forward dynamics of the joint propagator Pt,0(x,A|x0, A0) with respect to its final variables (x,A)
at time t

(ii) the Markov backward dynamics of the joint propagator PT,t(xT , AT |x,A) with respect to its initial variables
(x,A) at time t

In the three following sections, the Markov dynamics for the conditional probability PCondt (x,A) is written explicitly
for discrete-time Markov chains (section III), for continuous-time Markov jump processes (section IV) and for diffusion
processes (V).

III. APPLICATION TO DISCRETE-TIME MARKOV CHAINS

In this section, we focus on the Markov Chain dynamics where the probability Pt(x) to be in the configuration x
at time t evolves according to

Pt+1(x) =
∑
x′

W (x;x′)Pt(x
′) (7)

The matrix element W (x;x′) ∈ [0, 1] represents the probability to be in the configuration x at time (t + 1) if in the
configuration x′ at t, with the normalization for any x′∑

x

W (x;x′) = 1 (8)

The time-additive observable A(t) of the trajectory x(t1 ≤ s ≤ t2) of Eq. 1 can be parametrized by some function
β(x, y)

A(t2)−A(t1) = A[x(t1 ≤ s ≤ t2)] ≡
t2∑

s=t1+1

β(x(s), x(s− 1)) (9)

Since the time t and the space x are both discrete, the equations will be written below for the case of a discrete
variable A, but the adaptation to a continuous variable A is of course straightforward : one just needs to replace sums
by integrals, and discrete delta functions by continuous delta functions.

A. Dynamics of the joint propagator Pt,t0(x,A|x0, A0)

Since the increment between t and (t+ 1) of the time-additive observable A(t) of Eq. 9 reduces to

A(t+ 1)−A(t) = β(x(t+ 1), x(t)) (10)

one just needs to introduce the joint generator

W (x,A;x′, A′) = W (x;x′)δA,A′+β(x,x′) (11)

that involves the initial Markov matrix W (x;x′) of Eq. 7, while the delta function in A describes the deterministic
evolution of the time-additive observable once the configurations x and x′ are given. The normalization of Eq. 8
ensures the normalization of the joint generator for any (x′, A′)∑

x

∑
A

W (x,A;x′, A′) =
∑
x

W (x;x′) = 1 (12)
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The joint propagator Pt,t0(x,A|x0, A0) of Eq. 2 satisfies
(i) the forward dynamics with respect to the final variables (x,A)

Pt+1,t0(x,A|x0A0) =
∑
x′

∑
A′

W (x,A;x′, A′)Pt,t0(x′, A′|x0A0) (13)

(ii) the backward dynamics with respect to the initial variables (x0, A0)

Pt,t0−1(x,A|x0A0) =
∑
x′0

∑
A′0

Pt,t0(x,A|x′0A′0)W (x′0, A
′
0;x0, A0) (14)

B. Forward Markov dynamics for the conditional probability PCond
t (x,A) with a time-dependent generator

Let us plug the forward dynamics of Eq. 13 for Pt+1(x,A|x0, A0) into the conditional probability of Eq. 4 at time
(t+ 1)

PCondt+1 (x,A) =
PT,t+1(xT , AT |x,A)

PT,0(xT , AT |x0, A0)
Pt+1,0(x,A|x0, A0)

=
PT,t+1(xT , AT |x,A)

PT,0(xT , AT |x0, A0)

∑
x′

∑
A′

W (x,A;x′, A′)Pt,0(x′, A′|x0A0) (15)

Let us now use the conditional probability at time t of Eq. 4 to replace Pt,t0(x′, A′|x0A0)

Pt,0(x′, A′|x0, A0) =
PT,0(xT , AT |x0, A0)

PT,t(xT , AT |x′, A′)
PCondt (x′, A′) (16)

in order to rewrite Eq. 15 as the forward Markov dynamics

PCondt+1 (x,A) =
PT,t+1(xT , AT |x,A)

PT,0(xT , AT |x0, A0)

∑
x′

∫
dA′W (x,A;x′, A′)

PT,0(xT , AT |x0, A0)

PT,t(xT , AT |x′, A′)
PCondt (x′, A′)

≡
∑
x′

∫
dA′W

Forw[xT ,AT ;T ]
t+1/2 (x,A;x′, A′)PCondt (x′, A′) (17)

where the generator associated to this forward conditioned dynamics

W
Forw[xT ,AT ;T ]
t+1/2 (x,A;x′, A′) ≡ PT,t+1(xT , AT |x,A)W (x,A;x′, A′)

1

PT,t(xT , AT |x′, A′)
(18)

is time-dependent because the joint generator W (x,A;x′, A′) of Eq. 11 is conjugated with the full propagators
PT,t+1(xT , AT |x,A) and PT,t(xT , AT |x′, A′) up to the imposed final values (xT , AT ) at time T . The normalization
for any (x′, A′) of this conditional forward generator∑

x

∑
A

W
Forw[xT ,AT ;T ]
t+1/2 (x,A;x′, A′) = 1 (19)

is ensured by the backward recursion of Eq. 14.
The physical meaning of the generator of Eq. 18 is that in the conditioned dynamics, the possibles transitions

are the same as in the initial dynamics (an impossible transition W (x,A;x′, A′) = 0 in the initial dynamics remains

impossible W
Forw[xT ,AT ;T ]
t+1/2 (x,A;x′, A′) = 0 in the conditioned dynamics), but the possible transitions have different

probabilities that have changed from W (x,A;x′, A′) to W
Forw[xT ,AT ;T ]
t+1/2 (x,A;x′, A′).

In practice, if one wishes to use these new probabilities W
Forw[xT ,AT ;T ]
t+1/2 (x,A;x′, A′) to generate stochastic trajec-

tories of the conditioned dynamics, one needs to know the explicit form of the joint propagator Pt,t0(x,A|x0, A0) of
Eq. 2 satisfying the joint forward dynamics of Eq. 13.
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C. Backward Markov dynamics for the conditional probability PCond
t (x,A) with a time-dependent generator

Let us write the backward recursion of Eq. 14 for PT,t(xT , AT |x,A)

PT,t(xT , AT |x,A) =
∑
x′

∑
A′

PT,t+1(xT , AT |x′, A′)W (x′, A′;x,A) (20)

and use the conditional probability of Eq. 4 at time (t+ 1) to make the replacement

PT,t+1(xT , AT |x′, A′) = PCondt+1 (x′, A′)
PT,0(xT , AT |x0, A0)

Pt+1,0(x′, A′|x0, A0)
(21)

into order to rewrite the conditional probability of Eq. 4 as

PCondt (x,A) =
∑
x′

∑
A′

PT,t+1(xT , AT |x′, A′)
Pt,0(x,A|x0, A0)

PT,0(xT , AT |x0, A0)

=
∑
x′

∑
A′

PCondt+1 (x′, A′)
PT,0(xT , AT |x0, A0)

Pt+1,0(x′, A′|x0, A0)
W (x′, A′;x,A)

Pt,0(x,A|x0, A0)

PT,0(xT , AT |x0, A0)

≡
∑
x′

∑
A′

PCondt+1 (x′, A′)W
Backw[x0,A0;0]
t+1/2 (x′, A′;x,A) (22)

where the generator associated to this backward conditioned dynamics

W
Backw[x0,A0;0]
t+1/2 (x′, A′;x,A) ≡ 1

Pt+1,0(x′, A′|x0, A0)
W (x′, A′;x,A)Pt,0(x,A|x0, A0) (23)

involves the conjugation of joint generator W (x′, A′;x,A) of Eq. 11 by the full propagators Pt+1,0(x′, A′|x0, A0) and
Pt,0(x,A|x0, A0) up to the imposed initial values (x0, A0) at time t = 0.

D. Illustration with a simple example : conditioning the Sisyphus Random Walk on the number of resets

In the field of stochastic resetting (see the review [87] and references therein), one of the simplest example is the
Sisyphus Random Walk [88] defined on the semi-infinite lattice x = 0, 1, 2, .. with the Markov matrix

W (x;x′) = Rδx,0 + (1−R)δx,x′+1 (24)

The physical meaning is that when Sisyphus is at position x at time t, he can either return to the origin x = 0 with
the reset probability R ∈]0, 1[ or he can move forward to the next position (x+1) with the complementary probability
(1−R).

As time-additive observable of Eq. 9, we will choose the function

β(x, x′) = δx,0 (25)

in order to count the total number of resets to the origin during the time interval

A(t2)−A(t1) = A[x(t1 ≤ s ≤ t2)] ≡
t2∑

s=t1+1

δx(s),0 (26)

1. Explicit form of the joint propagator Pt,t0(x,A|x0A0)

The joint generator of Eq. 11

W (x,A;x′, A′) = W (x;x′)δA,A′+δx,0 = Rδx,0δA,A′+1 + (1−R)δx,x′+1δA,A′ (27)
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governs the forward dynamics of Eq. 13 for the joint propagator

Pt+1,t0(x,A|x0A0) =

+∞∑
x′=0

A∑
A′=A0

W (x,A;x′, A′)Pt,t0(x′, A′|x0A0)

= Rδx,0θ(A > A0)

+∞∑
x′=0

Pt,t0(x′, A− 1|x0A0) + θ(x > 0)(1−R)Pt,t0(x− 1, A|x0A0) (28)

where the notation θ is used to denote the inequalities that need to be satisfied. The solution can be directly written
from the renewal analysis of the dynamics

Pt,t0(x,A|x0A0) = (1−R)(t−t0)δA,A0
δx,x0+(t−t0)

+RA−A0(1−R)(t−t0)−(A−A0)

[
(t− t0)− x− 1

]
![

(A−A0)− 1
]
!
[
(t− t0)− (A−A0)− x

]
!
θ(1 ≤ A−A0 ≤ (t− t0)− x) (29)

The summation of Eq. 29 over the variable x allows to recover that the propagator for the variable A alone corresponds
to the binomial distribution for (A−A0) and is independent of x0

+∞∑
x=0

Pt,t0(x,A|x0A0) = RA−A0(1−R)(t−t0)−(A−A0)
(t− t0)!

(A−A0)!
[
(t− t0)− (A−A0)

]
!
θ(0 ≤ A−A0 ≤ (t− t0))

≡ Pt,t0(A|A0) (30)

The summation of Eq. 29 over the variable A yields the propagator for the initial Sisyphus random walk x(t) alone

+∞∑
A=A0

Pt,t0(x,A|x0A0) = (1−R)(t−t0)δx,x0+(t−t0) +R(1−R)xθ(0 ≤ x ≤ (t− t0)− 1) ≡ Pt,t0(x|x0) (31)

that converges towards the steady state corresponding to the geometric distribution

Pt,t0(x|x0) '
(t−t0)→+∞

R(1−R)xθ(0 ≤ x) ≡ Pst(x) (32)

2. Forward generator of the conditioned dynamics : resetting probabilities depending on time and configuration

For the conditioned dynamics, the forward generator of Eq. 18 reads using the joint generator of Eq. 24

W
Forw[xT ,AT ;T ]
t+1/2 (x,A;x′, A′) = PT,t+1(xT , AT |x,A)W (x,A;x′, A′)

1

PT,t(xT , AT |x′, A′)

= Rδx,0δA,A′+1
PT,t+1(xT , AT |0, A)

PT,t(xT , AT |x′, A′)
+ (1−R)δx,x′+1δA,A′

PT,t+1(xT , AT |x,A)

PT,t(xT , AT |x′, A)

≡ δx,0δA,A′+1R
Forw[xT ,AT ;T ]
t+1/2 (x′, A′) + δx,x′+1δA,A′

(
1−RForw[xT ,AT ;T ]

t+1/2 (x′, A′)
)

(33)

where the effective resetting probability towards the origin x = 0 depends on the time t and on the values (x′, A′) at
time t via

R
Forw[xT ,AT ;T ]
t+1/2 (x′, A′) = R

PT,t+1(xT , AT |0, A′ + 1)

PT,t(xT , AT |x′, A′)
(34)

One can plug the explicit form of Eq. 29 for the joint propagator to obtain the explicit form of the effective resetting
probability of Eq. 33.

In summary, the conditioned dynamics corresponds to a Sisyphus random walk with modified resetting probabilities:
when Sisyphus is in the configuration (x′, A′) at time t, he can either return to the origin x = 0 and increment the

observable A = A′ + 1 with the reset probability R
Forw[xT ,AT ;T ]
t+1/2 (x′, A′) or he can move forward to the next position

(x′ + 1) and keep the observable A = A′ with the complementary probability [1−RForw[xT ,AT ;T ]
t+1/2 (x′, A′)].

The ’canonical conditioning’ (see the reminder in the two Appendices) of the Sisyphus Random Walk has been
studied in [7] for the more general case where the reset probabilities of the initial model are space-dependent Rx
(instead of being given by the constant value R) and where the time-additive observable involves an arbitrary function
β(x, x′).

As a final remark, let us stress that other explicit examples of microcanonical conditioning for discrete-time random
walks on time-additive observables can be found in [80].
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IV. APPLICATION TO CONTINUOUS-TIME MARKOV JUMP PROCESSES

In this section, we consider the continuous-time dynamics in discrete configuration space defined by the Master
Equation

∂tPt(x) =
∑
x′ 6=x

[w(x;x′)Pt(x
′)− w(x′;x)Pt(x)] (35)

where w(x;x′) ≥ 0 represents the transition rate from x′ towards x 6= x′.
The time-additive observable A(t) of the trajectory x(t1 ≤ s ≤ t2) of Eq. 1 can be parametrized by the two

functions α(x) and β(x, y)

A(t2)−A(t1) = A[x(t1 ≤ s ≤ t2)] =

∫ t2

t1

dsα(x(s)) +
∑

s∈[t1,t2]:x(s+) 6=x(s)

β(x(s+), x(s)) (36)

Whenever the function α(.) is present, the observable A is continuous, so the equations will be written for continuous
A in the following general subsections, while an example with discrete variable A will be given in the last subsection.

A. Dynamics of the joint propagator Pt,t0(x,A|x0, A0)

Between t and (t+ dt), the elementary increment of the time-additive observable of Eq. 36 reduces to

A(t+ dt)−A(t) = dtα(x(t)) + δx(t+dt)6=x(t)β(x(t+ dt), x(t)) (37)

As a consequence, the function α(.) corresponds to a deterministic drift for the continuous observable A, while the
function β(., .) will appear via the following delta function in the joint jump rates from x′ to x 6= x′

w(x,A;x′, A′) ≡ w(x;x′)δ(A−A′ − β(x, x′)) (38)

So the joint propagator Pt,t0(x,A|x0, A0) of Eq. 2 satisfies :
(i) the forward jump-drift dynamics with respect to the final values (x,A) at time t

∂tPt,t0(x,A|x0, A0) = −∂A [α(x)Pt,t0(x,A|x0, A0)]

+
∑
x′ 6=x

∫
dA′
[
w(x,A;x′, A′)Pt,t0(x′, A′|x0, A0)− w(x′, A′;x,A)Pt,t0(x,A|x0, A0)

]
(39)

(ii) the backward jump-drift dynamics with respect to the initial values (x0, A0) at time t0

−∂t0Pt,t0(x,A|x0, A0) = α(x0)∂A0
Pt,t0(x,A|x0, A0)

+
∑
x′0 6=x0

∫
dA′0

[
Pt,t0(x,A|x′0, A′0)− Pt,t0(x,A|x0, A0)

]
w(x′0, A

′
0;x0, A0) (40)

B. Markov dynamics for the conditional probability PCond
t (x,A) with a time-dependent generator

Let us now focus on the dynamics for the conditional probability PCondt (x,A) of Eq. 4. Its time-derivative involves
the derivatives of the two propagators of the numerator

∂tPCondt (x,A) = [∂tPT,t(xT , AT |x,A)]
Pt,0(x,A|x0, A0)

PT,0(xT , AT |x0, A0)
+

PT,t(xT , AT |x,A)

PT,0(xT , AT |x0, A0)
[∂tPt,0(x,A|x0, A0)] (41)

Since the propagator Pt,0(x,A|x0, A0) satisfies the forward dynamics of Eq. 39, and since the propagator
PT,t(xT , AT |x,A) satisfies the backward dynamics of Eq. 40

−∂tPT,t(xT , AT |x,A) = α(x)∂APT,t(xT , AT |x,A)

+
∑
x′ 6=x

∫
dA′ [PT,t(xT , AT |x′, A′)− PT,t(xT , AT |x,A)]w(x′, A′;x,A) (42)
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Eq. 41 becomes

∂tPCondt (x,A) = −α(x)
Pt,0(x,A|x0, A0)

PT,0(xT , AT |x0, A0)
∂APT,t(xT , AT |x,A)− α(x)

PT,t(xT , AT |x,A)

PT,0(xT , AT |x0, A0)
∂APt,0(x,A|x0, A0)

− Pt,0(x,A|x0, A0)

PT,0(xT , AT |x0, A0)

∑
x′ 6=x

∫
dA′PT,t(xT , AT |x′, A′)w(x′, A′;x,A)

+
PT,t(xT , AT |x,A)

PT,0(xT , AT |x0, A0)

∑
x′ 6=x

∫
dA′w(x,A;x′, A′)Pt,0(x′, A′|x0, A0)

(43)

(i) Forward perspective : Eq. 4 allows to replace all the propagators on [0, t]

Pt,0(x,A|x0, A0) = PCondt (x,A)
PT,0(xT , AT |x0, A0)

PT,t(xT , AT |x,A)
(44)

in Eq. 43 to obtain the forward dynamics

∂tPCondt (x,A) = −α(x)∂APCondt (x,A)

+
∑
x′ 6=x

∫
dA′
[
w
Forw[xT ,AT ;T ]
t (x,A;x′, A′)PCondt (x′, A′)− wForw[xT ,AT ;T ]

t (x′, A′;x,A)PCondt (x,A)

]
(45)

The difference with respect to the initial forward joint dynamics of Eq. 39 is in the time-dependent forward rates

w
Forw[xT ,AT ;T ]
t (x,A;x′, A′) ≡ PT,t(xT , AT |x,A)w(x,A;x′, A′)

1

PT,t(xT , AT |x′, A′)
(46)

that involve the conjugation of the joint rates w(x,A;x′, A′) ≡ w(x;x′)δ(A − A′ − β(x, x′)) of Eq. 38 with the full
propagators PT−t−1(xT , AT |x,A) and PT,t(xT , AT |x′, A′) up to the imposed final values (xT , AT ) at time T . Eq. 46
is the analog of Eq. 18 concerning discrete-time Markov chains.

(ii) Backward perspective : Eq. 4 allows to replace all the propagators on [t, T ]

PT,t(xT , AT |x,A) = PCondt (x,A)
PT,0(xT , AT |x0, A0)

Pt,0(x,A|x0, A0)
(47)

in Eq. 43 to obtain

−∂tPCondt (x,A) = α(x)∂APCondt (x,A)

+
∑
x′ 6=x

∫
dA′
[
PCondt (x′, A′)w

Backw[x0,A0;0]
t (x′, A′;x,A)− PCondt (x,A)w

Backw[x0,A0;0]
t (x,A;x′, A′)

]
(48)

where the time-dependent backward rates

w
Backw[x0,A0;0]
t (x′, A′;x,A) ≡ 1

Pt,0(x′, A′|x0, A0)
w(x′, A′;x,A)Pt,0(x,A|x0, A0) (49)

involve the conjugation of the joint rates w(x,A;x′, A′) ≡ w(x;x′)δ(A − A′ − β(x, x′)) of Eq. 38 with the full
propagators Pt,0(x′, A′|x0, A0) and Pt,0(x,A|x0, A0) up to the imposed initial values (x0, A0) at time t = 0. Eq. 49 is
the analog of Eq. 23 concerning discrete-time Markov chains.

(iii) The compatibility between the two dynamical equations of Eqs 45 and 48 can be checked via their sum

0
?
=
∑
x′ 6=x

∫
dA′
[
w
Forw[xT ,AT ;T ]
t (x,A;x′, A′)PCondt (x′, A′)− wForw[xT ,AT ;T ]

t (x′, A′;x,A)PCondt (x,A)

]

+
∑
x′ 6=x

∫
dA′
[
PCondt (x′, A′)w

Backw[x0,A0;0]
t (x′, A′;x,A)− PCondt (x,A)w

Backw[x0,A0;0]
t (x,A;x′, A′)

]
(50)

that is found to vanish using Eqs 46 49 and 4.
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(iv) The half-difference between the two dynamical equations of Eqs 45 and 48 yields the new dynamical equation

∂tPCondt (x,A) = −α(x)∂APCondt (x,A)

+
∑
x′ 6=x

∫
dA′
[
w

[xT ,AT ;T ],[~x0,A0;0]
t (x,A;x′, A′)PCondt (x′, A′)− w[xT ,AT ;T ],[~x0,A0;0]

t (x′, A′;x,A)PCondt (x,A)

]
(51)

with the time-dependent rates

w
[xT ,AT ;T ],[x0,A0;0]
t (x,A;x′, A′) ≡ w

Forw[xT ,AT ;T ]
t (x,A;x′, A′)− wBackw[x0,A0;0]

t (x′, A′;x,A)

2

=
1

2

[
PT,t(xT , AT |x,A)w(x,A;x′, A′)

1

PT,t(xT , AT |x′, A′)
− 1

Pt,0(x′, A′|x0, A0)
w(x′, A′;x,A)Pt,0(x,A|x0, A0)

]
(52)

C. Simple example : conditioning the Sisyphus Markov Jump process on the number of resets

Let us now consider the continuous-time analog of the Sisyphus Random Walk discussed in subsection III D. The
Sisyphus Markov Jump process defined on the half-line x = 0, 1, 2, .. is defined as follows : when Sisyphus is at position
x at time t, he can return to the origin x = 0 with the reset rate r, he can move forward to the next position (x+ 1)
with rate w, and otherwise he remains at its position x.

As time-additive observable A, we will choose the number of resets, so that the joint generator of Eq. 38 becomes

w(x,A;x′, A′) ≡ rδx,0δA,A′+1 + wδx,x′+1δA,A′ for (x,A) 6= (x′, A′) (53)

1. Joint propagator Pt,t0(x,A|x0A0)

The forward dynamics of Eq. 39 reads for the present model where A is discrete with the generator of Eq. 53

∂tPt,t0(x,A|x0, A0) =
∑

(x′,A′)6=(x,A)

[
w(x,A;x′, A′)Pt,t0(x′, A′|x0, A0)− w(x′, A′;x,A)Pt,t0(x,A|x0, A0)

]

= rδx,0θ(A > A0)

+∞∑
x′=0

Pt,t0(x′, A− 1|x0, A0) + wθ(x > 0)Pt,t0(x− 1, A|x0, A0)− (r + w)Pt,t0(x,A|x0, A0) (54)

The solution can be directly written from the renewal analysis of the dynamics

Pt,t0(x,A|x0A0) = e−r(t−t0)δA,A0θ(x ≥ x0)
[w(t− t0)](x−x0)

(t− t0)!
e−w(t−t0)

+θ(A > A0)θ(x ≥ 0)
r(A−A0)

(A−A0 − 1)!
e−r(t−t0)

wx

x!

∫ (t−t0)

0

dτ [(t− t0)− τ ](A−A0)−1τxe−wτ (55)

The summation of Eq. 55 over the variable x allows to recover that the propagator for the variable A alone corresponds
to the Poisson distribution for (A−A0) and is independent of x0

+∞∑
x=0

Pt,t0(x,A|x0A0) = θ(A ≥ A0)
[r(t− t0)](A−A0)

(A−A0)!
e−r(t−t0) ≡ Pt,t0(A|A0) (56)

The summation of Eq. 55 over the variable A yields the propagator for the initial Markov process x(t) alone

+∞∑
A=A0

Pt,t0(x,A|x0A0) = e−r(t−t0)θ(x ≥ x0)
[w(t− t0)](x−x0)

(t− t0)!
e−w(t−t0) + θ(x ≥ 0)r

wx

x!

∫ (t−t0)

0

dττxe−(w+r)τ

≡ Pt,t0(x|x0) (57)

that converges towards the steady state corresponding to the geometric distribution

Pt,t0(x|x0) '
(t−t0)→+∞

θ(x ≥ 0)r
wx

x!

∫ +∞

0

dττxe−(w+r)τ =
r

w + r

(
w

w + r

)x
≡ Pst(x) (58)
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2. Forward generator of the conditioned dynamics

For the conditioned dynamics, the forward generator of Eq. 46 reads using the joint generator of Eq. 53 for
(x,A) 6= (x′, A′)

w
Forw[xT ,AT ;T ]
t (x,A;x′, A′) = PT,t(xT , AT |x,A)w(x,A;x′, A′)

1

PT,t(xT , AT |x′, A′)

= δx,0δA,A′+1r
PT,t(xT , AT |x,A′ + 1)

PT,t(xT , AT |x′, A′)
+ δx,x′+1δA,A′w

PT,t(xT , AT |x′ + 1, A′)

PT,t(xT , AT |x′, A′)

≡ δx,0δA,A′+1r
Forw[xT ,AT ;T ]
t (x′, A′) + δx,x′+1δA,A′w

Forw[xT ,AT ;T ]
t (x′, A′) (59)

So the conditioned dynamics corresponds to a Sisyphus Markov jump process, where the initial reset rate r and the
initial forward jump rate w have been replaced by reset rates and forward jump rates that depend on the time t and
on the configuration (x′, A′)

r
Forw[xT ,AT ;T ]
t (x′, A′) = r

PT,t(xT , AT |x,A′ + 1)

PT,t(xT , AT |x′, A′)

w
Forw[xT ,AT ;T ]
t (x′, A′) = w

PT,t(xT , AT |x′ + 1, A′)

PT,t(xT , AT |x′, A′)
(60)

where on can plug the explicit form of the joint propagator given in Eq. 55.
The ’canonical conditioning’ (see the reminder in the two Appendices) of the Sisyphus Markov jump process has

been studied in [7] for the more general case where the reset rates of the initial model are space-dependent rx (instead
of being given by the constant value r) and where the time-additive observable involve two arbitrary functions α(x)
and β(x, x′).

V. APPLICATION TO DIFFUSION PROCESSES IN DIMENSION d

In this section, we consider the diffusion process ~x(t), where the d components xi(t) for i = 1, .., d follow the
Langevin stochastic differential equations involving the functions (fi[~x], gi[~x]) and d independent Brownian motions
Bi(t)

dxi(t) = fi[~x(t)] dt+ gi[~x(t)] dBi(t) (61)

in the Stratonovich interpretation. Equivalently, the dynamics can be defined via the Fokker-Planck equation for the
probability Pt(~x) to be at position ~x at time t

∂tPt(~x) =

d∑
i=1

∂xi

[
− Fi[~x]Pt(~x) +Di[~x]∂xiPt(~x)

]
(62)

with the following components for the force and for the diffusion coefficient

Fi[~x] = fi[~x]− gi[~x]∂xigi[~x]

2

Di[~x] =
g2i [~x]

2
(63)

The time-additive observable A(t) of the trajectory ~x(t1 ≤ s ≤ t2) of Eq. 1 can be parametrized by the function

α[~x] and by the field ~β[~x] in the Stratonovich interpretation

A(t2)−A(t1) = A[x(t1 ≤ s ≤ t2)] =

∫ t2

t1

[
α[~x(s)]ds+ ~β[~x(s)].d~x(s)

]
(64)
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A. Dynamics of the joint propagator Pt,t0(~x,A|~x0, A0)

Since the increment between t and (t+ dt) of the time-additive observable A(t) of Eq. 64 can be rewritten in terms
of the d Langevin increments dxi(t) of Eq. 61

dA(t) = A(t+ dt)−A(t) = α[~x(t)]dt+

d∑
i=1

βi[~x(t)].dxi(t)

=

[
α[~x(t)] +

d∑
i=1

βi[~x(t)]fi[~x(t)]

]
dt+

d∑
i=1

βi[~x(t)]gi[~x(t)]dBi(t) (65)

one can consider that A(t) is a supplementary (d + 1) coordinate for the Langevin system in the Stratonovich
interpretation of Eq. 61, that involves the d previous Brownian motions Bi(t). As a consequence, one can write
the Fokker-Planck equations generalizing Eq. 62 as follows :

(i) the forward generator

F = −α[~x]∂A −
d∑
i=1

(∂xi + βi[~x]∂A)Fi[~x] +

d∑
i=1

(∂xi + βi[~x]∂A)Di[~x] (∂xi + βi[~x]∂A) (66)

governs the forward Fokker-Planck equation of the joint propagator Pt,0(~x,A|~x0, A0) with respect to the final variables
(~x,A) at time t

∂tPt,0(~x,A|~x0, A0) = FPt,0(~x,A|~x0, A0)

= −α[~x]∂APt,0(~x,A|~x0, A0)−
d∑
i=1

(∂xi + βi[~x]∂A)

[
Fi[~x]Pt,0(~x,A|~x0, A0)

]

+

d∑
i=1

(∂xi + βi[~x]∂A)

[
Di[~x] (∂xi + βi[~x]∂A)Pt,0(~x,A|~x0, A0)

]
(67)

(ii) the backward generator corresponding to the adjoint differential operator of Eq. 66

F† = α[~x]∂A +

d∑
i=1

Fi[~x] (∂xi + βi[~x]∂A) +

d∑
i=1

(∂xi + βi[~x]∂A)Di[~x] (∂xi + βi[~x]∂A) (68)

governs the backward Fokker-Planck equation for the joint propagator PT,t(~xT , AT |~x,A) with respect to the initial
variables (~x,A) at time t

−∂tPT,t(~xT , AT |~x,A) = F†PT,t(~xT , AT |~x,A)

= α[~x]∂APT,t(~xT , AT |~x,A) +
d∑
i=1

Fi[~x] (∂xi + βi[~x]∂A)PT,t(~xT , AT |~x,A)

+

d∑
i=1

(∂xi + βi[~x]∂A)

[
Di[~x] (∂xi + βi[~x]∂A)PT,t(~xT , AT |~x,A)

]
(69)

B. Markov dynamics for the conditional probability PCond
t (~x,A) with time-dependent additional forces

Let us now focus on the dynamics for the conditional probability of Eq. 4

PCondt (~x,A) =
PT,t(~xT , AT |~x,A)Pt,0(~x,A|~x0, A0)

PT,0(~xT , AT |~x0, A0)
(70)

Its dynamics with respect to the time t involves the forward dynamics with generator F of Eq. 67 for the propagator
Pt,0(~x,A|~x0, A0) and the backward dynamics with generator F† of Eq. 69 for the propagator PT,t(~xT , AT |~x,A). So
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the time-derivative of the conditional probability of Eq. 70 reads

∂tPCondt (~x,A) = [∂tPT,t(~xT , AT |~x,A)]
Pt,0(~x,A|~x0, A0)

PT,0(~xT , AT |~x0, A0)
+

PT,t(~xT , AT |~x,A)

PT,0(~xT , AT |~x0, A0)
[∂tPt,0(~x,A|~x0, A0)]

= − Pt,0(~x,A|~x0, A0)

PT,0(~xT , AT |~x0, A0)

[
F†PT,t(~xT , AT |~x,A)

]
+

PT,t(~xT , AT |~x,A)

PT,0(~xT , AT |~x0, A0)
[FPt,0(~x,A|~x0, A0)] (71)

(i) Forward perspective : Eq. 70 allows to plug the propagator

Pt,0(~x,A|~x0, A0) = PCondt (~x,A)
PT,0(~xT , AT |~x0, A0)

PT,t(~xT , AT |~x,A)
(72)

into Eq. 71 to obtain

∂tPCondt (~x,A) = − PCondt (~x,A)

PT,t(~xT , AT |~x,A)

[
F†PT,t(~xT , AT |~x,A)

]
+ PT,t(~xT , AT |~x,A)

[
F PCondt (~x,A)

PT,t(~xT , AT |~x,A)

]
(73)

or more explicitly using the forms of Eqs 66 and 68 for the differential generator F and its adjoint F†

∂tPCondt (~x,A) = −α[~x]∂APCondt (~x,A)−
d∑
i=1

(∂xi + βi[~x]∂A)

[(
Fi[~x] + F

Forw[~xT ,AT ;T ]
i [~x,A; t]

)
PCondt (~x,A)

]

+

d∑
i=1

(∂xi + βi[~x]∂A)
[
Di[~x] (∂xi + βi[~x]∂A)PCondt (~x,A)

]
(74)

where the only differences with respect to the forward joint Fokker-Planck dynamics of Eq. 67 are the additional
time-dependent forces

F
Forw[~xT ,AT ;T ]
i [~x,A; t] ≡ 2Di[~x] (∂xi + βi[~x]∂A) lnPT,t(~xT , AT |~x,A) (75)

that involve the propagator PT,t(~xT , AT |~x,A) up to the imposed final values (~xT , AT ) at time T . Eq. 75 is the analog
of Eqs 18 and 46.

(ii) Backward perspective : Eq. 70 allows to plug the propagator

PT,t(~xT , AT |~x,A) = PCondt (~x,A)
PT,0(~xT , AT |~x0, A0)

Pt,0(~x,A|~x0, A0)
(76)

into Eq. 71 to obtain

−∂tPCondt (~x,A) = Pt,0(~x,A|~x0, A0)

[
F† P

Cond
t (~x,A)

Pt,0(~x,A|~x0, A0)

]
− PCondt (~x,A)

Pt,0(~x,A|~x0, A0)
[FPt,0(~x,A|~x0, A0)] (77)

or more explicitly using the forms of Eqs 66 and 68 for the differential generator F and its adjoint F†

−∂tPCondt (~x,A) = α[~x]∂APCondt (~x,A) +

d∑
i=1

(∂xi + βi[~x]∂A)

[(
Fi[~x] + F

Backw[~x0,A0;0]
i [~x,A; t]

)
PCondt (~x,A)

]

+

d∑
i=1

(∂xi + βi[~x]∂A)

[
Di[~x] (∂xi + βi[~x]∂A)PCondt (~x,A)

]
(78)

where the time-dependent forces

F
Backw[~x0,A0;0]
i [~x,A; t] ≡ −2Di[~x] (∂xi + βi[~x]∂A) lnPt,0(~x,A|~x0, A0) (79)

involve the propagator Pt,0(~x,A|~x0, A0) up to the imposed initial values (~x0, A0) at time t = 0 Eq. 79 is the analog
of Eqs 23 and 49.



13

(iii) The compatibility between the two dynamical equations of Eqs 74 and 77 can be checked via their sum that
can be evaluated using the explicit expressions of Eqs 75 and 79 for the additional forces

0
?
=

d∑
i=1

(∂xi + βi[~x]∂A)

[(
F

Backw[~x0,A0;0]
i [~x,A; t]− FForw[~xT ,AT ;T ]

i [~x,A; t]
)
PCond

t (~x,A) + 2Di[~x] (∂xi + βi[~x]∂A)PCond
t (~x,A)

]

=

d∑
i=1

(∂xi + βi[~x]∂A) 2Di[~x]PCond
t (~x,A)

[
(∂xi + βi[~x]∂A) ln

PCond
t (~x,A)

PT,t(~xT , AT |~x,A)Pt,0(~x,A|~x0, A0)

]

=

d∑
i=1

(∂xi + βi[~x]∂A) 2Di[~x]PCond
t (~x,A)

[
(∂xi + βi[~x]∂A) ln

1

PT,0(~xT , AT |~x0, A0)

]
= 0 (80)

where we have used Eq. 70 to obtain the propagator PT,0(~xT , AT |~x0, A0) that does not depend upon (~x,A).
(iv) The half-difference between the two dynamical equations of Eqs 74 and 77 leads to the new dynamical equation

involving only drift contributions

∂tPCondt (~x,A) = −α[~x]∂APCondt (~x,A)−
d∑
i=1

(∂xi + βi[~x]∂A)

[(
Fi[~x] + F

[~xT ,AT ;T ],[~x0,A0;0]
i [~x,A; t]

)
PCondt (~x,A)

]
(81)

where the time-dependent additional forces

F
[~xT ,AT ;T ],[~x0,A0;0]
i [~x,A; t] ≡ F

Forw[~xT ,AT ;T ]
i [~x,A; t] + F

Backw[~x0,A0;0]
i [~x,A; t]

2

= Di[~x] (∂xi + βi[~x]∂A) ln
PT,t(~xT , AT |~x,A)

Pt,0(~x,A|~x0, A0)
(82)

involves both propagators Pt,0(~x,A|~x0, A0) and PT,t(~xT , AT |~x,A).

C. Stratonovich stochastic differential equations for the conditioned process (~x∗(t), A∗(t))

The forward Fokker-Planck dynamics of Eq. 74 can be translated into the following Stratonovich stochastic differ-
ential equations for the joint conditioned process (~x∗(t), A∗(t)). The d components x∗i (t) for i = 1, .., d of ~x∗(t) satisfy
the Stratonovich stochastic differential equations in terms of d independent Brownian motions Bi(t)

dx∗i (t) =
(
fi[~x

∗(t)] + F
Forw[~xT ,AT ;T ]
i [~x∗(t), A∗(t); t]

)
dt+ gi[~x

∗(t)] dBi(t) (83)

where the only differences with respect to the unconditioned case of Eq. 61 are the additional time-dependent forces

F
Forw[~xT ,AT ;T ]
i [~x∗, A∗; t] given in Eq. 75.
Since the increment between t and (t+ dt) of the time-additive observable A∗(t) can be rewritten in terms of ~x∗(t)

and of the d Langevin increments dx∗i (t) of Eq. 83, the Stratonovich stochastic differential equation for A∗(t) reads

dA∗(t) = A∗(t+ dt)−A∗(t) = α[~x∗(t)]dt+

d∑
i=1

βi[~x
∗(t)].dx∗i (t)

=

[
α[~x∗(t)] +

d∑
i=1

βi[~x
∗(t)]

(
fi[~x

∗(t)] + F
Forw[~xT ,AT ;T ]
i [~x∗(t), A∗(t); t]

)]
dt+

d∑
i=1

βi[~x
∗(t)]gi[~x

∗(t)]dBi(t) (84)

The Stratonovich Stochastic Differential Equations of Eqs 83 and 84 can be then used to generate stochastic trajectories
of the conditioned process (~x∗(t), A∗(t)).

D. Simple example : Brownian B(t) as time-additive observable of the diffusion process x(t)

1. Brownian motion B(t) conditioned on the value of the diffusion process x(t)

Let us consider the one-dimensional diffusion process of Eq. 61

dx(t) = f [x(t)] dt+ g[x(t)] dB(t) (85)
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associated to the Fokker-Planck Eq. 62

∂tPt(x) = ∂x

[
− F [x]Pt(x) +D[x]∂xPt(x)

]
(86)

with the the force and the diffusion coefficient of Eq. 63

F [x] = f [x]− g[x]g′[x]

2

D[x] =
g2[x]

2
(87)

As time-additive observable, let us choose the Brownian motion B(t) satisfying Eq. 85

dB(t) = −f [x(t)]

g[x(t)]
dt+

1

g[x(t)]
dx(t) (88)

i.e. the two functions α and β are present in the parametrization of Eq. 64

α[x] = −f [x]

g[x]

β[x] =
1

g[x]
(89)

The joint propagator Pt,t0(x,B|x0, B0) satisfies the forward dynamics of Eq. 67

∂tPt,t0(x,B|x0, B0) = ∂x

[
−F [x]Pt,t0(x,B|x0, B0) +D[x]∂xPt,t0(x,B|x0, B0) +

√
2D[x]∂BPt,t0(x,B|x0, B0)

]
+

1

2
∂2BPt,t0(x,B|x0, B0) (90)

Since in the microcanonical conditioning framework one considers the joint process (x(t), B(t)), one can rephrase the
’conditioning of the diffusion process x(t) on its time-additive observable B(t)’ described above as the ’conditioning
of Brownian motion B(t) on the diffusion process x(t)’. This rephrasing is interesting because the diffusion process
x(t) generated via Eq. 85 is not a time-additive observable of the Brownian motion B(t).

When the joint propagator Pt,t0(x,B|x0, B0) of Eq. 90 is explicit, one can compute the additional time-dependent
force of Eq. 75

FForw[xT ,BT ;T ][x,B; t] = 2D[x] (∂x + β[x]∂B) lnPT,t(xT , BT |x,B) (91)

that appear in the Stratonovich stochastic differential equations for the conditioned process (x∗(t), B∗(t)) as follows.
The Stratonovich stochastic differential equation of Eq 83 for x∗(t) involves a Wiener process W (t)

dx∗(t) =
(
f [x∗(t)] + FForw[~xT ,BT ;T ][x∗(t), B∗(t); t]

)
dt+ g[x∗(t)] dW (t) (92)

while the Stratonovich stochastic differential equation of Eq. 84 for B∗(t) reads using Eqs 88 and 89

dB∗(t) =
[−f [x∗(t)]dt+ dx∗(t)]

g[x∗(t)]

=
FForw[~xT ,BT ;T ][x∗(t), B∗(t); t]

g[x∗(t)]
dt+ dW (t) (93)

The dynamics of Eq. 92 can also be rewritten in terms of the increment dB∗(t) of Eq. 93 as

dx∗(t) = f [x∗(t)]dt+ g[x∗(t)]dB∗(t) (94)
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2. Explicit solution when x(t) is the Ornstein-Uhlenbeck process

In order to have a simple Gaussian solution for the joint propagator, let us now consider the case of the Ornstein-
Uhlenbeck process for x(t) corresponding to the constant diffusion coefficient and the linear restoring force

D[x] = D

F [x] = −x (95)

so that the corresponding stochastic differential equation reads

dx(t) = −x(t)dt+
√

2D dB(t) (96)

both in the Stratonovich and in the Ito interpretations, since the diffusion constant is space-independent.
The forward Fokker-planck Eq. 90 for the joint propagator Pt,t0(x,B|x0, B0)

∂tPt,t0(x,B|x0, B0) = ∂x [xPt,t0(x,B|x0, B0)] +D∂2xPt,t0(x,B|x0, B0) +
√

2D∂B∂xPt,t0(x,B|x0, B0)

+
1

2
∂2BPt,t0(x,B|x0, B0) (97)

can be translated via the double Fourier transform

P̂t,t0(q, k|x0, B0) ≡
∫ +∞

−∞
dxeiqx

∫ +∞

−∞
dBeikBPt,t0(x,B|x0, B0) (98)

into the dynamical equation

∂tP̂t,t0(q, k|x0, B0) = −q∂qP̂t,t0(q, k|x0, B0)−
[
Dq2 +

√
2Dqk +

k2

2

]
P̂t,t0(q, k|x0, B0) (99)

and the initial conditions at t = t0

P̂t=t0,t0(q, k|x0, B0) ≡
∫ +∞

−∞
dxeiqx

∫ +∞

−∞
dBeikBδ(x− x0)δ(B −B0) = eiqx0eikB0 (100)

The solution

P̂t,t0(q, k|x0, B0) = e−q
2 D

2 [1−e−2(t−t0)]−k2 t−t02 −kq
√
2D[1−e−(t−t0)]+iqx0e

−(t−t0)+ikB0 (101)

corresponds via the double-inverse Fourier transform of Eq. 98 to the bivariate Gaussian distribution

Pt,t0(x,B|x0, B0) =

∫ +∞

−∞

dq

2π
e−iqx

∫ +∞

−∞

dk

2π
e−ikBP̂t,t0(q, k|x0, B0)

=
1

2πσ(t, t0)v(t, t0)
√

1− c2(t, t0)
e
− 1

2[1−c2(t,t0)]

[(
x−x0e

−(t−t0)

σ(t,t0)

)2

+
(
B−B0
v(t,t0)

)2
−2c(t,t0)

(
x−x0e

−(t−t0)

σ(t,t0)

)(
B−B0
v(t,t0)

)]
(102)

with the two variances

σ2(t, t0) = D
[
1− e−2(t−t0)

]
v2(t, t0) = (t− t0) (103)

and the rescaled correlation

c(t, t0) =

√
2
[
1− e−(t−t0)

]
(t− t0)

[
1 + e−(t−t0)

] (104)

The conditioned forward dynamics is then governed by the Fokker-Planck Eq. 74

∂tPCondt (x,B) = −∂x
[(
−x+ F

Forw[xT ,BT ;T ]
t [x,B]

)
Pt,t0(x,B|x0, B0)

]
+D∂2xPt,t0(x,B|x0, B0) +

√
2D∂B∂xPt,t0(x,B|x0, B0) +

1

2
∂2BPt,t0(x,B|x0, B0) (105)
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where the only difference with respect to the forward Fokker-Planck dynamics of Eq. 97 is the additional time-
dependent force of Eq. 75

F
Forw[xT ,BT ;T ]
t [x,B] ≡ 2D

(
∂x +

1√
2D

∂B

)
lnPT,t(xT , BT |x,B) (106)

Using the explicit form of Eq. 102 for the propagator, one obtains

lnPT,t(xT , BT |x,B) = − ln
(

2πσ(T, t)v(T, t)
√

1− c2(T, t)
)

− 1

2[1− c2(T, t)]

[(
xe−(T−t) − xT

σ(T, t)

)2

+

(
B −BT
v(T, t)

)2

− 2c(T, t)

(
xe−(T−t) − xT

σ(T, t)

)(
B −BT
v(T, t)

)]
(107)

with the corresponding partial derivatives with respect to x

∂x lnPT,t(xT , BT |x,B) =
e−(T−t)

σ(T, t)[1− c2(T, t)]

[
−
(
xe−(T−t) − xT

σ(T, t)

)
+ c(T, t)

(
B −BT
v(T, t)

)]
(108)

and with respect to B

∂B lnPT,t(xT , BT |x,B) =
1

v(T, t)[1− c2(T, t)]

[
−
(
B −BT
v(T, t)

)
+ c(T, t)

(
xe−(T−t) − xT

σ(T, t)

)]
(109)

As a consequence, the additional time-dependent force of Eq. 106 is linear with respect to x and with respect to B

F
Forw[xT ,BT ;T ]
t [x,B] =

[√
2D∂x lnPT,t(xT , BT |x,B) + ∂B lnPT,t(xT , BT |x,B)

]
=

√
2D

[1− c2(T, t)]

[
c(T, t)

v(T, t)
−
√

2De−(T−t)

σ(T, t)

](
xe−(T−t) − xT

σ(T, t)

)

+

√
2D

[1− c2(T, t)]

[√
2Dc(T, t)e−(T−t)

σ(T, t)
− 1

v(T, t)

](
B −BT
v(T, t)

)
(110)

while the time-dependence is governed by the functions introduced in Eqs 103 and 104

σ(T, t) =
√
D
[
1− e−2(T−t)

]
v(T, t) =

√
T − t

c(T, t) =

√
2
[
1− e−(T−t)

]
(T − t)

[
1 + e−(T−t)

] (111)

The explicit time-dependent force F
Forw[xT ,BT ;T ]
t [x,B] of Eq. 110 can be then plugged into the stochastic differential

equation of Eq. 93 involving a Wiener process W (t)

dB∗(t) =
[x∗(t)dt+ dx∗(t)]√

2D
=
FForw[~xT ,BT ;T ][x∗(t), B∗(t); t]√

2D
dt+ dW (t) (112)

while the stochastic differential equation for x∗(t) can be written either as Eq. 92

dx∗(t) =
(
−x∗(t) + FForw[~xT ,BT ;T ][x∗(t), B∗(t); t]

)
dt+

√
2D dW (t) (113)

or as Eq. 94

dx∗(t) = −x∗(t)dt+
√

2DdB∗(t) (114)

in order to generate stochastic trajectories of the conditioned process (x∗(t), B∗(t)).
As a final remark, let us stress that other explicit examples of microcanonical conditioning for the Brownian motion

or the Ornstein-Uhlenbeck process on various time-additive observables can be found in [75, 76, 80].
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VI. CONCLUSION

In this paper, the recent studies concerning the conditioning of one-dimensional diffusion processes or discrete-time
random walks on global dynamical constraints over a finite time-window T [75, 76, 80] have been generalized to analyze
the ’microcanonical conditioning’ of Markov processes on time-additive observables. We have described the application
to various types of Markov processes, namely discrete-time Markov chains, continuous-time Markov jump processes
and diffusion processes in arbitrary dimension. In each setting, we have considered the most general time-additive
observable that can involve both the time spent in each configuration and the elementary increments of the Markov
process. We have illustrated the various cases via simple explicit examples. In the two Appendices, we describe the
link with the ’canonical conditioning’ based on the generating function of the time-additive observable, that has been
much studied recently in the field of non-equilibrium steady states [16, 31–74] as recalled in the Introduction.

We hope that the present general formulation of the ’microcanonical conditioning’ of Markov processes on time-
additive observables will be helpful to identity new soluble cases besides the various explicit solutions given in the
recent works [75, 76, 80].

Appendix A: Links with the canonical conditioning on a time-additive observable for finite time T

As recalled in more details in the Introduction, the ’canonical conditioning’ of Markov processes has been much
studied recently in the field of non-equilibrium steady states [16, 31–74]. In this Appendix, it is thus interesting to
describe the links with the microcanonical conditioning considered in the main text.

1. Generating function Z
[k]
t,t0

(x|x0) of the total increment A(t)−A(t0) = A[x(t0 ≤ s ≤ t)]

Here the basic object is the generating function Z
[k]
t,t0(x|x0) of the total increment A(t)− A(t0) = A[x(t0 ≤ s ≤ t)]

over the Markov trajectories x(t0 ≤ s ≤ t) starting at x(t0) = x0 and ending at x(t) = x

Z
[k]
t,t0(x|x0) ≡ 〈δx(t),x ekA[x(t0≤s≤t)] δx(t0),x0

〉 (A1)

For fixed k, the generating function Z
[k]
t,t0(x|x0) satisfies

(i) some forward k-dependent dynamics with respect to the final state x at time t, that can be obtained from the
forward dynamics of the joint propagator Pt,t0(x,A|x0, A0) of Eq. 2 via

Z
[k]
t,t0(x|x0) =

∑
A

ekAPt,t0(x,A|x0, A0 = 0) (A2)

(ii) some backward k-dependent dynamics with respect to the initial state x0 at time t0, that can be obtained from
the backward dynamics of the joint propagator Pt,t0(x,A|x0, A0) of Eq. 2 via

Z
[k]
t,t0(x|x0) =

∑
A0

e−kA0Pt,t0(x,A = 0|x0, A0) (A3)

Here it is important to stress that these two dynamics are not probability-conserving Markov dynamics, since

Z
[k]
t,t0(x|x0) is a generating function and not a probability.

a. Dynamics of the generating function Z
[k]
t,t0

(x|x0) for discrete-time Markov chains of section III

The joint generator W (x,A;x′, A′) of Eq. 11 is in correspondence with the k-tilted matrix

W [k](x;x′) =
∑
A

W (x,A;x′, A′)ek(A−A
′) = W (x;x′)ekβ(x,x

′) (A4)

(i) The forward dynamics of Eq. 13 for the joint propagator Pt,t0(x,A|x0, A0) translates into the following forward

dynamics for the generating function Z
[k]
t,t0(x|x0) via Eq. A2

Z
[k]
t+1,t0

(x|x0) =
∑
x′

W [k](x;x′)Z
[k]
t,t0(x′|x0) (A5)
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(ii) The backward dynamics of Eq. 14 for the joint propagator Pt,t0(x,A|x0, A0) translates into the following
backward dynamics for the generating function via Eq. A3

Z
[k]
t,t0−1(x|x0) =

∑
x′0

Zt,t0(x|x′0)W [k](x′0;x0) (A6)

b. Dynamics of the generating function Z
[k]
t,t0

(x|x0) for continuous-time Markov jump processes of section IV

The jump-drift dynamics of Eqs 36 and 38 is in correspondence with the k-tilted matrix

w[k](x;x) ≡ kα(x)−
∑
x′ 6=x

w(x′;x)

w[k](x;x′) ≡ w(x;x′)ekβ(x,x
′) for x 6= x′ (A7)

(i) The forward dynamics of Eq. 39 for the joint propagator Pt,t0(x,A|x0, A0) translates into the following forward

dynamics for the generating function Z
[k]
t,t0(x|x0) via Eq. A2

∂tZ
[k]
t,t0(x|x0) =

∑
x′

w[k](x;x′)Z
[k]
t,t0(x′|x0) (A8)

(ii) The backward dynamics of Eq. 40 for the joint propagator Pt,t0(x,A|x0, A0) translates into the following
backward dynamics for the generating function via Eq. A3

−∂t0Z
[k]
t,t0(x|x0) =

∑
x′0

Z
[k]
t,t0(x|x′0)w[k](x′0;x0) (A9)

c. Dynamics of the generating function Z
[k]
t,t0

(~x|~x0) for diffusion processes of section V

(i) The forward generator of Eq. 66 corresponds to the k-tilted differential operator

Fk = kα[~x]−
d∑
i=1

(∂i − kβi[~x])Fi[~x] +

d∑
i=1

(∂i − kβi[~x])Di[~x] (∂i − kβi[~x]) (A10)

The forward dynamics of Eq. 67 for the joint propagator Pt,t0(~x,A|~x0, A0) translates for the generating function via
Eq. A2 into the forward dynamics

∂tZ
[k]
t,0(~x|~x0) ≡ FkZ [k]

t,0(~x|~x0)

= kα[~x]Z
[k]
t,0(~x|~x0)−

d∑
i=1

(∂i − kβi[~x])

[
Fi[~x]Z

[k]
t,0(~x|~x0)

]

+

d∑
i=1

(∂i − kβi[~x])

[
Di[~x] (∂i − kβi[~x])

(
Z

[k]
t,0(~x|~x0)

)]
(A11)

(ii) The backward dynamics of Eq. 69 for the joint propagator PT,t(~xT , AT |~x,A) can be translated for the generating
function via Eq. A3 into the backward dynamics

−∂tZ [k]
T,t(~xT |~x) = kα[~x]Z

[k]
T,t(~xT |~x) +

d∑
i=1

Fi[~x] (∂i + kβi[~x])Z
[k]
T,t(~xT |~x)

+

d∑
i=1

(∂i + kβi[~x])

[
Di[~x] (∂i + kβi[~x])Z

[k]
T,t(~xT |~x)

]
≡ F†kZ

[k]
t,0(~x|~x0) (A12)

involving the adjoint operator of Eq. A10

F†k = kα[~x] +

d∑
i=1

Fi[~x] (∂i + kβi[~x]) +

d∑
i=1

(∂i + kβi[~x])Di[~x] (∂i + kβi[~x]) (A13)
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2. Conditional probability PCond[k]
t (x) if starting at x0 at time t = 0 and ending at xT at time t = T

Even if it is not a conserved probability, the generating function Z
[k]
T,0(xT |x0) satisfies nevertheless some analog of

the Chapman-Kolmogorov Eq. 3 as a consequence of the additivity property of Eq. 1

A[x(0 ≤ s ≤ T )] = A[x(0 ≤ s ≤ t)] +A[x(t ≤ s ≤ T )] (A14)

that can be plugged into the definition of Eq. A1 to obtain

Z
[k]
T,0(xT |x0) = 〈δx(T ),xT e

kA[x(t≤s≤T )]

[∑
x

δx(t),x

]
ekA[x(0≤s≤t)] δx(0),x0

〉

=
∑
x

Z
[k]
T,t(xT |x)Z

[k]
t,0(x|x0) (A15)

For each k, one can thus introduce the conditional probability PCond[k]t (x) to see the value x at the internal time
t ∈]0, T [

PCond[k]t (x) =
Z

[k]
T,t(xT |x)Z

[k]
t,0(x|x0)

Z
[k]
T,0(xT |x0)

(A16)

It is normalized as a consequence of Eq. A15 ∑
x

PCond[k]t (x) = 1 (A17)

and it satisfies the fixed boundary conditions at time t = 0 and at time t = T

PCond[k]0 (x) =
Z

[k]
T,0(xT |x)Z

[k]
0,0(x|x0)

Z
[k]
T,0(xT |x0)

= δx,x0

PCond[k]T (x) =
Z

[k]
T,T (xT |x)Z

[k]
T,0(x|x0)

Z
[k]
T,0(xT |x0)

= δx,xT (A18)

3. Markov dynamics for the conditional probability PCond[k]
t (x)

The Markov dynamics of the conditional probability PCond[k]t (x) can be derived from the Markov dynamics satisfied
by the two generating functions in the numerator of Eq. A16, namely :

(i) the forward dynamics of the generating function Z
[k]
t,0(x|x0) with respect to its final variable x at time t

(ii) the backward dynamics of the generating function Z
[k]
T,t(xT |x) with respect to its initial variable x at time t

a. Forward dynamics of the conditional probability PCond[k]
t (x) for discrete-time Markov chains of section III

For the case of discrete-time Markov chains of section III, the conditional probability of Eq. A16 satisfies the
forward dynamics

PCond[k]t+1 (x) =
∑
x′

W
Forw[k;xT ,T ]
t+1/2 (x;x′)PCond[k]t (x′) (A19)

where the effective probabilities

W
Forw[k;xT ,T ]
t+1/2 (x;x′) = Z

[k]
T,t+1(xT |x)W [k](x;x′)

1

Z
[k]
T,t(xT |x′)

(A20)

involve the conjugation of the k-tilted matrix W [k](x;x′) of Eq. A4 with the generating functions Z
[k]
T,t+1(xT |x) and

Z
[k]
T,t(xT |x′) up to the imposed final value xT at time T . Eq. A20 is the analog of Eq. 18 concerning the microcanonical

conditioning.
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b. Forward dynamics of the conditional probability PCond[k]
t (x) for continuous-time Markov jump processes of section IV

For the case of continuous-time Markov jump processes of section IV, the conditional probability of Eq. A16 satisfies
the forward dynamics

∂tPCond[k]t (x) =
∑
x′ 6=x

[
w
Forw[k;xT ,T ]
t (x;x′)PCond[k]t (x′)− wForw[k;xT ,T ]

t (x′;x)PCond[k]t (x)
]

(A21)

where the effective rates

w
Forw[k;xT ,T ]
t (x;x′) = Z

[k]
T,t(xT |x)wk](x;x′)

1

Z
[k]
T,t(xT |x′)

for x 6= x′ (A22)

involve the conjugation of the k-tilted matrix of Eq. A7 with the generating functions Z
[k]
T,t+1(xT |x) and Z

[k]
T,t(xT |x′) up

to the imposed final value xT at time T . Eq. A22 is the analog of Eq. 46 concerning the microcanonical conditioning.

c. Forward dynamics of the conditional probability PCond[k]
t (~x) for diffusion processes of section V

For the case of diffusion processes of section V, the conditional probability of Eq. A16 satisfies the forward dynamics

∂tPCond[k]t (~x) = −
d∑
i=1

∂xi

[(
Fi[~x] + F

Forw[k;~xT ,T ]
i [~x; t]

)
PCond[k]t (~x)

]
+

d∑
i=1

∂xi

[
Di[~x]∂xiP

Cond[k]
t (~x)

]
(A23)

where the additional time-dependent force

F
Forw[k;~xT ,T ]
i [~x; t] ≡ 2Di[~x]

[
kβi[~x] + ∂xi lnZ

[k]
T,t(~xT |~x)

]
(A24)

is the analog of Eq. 75 concerning the microcanonical conditioning.
The forward Fokker-Planck dynamics of Eq. A23 can be translated into the following Stratonovich stochastic

differential equations for the d components x∗i (t) for i = 1, .., d in terms of d independent Brownian motions Bi(t)

dx∗i (t) =
(
fi[~x

∗(t)] + F
Forw[k;~xT ,T ]
i [~x; t]

)
dt+ gi[~x

∗(t)] dBi(t) (A25)

where the only differences with respect to the unconditioned case of Eq. 61 are the additional time-dependent forces

F
Forw[k;~xT ,T ]
i [~x; t] given in Eq. A24.

Appendix B: Reminder on the conditioning for large T when there is a normalizable steady state Pst(x)

In this Appendix, the Markov processes x(t) is assumed to converge towards some normalizable steady-state Pst(x).
This steady state Pst(x) can be interpreted as the positive eigenvector 〈x|r0〉 = r0(x) associated to the highest
eigenvalue of the Markov generator

Pst(x) = 〈x|r0〉 = r0(x) (B1)

while the corresponding positive left eigenvector is constant

〈l0|x〉 = l0(x) = 1 (B2)

When the time interval (t − t0) becomes large, the propagator Pt,t0(x, x0) is dominated by this highest eigenvalue
contribution

Pt,t0(x, x0) '
(t−t0)→+∞

〈x|r0〉〈l0|x0〉 = r0(x)l0(x) = Pst(x) (B3)

and describes the convergence towards the steady state Pst(x) for any initial condition x0.
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1. Asymptotic analysis of the generating function Z
[k]
t,t0

(x|x0) for large time interval (t− t0)

For k = 0, the generating function of Eq. A1 coincides with the propagaor Pt,t0(x, x0) discussed above

Z
[k=0]
t,t0 (x|x0) = Pt,t0(x, x0) (B4)

As a consequence for k 6= 0, at least in some region around k = 0, one expects that for large time-interval (t − t0),
the generating function will be similarly dominated by the contribution of the highest eigenvalue of the appropriate
k-deformed generator

Z
[k]
t,t0(x|x0) '

(t−t0)→+∞
e(t−t0)G(k)〈x|rk〉〈lk|x0〉 = e(t−t0)G(k)rk(x)lk(x0) (B5)

with its positive right eigenvector rk(x) ≥ 0 and its positive left eigenvector lk(x) ≥ 0 satisfying the normalization

1 = 〈lk|rk〉 =
∑
x

〈lk|x〉〈x|rk〉 =
∑
x

rk(x)lk(x) (B6)

while [(t− t0)G(k)] represents the generating function of the cumulants of the time-additive observable At,t0 , i.e. G(k)
corresponds to the scaled cumulants generating function in the large deviations theory, as recalled in more details
below in subsection B 3.

2. Asymptotic analysis of the conditional probability PCond[k]
t (x) at some interior time 0� t� T

For large T , if one is interested at some interior time t satisfying 0� t� T , one can plug the asymptotic behavior
of Eq. B5 into the three generating functions of Eq. A16 to obtain the asymptotic behavior of the conditional
probability

PCond[k]t (x) '
0�t�T

e(T−t)G(k)rk(xT )lk(x)etG(k)rk(x)lk(x0)

eTG(k)rk(xT )lk(x0)
= lk(x)rk(x) (B7)

Since it is independent of the interior time t as long as 0� t� T , it is useful to introduce the notation

ρk(x) ≡ lk(x)rk(x) (B8)

for the stationary density of the conditional probability PCond[k]t (x) in the interior time region 0� t� T .

3. Physical meaning of the canonical k-conditioning in terms of the large deviations properties of A(t)

Since the time-additive observable A(t) of Eq. 1 is extensive with respect to the time-interval, it is useful to
introduce its rescaled intensive counterpart

at,t0 ≡
A(t)−A(t0)

t− t0
=
A[x(t0 ≤ s ≤ t)]

t− t0
(B9)

that will converge towards its steady value ast that can be computed from the steady state Pst(x) and from the
corresponding steady flows

at,t0 '
(t−t0)→∞

ast (B10)

The probability Pt,t0(a) to see the value a different from this steady value ast displays the large deviations form with
respect to the time interval (t− t0)

Pt,t0(a) '
(t−t0)→+∞

e−(t−t0)I(a) (B11)

where the positive rate function I(a) ≥ 0 vanishes only for the steady value ast of Eq. B10

I(ast) = 0 (B12)
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The generating function of the additive observable A[x(t0 ≤ s ≤ t) = A(t) − A(t0) = (t − t0)at,t0 can be evaluated
from Eq. B11 via the saddle-point method for large (t− t0)

〈ekA[x(t0≤s≤t)〉 = 〈ek(t−t0)at,t0 〉 ≡
∫
daek(t−t0)aPt,t0(a) '

(t−t0)→+∞

∫
dae(t−t0)[ka−I(a)] '

(t−t0)→+∞
e(t−t0)G(k) (B13)

So the scaled cumulants generating function G(k) that has been introduced in Eq. B5 is the Legendre transform of
the rate function I(a)

ka− I(a) = G(k)

k − I ′(a) = 0 (B14)

while the reciprocal Legendre transform reads

ka−G(k) = I(a)

a−G′(k) = 0 (B15)

As a consequence, the canonical k-conditioning discussed around Eq. B8 can be considered as asymptotically equiv-
alent to the microcanonical conditioning on the intensive additive variable at the corresponding Legendre value
a = G′(k) of Eq. B15.

4. Corresponding time-independent generators of the conditioned dynamics for 1� t� T

a. Forward dynamics of the conditional probability PCond[k]
t (x) for discrete-time Markov chains of section III

For the case of discrete-time Markov chains of section III, the asymptotic form of Eq. B5 for the generating function
yields that the effective probabilities of Eq. A20 become time-independent in the regime 1� t� T

W
Forw[k;xT ,T ]
t+1/2 (x;x′) '

1�t�T
e(T−t−1)G(k)rk(xT )lk(x)W [k](x;x′)

1

e(T−t)G(k)rk(xT )lk(x′)

'
1�t�T

e−G(k)lk(x)W [k](x;x′)
1

lk(x′)
(B16)

where eG(k) is the highest eigenvalue of the k-tilted matrix W [k](x;x′) of Eq. A4, while lk(.) is the corresponding
positive eigenvector

eG(k)lk(x′) =
∑
x

lk(x)W [k](x;x′) (B17)

The corresponding positive right eigenvector rk(.)

eG(k)rk(x) =
∑
x′

W [k](x;x′)rk(x′) (B18)

appears in the conditioned steady state of Eq. B8 together with the left eigenvector lk(.).

b. Forward dynamics of the conditional probability PCond[k]
t (x) for continuous-time Markov jump processes of section IV

For the case of continuous-time Markov jump processes of section IV, the asymptotic form of Eq. B5 for the
generating function yields that the effective rates of Eq. A22 become time-independent in the regime 1� t� T

w
Forw[k;xT ,T ]
t (x;x′) '

1�t�T
lk(x)wk](x;x′)

1

lk(x′)
for x 6= x′ (B19)

where lk(.) is the positive eigenvector associated to the highest eigenvalue G(k) of the k-tilted matrix w[k](x;x′) of
Eq. A7

G(k)lk(x′) =
∑
x

lk(x)w[k](x;x′) = lk(x′)w[k](x′;x′) +
∑
x 6=x′

lk(x)w[k](x;x′) (B20)



23

Via the conservation of probability, the diagonal element can be computed in terms of the off-diagonal elements of
Eq. B19 using the eigenvalue Eq. B20

w
Forw[k;xT ,T ]
t (x′;x′) = −

∑
x 6=x′

w
Forw[k;xT ,T ]
t (x;x′) '

1�t�T
−

∑
x 6=x′

lk(x)wk](x;x′)

 1

lk(x′)

= −
[
G(k)lk(x′)− lk(x′)w[k](x′;x′)

] 1

lk(x′)
= w[k](x′;x′)−G(k) (B21)

so that it involves the diagonal element w[k](x′;x′) and the eigenvalue G(k).
The positive right eigenvector rk(.) of the k-tilted matrix w[k](x;x′)

G(k)rk(x) =
∑
x′

w[k](x;x′)rk(x′) (B22)

appears in the conditioned steady state of Eq. B8 together with the left eigenvector lk(.).

c. Forward dynamics of the conditional probability PCond[k]
t (~x) for diffusion processes of section V

For the case of diffusion processes of section V, the asymptotic form of Eq. B5 for the generating function yields
that the effective additional force of Eq. A24 becomes time-independent in the regime 1� t� T

F
Forw[k;~xT ,T ]
i [~x; t] '

1�t�T
2Di[~x]

(
kβi[~x] + ∂xi ln

[
e(T−t)G(k)rk(~xT )lk(~x)

])
= 2Di[~x]

(
kβi[~x] + ∂xi ln

[
lk(~x)

])
(B23)

where lk(.) is the positive eigenvector associated to the highest eigenvalue G(k) of the adjoint differential operator F†k
of Eq. A13

G(k)lk(~x) = F†k lk(~x)

= kα[~x]lk(~x) +

d∑
i=1

Fi[~x] (∂i + kβi[~x]) lk(~x) +

d∑
i=1

(∂i + kβi[~x]) [Di[~x] (∂i + kβi[~x]) lk(~x)] (B24)

The corresponding positive eigenvector rk(.) of the operator Fk of Eq. A13

G(k)rk(~x) = Fkrk(~x)

= kα[~x]rk(~x)−
d∑
i=1

(∂i − kβi[~x]) [Fi[~x]rk(~x)] +

d∑
i=1

(∂i − kβi[~x]) [Di[~x] (∂i − kβi[~x]) rk(~x)] (B25)

appears in the conditioned steady state of Eq. B8 together with the left eigenvector lk(.).
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Université de Nice.
[17] C. Monthus, J. Stat. Mech. (2019) 023206.
[18] C. Monthus, J. Phys. A: Math. Theor. 52, 135003 (2019).
[19] C. Monthus, J. Phys. A: Math. Theor. 52, 025001 (2019).
[20] C. Monthus, J. Phys. A: Math. Theor. 52, 485001 (2019).
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